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Abstract: In this paper, we presented an ε-accurate approach to conduct a continuous optimization on the pollution 

routing problem (PRP). First, we developed an ε-accurate inner polyhedral approximation method for the nonlinear 

relation between the travel time and travel speed. The approximation error was controlled within the limit of a 

given parameter ε, which could be as low as 0.01% in our experiments. Second, we developed two ε-accurate 

methods for the nonlinear fuel consumption rate (FCR) function of a fossil fuel-powered vehicle while ensuring the 

approximation error to be within the same parameter ε. Based on these linearization methods, we proposed an 

ε-accurate mathematical linear programming model for the continuous PRP (ε-CPRP for short), in which decision 

variables such as driving speeds, travel times, arrival/departure/waiting times, vehicle loads, and FCRs were all 

optimized concurrently on their continuous domains. A theoretical analysis is provided to confirm that the solutions 

of ε-CPRP are feasible and controlled within the predefined limit. The proposed ε-CPRP model is rigorously tested 

on well-known benchmark PRP instances in the literature, and has solved PRP instances optimally with up to 25 

customers within reasonable CPU times. New optimal solutions of many PRP instances were reported for the first 

time in the experiments. 
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1. Introduction 

According to the report published by the International Energy Agency (IEA, 2016a), the transportation sector 

was the second largest contributor to CO2 emissions, a well-known greenhouse gas accounting for 23% of the 

global CO2 emissions in 2014, and road transportation was responsible for almost three-quarters of the total 

emissions resulting from transportation activities. Overall, the transportation system of the modern world is still 

heavily dependent on burning fossil fuels (gasoline, diesel, petroleum, and natural gas), a major source of CO2 

emissions from human activities. For example, fossil fuels accounted for 91% of the total energy consumed in the 

USA transportation sector in 2016 (EIA, 2017). Although alternative energy vehicles, such as electric, hydrogen, 

and solar vehicles, are promising options for reducing CO2 emissions in transportation, they have not been widely 

applied owing to various reasons such as high investment costs, short travel ranges, and lack of recharging stations. 

Even in China, the world's largest electric vehicle market, electric vehicles comprised only 1% of the market in 

2015, and globally, electric vehicles account for only 0.9% (IEA, 2016b). Alternative energy vehicles are still 

facing some technical and economic challenges today. 

Another effective way of reducing vehicle emissions is to improve the efficiency of transportation systems 

through better operational strategies. The pollution routing problem (PRP) initialized by Bektas and Laporte (2011) 

is a widely studied optimization problem that involves balancing the operational/monetary cost and environmental 
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cost of logistic companies that serve their customers with fossil fuel-powered vehicles. However, owing to 

nonlinear relationships existing in PRP, such as the time–speed relation and the fuel consumption rate (FCR) 

function, it is difficult to formulate PRP as a continuous linear model. Bektas and Laporte (2011) first adopted a 

discretization strategy over the travel speeds, by which the vehicles can only travel at discrete speeds selected from 

a prespecified speed set. This discretization strategy was also used by other variants/extensions of PRP in the 

literature, including the time-dependent PRP (TD-PRP) by Franceschetti et al. (2013), the bi-objective PRP by 

Demir et al. (2014b), and the heterogeneous PRP by Koc et al. (2014). However, the discretized speeds in PRP lead 

to discretized travel times and discretized FCRs in the solution, which increase the combinational complexity and 

result in sub-optimal solutions. 

This study extended the discrete PRP of Bektas and Laporte (2011) to a continuous case by taking the travel 

speed as a continuous decision variable, such that all related scheduling variables including travel time, load flow, 

FCR, and departing/arrival/waiting/ times are all treated as continuous decision variables. Therefore, we called this 

problem as a continuous PRP (CPRP). We developed an ε-accurate mathematical linear programming model for the 

CPRP (ε-CPRP for short), in which all variables are optimized synchronously within their continuous domains.  

All nonlinear components in ε-CPRP are linearized by a unified parameter ε to control the approximation error 

within the range of ε%. Thus, the proposed ε-CPRP model is expected to obtain truly optimized solutions. As 

demonstrated in our computational experiments, the parameter ε can be set as low as 0.01% without increasing the 

computational burden significantly. In addition, we also prove that the gap between the solution found by the 

ε-CPRP model and the optimal one is within 3ε%. Therefore, the solution can be considered as optimal from a 

practical point of view. More importantly, the proposed linearization approach does not require additional binary 

variables to the model, which is an important contribution of the paper.  Therefore, it is computationally efficient.  

The rest of the paper is organized as follows. In Section 2, the related literature review is provided. In Section 3, 

a linearization method is provided for the nonlinear relationship between the travel time and travel speed. In 

Section 4, two linearization methods for the nonlinear FCR function are provided. Based on these methods, we 

propose the ε-CPRP model in Section 5 and prove its feasibility and optimality. Section 6 presents the 

computational experiments conducted, and finally, we conclude this research in Section 7. 

2. Related literature reviews 

In recent years, green-oriented vehicle routing problems (VRPs), which incorporate environmental concerns such 

as pollution mitigation, emission reduction, and environmental sustainability into VRPs, have attracted a significant 

level of interest from operations research professionals (see surveys of Lin et al. (2014) and Demir et al. (2014a)). 

Whereas conventional VRPs aim to optimize vehicle routes typically by minimizing a single monetary cost 

function, green-oriented VRPs consider both the monetary costs and the environmental impacts and try to optimize 

both of them together. Because the main contribution of the paper is about efficient modeling of green-oriented 

VRPs, with the extensive green VRP literature, we primarily focus on the papers related to modeling of the problem. 

There are a number of optimization models existing in the literature, which generally can be classified into four 

categories: (1) models minimizing energy/fuel or CO2 emissions through vehicle payload optimization, such as the 

energy-minimizing VRP (EMVRP) model by Kara et al. (2007, 2008), FCR-considered Capacitated VRP model by 

Xiao et al. (2012), and cumulative VRP model by Gaur et al. (2013); (2) models minimizing CO2 emissions by 
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optimizing vehicle speed, such as the emission-oriented time-dependent VRPs (TD-VRPs) by Figliozzi (2010), 

Kuo (2010), and Jabali et al. (2012); (3) the PRP model by Bektas and Laporte (2011), which minimizes driver and 

fuel-related costs by optimizing both speed and load simultaneously; and (4) models minimizing CO2 emissions by 

avoiding traffic congestions and by load optimization, such as the green vehicle routing and scheduling problem 

(GVRSP) by Xiao and Konak (2015, 2016, 2017). 

Kara et al. (2007) first proposed the EMVRP, which aims to minimize the total energy consumed along vehicle 

routes instead of the conventional objective of minimizing total travel distance. Kara et al. (2008) and Gaur et al. 

(2013) studied the cumulative VRP (Cum-VRP), which minimizes the total fuel consumption of vehicles in a goods 

collection scenario, where empty vehicles start from a depot to pick up goods from nodes and loaded vehicles are 

allowed to offload goods at the depot multiple times. Figliozzi (2010) built a post-optimization model for the 

solution obtained by a TD-VRP model by which the departure times of vehicles can be optimized for reducing the 

total emissions. Kuo (2010) first modeled the TD-VRP with a fuel consumption objective in a time-dependent 

traffic environment, in which the fuel consumption in each traveled arc is considered as a function of vehicle 

departure time and load. Xiao et al. (2012) extended the CVRP by considering an FCR expressed as a function of 

the vehicle load. Jabali et al. (2012) studied the emission-based TD-VRP with an objective function including both 

travel time costs and fuel/emission costs. Zhang et al. (2015) proposed a model for a low carbon routing problem 

that considers a similar scenario of the Cum-VRP by Kara et al. (2008) and Gaur et al. (2013) with a simplified way 

of calculating the fuel consumption of a vehicle traveling at a specified speed. Xiao and Konak (2015, 2016, 2017) 

studied a GVRSP that involves selecting optimal vehicle routes and schedules to minimize the total CO2 emissions 

of a fleet of heterogeneous vehicles in situations where time-varying traffic congestions exist. The main difference 

of GVRSP from PRP is that the former assumes that the vehicle travel speed is determined by the average traffic 

flows whereas the latter one considers the travel speed as a decision variable. 

Erdogan and Miller-Hooks (2012) proposed another version of the green VRP (shortened as G-VRP to 

differentiate it from GVRSP) for alternative fuel-powered vehicles in a service area with limited refueling 

infrastructure. In G-VRP, a vehicle needs to visit refueling stations during its tour because the vehicle maximum 

travel range is limited and the refueling stations are rare and sporadically available. Because the G-VRP of Erdogan 

and Miller-Hooks (2012) involves only eco-friendly vehicles such as electric and alternative fuel-powered vehicles, 

their objective function is not about the fuel consumption or CO2 emissions but the conventional total distance. 

Schneider et al. (2014) extended the G-VRP by considering a fleet of electric vehicles with time windows, 

recharging at stations, and limited vehicle load capacities. Koç and Karaoglan (2016) proposed a simulated 

annealing heuristic based on the exact branch-and-cut algorithm for the G-VRP. Leggieri and Haouari (2017) 

addressed the G-VRP with time duration limits and energy consumption constraints and used the 

reformulation-linearization technique to linearize the nonlinear formulation. 

Bektas and Laporte (2011) first introduced the comprehensive modal emission model (CMEM) of Barth et al. 

(2005) and Barth and Boriboonsomsin (2008) into the VRP with time windows (VRPTW) so that the FCR of a 

vehicle can be calculated dynamically according to its travel speed and payload. Therefore, they extended the 

classical VRPTW to PRP with a comprehensive objective function that includes both fuel-related expenses (e.g., 

fuel consumption and emission tax) and travel time related costs such as driver’s wages. Because the ε-CPRP 
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proposed in this study is closely related to PRP, we mainly focus on the works related to PRP in the rest of the 

literature review. 

Demir et al. (2012) and Kramer et al. (2015a, 2015b) studied and proposed solution approaches to the discrete 

PRP model of Bektas and Laporte (2011). Demir et al. (2012) developed a two-stage algorithm to solve large-sized 

PRP cases and provided a set of benchmark PRP instances based on the geographical locations of cities in the UK. 

This two-stage algorithm first uses an adaptive large neighborhood search (ALNS) heuristic to find a solution by 

treating PRP as a conventional VRPTW with fixed travel speeds and then determines the optimal travel speed for 

each selected arc of the routes in the second stage. In this approach, the travel speed is selected from a set of 

discrete values. Kramer et al. (2015a, 2015b) proposed a hybrid of the metaheuristic (an iterated local search 

heuristic) and a speed optimization algorithm (an exact procedure) for PRP and provided two sets of new 

benchmark PRP instances. 

Franceschetti et al. (2013) extended PRP to TD-PRP by dividing the planning horizon into three periods: (1) a 

rush-hour period in which traffic congestion is heavy and vehicles have to travel at low speeds, (2) a free-flow 

period in which vehicles can travel freely at speeds between the lower and upper limits, and (3) a transition period 

in which the traffic condition is linearly transformed from the rush-hour period to the free-flow period. A similar 

approach to modeling the time-varying traffic congestion can also be found in Jabali et al. (2012). Franceschetti et 

al. (2017) developed a metaheuristic for the TD-PRP using an enhanced ALNS algorithm with a departure time and 

speed optimization procedure. 

Other variants and extensions of PRP in the literature include the bi-objective PRP by Demir et al. (2014b), 

heterogeneous PRP by Koc et al. (2014), time window pickup-delivery PRP (TWPDPRP) by Tajik et al. (2014), 

practical PRP (PPRP) by Suzuki (2016), mixed-integer convex programming (MICP) model for PRP by Fukasawa 

et al. (2016), and the robust PRP by Eshtehadi et al. (2017). 

Demir et al. (2014b) formulated PRP as a bi-objective problem comprising the fuel consumption objective and 

the driving time objective. They also provided an enhanced ALNS algorithm with a speed optimization procedure 

to discover Pareto optimal solutions to a problem. Koc et al. (2014) extended PRP by considering a fleet of 

heterogeneous vehicles and minimizing the sum of vehicle's fixed costs and routing costs. They provided a hybrid 

evolution algorithm as the solution approach, which is based on the framework of a genetic algorithm combined 

with a post-optimization procedure for determining speeds. Tajik et al. (2014) studied the TWPDPRP, in which 

simultaneous pickup (to the depot) and delivery (from the depot) services are considered with time window 

requirements. The objective function of TWPDPRP includes driver costs and fuel-related expenses, in which 

several practical factors, such as the physical condition of roads (i.e., the road friction and road slope), weights and 

loads of vehicles, surface and air friction, and acceleration and deceleration, are considered to affect the fuel 

consumption. The main difference between TWPDPRP and PRP is that the former treats the travel speed on each 

arc as a previously known constant, whereas the latter treats it as a decision variable. Suzuki (2016) proposed the 

PPRP model, which includes fewer but more practical factors that affect the fuel consumption significantly. In the 

PPRP model, the “payload” along an arc is considered as an essential factor for fuel consumption, and the travel 

speed, gradient, and traffic congestion factors are also important but treated as constant parameters associated to 

each arc. Fukasawa et al. (2016) employed a disjunctive convex programming approach to model PRP as an MICP 
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with continuous speed. To our best knowledge, this is the first time for PRP to be modeled with continuous speed 

variables. Saka et al. (2017) studied the heterogeneous PRP with continuous speed optimization. However, their 

model contains nonlinear components both in the objective function and in the constraints. Eshtehadi et al. (2017) 

proposed the robust PRP model, which minimizes the worst-case of fuel consumption for the scenario with demand 

uncertainty. Dabia et al. (2017) studied a variant of PRP in which the travel speeds over all arcs of a route were 

assumed to be the same. A summary of the models reviewed above is provided in Table 1. 
Table 1. Summary of fuel/emission optimization models in the literature 

   Decision variables  

 Models Objectives to minimize Routes Load Speed Dep. T. Sources 

1 Energy-minimize VRP Energy consumption √ √   Kara et al. (2007) 

2 Cumulative VRPs Fuel consumption √ √   Kara et al. (2008), Gaur et al. (2013) 

3 FCR-considered CVRP  Fuel consumption √ √   Xiao et al. (2012) 

4 Green VRP CO2 emissions √ √  √ Figliozzi (2010) 

5 Time-dependent VRP Fuel consumption √ √  √ Kuo (2010) 

6 Emission-based 

Time-dependent VRP 

Travel time costs and 

fuel/emission costs 

√  √  Jabali et al. (2012) 

7 Green VRP (G-VRP) Total distance √    Erdogan and Miller-Hooks (2012) 

8 Pollution routing problem 

(PRP) 

Total time and total fuel √ √ √ √ Bektas and Laporte (2011) 

9 Time-dependent PRP  Total time and total fuel √ √ √ √ Franceschetti et al. (2013) 

10 Bi-objective PRP Fuel and travel time √ √ √ √ Demir et al. (2014b) 

11 Heterogeneous PRP Fuel-related cost, travel 

time-related cost, and fixed 

vehicle cost 

√ √ √ √ Koc et al. (2014) 

12 Pickup-delivery PRP Fuel-related cost and travel 

time-related cost 

√ √   Tajik et al. (2014) 

13 Low carbon routing 

problem 

Fuel-related cost and 

vehicle usage cost 

√ √   Zhang et al. (2015) 

14 Practical PRP Total fuel consumption √ √   Suzuki (2016) 

15 Green vehicle routing and 

scheduling problem 

Total CO2 emission √ √  √ Xiao and Konak (2015) 

16 Mixed-integer convex 

programming-based PRP 

Fuel-related cost and travel 

time-related cost 

√ √ √ √ Fukasawa et al. (2016, 2017)  

17 Robust PRP Total fuel consumption √ √ √ √ Eshtehadi et al. (2017) 

19 Variant of PRP with route 

speed optimization 

Driver’s wage and fuel cost √ √ √ √ Dabia et al. (2017) 

 

3. Linear constraints for travel time and travel speed 

The travel time tij of an arc (i, j) with length Dij, calculated as /ij ij ijt D v= , is a nonlinear function of the average 

travel speed vij. Owing to this known nonlinear relationship, referred to as the time–speed relation in this study, the 

travel speed and travel time cannot be used as continuous decision variables concurrently in a mathematical linear 

model. Therefore, Bektas and Laporte (2011) and Demir et al. (2012) linearized this nonlinear term through 
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discretizing the speed variable vij over several intervals and introducing a binary variable to determine which speed 

interval should be selected and the corresponding travel time to be precalculated. The speed discretization method 

was also used in most variants of PRP, e.g., TD-PRP by Franceschetti et al. (2013), bi-objective PRP by Demir et al. 

(2014b), heterogeneous PRP by Koc et al. (2014), and robust PRP by Eshtehadi et al. (2017). However, using 

discrete values to represent a continuous variable has its own drawbacks. First, the mathematical model becomes 

more difficult to solve owing to the use of additional binary variables. Second, it is difficult to estimate or control 

the approximation error, which may lead to sub-optimal solutions.  

In this section, we introduce a linearization method for the time–speed relation with a controllable error range, 

which enables us to model PRP with continuous decision variables. This method can also be applied to convert 

many other discrete PRP models into continuous ones.  

The nonlinear relationship /ij ij ijt D v=  between tij and vij can be approximated by a set of secant line segments, 

denoted as 1 2{ , ,...}P p p= , starting from the minimum speed limit (vmin) to the maximum speed limit (vmax), as 

shown in Fig. 1. Each secant line p P∈  is defined as ( , ) ( , )i j i j
ij p ij pt K v B= +  with slope ( , )i j

pK  and intercept ( , )i j
pB  

passing through the points (vp-1, tp-1) and (vp, tp). If the problem objective involves minimizing a cost function of 

travel times, we can bound the travel time tij on the travel speed vij using the following set of linear constraints. 
( , ) ( , ) ,i j i j

ij p ij pt K v B p P≥ + ∀ ∈           (1) 

Time

Speed

t=Dij/v

(v0, t0)

(v1, t1)

(v2, t2)

(v3, t3)

vmin

tmax

tmin

vmax

p=1

p=2

p=3

p=4

v

t

t'

 
Fig. 1 Linearization of time–speed relation using secant lines 

Note that the above piecewise linearization method for a nonlinear function has to be used in a condition in 

which the nonlinear function must be concave (or convex) when the objective function is toward the minimization 

(or maximization) of the function value. Similar linearization methods for expressing nonlinear relationships in a 

linear model can be found in Wang and Meng (2012), Sherali et al. (2003), Castillo and Westerlund (2005), Konak 

et al. (2006), Xiao et al. (2017), and Xie et al. (2017).  
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Note that the larger the number of secant lines used, the more closely Eq. (1) can approximate the nonlinear 

curve /ij ij ijt D v= . Let ijt′  be the approximated travel time, and in order for the approximation error to be less 

than %ε , i.e., 100 %ij ij

ij

t t
t

ε
′ −

× ≤ , the minimum number of secant lines η can be estimated by Eq. (2) as follows 

(the detailed proof is provided in the Appendix): 

max min
2

ln ln

ln(1 2 2 )

v v
η

ε ε ε

 −
=  

+ + +  
,           (2)  

where minv  and maxv  are the minimum and maximum permissible travel speeds respectively, ε is the maximum 

allowed percent deviation, and *    denotes the smallest integer larger than or equal to *. Please note that in Eq. 

(2), η depends on minv , maxv , and ε, but does not depend on Dij. Therefore, the same set of secant lines can be used 

to linearize the curve /ij ij ijt D v=  for all arcs of different lengths. In Table 2, the minimum required numbers of 

secant lines are provided for different ε values under the speed range of [10 km/h, 120 km/h] for an intuitive view. 
Table 2 Required minimum number of secant lines for speed range [10, 120] 

Maximum allowed deviation ε% 5.0% 3.00% 2.00% 1.00% 0.50% 0.10% 0.05% 

Minimum number of secant lines n 5 7 8 12 16 39 55 

By starting the first secant line from the minimum speed vmin, we can deduce the following formula in Eq. (3) to 

determine the slope and intercept of secant line ( , ) ( , ) ,i j i j
p pt K v B p P= + ∈ , for a given arc (i, j) with distance Dij. 

The detailed derivation of Eq. (3) can be found in the Appendix section.  

( , )
2 1 2

min

( , )

min

1

, 1,2,...,
1

i j
p ijp

i j
p ijp

K D
v

p
B D

v

µ
η

µ
µ

−

 = − ⋅ ⋅ ∀ = + = ⋅
 ⋅

,      (3) 

where 21 2 2µ ε ε ε= + + + , minv  is the allowed minimum travel speed on the arc (i, j), and η is the minimum 

number of secant lines calculated by Eq. (2). Let 2 1 2
min

1
p pK

vµ −= −
⋅

 and 
min

1
p pB

v
µ

µ
+

=
⋅

, such that we have 

( , )i j
p p ijK K D=  and ( , )i j

p p ijB B D= , and Eq. (1) is changed to Eq. (4) as given below: 

, 1, 2,...,ij ij p ij ij pt D K v D B p n≥ + ∀ ∈ .        (4) 

Please note the following:  

(1) In Eq. (4), pK  and pB  are parameters that can be precalculated before solving the problem since they do 

not depend on distance Dij.  

(2) For the same accuracy requirement of ε, all arcs can use the same set of Kp and Bp in the linearization.  

 

4. Linear constraints for FCR and travel speed 

For a fossil fuel-powered vehicle, the FCR (in liters per unit distance) for traveling a given distance is a 

nonlinear function of the travel speed. We refer to this function hereafter as the fuel–speed relationship. In the 
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literature, while there are several models that characterize the functional relationship between the fuel consumption 

and route variables such as travel speed, acceleration, load, and traffic conditions (see Demir et al., 2011), the most 

widely used models include the MEET model developed by Hickman (1999) and the CMEM model by Barth et al. 

(2005) and Barth and Boriboonsomsin (2008). In these two models, the fuel–speed relationship is a U-shaped 

convex downward function that has an optimal speed at the bottom, and higher FCRs are observed for any 

deviation from the optimal speed.  

In this study, we develop two methods for linearizing the nonlinear fuel–speed relationship. The first is for 

vehicles whose FCR model conforms to the CMEM model (Section 4.1), and the second is a general numeric 

approximation approach for all types of fossil fuel-powered vehicles (Section 4.2). 

4.1 Linearization of fuel–speed relation for the CMEM model 

The CMEM by Barth et al. (2005) and Barth and Boriboonsomsin (2008) is an instantaneous model for 

estimating fuel consumption for a given distance. The FCR (in L/s), denoted as FR for differentiating it from FCR, 

of a vehicle traveling at a constant speed v (in m/s) with load f (in kg) can be represented as a function of variables 

v and f as follows: 
30.5 ( ) ( sin cos )( , )

1000
d r

e
C Av f v g gCFR v f kN V ρ µ φ φξ

κψ εω
 + + +

= + 
 

.       (5) 

The notation and meaning of the parameters in Eq. (5) are presented in Table A1 in the Appendix. The FCR for 

traveling a unit of distance (1 m), which takes a time of 1/v s, denoted as F (in L/m), can be written as  

1 2

( , ) /
0.5 ( sin cos ) ( sin cos )
1000 1000 1000

e d r r

F v f FR v
kN V C A g gC f g gCv v fξ ρξ µξ φ φ ξ φ φ
κψ κψεω κψεω κψεω

−

=
+ +

= + + + .  (6)  

By using parameters / ( )ekN Vα ξ κψ= , 0.5 /(1000 )dC Aβ ρξ κψεω= , ( sin cos )/(1000 )rg gCγ µξ φ φ κψεω= + , 

and ( sin cos )/(1000 )rf g gCϕ ξ φ φ κψεω= +  in the equation above, the fuel consumption function can be 

simplified as 
1 2( , )F v f v v fα β γ ϕ−= + + + .           (7) 

Let 1 2 *
1 2 1 2( )= , ( )= , ( ) ( ) ( )+ , and ( )F v v F v v F v F v F v F f fα β γ ϕ− ′ = + = , and the above Eq. (7) can be represented as 

*
1 2( , ) ( ) ( ) ( ) ( )F v f F v F f F v F v fγ ϕ′= + = + + + ,       (8) 

where F'(v) represents the amount of fuel consumed by an unloaded vehicle when traveling one unit of distance, 

and *( )F f  represents the additional fuel consumed owing to the vehicle's payload.  

Because the first term of Eq. (7), i.e., 1
1( )=F v vα − , has the same mathematical expression as the time–speed 

relationship discussed in Section 3, we can directly use a similar set of linear constraints as in Eq. (4) to linearize it 

as follows: 

1 , 1,2,...,p pF K v B pα α η≥ + ∀ ∈          (9)  

where Kp and Bp are also calculated as 2 1 2
min

1
p pK

vµ −= −
⋅

 and 
min

1
p pB

v
µ

µ
+

=
⋅

; 21 2 2µ ε ε ε= + + + , and ε is the 

maximum allowed deviation from the actual value. 
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Because the third and fourth parts of Eq. (7), i.e., fγ ϕ+ , are already linear, we just focus on the linearization of 

the second term, i.e., 2
2 =F vβ . First, we remove the coefficient β from the term 2

2 =F vβ  and use a set of secant 

lines to surrogate the basic nonlinear curve y = x2, as shown in Fig. 2. 

0 10 20
speed v (m/s)

0

100

200

300

400

500

600
F 2

A (x0, y0)

curve y=x2

D (x, y' )

C (x, y)

B (x1, y1)

 

Fig. 2 Linearization of nonlinear curve y = x2 using secant lines 

For two points A 0 0( , )x y  and B 1 1( , )x y , where x0 > 0 and x1 > 0, on the curve 2y x= , as shown in Fig. 2, the 

equation of secant line A-B can be written as 1 0 0 1( )y x x x x x= + − . For any x value such that x0 < x < x1; let D(x, y') 

represent the approximated point to vertically connect the actual point C(x, y) on the curve as shown in Fig. 2. In 

our approach, y' is used as a surrogate value for y. Then, the relative error in this approximation at x is defined as 

1 2
1 0 0 1( ) ( ) 1y yd x x x x x x x

y
− −′ −

= = + − − . Given x0, the next point x1 that ensures ( )d x ε≤  at any x value that 

maximizes the relative error between x0 and x1 can be found by taking the derivative of d(x). By setting the 

derivative ( ) 0d x′ =  under constraint ( )d x ε≤ , we can find the recursive formula in Eq. (10) to determine the 

farthest point B(xp, yp) on curve y = x2 starting from point A(xp-1, yp-1) for p = 1, 2, 3... Thus, the maximum relative 

error of using line segment A-B as a surrogate of curve segment A-B is less than ε. 
2

1, 1,2,3,...p p p px x y x pµ −= = = ,         (10) 

where =1 2 2 (1 )µ ε ε ε+ ± + . Therefore, we can use a set of secant lines to approximate the curve segment of 

2
2F v=  from the minimum travel speed vmin to the maximum travel speed vmax. The slopes and intercepts of the 

secant lines are determined by the following equation (see Appendix for the detailed proof and deduction). 
1

min

2 1 2
min

( 1)
1,2,...

p
p

p
p

k v
p

b v

µ µ
η

µ

−

−

 = + =
= −

,       (11) 

where kp and bp are the slope and intercept of the pth line respectively, and η is the minimum number of lines that 

guarantees the maximum deviation within a given value of parameter ε. Note that η is also calculated using Eq. (2) 

based on parameter ε.  
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Thus, the nonlinear expression 2
2 ( )=F v vβ  can be approximated by a set of linear constraints to guarantee the 

maximum deviation within a given value of parameter ε as follows: 

2 , 1, 2,...,p pF k v b pβ β η≥ + ∀ ∈ .        (12) 

Note that kp and bp in Eq. (12), and Kp and Bp in Eq. (4) and Eq. (9), regardless of the vehicle type, are all 

determined only by ε, vmin, and vmax, as long as the CMEM model applies to the vehicle’s FCR. 

4.2 General numeric approach for fuel–speed relationship linearization 

In this section, we provide a general linearization approach based on a numeric calculation of the fuel–speed 

relationship of other types of fuel consumption (or CO2 emissions) models, such as the MEET model based on a 

regression equation developed by Hickman (1999) or any empirical fuel–speed functions provided by vehicle 

manufacturers. The fuel–speed relationship of a fossil fuel-powered vehicle is typically expressed as a U-shaped 

curve with the most economical speed point at the bottom as shown in Fig. 3. In this figure, the emission–speed 

curve of a 7.5 to 16-ton diesel truck is plotted using the MEET model of Hickman (1999), which is a regression 

function in the form of 2 3
2 3( ) D E FER v K Av Bv Cv

v v v
= + + + + + + , where K = 871, A = −16, B = 0.143, C = 0, D 

= 0, E = 32031, and F = 0. Note that because the volume of CO2 emissions is proportional to the amount of fuel 

consumed, the vehicle's fuel–speed curve has also a similar shape to the emission–speed curve.  
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Fig. 3 General linearization approach using secant lines 

The proposed general approach uses a set of secant lines to approximate the fuel–speed function F(v). Suppose 

that these lines are formed by points (v0, F0), (v1, F1), (v2, F2),..., (vη, Fη) on the curve of F(v) as shown in Fig. 3, 

where v0 = vmin, vη ≥ vmax, and η is the minimum number of secant lines for guaranteeing that the maximum 

deviation is within the accuracy limit ε. For two points on the fuel–speed curve F(v), e.g., A (v0, F0) and B (v1, F1), 

the secant line going through points A and B is expressed as ( )F v k v b′ ′ ′= + . The percent deviation of ( )F v′  from 

( )F v  can be expressed as ( ) 100% [ ( ) ( )] / ( )D v F v F v F v′= × − . For the first line, we set 0 minv v←  and 
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1 minv v← and increase v1 gradually by a small number ∆ (i.e., 1 1v v← + ∆  with ∆ = 1 km/h). Then, we check all 

discretized points 0 1[ , ]v v v∈ , starting from v0 (by 0v v← ) increased gradually by a smaller step δ (by v v δ← + ), 

which is much smaller than ∆ , e.g., δ = 0.1 km/h. During this process, if ( )D v ε≤  is satisfied, then we continue 

to increase v1 by 1 1v v← + ∆ ; otherwise, we set v1 as the end of the first line and continue to determine v2 starting 

from v1 for the second line until the last line is determined. This process is described by the Line_gen (vmin, vmax, Δ, 

δ, ε) procedure in Fig. 4. 

Algorithm Line_gen (vmin, vmax, Δ, δ, ε) 

(1) Let q ← 1, vq-1 ← vmin, and vq ← vmin 

(2) Let vq ← vq + Δ 

(3) Let v ← vq-1 + δ 

(4) Calculate D(v) 

(5) IF D(v) < ε THEN 

Let v←v+δ 

IF v < vq THEN GOTO step (4) 

GOTO step (2) 

END IF 

(6) Let vq←vq－Δ 

(7) IF vq ≥ vmax THEN GOTO step (9)  

(8) Let q←q +1, vq←vq-1, and GOTO step (2)  

(9) Stop 
Fig. 4 Numeric calculation procedure to generate secant lines 

 

Using the procedure in Fig. 4, the minimum number of discrete points, i.e., (v0, F0), (v1, F1), (v2, F2),..., (vη, Fη), 

on the fuel–speed curve can be obtained, and each pair of two consecutive points, i.e., (vq-1, Fq-1) and (vq, Fq), form 

a secant line = q qF k v b′ ′ ′+ , where q = 1, 2, …, η. For an arc (i, j) with a distance Dij (in m) traveled by an empty 

vehicle with the speed of vij, the fuel consumption F'ij can be bounded by linear constraints as follows: 

1, 2,...,ij ij q ij ij qF D k v D b q η′ ′ ′≥ + ∀ =       (13) 

Note that because qk′  and qb′  in Eq. (13) depend on the vehicle type, multiple sets of qk′  and qb′  need to be 

precalculated for each vehicle type in a heterogeneous PRP with different vehicle types. The numerical approach 

for the fuel–speed linearization has the advantage of computational efficiency because it linearizes the fuel–speed 

curve as a whole whereas the CMEM model needs to linearize two separate curves. 

5. Continuous pollution routing problem 

In this section, we extend the discrete PRP of Bektas and Laporte (2011) to a general case, i.e., the CPRP, in 

which all scheduling variables including travel speeds, travel time, FCR, payloads, and departure/arrival/waiting 

times are treated as continuous decision variables simultaneously. The CPRP is described on a directed graph 

( , )G N A= , where N = {0, 1, 2, ..., n} is the set of nodes representing the customers and depot (denoted by 0) and 

{( , ) | , ; }A i j i j N i j= ∈ ≠  is the set of feasible arcs that connect the customers/depot. A fleet of homogenous 
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vehicles is dispatched to serve the customers starting from and returning to the depot. Each arc (i, j) in A has a 

known distance. Moreover, each customer in N has a known demand, a duration of service time, and a time window 

in which the service must start. Furthermore, each vehicle/driver has a unit cost per working time, a load capacity 

limit, and an identified fuel consumption model. The aim is to determine a set of optimal routes for vehicles and 

simultaneously optimize the travel schedules, including the travel speeds, travel time, and payloads over each arc 

and the departure time, arrival time, and waiting time at each node, in order to minimize a total cost function that 

includes two components: (1) the operational costs proportionally related to the total delivery time and (2) the 

environmental cost proportionally related to the total fuel consumption. In the following subsections, we first 

present an ε-accurate mixed-integer linear programming (MILP) model for the CPRP, and then provide a 

post-optimization procedure for eliminating the approximation errors and some propositions regarding the 

feasibility and optimality of a solution found by the model. 

5.1 The ε-accurate mixed-integer linear programming model of CPRP 

In the following, we present an ε-CPRP based on the linearization approaches introduced in Sections 3 and 4. 

The parameters and decision variables used in ε-CPRP are listed as follows1. 

Parameter notations: 

ε maximum allowable percent error in the linearization of time, speed, and fuel consumption 

relationships 

i, j index of nodes, i = 0, 1, 2, …, n (the depot is represented by node 0)  

n total number of nodes (including the depot)  

N set of nodes, including the depot 

N' set of customer nodes, \ {0}N N′ =  

A  set of arcs formed by all pairs of nodes, {( , ) : , , }A i j i N j N i j= ∀ ∈ ∈ ≠  

A'  set of arcs formed by all pairs of customer nodes, {( , ) : , , }A i j i N j N i j′ ′ ′= ∀ ∈ ∈ ≠  

Dij distance of arc (i, j)  

, ijijv v  upper and lower travel speed limits on arc (i, j), respectively 

di demand requirement of customer i 

gi service time of customer i 

[Si, Ei] time window for serving customer i; [S0, E0] represent the entire planning horizon, and S0 = 0 

C maximum payload of vehicle 

o number of available homogeneous vehicles in the fleet 

r binary parameter indicating if the vehicle conforms to the CMEM model (r = 1) or not (r = 0) 

P set of secant lines predetermined based on parameter ε for the time–speed linearization  

Kp, Bp slope and intercept respectively of the pth secant line in P, p P∈  

Q set of predetermined secant lines based on parameter ε for the linearization of the second term of the 

CMEM fuel–speed model 

kp, bp slope and intercept respectively of the pth secant line in Q, p Q∈  

                                                        
1 Note that notations defined in Table A2 are only for the CMEM model in Section 4.1, some of which are redefined in the ε-CPRP model.  
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α, β, γ coefficients of the CMEM fuel–speed model in Eq. (7)  

φ unit FCR (L/m) of the vehicle traveling with one additional unit of load (kg)  

Q' set of predetermined secant lines for the general numeric approach to the fuel–speed linearization 

k'p, b'p slope and intercept of the pth secant line in Q', p Q′∈  

fc fuel cost per liter of fuel (￡)  

dc driver wage (￡/s)  

F   a large number greater than the maximum possible value of FCR 

Binary decision variables:  

Xij  Xij = 1 if arc (i, j) is traveled by a vehicle; Xij = 0 otherwise 

Non-negative continuous decision variables:  

vij  travel speed (m/s) on arc (i, j) 

tij  travel time (s) spent on arc (i, j) 

Fij FCR (L/m) of the vehicle traveling on arc (i, j) with a payload 

F'ij no-load FCR (L/m) of the vehicle traveling on arc (i, j) with zero payload 

F1ij, F2ij the first and second terms respectively of the CMEM fuel–speed model in Eq. (8)  

ai  arriving time (s) at customer i  

wi  vehicle waiting time (s) at node i 

si time (s) of departing from depot to node i if node i is the first node visited by vehicle; 0 otherwise 

fij  load (kg) of vehicle on arc (i, j)  

The objective function used in ε-CPRP is consistent with the comprehensive cost function used by Bektas and 

Laporte (2011), Demir et al. (2012), Kramer et al. (2015b), Franceschetti et al. (2013), and Eshtehadi et al. (2017), 

which contains two components: (1) the driver’s wage proportionally related to the total delivery time, and (2) the 

fuel cost proportionally related to the total amount of fuel used. In addition, we adopt the two policies discussed by 

Franceschetti et al. (2013) for the driver payment. In the first policy, drivers are paid for the period from the 

beginning of the planning horizon until they return to the depot (DPFB for short). In the second policy, drivers are 

paid for the duration from their departure times to their return times to the depot (DPFD for short). The difference is 

that the time waiting at the depot is not paid under policy DPFD but is paid under policy DPFB. The objective 

functions under the two policies are formulated as Eq. (14a) and Eq. (14b), respectively. Note that variable si is 

introduced to calculate the waiting time at the depot for each route before the departure. 

Thus, the ε-accurate MILP model for the CPRP can be formulated as follows: 

Min. Total Cost (DPFB) = 
( , )

( ) ( )ij ij c ij c i i i c
i j A i N

F D f t d s g w d
′∈ ∈

+ + + +∑ ∑       (14a) 

Min. Total Cost (DPFD) = 
( , )

( ) ( )ij ij c ij c i i c
i j A i N

F D f t d g w d
′∈ ∈

+ + +∑ ∑        (14b) 

Subject to 

(1)  
( , )

1ij
i j A

X j N
∈

′= ∀ ∈∑  
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(2)  
( , )

1ij
i j A

X i N
∈

′= ∀ ∈∑  

(3)  0 j
j N

X o i N
′∈

′≤ ∀ ∈∑  

(4-1) 0 (1 ) ( , )j i ij i i ija a t g w E X i j A′− ≥ + + − − ∀ ∈  

(4-2) 0 (1 ) ( , )j i ij i i ija a t g w E X i j A′− ≤ + + + − ∀ ∈  

(4-3) 0 0 0(1 )j j ja t E X j N ′≥ − − ∀ ∈  

(5)  0 (1 ) ( , ) ,ij ij p ij ij p ijt D K v D B E X i j A p P≥ + − − ∀ ∈ ∈  

(6-1) 1 (1 ) ( , ) , , 1ij p ij p ijF K v B F X i j A p P rα α≥ + − − ∀ ∈ ∈ =   

(6-2) 2 (1 ) ( , ) , , 1ij p ij p ijF k v b F X i j A p Q rβ β≥ + − − ∀ ∈ ∈ =  

(6-3) 1 2 ( , ) , 1ij ij ij ijF F F X i j A rγ′ ≥ + + ∀ ∈ =  

(6-4) (1 ) ( , ) , , 0ij p ij p ijF k v b F X i j A p Q r′ ′ ′ ′≥ + − − ∀ ∈ ∈ =  

(7)  ( , )ij ij ijF F f i j Aϕ′= + ∀ ∈  

(8)  ( , )ij ij ij ij ijv X v v X i j A≤ ≤ ∀ ∈  

(9)  i i iS a E i N ′≤ ≤ ∀ ∈  

(10)  
( , ) ( , )

ji ij i
j i A i j A

f f d i N
∈ ∈

′− = ∀ ∈∑ ∑  

(11)  ( , )ij ijf CX i j A≤ ∀ ∈  

(12)  0 0 0(1 )i i i is a t E X i N ′≥ − − − ∀ ∈  

(13)  
0 1 2

{0,1}; 0; 0; 0; 0; 0
, ( , )

0; 0; 0; 0; 0
ij ij ij i i i

ij ij ij ij ij

X v t a w s
i N i j A

F F F F f

∈ ≥ ≥ ≥ ≥ ≥ ′∀ ∈ ∈
≥ ≥ ≥ ≥ ≥

 

In the above model, Constraints (1) and (2) ensure that each customer is visited only once. Constraint (3) restricts 

the number of vehicles used in a solution to the given upper limit. Constraints (4-1) and (4-2) are a set of 

disjunctive constraints to calculate arrival time aj at node j after traveling arc (i, j). Note that Constraints (4-1) and 

(4-2) are not applicable to the arcs starting from or terminating at the depot. Constraint (4-3) requires that the 

arrival time to the first customer of a vehicle must be greater than or equal to the travel time spent on the first arc. 

Note that jointly, Constraints (4-1)-(4-3) calculates exact values for vehicles’ arriving time at each node. Constraint 

(5) is the linearization of the time–peed relationship using a set of secant lines to approximate the nonlinear curve 

of tij = Dij/vij as discussed in Section 3. Similarly, Constraints (6-1) and (6-2) use a set of secant lines to linearize the 

first and second terms of the CMEM fuel–speed model in Eq. (8), respectively (see Section 4.1 for details). 

Constraints (6-3) and (6-4) calculate the no-load FCR (L/m) of a vehicle traveling on arc (i, j) for cases whether the 

vehicle conforms to the CMEM emission model (r = 1) or not (r = 0), respectively. Note that only one of 

Constraints (6-3) and (6-4) will be active depending on parameter r. Constraint (7) calculates the FCR (L/m) of the 

vehicle with payload fij on arc (i, j). Constraint (8) restricts the travel speed within the speed limit range. Constraint 
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(9) ensures that the service starting times of all customers are within their time windows. Constraint (10) computes 

the vehicle’s payload along the tour. Constraint (11) limits the vehicle’s payload by its maximum payload capacity 

C and forces fij to be zero if arc (i, j) is not selected in a tour. Constraint (12) bounds the waiting time at the depot 

and sets the departing time from the depot for the first visited nodes. Note that si will be forced to be zero if node i 

is not a first visited node. Constraint (13) defines domains of decision variables. 

Constraints (4), (5), (6), and (12) are only enforced when Xij = 1. The possible subtours in a solution are 

eliminated by either of Constraint (4) or Constraint (10). Constraint (6-1), (6-2), and (6-3) are only used when r = 1, 

whereas Constraint (6-4) is used when r = 0. 

The ε-CPRP model contains two types of linearization method for the FCR introduced in Section 4. However, 

only one of them will be applied to solve a problem instance as specified by parameter r. For simplicity, we use 

ε-CPRP to refer to the case in which r = 1, indicating that the CMEM linearization method is applied, and ε-CPRP' 

to refer to the case in which r = 0, indicating that the general numeric approximation approach is applied. 

Computational experiments on ε-CPRP and ε-CPRP' models presented in the next section show that both models 

have the same level of accuracy but the ε-CPRP' model has a higher computational efficiency (using approximately 

50% less CPU time) than the ε-CPRP model on average. This result is mainly due to one additional set of secant 

lines used in the ε-CPRP model for the linearization of the fuel–speed relationship.  

5.2 Post-optimization procedure and theoretical analysis 

Owing to the linearization approximation of the time–speed relation, a feasible solution of ε-CPRP is only an 

approximate solution to the CPRP, which has two approximation errors: (1) the travel time difference between the 

approximated travel time by Constraint (5) and the actual time calculated by tij = Dij/vij, and (2) the FCR difference 

between the approximated no-load FCR by Constraints (6-1) to (6-4) and the actual no-load FCR calculated by 
1 2

ij ij ijF v vα β γ−′ = + + . We apply a post-optimization procedure on a feasible solution, noted as π, found by the 

ε-CPRP model to eliminate approximation errors. The post-optimization procedure first fixes all obtained values of 

decision variables xij and vij in solution π and then recalculates the corresponding travel times and the no-load FCRs 

of all arcs by using tij = Dij/vij and 1 2
ij ij ijF v vα β γ−′ = + + , respectively. After that, all values of variables xij, vij, tij, F'ij, 

and fij are treated as input parameters so that a simplified MILP model including only Eq. (14) and Constraints (4), 

(7), (9), and (12) can be solved to obtain an accurate solution (π*). Note that solving the simplified MILP model is 

very efficient because the route and speed decision variables have already been fixed, and the MIP solver only 

needs to re-optimize the decision variables related to departure, arrival, and waiting times to align with the time 

window constraints again to generate a feasible solution. The main steps of the post-optimization procedure are 

outlined in Fig. 5. 
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//Solution π was obtained by Eq. (14) and Constraints (1) to (13) 

Procedure Post_optimization (π) 

(1) For all selected arc (i, j), let tij ← Dij/vij. 

(2) For all selected arc (i, j), let 1 2
ij ij ijF v vα β γ−′ = + + . 

(3) Fix variables xij, vij, tij, F'ij, and fij as input parameters. 

(4) Solve a simplified MILP model comprising only Eq. (14) and 

Constraints (4), (7), (9), and (12) to obtain solution π*. 

(5) Return π*. 

Fig. 5 Main steps of the post_optimization procedure 

Theorem 1. FEASIBILITY: For a feasible solution π of the ε-CPRP formulated by Eq. (14) and Constraints (1) 

to (13), there always exists a feasible solution π* of the original CPRP that has the same routes and travel speeds 

with π and has a lower (or equal) objective value. 

Proof. The proof for the feasibility of solution π* is based on the fact that the linearization methods described in 

this study are polyhedral inner approximations that always overestimate. Suppose π is a feasible solution of ε-CPRP 

and c represents the objective value of π. Let tij be the travel time, and F'ij be the no-load FCR on arc (i, j) in 

solution π. According to the secant line-based linearization methods used in ε-CPRP, we will have tij ≥ t*
ij, where t*

ij 

is the actual travel time of arc (i, j) calculated by t*
ij = Dij/vij, and F'ij ≥ F'*ij, where F'*ij is the accurate no-load FCR 

on arc (i, j) calculated by 1 2
ij ij ijF v vα β γ−′ = + + . We can always transform solution π to π* by using the following 

three steps: (1) replace tij with t*
ij for all arcs on the routes of solution π, (2) replace F'ij with F'*ij for all arcs on the 

routes of solution π, and (3) add tij − t*
ij into the waiting time at customer/depot nodes to keep the arrival time of all 

customers unchanged. Thus, the new solution π* satisfies all requirements of the original CPRP, and therefore, it is 

a feasible solution of CPRP. Furthermore, because the total time in π*
 is the same as that in π, the new no-load FCR 

F'*ij is equal to or smaller than F'ij, and the FCR remains unchanged as there is no change in payload; thus, the 

objective value of solution π*
 is smaller than or equal to that of π.  

According to Theorem 1, we can always use the post-optimization procedure in Fig. 5 to convert any feasible 

solution of the ε-CPRP model into a feasible solution of the original CPRP. Thus, we have the following 

Proposition 1. 

Proposition 1. A feasible solution of ε-CPRP, after being optimized by the post-optimization procedure given in 

Fig. 5, is a feasible solution of the original CPRP.  

Furthermore, because Constraints (5) and (6) in ε-CPRP join to exert tighter restrictions on variables tij and F'ij 

against the minimization of the objective value, the optimal solution obtained by ε-CPRP should always be worse 

than or equal to the optimal solution of CPRP. Thus, we come to the following Proposition 2. 

Proposition 2. Let π be an optimal solution obtained by ε-CPRP and π* be the optimal solution of the original 

CPRP; the objective value of π is always greater than or equal to that of π*. 

Theorem 2. OPTIMALITY: For an optimal solution π* of CPRP, there always exists a feasible solution π" of 
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ε-CPRP such that π* and π" have the same routes and travel times on each arc of routes under the condition that the 

upper speed limit ijv  is increased to (1 )ijv ε+  for each arc (i, j) in ε-CPRP. 

Proof. This proof includes two parts as follows. 

Part 1: Assume that π* is an optimal solution of CPRP. Solution π* will satisfy Constraints (1)–(4) and 

Constraints (7)–(13) of ε-CPRP because these constraints are also required by CPRP but may not satisfy 

Constraints (5) and (6). We use the following two steps to transform solution π* to a new solution π" that satisfies 

all constraints including Constraints (5) and (6). First, by multiplying the travel speeds of all arcs in π* by 1+ε, we 

transform π* to π' such that Constraint (5) will be satisfied (see Part 2 for the proof of this). Second, because 

Constraint (6) is designed to guarantee the no-load FCRs to be no less than their accurate values (calculated by 
1 2

ij ij ijF v vα β γ−′ = + + ), we can always replace ijF ′  of π' with a larger value (which transforms again π' to π" ) to 

satisfy Constraint (6). Thus, we obtain a new feasible solution π" that satisfies all constraints of ε-CPRP, including 

Constraints (5) and (6), and has the same routes and travel time as π*. Because the travel speeds are multiplied by 

1+ε in the first step, the upper speed limits of all arcs also need to be increased to (1 )ijv ε+  in order to maintain 

the solution feasibility. 

Part 2: This part of proof shows that a pair of vij and *
ijt  satisfies Constraint (5) if *(1 )ij ijv vε= +  and 

* */ij ij ijt D v= . Constraint (5) uses a set of secant lines of the nonlinear curve * */ij ij ijt D v=  to guarantee that 

* *= /ij ij ij ijt t D v≥  and the minimum tij satisfying Constraint (5) satisfies 
*

*
ij ij

ij

t t
t

ε
−

≤  for a given travel speed *
ijv . 

This leads to * *(1 ) (1 ) /ij ij ij ijt t D vε ε≤ + = + , which indicates that any pair of ( *
ijv , ijt ) will satisfy Constraint (5) if 

*(1 ) /ij ij ijt D vε≥ +  holds. This condition can be rewritten as * (1 ) /ij ij ijv D tε≥ + . Thus, a pair of vij and *
ijt  will 

satisfy Constraint (5) if * *(1 ) / =(1 )ij ij ij ijv D t vε ε≥ + +  holds.  

Note that in Theorem 2, solution π" of ε-CPRP has the same routes and travel times as π*. Therefore, the cost 

related to travel times is the same; however, the fuel cost may be increased owing to (1) the increase in travel speed 

by ε% and (2) FCR–speed linearization. In the FCR function 1 2( )ij ij ij ij ijF v v v fα β γ ϕ−= + + + , only the first two 

terms, i.e., 1 2( )ij ij ij ijF v v vα β−′′ = +  will be affected by the increase in travel speed, which can be represented 

by ( )ij ij ijF v vε′′ + . The FCR–speed linearization may also increase ( )ij ij ijF v vε′′ +  maximally by ε%, which leads to 

(1 ) ( )ij ij ijF v vε ε′′+ ⋅ + . Therefore, the total increase rate of ( )ij ijF v′′  can be estimated by  

                 

1 2 1 2

1 2

3
3 2 3

3

(1 ) ( ) ( ) (1 )[ ( ) ( ) ] ( )
( )

[(1 ) 1] [(1 ) 1] 3 3 3
1

ij ij

ij

F v v F v v v v v v v
F v v v

v

ε ε ε α ε β ε α βε
α β

ε ε ε ε ε ε
α
β

− −

−

′′ ′′+ + − + + + + − +′ = =
′′ +

+ −
= < + − = + + ≈

+

 

Thus, we obtain a loose upper limit, i.e., 3ε%, for the increase rate of ( )ij ijF v′′  for a ε% speed increase. Note that 
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the above upper limit is only for the first part of the FCR, whereas the other part, i.e., ijfγ ϕ+ , as well as the total 

travel time, is not affected; thus, the general increase rate of the whole objective value should be much lower than 

3ε%.  

Based on Theorem 2 and the above deduction, we have the following proposition for gauging how far the 

solution of ε-CPRP is from the optimal solution of the original CPRP.  

Proposition 3. After applying the post-optimization procedure in Fig. 5, an optimal π solution of ε-CPRP with the 

upper speed limit (1 )ijv ε+  is a feasible solution of the original CPRP if the travel speed vij of any arc (i, j) in π 

does not exceed ijv and has at most 3ε% higher objective function value than the optimal solution of CPRP in the 

worst case.  

Thus, based on Propositions 1 and 3, the ε-CPRP model can be used to obtain either a feasibility-guaranteed 

solution under original upper speed limits or an optimality-gap-guaranteed solution by increasing the upper speed 

limits by ε%. As discussed in the next experimental section, we let the upper speed limit v  of all tested PRP 

instances increase by ε% such that all the obtained solutions will be only at most 3ε% above the optimal ones and 

their feasibilities can be judged by examining if their maximum travel speeds are under v  or not. Even though in 

some instances the resulting travel speed may exceed the upper speed limit by ε% maximum, these solutions can 

still be considered as practically feasible because ε is very small, e.g., 0.01 in our experiments. 

6. Computational experiments 

In this section, we present the results of computational experiments on several benchmark datasets for testing the 

proposed ε-CPRP and ε-CPRP' models, and the obtained solutions are compared with the existing solutions in the 

literature. The MIP solver AMPL/CPLEX (version 12.6.0.1) was applied to solve benchmark problem instances. 

Computational experiments were conducted on a PC server with two 2.30 GHz Intel@ Xeon(R) CPUs and 110 GB 

memory. The approximation errors in all solutions obtained by the ε-CPRP (or ε-CPRP') model were eliminated by 

the post-optimization procedure given in Fig. 5. The time limit was set as 2 h for all test instances, and the relative 

MIP optimality gap (referred to as O.Gap) is used to indicate whether the problem was solved to optimality within 

the time limit (O.Gap = 0.0%) or not (O.Gap > 0.0%). The test problems are introduced in Section 6.1, and the 

experimental analysis and comparisons are presented in Subsections 6.2–6.4.  

6.1 Tested problem instances 

We used three sets of benchmark PRP instances in the experiments. The first set (UK-A) was generated by Demir 

et al. (2012) and is available at http://www.apollo.management.soton.ac.uk/prplib.htm, which includes real 

geographical distances between randomly selected cities in the UK, with random time windows, demands, and 

service time for customers. The second and third sets of PRP instances, noted as UK-B and UK-C, were provided 

by Kramer et al. (2015a) and are available at http://w1.cirrelt.ca/~vidalt/en/VRP-resources.html. The average 

distance between the nodes of these instances is approximately 80 km, and the planning horizon is 9 h. We solved 

all the instances of 10, 15, 20, and 25 customers with each of the three objective functions given in Eq. (14). Thus, 

the total number of tested problem instances is 720. Owing to the limited paper length, we provided only a portion 

of the results for analysis and illustration purposes. The complete and detailed results are available online at 

http://sites.psu.edu/auk3/CPRP.  

http://sites.psu.edu/auk3/CPRP
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We used the same type of the 6.35-ton (curb weight) diesel truck vehicle used by Demir et al. (2012), 

Franceschetti et al. (2013), Kramer et al. (2015a, 2015b), and Fukasawa et al. (2016, 2017). Based on the truck 

parameters in these references, the coefficients of the fuel–speed/load function in Eq. (7) can be calculated as 

follows: 

     α = 1.01763908×10-3,  β = 1.41223439×10-7, γ = 5.33605218×10-5, φ = 8.40323178×10-9 

6.2 Drivers’ wage paid from beginning of time horizon (DPFB)  

First, we solved the problem instances with the objective function given in Eq. (14a), which includes fuel-related 

costs and drivers’ wages paid from the beginning of the time horizon (DPFB). We solved a total of 240 PRP 

instances with 10, 15, 20, and 25 customers in groups UK-A, UK-B, and UK-C by using the ε-CPRP and ε-CPRP' 

with ε = 0.1% and ε = 0.01%, respectively. The detailed results of all tested instances are available online at 

http://sites.psu.edu/auk3/CPRP. The results of the first five instances of 10, 20, and 25 customers were selected and 

presented in Tables 3 and 4, respectively. In Table 3, the subcolumn Cost (π) indicates the cost obtained directly by 

the MILP model without using the post-optimization procedure, and the subcolumn Cost (π*) indicates the cost 

improved after the post-optimization procedure. It is observed that the average gaps between Cost (π) and Cost (π*) 

are relatively small, ranging only from −0.001 to −0.075 with respect to different settings of model parameters, 

which indicates that the solution gaps are strictly controlled by parameter ε. According to Theorem 2 and 

Proposition 3, the obtained solutions are guaranteed to have a maximum deviation of 3ε. Note that for problem 

instance UK-B10-02, the solutions with ε = 0.1% have at least one arc with travel speed between ijv  and 

(1 ) ijvε+ , i.e., the upper speed limit is exceeded. The average computational time used for all instances of 10 

customers takes only a few seconds in our PC server. It should be noted that for all tested instances of 10 customers, 

our solutions were very close to those by Demir et al. (2012), Kramer et al. (2015a), and Fukasawa et al. (2016, 

2017). 
Table 3 Experiment results for PRP instances of 10 customers under DPFB policy 

   ε = 0.1%  ε = 0.01% 

 Demir et al. Kramer et ε-CPRP  ε-CPRP'  ε-CPRP  ε-CPRP' 

Prob. No. (2012) al. (2015a) Cost (π) Cost (π*)  Cost (π) Cost (π*)  Cost (π) Cost (π*)  Cost (π) Cost (π*) 

UK-A10-01 170.66 170.64 170.662 170.661  170.743 170.656  170.641 170.641  170.644 170.642 

UK-A10-02 204.87 204.88 204.904 204.896  205.009 204.896  204.878 204.878  204.882 204.879 

UK-A10-03 200.33 200.34 200.354 200.354  200.462 200.363  200.341 200.341  200.343 200.342 

UK-A10-04 189.94 189.89 189.905 189.896  189.986 189.896  189.887 189.885  189.889 189.886 

UK-A10-05 175.61 175.59 175.611 175.607  175.688 175.604  175.592 175.591  175.594 175.592 

UK-B10-01 -- 246.45 246.490 246.474  246.554 246.500  246.449 246.447  246.450 246.447 

UK- B10-02 -- 303.73 303.784 303.756  303.860 303.790  303.740 303.739  303.744 303.738 

UK-B10-03 -- 301.89 301.908 301.905  301.988 301.949  301.894 301.893  301.895 301.893 

UK-B10-04 -- 273.91 273.940 273.929  274.044 273.966  273.906 273.906  273.908 273.906 

UK-B10-05 -- 255.08 255.147 255.131  255.227 255.146  255.083 255.080  255.084 255.079 

UK-C10-01 -- 210.18 210.203 210.200  210.270 210.209  210.184 210.184  210.185 210.184 

UK- C10-02 -- 271.93 271.945 271.945  272.069 271.965  271.933 271.932  271.936 271.932 

UK-C10-03 -- 229.18 229.192 229.192  229.303 229.199  229.178 229.178  229.180 229.179 

UK-C10-04 -- 230.59 230.542 230.531  230.609 230.575  230.521 230.521  230.522 230.521 
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UK-C10-05 -- 205.49 205.527 205.510  205.576 205.548  205.494 205.493  205.494 205.493 

AVG gap    −0.008   −0.075   −0.001   −0.002 

Note: Italicized and underlined values indicate that the maximal travel speed exceeds the upper speed limit by at most ε. 

In Table 4, the experimental results for the first 5 instances of PRP with 20 and 25 customers in UK-A, UK-B, 

and UK-C are presented and compared with the solutions by Fukasawa et al. (2016, 2017). In Table 4, column V.N. 

indicates the number of vehicles used in the solution, column T./O.Gap indicates the CPU time used if the solution 

was optimally solved, or the optimality gap if the problem could not be solved within the time limit, and column 

Imp.% indicates the deviation of the solution from the best-known solution by Fukasawa et al. (2016, 2017). It can 

be observed that the new solutions have significant improvements compared to the solutions provided by Fukasawa 

et al. (2016, 2017). Note that for instances UK_B25_04 and UK_B25_05, the solutions have at least one arc with 

travel speed exceeding the upper speed limit by ε%. From a theoretical point of view, these two instances are 

incomparable to the earlier results by Fukasawa et al. (2016, 2017). However, this slight relaxation on the upper 

speed limit is trivial from a practical point of view. In terms of computational efficiency, ε-CPRP with ε = 0.1% 

required longer CPU times than the algorithm by Fukasawa et al. (2017) but shorter CPU times than the algorithm 

by Fukasawa et al. (2016).  
Table 4. Experiments and comparisons for PRP instances of 20 customers using DPFB policy 

Problem Fukasawa et al. (2016)  Fukasawa et al. (2017)  ε-CPRP (ε = 0.1%) 

Instances Cost V.N. Time (s)  Cost Time (s)  Cost V.N. T./O.Gap Imp.% 

UK_A20_01 352.447 5 3600  351.82 13.9  323.208 3 334 −8.13 

UK_A20_02 365.767 5 3600  365.77 1.8  330.070 3 358 −9.76 

UK_A20_03 230.486 5 3600  230.49 11.8  207.664 3 54 −9.90 

UK_A20_04 347.043 5 3600  347.04 43.5  324.762 3 396 −6.42 

UK_A20_05 329.626 5 3600  323.44 16.6  295.559 3 271 −8.62 

UK_B20_01 -- -- --  469.35 0.02  445.890 4 6 −5.00 

UK_B20_02 -- -- --  477.05 0.02  440.503 3 11 −7.66 

UK_B20_03 -- -- --  354.46 0.03  324.020 3 20 −8.59 

UK_B20_04 -- -- --  523.59 0.1  473.428 3 9 −9.58 

UK_B20_05 -- -- --  447.33 1.2  430.525 4 22 −3.76 

UK_C20_01 -- -- --  432.82 90.3  375.455 3 35 −13.25 

UK_C20_02 -- -- --  448.29 4.4  385.713 3 489 −13.96 

UK_C20_03 -- -- --  287.04 4.1  263.840 3 382 −8.08 

UK_C20_04 -- -- --  434.23 4.5  380.938 3 225 −12.27 

UK_C20_05 -- -- --  381.7 5.9  344.829 3 152 −9.66 

UK_A25_01 -- -- --  389.46 3600  282.149 3 718 −27.55 

UK_A25_02 -- -- --  373.92 3600  345.050 4 0.6% −7.72 

UK_A25_03 -- -- --  273.08 3600  217.996 3 5403 −18.95 

UK_A25_04 -- -- --  321.14 3600  264.075 3 3.8% −18.96 

UK_A25_05 -- -- --  365.00 2925  329.146 4 1564 −9.82 

UK_B25_01 452.09 5 29.4  474.35 1  414.519 3 34 −8.31 

UK_B25_02 497.98 5 710.2  530.00 10.6  471.362 4 610 −5.35 

UK_B25_03 367.15 5 39.8  390.17 2.6  332.807 3 769 −9.35 

UK_B25_04 438.75 5 36.4  458.56 132  404.904 3 332 −7.71 
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UK_B25_05 462.64 5 36.5  489.16 11.2  440.446 4 920 −4.80 

UK_C25_01 -- -- --  416.88 163  376.309 3 6.7% −10.05 

UK_C25_02 -- -- --  467.51 548  440.470 4 8.4% −6.49 

UK_C25_03 -- -- --  326.31 3600  289.140 3 10.3% −11.94 

UK_C25_04 -- -- --  386.21 3600  332.955 3 6620 −13.79 

UK_C25_05 -- -- --  458.55 3600  418.566 4 7.3% −9.50 

 Note: Italicized and underlined values indicate that the maximal travel speed exceeds the upper speed limit by at most ε, and 

boldfaced values indicate new best-known solutions. 

Finally, we tested the performance of the ε-CPRP model with respect to different values of parameter ε. Twenty 

instances of UK-A20 were solved with ε = 2%, 1%, 0.5%, 0.1%, 0.05%, and 0.01%. In Fig. 6, the average 

computational time and the average deviations of objective values from those obtained with ε = 0.01% are plotted 

against the values of parameter ε. It can be observed that the computational time increases from 140 s to 1050 s as 

parameter ε decreases from 2% to 0.01%. Meanwhile, the solution accuracy has been improved from 0.32% to 

0.00%. This graph suggests that an ideal trade-off value for parameter ε for these problems should be 

approximately 0.1%, where the solution accuracy is very close to the best ones obtained by ε = 0.01% while the 

computational time does not increase significantly. 

 
Fig. 6 Trends of solution accuracy and CPU time against parameter ε for instances in UK_A20 

6.3 Drivers’ wage paid from the departure time (DPFD)  

Next, we tested the ε-CPRP model with the objective function in Eq. (14b), which includes the fuel-related cost 

and the drivers’ wage calculated from the departure time (DPFD). Under the DPFD policy, the departure time from 

depot can be scheduled to shorten the total travel time. We first solved the 60 PRP instances with 10 customers by 

ε-CPRP and ε-CPRP' with ε = 0.01%. In Table 5, the solutions of the first five instances were compared to the 

existing solutions by Kramer et al. (2015b) and Fukasawa et al. (2016). Next, we solved the 180 PRP instances with 

15, 20, and 25 customers using ε-CPRP with ε = 0.1% and summarized the results in Table 6. 

It can be observed from Table 5 that our solutions are very close to the best ones in the study by Kramer et al. 

(2015b) and Fukasawa et al. (2016). Some of the optimal solutions reported by Fukasawa et al. (2016), e.g., for 

instances UK_B10_02, UK_B10_03, UK_B10_04, UK_B10_05, UK_C10_02, and UK_C10_03, are not shown to 

be optimal in our experiments. There are also other five solutions, i.e., UK_A10_03, UK_B10_03, UK_B10_04, 

UK_B10_05, and UK_C10_03, that had been updated with new best solutions. Note that the new solutions did not 

violate the upper speed limit; hence, they are feasible. In terms of computational efficiency, ε-CPRP and ε-CPRP' 
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used only a few seconds for the tested instances of 10 customers. The heuristic algorithm given by Kramer et al. 

(2015b) is the best, which used less than 1 s. The MICP algorithm by Fukasawa et al. (2016) had high efficiencies 

for the instances in UK_B (less than 1 s) but low efficiencies for the instances in UK_A (longer than 1 h).  

Table 6 provides the summary of the results for 180 UK_PRP instances with 15, 20, and 25 customers. It can be 

observed that 171 out of 180 instances were solved to optimality within the time limit, and the final solutions were 

feasible in 166 out of 180 instances with respect to the maximum speed limit. The results show that the tightness of 

customers' time windows has a significant effect on the solution time. Instances in UK_B, which have tighter time 

windows than those in UK_A and UK_C, were solved in much shorter times compared to those in UK_A and 

UK_C. Instances with tighter time windows also had relatively higher costs and used a higher number of vehicles 

in the solutions.  
Table 5. Result comparisons for UK-A10, UK-B10, and UK-C10 under DPFD policy (ε = 0.01%) 

Problem Kramer et al. Fukasawa et al. (2016)  ε-CPRP (ε = 0.01%)  ε-CPRP' (ε = 0.01%) 

ID (2015b) Cost Time (s)  Cost Time (s) Imp.%  Cost Time (s) Imp.% 

UK_A10_01 169.04 168.820 3600  168.821 14 0.00  168.822 8 0.00 

UK_A10_02 203.82 203.824 3600  203.825 12 0.00  203.826 8 0.00 

UK_A10_03 198.50 198.351 3600  198.271 19 −0.04  198.272 10 −0.04 

UK_A10_04 187.29 186.594 3600  186.594 6 0.00  186.595 5 0.00 

UK_A10_05 172.89 172.894 3600  172.894 12 0.00  172.895 9 0.00 

UK_B10_01 217.96 217.959 0.3  217.962  2 0.00  217.961 1 0.00 

UK_B10_02 263.86 266.738 0.2  263.861  1 0.00  263.861 1 0.00 

UK_B10_03 261.50 261.496 0.2  260.056  2 −0.55  260.057 1 −0.55 

UK_B10_04 256.78 256.779 0.2  251.289  3 −2.14  251.290 2 −2.14 

UK_B10_05 253.53 254.529 0.1  248.328  3 −2.05  248.328 2 −2.05 

UK_C10_01 171.96 171.956 51.2  171.957  8 0.00  171.957  4 0.00 

UK_C10_02 219.37 230.525 85.5  219.370  9 0.00  219.371  6 0.00 

UK_C10_03 204.97 204.972 24.7  199.945  3 −2.45  199.946  1 −2.45 

UK_C10_04 187.88 187.883 13.2  187.883  3 0.00  187.884  2 0.00 

UK_C10_05 184.11 184.098 89.1  184.098  7 0.00  184.099  5 0.00 

AVG 
   

 
  

−0.48  
  

−0.48 

Note: Boldfaced numbers indicate the best-known values whereas italicized ones indicate new best-known values. 

 

Table 6. Summary of results of ε-CPRP for PRP instances with 15, 20, and 25 customers under DPFD policy (ε = 0.1%) 

Prob. Set Ins. Num. AVG Cost AVG V.N. AVG CPU Time (s) AVG O.Gap % Optimality Exc. SPD 

UK_A15 20 247.847 2.6 29.3 0.0% 20/20 0/20 

UK_B15 20 325.145 3.6 2.7 0.0% 20/20 1/20 

UK_C15 20 271.339 2.9 13.4 0.0% 20/20 3/20 

UK_A20 20 314.445 3.1 546 0.0% 20/20 0/20 

UK_B20 20 414.240 4.3 11.1 0.0% 20/20 1/20 

UK_C20 20 347.985 3.5 563 0.0% 20/20 4/20 

UK_A25 20 333.425 3.8 3695 0.7% 15/20 2/20 

UK_B25 20 434.206 4.6 233 0.0% 20/20 3/20 

UK_C25 20 366.584 4.0 3581 1.2% 16/20 0/20 
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7. Conclusion 

This study investigated the CPRP, an extension of the discrete PRP, which aims at identifying a set of 

continuously optimized routes and schedules for a fleet of fossil fuel-powered vehicles in the context of VRPTW. 

The proposed ε-CPRP model extended the existing discrete PRP models on three aspects: (1) the travel speed, 

travel time, load, and FCR of a vehicle over each arc, as well as the departure time, arrival time, and waiting time 

upon each node, are all treated as continuous decision variables and optimized synchronously; (2) solution of the 

ε-CPRP model is guaranteed to be practically feasible and as close as necessary to the theoretically optimal solution; 

and (3) the ε-CPRP model is computationally efficient (up to 25 customers). Comparative experiments showed that 

the ε-CPRP model could yield better solutions than existing discrete PRP models, and many of the UK_PRP 

instances were updated with new best solutions in our computational experiments.  

It is worth mentioning that, by using the iterative partial optimization (IPO) strategy for vehicle routing problems 

formulated with MILP models (see Xiao et al., 2016), a fix-and-optimize heuristic algorithm can be developed 

based on the ε-CPRP model to solve large-sized PRP instances with near-optimal solutions and controllable CPU 

time. This indicates the proposed theoretical-like ε-CPRP model has a practical value in large-scale applications as 

well. In particularly, the linearization method for the time–speed relationship is also applicable to other types of 

VRPs involving travel speed and travel time optimization, and the linearization methods for non-FCR functions can 

also help to bound a linear relationship between the fuel consumption and speed for other variants of PRP. 
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Appendix 
Table A1. parameters of vehicle used in Demir et al.(2012) 

Notation Description Value 

  ξ Fuel-to-air mass ratio 1 

  κ Heating value of a typical diesel fuel (kJ/g) 44 

  ψ Conversion factor (g/l) 737 

  k Engine friction factor (KJ/rev/l) 0.2 

  Ne Engine speed (rev/s) 33 

  V Engine displacement (l) 5 

  ρ Air density (kg/m3) 1.2041 

  A Frontal surface area (m2) 3.912 

  μ Curb-weight (kg) 6350 

  g Gravitational constant (m/s2) 9.81 

  ϕ Road angle 0 

  Cd Coefficient of aerodynamic drag 0.7 

  Cr Coefficient of rolling resistance 0.01 

  ε Vehicle driver train efficiency 0.4 

  ϖ Efficiency parameter for diesel engines 0.9 
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  fc Fuel price per liter (£) 1.4 

  dc Driver wage (£/s) 0.0022 

  vmin Lower speed limit (m/s) 5.5  

  vmax Upper speed limit (m/s) 25  

 

Detailed derivation for Eq.(2) and Eq.(3). 

For a given arc (i, j) with distance Dij, the travel time t is a function of average travel speed v that can be 

expressed as a curve t(v)=Dij/v. For a pair of two points A(t0, v0) and B(t1, v1) on the curve t(v)=Dij/v, 0 1v v< , the 

equation of line A-B can be written as 
1 0 1 0

( )ij ij ijD D D
t v

v v v v
−

= + + . For a given a speed v, the actual travel time t is 

Dij/v while the approximate travel time by the line A-B would be 
1 0 1 0

( )ij ij ijD D D
t v

v v v v
−

′ = + + . The deviation of t' from 

t can be written as a function of v as follows. 

  21 0 1 0 0 1

1 0 1 0

[ ( ) ]
( )( ) 1( ) 1

ij ij ij ij

ij

D D D D
v

v v v v v v vt td v v vDt v v v v
v

−
+ + −

′ +−
= = = − + −      (A1) 

Let the derivation of d(v) be zero, i.e., ( ) 0d v′ = , such that we have 0 1

1 0 1 0

( )2( ) 0v vvd v
v v v v

+′ = − + =  which leads to 

0 1
1 ( )
2

v v v= + , indicating that the deviation function ( )d v  has a maximum value of 
2

0 1

1 0

( )
4

v v
v v
−

 at 0 1
1 ( )
2

v v v= + .  

Let the maximum deviation value to be ε, i.e., 
2

0 1

1 0

( )
4

v v
v v

ε
−

= , such that we have 2
1 0 1 0 0(4 2) 0v v v v vε− + + =  

which leads to 2
1 0(1 2 2 )v vε ε ε= + + + . Let 21 2 2µ ε ε ε= + + + , such that we have 

  1 0v vµ=  and 1
0

ijD
t

vµ
= ,              (A2) 

which means that the farthest point B on the curve t=Dij/v from point A 0
0

( , )ijD
v

v
 is 0

0

( , )ijD
v

v
µ

µ
 such that for any 

point (v, t') on the line A-B, the deviation calculated by Eq.(A1) does not exceed the given parameter ε. Similarly, 

we can continue to deduce (t2, v2) starting from (t1, v1), (t3, v3) from (t2, v2), ..., and (tη, vη) from (tη-1, vη-1), until 

maxv vη ≥  is satisfied. Thus, let v0=vmin, we find the recursive equations in Eq.(A3) and Eq.(A4) as follows. 
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  Let min max
p

pv v vµ= ≥ , we can transform Eq.(A4) into the following equation that calculates the minimum 

number of secant lines from vmin to vmax as follows. 

  max min
2

ln ln

ln(1 2 2 )

v v
η

ε ε ε

 −
=  

+ + +  
,             (A5) 

where •    indicates the smallest integer larger than • . Thus, there are η secant lines, indexed by p=1, 2, ...., η, 

and the pth line can be written as p pt K v B= +  where Kp and Bp are the slope and intercept respectively, calculated 

by the following equations. 
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Detailed derivation for Eq.(10) and Eq.(11). 

For a pair of two points A(x0, y0) and B(x1, y1) on curve y=x2, 0 1x x< , the equation of line A-B can be written as 

1 0 1 0( )y x x x x x= + − . For a given a point (x, y) on curve y=x2 and the surrogate point ( , )x y′  by line A-B, where 

1 0 1 0( )y x x x x x′ = + − , the deviation of y' from y can be written as a function of x as follows. 

  1 21 0 1 0
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− −′ − + − −
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By setting derivation of d(x) to zero, i.e., ( ) 0d x′ = , we have 2 3
1 0 1 0() 0( ) 2x x x x x xd x − −′ = +− + =  which leads 

to 1 0

1 0

2x xx
x x

=
+ , indicating that function ( )d x  has a maximum value of 

2
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By letting the maximum deviation value be ε, i.e., 
2

1 0

1 0

( )
4

x x
x x

ε
−

= , we obtain 2 2
1 0 1 0(4 2) 0x x x xε− + + =  which 

leads to 2
1 0(1 2 2 )x xε ε ε= + + + . Let 21 2 2µ ε ε ε= + + + , such that we have 

  1 0x xµ=  and 2
1 0( )y vµ= ,             (A8) 

which means that the farthest point B on curve y=x2 from point A 2
0 0( , )x x  is 2

0 0( , ( ) )x xµ µ , such that for any 

point (x, y') on the line A-B, the deviation calculated by Eq.(A7) does not exceed ε. Similarly, we can continue to 

deduce (x2, y2) based on (x1, y1), (x3, y3) based on (x2, y2), ..., and (xη, yη) based on (xη-1, yη-1), until maxx vη ≥  is 

satisfied. Thus, let x0=vmin, we get the following recursive equations in Eq.(A9) and Eq.(A10). 
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  Let min max
p

px x vµ= ≥ , we can obtain the same expression as Eq.(A4) that calculates the minimum number of 
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secant lines from vmin to vmax. Thus, there are totally η secant lines indexed by p=1, 2, ...., η, and the pth line can be 

written as a general equation p pt b v b= + , where kp and bp are the slope and intercept respectively, calculated by 

the following equations. 
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