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Abstract: The growth of urban areas in recent years has motivated a large amount of new sensor
applications in smart cities. At the centre of many new applications stands the goal of gaining insights
into human activity. Scalable monitoring of urban environments can facilitate better informed city
planning, efficient security, regular transport and commerce. A large part of monitoring capabilities
have already been deployed; however, most rely on expensive motion imagery and privacy invading
video cameras. It is possible to use a low-cost sensor alternative, which enables deep understanding
of population behaviour such as the Global Positioning System (GPS) data. However, the automated
analysis of such low dimensional sensor data, requires new flexible and structured techniques that
can describe the generative distribution and time dynamics of the observation data, while accounting
for external contextual influences such as time of day or the difference between weekend/weekday
trends. In this paper, we propose a novel time series analysis technique that allows for multiple
different transition matrices depending on the data’s contextual realisations all following shared
adaptive observational models that govern the global distribution of the data given a latent sequence.
The proposed approach, which we name Adaptive Input Hidden Markov model (AI-HMM) is tested
on two datasets from different sensor types: GPS trajectories of taxis and derived vehicle counts in
populated areas. We demonstrate that our model can group different categories of behavioural trends
and identify time specific anomalies.

Keywords: time series; probabilistic modelling; trajectory analysis; smart city

1. Introduction

The rising population in modern cities introduces many challenges in urban city planning
including problems associated with improving the inhabitants’ quality of life and security.
The utilisation of sensors and communication technology gives rise to the concept of Smart Cities
and enables the adequate study of specific focus problems in urban development. Among the
many examples are applications on structural health monitoring [1], where material conditions of
civil infrastructure are monitored and automatically analysed to ensure population safety; smart
waste management [2] to improve service provisioning by the utilisation of smart garbage bins and
Internet of Things (IoT) technology; smart lighting solutions [3] for cost and greenhouse emission
reduction by the installation of sensors and weather analytics on city streets; and, in the manufacturing
industry [4], combining IOT with machine learning. With the growing interest and importance of
sensor application in smart cities, there has also been a rise in the interest in human movement
behavioural characteristics from sensors to identify movement trends and improve the understanding
of traffic. Examples from recent literature on applications of human behavioural understanding
include De Marsico et al. [5] user gait identification for automatic activation of controlled entry spaces,
and Paul et al. [6], Torre-Bastida et al. [7] big data and social IOT was utilised for real time definition

Sensors 2020, 20, 784; doi:10.3390/s20030784 www.mdpi.com/journal/sensors

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/287580415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s20030784
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/3/784?type=check_update&version=3


Sensors 2020, 20, 784 2 of 18

of human behaviours. For traffic analysis, Bhatti et al. [8] introduced an IOT accident detection and
notification system that relies on multiple, commonly available smart-phone sensors.

The analysis of car traffic can aid the understanding of population dynamics in smart cities.
This, on the other hand, leads to better capabilities for congestion control and accident detection
Ahmad et al. [9]. For example, Kanungo et al. [10] studied traffic light management using video
surveillance analysis, whereas Ozkurt and Camci [11] use surveillance footage to estimate density
patterns. This focus on video surveillance data has prompted research on camera placement for greater
area coverage [12] to reduce the high cost accumulation of such sensors. However, the high costs and
privacy concerns related to CCTV data are a key driver of the search of alternative sensor resources:
such as density counts, noise levels or automated geolocation data (such as GPS).

Despite the prior work on behaviour understanding from GPS [13–15], a lot of the GPS data
analysis remains challenging due to noise, irregular sampling, heterogeneity and frequent interruption
of data collection as environmental factors cause missing data [16]. To address this Ellam et al. [17],
a recently proposed parameter estimation framework for spatial interaction models was demonstrated
to simulate accurately the flow of customers. In scenarios where large amounts of individual-level
data is available, we can also try to approach the problem reversely and first search for recurring
patterns from large databases of movement in cities. Frequently sampled monitoring data such as the
GPS data can be highly multimodal. To account for this, Witayangkurn et al. [18] proposed the use
of a Hidden Markov Model (HMM) to detect anomalies from large scale GPS data. Nonetheless, this
approach does not consider the time self-dependence of the observation sequence and requires that
the model complexity be predefined which may bias the unsupervised approach to the analysis.
The geospatial relationship between the journeys of individuals is often dependent on various
contextual factors such as differences between weekend/weekday behaviour, peak/off-peak behaviour
and individual idiosyncrasies.

To address some of these challenges, we design an exploratory nonparametric probabilistic
modelling approach suitable for this type of data. We deploy a flexible HMM with augmented
latent space to account for various types of contextual information. This contextual information can
include difference between peak/off-peak time driving, weekday/weekend differences and person
specific manoeuvrability decisions. To achieve this, we propose an intuitive Adaptive Input Hidden
Markov Model (AI-HMM). Building on the theory of the Vector Autoregressive Hidden Markov Model
(VAR-HMM) [19] to allow for autoregressive self-dependence between observations, we introduce
a new discrete and independent semi-Markov variable which acts as a parent to the state indicator
variable in the graphical model to represent environmental factors that influence movement behaviour.
For example, in our case study in Section 5 on GPS data, we assume that the growing complexity of
human trips, as more trajectories are observed, can be well captured with Bayesian nonparametric
structure and that environmental factors such as time of day (e.g., peak or off-peak) may also influence
the modality of the behaviour and therefore should be considered in the design of the generative model
structure. We show that we are able to learn common patterns occurring across different contextual
realisations, in addition to their specific generative distributions. To summarise, the contributions of
this paper are as follows.

• We develop an extension of the ubiquitous Hidden Markov model, which can robustly segment
different behaviours in monitoring applications while accounting for present contextual factors.

• We have derived a principled framework for inference in the developed AI-HMM approach.
• We have shown the particularly suitability of the nonparametric switching autoregressive model

for analysis of GPS and traffic count data.

This paper will continue as follows. Section 2 discusses related studies, Section 3 summarises the
background of the used techniques, Section 4 explains the details of the proposed framework, Sections 5
and 6 summarise the algorithm experiments and its results and Section 7 concludes the report.
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2. Related Work

Human behaviour profiling and automated analysis has great potential for both security and
retail commercial applications in smart city designs. However, labelled sensor data of such nature
is usually scarce and unsupervised clustering or direct time series methods must be used [20–22].
One commonly used pipeline is the online segmentation of crowd data from video feeds. For example,
Mehran et al. [14] proposed a novel Social Force model for identifying abnormal behaviours in crowds.
The approach assumes that located moving particles on sequences of frames are individuals and
uses them to estimate their interaction forces throughout time and estimate the “normal” behaviour
of the crowd. Then, a bag-of-words classifier is trained to separate normal and abnormal crowd
behaviours. Mahadevan et al. [23] also proposed a supervised anomaly detection method based on
crowd videos. However, [23] evaluated their methods on a significantly smaller database of videos.
Rodriguez et al. [24] developed a partially Bayesian approach to the same problem which allows
for robust analysis of crowd videos completely unseen during training. While civic value can be
demonstrated through the analysis of videos at crowded locations, such data provides only localised
snapshots of the movement within the city. It is available only for a small set of chosen locations and
requires a large amount of labelled location specific training data. Video feeds have also been used
extensively for activity recognition applications [20,25,26]; however, such techniques are likely far
from being applicable on larger spatial scale across a city.

Continuous location data can be used to study a more diverse geographic perspective on personal
mobility and daily activity patterns. Jiang et al. [21] investigated how to cluster daily patterns of
activity in the city using both GPS data from individuals as well as additional survey data concerning
their true activities. The study used the Chicago Regional Household Travel Inventory (CRHTI)
dataset [27], which is one of the few data sources with fine labelled information in addition to GPS
data. GPS trajectory data was not explicitly modelled but only used to identify different location areas
for the participants. Jiang et al. [21] first constructed a calender type array indicating which of nine
activities (work, home, school, etc.) occurred. Principal Component Analysis (PCA) was then applied
followed by K-means clustering to infer patterns of daily activity across different regions of the city.
The inferred patterns were used to reveal socio-demographic information about the region. The results
of the study are informative on human behaviour; however, if GPS information is included in the
analysis, the complexity of the data may affect the effectiveness of the proposed framework.

Shih et al. [22] modelled different mobility patterns based on GPS data from the Geolife dataset [28]
to classify trips of people diagnosed with Alzheimer’s disease. The basis for this is the common
assumption that a symptom of Alzheimer’s patients is spatio-temporal confusion. The abnormal
trajectories were predicted based on thresholding the similarity to the training set. Although the
results showed up to 97% accuracy rate in detecting abnormal mobility patterns, there was no ground
truth data, and explicitly, no real information on the Alzheimer state of each subject. Instead, external
sequences were added to the data of some individuals to represent Alzheimer’s patients. This can add
clear biases to the analysis and may indicate that the accuracy of the technique on more representative
data will not mimic that of the presented study. More recently, Yao et al. [15] also proposed a novel
behaviour recognition framework for GPS data, demonstrated on trajectories of ships. They used a
Long-Short Term Memory (LSTM) autoencoder to infer the latent structure in features which were
extracted from sliding windows of the trajectory time series. By passing the dataset through a
trained network, the inferred embeddings were extracted and stored for each input time series. These
embeddings were then clustered with K-means to identify different behavioural patterns in ship data.
However, trajectories of ship movement contain significantly smaller variations across patterns and a
constrained space of behaviours which can be explored. The LSTM autoencoder is likely to require
multiple different behaviour sequences in order to group the trajectories in the latent space. Also, when
focused on segmenting anomalous events, K-means is known to lead to misleading clustering [29].
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3. Dynamic Time Series Modelling

3.1. Vector Autoregressive Model (VAR)

The Vector Autoregressive (VAR) model [30] is a widely used linear time series model for dynamic
multidimensional data. An order p VAR assumes each observation in a sequence can be modelled as a
linear combination of p previous points in the sequence and a stochastic term. The VAR model is also
a parametric model of the spectral density. Unlike Fourier-based methods which require a windowing
strategy, VARs are defined in the time domain and we can use p to control the number of spikes we
assume in the power spectrum of the input. Let Y = (y1, y2, . . . , yT) be a stationary time series where

yt ∈ RD = (y(1)t , . . . , y(D)
t )T , a VAR(p) model will have the form of

yt = Θ1yt−1 + · · ·+ Θpyt−p +µµµ + εεεt, (1)

where Θi is a (D × D) matrix of weights, µµµ is the mean of the sequence Y and εεεt is a (D × 1)
vector of white noise with zero mean and covariance matrix Σ. Using the matrix notation Yp+1:T =

(yp+1, yp+2, . . . , yT)we can then write the VAR in the following form,

Yp+1:T = ΘΘΘȲ + E, (2)

with ΘΘΘ = (µµµ, Θ1, . . . , Θp), Ȳ = (1, YT
p:T−1, . . . , YT

1:T−p)
T , 1 being a vector of ones with the same length

as Yp+1:T and E = (εεεp+1, . . . , εεεT). Using this formulation, the parameters of a VAR model may be
estimated in few main ways depending on the adopted formalism: via maximum likelihood estimation,
using the Yule–Walker equations and via Bayesian inference. Inference in Bayesian VAR models is
practically identical to statistical inference in Bayesian linear regression. Assuming, for practical
convenience, a conjugate prior over the VAR parameters, the joint prior over the parameters ΘΘΘ and the
covariance matrix Σ is a coupled Matrix-Normal Inverse-Wishart (MNIW) distribution, implied by
the Gaussian likelihood of the outputs.

Σ ∼ IW(n0, S0),

ΘΘΘ|Σ ∼MN (M, Σ, K),

Yp+1:T |Ȳ, ΘΘΘ, Σ ∼MN (ΘΘΘȲ, Σ, I),

(3)

where n0 is the number of degrees of freedom; S is the scale matrix; M, Σ and S0 are the mean,
covariance of the rows and covariance of the columns of parameter ΘΘΘ, respectively; and I is the identity
matrix. The posterior of the VAR coefficients is then

p(ΘΘΘ|Y, Σ) ∝ p(Y|Ȳ, ΘΘΘ, Σ)p(ΘΘΘ|Σ). (4)

To compute posterior of the VAR noise covariance, it is more efficient to use the marginal
likelihood, instead giving

p(Σ|Y) ∝ p(Y|Σ)p(Σ),

p(Y|Σ) ∝
∫

ΘΘΘ
p(Y|Ȳ, ΘΘΘ, Σ)p(ΘΘΘ|Σ)dΘΘΘ.

(5)

3.2. Autoregressive Infinite Hidden Markov Model (AR-iHMM)

The infinite Hidden Markov Model (iHMM) also known as the Hierarchical Dirichlet Process
HMM (HDP-HMM) is a Bayesian nonparametric approach to the HMM first proposed by
Beal et al. [31] then formalised by Teh et al. [32]. The nonparametric formalisation tackled the
limitations of the traditional HMM of needing to pre-specify the structure of the model allowing
it to automatically infer in adaptive manner the complexity depending on the amount of data observed.
Building on the iHMM, Fox [33] included linear AR dependence between the observation sequence to
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form the AR-iHMM (or also known as HDP-AR-HMM). Figure 1 depicts the Probabilistic Graphical
Model (PGM) representation of the iHMM and the AR-iHMM.

T

T

T

T

Figure 1. iHMM (top) and AR-iHMM (bottom) probabilistic graphical models. Mixing Parameters
βββ are used to sample the transition distribution πππk, which the state indicators z are sampled from.
The observations yt are generated from functions with parameters ΘΘΘzt which are in turn sampled
from base distribution H. The AR-iHMM differs such that there are autoregressive dependence
between observations.

Let z = (z1, . . . , zT) denote the state indicator variables and πππk be the state specific transition
distribution for state k where zt ∼ Categorical

(
πππzt−1

)
. The observations yt are conditionally

independent given zt and Ȳt = (yT
t−1, . . . , yT

t−p)
T ; each observation is modelled with emission

distributions yt|zt, Ȳt ∼ f(ΘΘΘzt Ȳt) where ΘΘΘzt are the emission parameters for state indicated by zt.
The complete data likelihood can then be written as

p(z, Y) =
T

∏
t=p+1

p(zt|zt−1)p(yt|zt, Ȳt),

p(z, Y) =
T

∏
t=p+1

K+

∑
k=1

πzt−1,kf(yt; ΘΘΘk, Ȳt).

(6)

using K+ to denote the inferred number of represented states.
The iHMM defines a set of random probability measures Gk for each state representing the

dynamic observations Y sampled from a Dirichlet Process (DP) with a global probability measure G0

and concentration parameter α. The base probability measure itself is DP distributed with concentration
parameter γ and a base probability measure H
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G0|γ, H ∼ DP(γ, H),

Gk|α, G0 ∼ DP(α, G0),
(7)

where measures Gk are conditionally independent given G0. Intuitively, Equation (7) means that
random distributions Gk vary around G0 with variability governed by γ, whereas G0 varies around the
base distribution H with variability α. Including explicit hyperparameter controlling the self-transitions
probability in the AR-iHMM [31,33] we can summarize the full AR-iHMM as follows,

βββ|γ, H ∼ GEM(γ),

πππk|α, βββ ∼ DP
(

α + κ,
αβββ + κδk

α + κ

)
,

ΘΘΘk|H ∼ H,

zt|zt−1, (πππk)
∞
k=1 ∼ πππzt−1 ,

yt|zt, Ȳt, (ΘΘΘk)
∞
k=1 ∼ f(ΘΘΘztȲt),

(8)

where βββ = (βk)
∞
k=1 is both a mixing prior for the top level DP and a base measure for the lower level DP,

GEM (which stands for Griffiths, Engen and McCloskey [34]) represents the stick breaking construction
and (·)∞

k=1 represents an infinite set.

4. Adaptive Input Infinite Hidden Markov Model (AI-iHMM)

4.1. Model Specification

AR-iHMMs are powerful models that are capable of modelling complex dynamic data effectively.
However, as a generative model, they assume that the state indicator zt is only dependent on the state
indicator at the previous time step zt−1. The model also assumes that the full time series share the same
upper layer mixing prior βββ and therefore the same set of transition distributions Π = (πππT

1 , πππT
2 , . . . , πππT

K)
T .

In some real-world problems, there are independent and discrete features τττ = (τ1, τ2, . . . , τT) that affect
the model’s state indicators and transition distributions. The semi-Markov variable τττ can represent
certain events or periods for the dataset where data generated during any fixed realisation of τt = v
can share the same mixing prior βββ and same set of transition distributions Π, but have different
distributions for different realisations v. For example, in the case of human movement analysis,
different periods of the day τt ∈ {1, 2}, such as off-peak and peak time, respectively, can have different
behavioural traits with separate parameters {Π1, Π2} and {βββ1, βββ2}. Although the desired separation
can be achieved by modelling the data generated for every realisation separately with different models,
it will likely result in assigning exclusive states and state emission parameters ΘΘΘk for each model.
This will raise the problem of identifying a suitable method to measure state overlap across different
models, specifically in cases like human movement behaviour where any small change in the states
parameters may be important.

To avoid this problem, we propose a novel Adaptive Input infinite Hidden Markov Model
(AI-iHMM) where an additional DP layer is added to the models hierarchy allowing for the generation
of a different base measure G(v)

0 for each unique value of τττ while still sharing the same upper level
base distribution H for the sampling of the model parameters ΘΘΘk. Figure 2 depicts the PGM of the
proposed model with the respective joint probability distribution and formalisation.

P(τττ, z, Y) =
T

∏
t=p+1

P(τt)P(zt|zt−1, τt)P(yt|zt, Ȳt), (9)
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Q|ψ, H ∼ DP(ψ, H),

G(v)
0 |γ, H ∼ DP(γ, Q),

G(v)
k |α, G(v)

0 ∼ DP(α, G(v)
0 ),

(10)

where H is the base probability measure for the upper layer DP with concentration parameter ψ, Q is
the master probability measure for the middle layer DP associated with the possible values of τττ with
concentration parameter γ, G(v)

0 is the global probability measure for the lower layer DP associated

with τt = v with shared concentration parameter α across all values of v, and G(v)
j is the random

probability measure for state j when τt = v.

T

T

T

Figure 2. PGM of the AI-HMM structure. Observation yt being dependent on the indicator variable zt

and p previous observations, whereas zt is dependent on zt−1 in addition to the semi-Markov feature
τt. Parameters βββ are used to sample the transition distribution πππk which the state indicators z are
sampled from. The observations yt are generated from functions with parameters ΘΘΘzt which are in
turn sampled from base distribution H.

The possible values of τττ can be inferred adaptively as will be described in Section 4.2 by placing
an appropriate prior on them (for example the DP would be a conjugate choice) and estimate them
using modified MCMC inference. This is useful when it is known that there is an underlying variable
affecting z and the values for each time instance are unknown. For more intuitive analysis and better
understanding of the effect the contextual category has on the transition dynamics of the time series
data, τττ can also be set as a fixed categorical input to the model. This allows for more precise inference
of the transition dynamics associated with each context v and for their custom selection based on the
problem of interest. Depending on the complexity of the data, the estimation of input τττ in addition
to the estimation of the remaining model parameters may be result in numerous local minima if no
prior knowledge is known about the model. Therefore, it would be advantageous to train with partial
knowledge of τττ or pre-train with a fixed input when inferring it adaptively. In the general case of a
completely adaptive model, using the stick breaking construction, the model may be written as
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λλλ|ψ, H ∼ GEM(ψ),

βββv|γ, λλλ ∼ DP(γ, λλλ),

πππ
(v)
k |α, βββv ∼ DP

(
α + κ,

αβββv + κδk
α + κ

)
,

ε
(v)
j,i ∼ πππ

(v)
j,i Dir

( η

V

)
λzt−1 ,

ΘΘΘk|H ∼ H,

τt|zt, zt−1, εεε ∼ εεεzt−1,zt ,

zt|zt−1, τt = v,
(

πππ
(v)
k

)∞

k=1
∼ πππ

(v)
zt−1 ,

yt|zt, Ȳt, (ΘΘΘk)
∞
k=1 ∼ f(ΘΘΘzt Ȳt),

(11)

where λλλ is the upper level mixing parameter and the middle level base measure, η is the prior parameter
of the distribution of τττ and εv

j,i is the posterior probability of τt = v when zt = i and zt−1 = j.

4.2. Inference

Similarly to the AR-iHMM structure, the parameters of the AI-HMM can be inferred by blocked
Gibbs sampling. A truncation level L is set to denote the maximum number of states expected expected
for the time series modelling so that k ∈ {1, 2, . . . , L}. Given previously set transition distributions
{Π(n−1)

v }, mixing parameters {βββ(n−1)
v } and emission distribution parameters {ΘΘΘ(n−1)

k } and assuming
a normal distribution likelihood on the autoregressive observation sequence; the first step is to block
sample the input contextual vector τττ. Given its Markov blanket, the posterior of τt is

p(τt|zt, zt−1) ∝ p(zt|τt, zt−1)p(τt)p(zt−1). (12)

Here, p(zt|τt, zt−1) is simply the transition matrix elements {π(v)
zt−1,zt} across all v, p(τt) is the prior

Dir( η
V ), as τt is assumed to be categorically distributed with a Dirichlet prior and p(zt−1) is the global

prior of zt−1. By design, changes in the value of τt should be sparse and infrequent since they represent
broad categories of transition dynamics and cover long contextual periods relative to the time series.
For the case of zt = zt−1 = k, it can be possible that {ε(v)k,k } is similar for multiple values of v due to the

closeness in value between probabilities {πππ(v)
k,k }. A change in the value of τt directly implies that the

state for zt has changed as well, due to the hierarchy of the model. This means that effectively τt is
only sampled on when zt 6= zt−1, which naturally enforces state persistence. To sample

τt ∼
V

∑
v=1

ε
(v)
zt−1,zt ∝

V

∑
v=1

πππ
(v)
zt−1,zt Dir

( η

V

)
λzt−1 δ(τt, v) if zt 6= zt−1;

τt = τt−1 if zt = zt−1.

(13)

The next set of parameters to sample are z. This is done using a variation of the forward-backward
algorithm where the (1× L) backward message mt,t−1 is calculated by

mt,t−1 = mt+1,tΠτt

L

∑
k=1
N (yt; ΘΘΘkȲt, Σk). (14)

The forward message f(yt) = ( f1(yt), . . . , fL(yt)) for observation yt is

f(yt) = N
(

yt; {ΘΘΘkȲt, Σk}L
k=1

)
×mt+1,t, (15)

where the first element of mt+1,t is equal to 1 and N
(
yt; {ΘΘΘkȲt, Σk}L

k=1
)

=

(N (yt; ΘΘΘ1Ȳt, Σ1), . . . ,N (yt; ΘΘΘLȲt, ΣL)). The indicator variable zt can then be sampled by
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zt ∼
L

∑
k=1

fk(yt)π
(τt)
zt−1,kδ(zt, k). (16)

To sample the mixing parameters βββv, the following auxiliary variables must be sampled all of
shape (L× L): Mv representing the count of transitions occurring due to sampling directly from the
base probability; M̄v representing the counts of new transitions unobserved previously before in the
sequence z and N(v) representing the counts of transitioning from state j to state k. To estimate Mv,
for each (j, k) ∈ {1, . . . , L}v set m(v)

j,k = 0 and for n = 1, . . . , n(v)
j,k sample

x ∼ Ber

(
αβ

(v)
k + κδ(j, k)

n + αβ
(v)
k + κδ(j, k)

)
, (17)

then increment n and if x = 1 increment m(v)
j,k . Then, for j ∈ {1, . . . , L}, estimate Wv by

ω
(v)
j ∼ Binomial

m(v)
j,j ,

κ

κ + αβ
(v)
j

 , (18)

where ω
(v)
j denotes of the override counts when the base probability distribution was used to draw

self transitions for state j . This can in turn be used to estimate m̄(v)
j,k

m̄(v)
j,k =

m(v)
j,k j 6= k;

m(v)
j,j −ω

(v)
j j = k.

(19)

βββv may now be sampled by
βββv ∼ Dir

(
m̄̄m̄m(v)

.,1 , . . . , m̄̄m̄m(v)
.,L

)
, (20)

where m̄̄m̄m(v)
.,j denotes the jth column of M̄v. The mixing parameter may then be used to sample πππ

(v)
k

πππ
(v)
k ∼ Dir

(
αβ

(v)
1 + nk,1, . . . , αβ

(v)
k + κ + nk,k, . . . , αβ

(v)
L + nk,L

)
, (21)

where the hyperparameter κ is added to the parameters for state k to enforce self transitions. The final
step in the iterative optimisation procedure is to sample the state specific vector autoregressive
parameters ΘΘΘk and Σk. When using aMNIW prior as explained in Section 3.1, the parameters may
be updated given the observations Y and state indicator variables z. For more details on the derivation
of the update, please see Fox [33].

S(k)
ȲȲ = Ȳ(k)Ȳ(k)T

+ K,

S(k)
YȲ = Y(k)Ȳ(k)T

+ MK,

S(k)
YY = Y(k)Y(k)T

+ MKMT ,

S(k)
Y|Ȳ = S(k)

YY + S(k)
YȲS−(k)ȲȲ S(k)T

YȲ ,

(22)

where Y(k) and Ȳ(k) are the observations and lag matrix of lagged observations, respectively, that are
classified to state k. S(k)

ȲȲ, S(k)
YȲ, S(k)

YY and S(k)
Y|Ȳ are the posterior parameters such that

Σk ∼ IW
(

n0 + ∑
v

c(v)k , S(k)
Y|Ȳ + S0

)
,

ΘΘΘk|Σk ∼MN
(

S(k)
YȲS−(k)ȲȲ , Σk, S(k)

ȲȲ

)
,

(23)
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where c(v)k is the count of the number of observations in state k through when τt = v.
The AI-HMM is a generative model that can represent the observation data statistically with the

optimised model parameters. Therefore, given a pre-trained model and initial starting points, it may be
possible to sample new observations that resemble the dynamics of the training data. The parameters
can even be altered manually to represent different types of behaviours and trends. This allows for
generation of new custom datasets that can be used for research across different fields.

5. Modelling With Fixed Inputs

To demonstrate the effectiveness of the AI-HMM, we tested the model on two different datasets
that represent human and traffic behaviour in smart city environments. The first was the Dodgers loop
dataset [35] containing loop sensor data counting the number of vehicles that pass through the Glendale
on-ramp for the 101 North Freeway in Los Angeles in 5 min (288 reading per day) intervals over a
period of 25 weeks. In addition to the presence of weekday morning and afternoon traffic-peak trends
in the dataset, a baseball stadium in the vicinity of the ramp allows for the observation of the post-game
traffic rise. This allows us to study the performance of the model at identifying commonly repeating
daily trends that may change depending on external contextual information (weekend/weekday
trends) as well as studying the outlier detection capabilities with the spike in density counts due to
sparsely occurring games at the nearby stadium. The dataset is simple and uniformly sampled with
easily identifiable trends that can be detected by simple data visualisation. Results can be seen in
Section 5.1. The second dataset was the T-drive dataset [13,36] which contains GPS trajectory data from
more than 10,000 taxis collected over a period of 1 week within the city of Beijing, China. Analysing this
dataset is more challenging as GPS data can be very noisy, sparse, irregularly sampled, heterogeneous
and its data collection can be frequently interrupted due to environmental factors causing missing data
(rarely missing at random). This type of data is complex and allows us to explore the effect of multiple
contextual realisations on the observation data such as time of day and user identity. It also relates well
traffic analysis, an important topic in smart city research. The AI-HMM identifies interesting patterns
and results as seen in Section 5.2.

5.1. Dodgers Loop Sensor Dataset

The AI-HMM was used to model the complete dodgers loop sensor dataset. Figure 3 shows
the count scatter for an average game day on a weekday and on a weekend. As is can be seen from
the sharp peaks on the plots, games on weekdays often occur in the evening, whereas games on the
weekends can occur at a similar time in the evening or, as depicted in the figure, they can occur in
the afternoon.

00:00 04:10 08:20 12:30 16:40 20:50
time

Weekend

00:00 04:10 08:20 12:30 16:40 20:50
time

0

10

20

30

40

50
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nt

Weekday

Figure 3. Scatter plots for vehicular density counts on an average game day on a weekday (left) and
weekend (right). The first two distinct peaks on the weekday represent the morning and afternoon
traffic peaks respectively, whereas the sharp peaks around 23:00 on the weekday and on 16:30 on the
weekend represent traffic caused by fans leaving the stadium after a baseball game.

For this experiment, the observation instances yt = (c, h) where c is the vehicle count for the 5 min
interval at time t and h is the hour of day when the observation took place. As weekday and weekend
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traffic dynamics commonly differ in density flow, the input feature τt ∈ {1, 2} where τt = 1 denotes
weekdays and τt = 2 is assigned for weekends. This choice is supported by the assumption that traffic
dynamics generally repeat on a daily basis for weekends and weekdays separately, enforcing the belief
of having different transition behaviours for each in the generative model. The VAR order was set to
p = 288 being the number of observations in a day.

Figure 4 shows an example of the results for five days in one week. Looking at the weekday plot,
it can be seen that the morning and afternoon peak periods were clustered into states 1 (blue) and
4 (green), respectively. The sharp peaks in the evening (~23:00) on some weekdays corresponding
to traffic rises due to the baseball games were clustered into state 6 (brown). On the weekend, the
evening game on Saturday was also clustered into state 6; however, the afternoon (~16:30) game on
Sunday was clustered into state 7 (pink); a state which is not encountered on weekdays when τt = 1.
This demonstrates the dynamics of the AI-HMM. States are shared across the structures relating to the
different values of τt, however, there may be differences when a set of observations following a certain
behaviour trends occur exclusively for realisation i.

00:00 08:20 16:40
time

Sunday

00:00 08:20 16:40
time
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00:00 08:20 16:40
time

Friday

00:00 08:20 16:40
time

Thursday
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0

10
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Ve
hi

cle
 C
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nt
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Figure 4. Scatter plots for vehicular density counts. Each colour represents a specific state that the
respective observations was clustered into. Morning and evening traffic peaks on weekdays are
clustered into state 1 (blue) and state 3 (green), respectively. Traffic caused by evening baseball games
near 23:00 (Wednesday, Friday and Saturday) have been clustered into state 6 (brown), whereas traffic
peaks caused by afternoon games at about 16:30 (Sunday) were clustered into state 7 (pink).

To compare the results, we use Principal Component Analysis (PCA) on the density counts of
vehicles per day. Figure 5 shows the first 4 PCs plotted against time. It can be seen that PC 2 seems to
capture the dynamics of the morning peak hours, whereas PC 4 captures the dynamics of the lighter
weekend midday traffic. PC 3 Captures the trend of the evening game which commonly occurs on
weekdays and Saturdays. These results inform us which orthogonal direction in the multidimensional
data distribution we can expect to see these respective dynamics. However, this is specific to this data
only, any additional day vectors added may alter the expected results. Moreover, using this technique
alone, it is not possible to identify which days contain the identified trends and which days do not.
Within the first four PCs, there was no PC that appears to identify the evening peaks nor the afternoon
baseball games. All these shortcomings are solved with the AI-HMM approach demonstrating the
effectiveness of the technique.
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PCA Analysis
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Figure 5. Figure depicting the first four (PCs with the largest eigen values in the PCA analysis of
the Dodgers loop sensor dataset). PC 2 capture the dynamics of the morning peak; PC 3 represents
the sharp traffic rise due to the evening baseball game, which commonly occurs on weekdays and
Saturdays; and PC 4 captures the dynamics of the weekend light midday traffic.

5.2. T-Drive Dataset

5.2.1. Data Preprocessing

GPS data are often in the form of a collection of geolocation data points in the form of
X = (x1, x2, . . . , xT) where xt = (time, λ, l) ∈ R3, λ is the longitude coordinate and l is the latitude
coordinate. The altitude is also included in some data sources; however, it is neglected for the purpose
of this paper since it is not always available. Given that the altitude is recorded in the dataset, the feature
be added for analysis in the proposed technique with no changes to the structure. Extreme outliers
relating to errors in the sensors measurement and very short trajectories (a trajectory consisting of only
five data points for example) may be neglected since they do not generally hold much information
about the journey.

Using only the trajectory time series X, the feature sequence Y is calculated to describe the
trajectory path where Y = (y1, y2, . . . , yT), yt = (λ, l, h, ∆v) ∈ R4, h is the hour of day and ∆v is the
average velocity given the distance travelled between two points ∆d. The distance is calculated with
the Haversine Equation [37]

h
(

∆dt

r

)
= h (∆λ) + cos(λt−1) cos(λt)h (∆ ) , (24)

where h(φ) = sin2
(

φ
2

)
and r = 6371km is the radius of the Earth assumed to be constant on all

locations on its surface. ∆v is then calculated by ∆dt
∆timet

. From the T-drive dataset, the recorder journeys
of 10 taxis were selected randomly and modelled with the proposed AI-HMM. GPS data is often
recorded as a sequence of geolocation observations X = (x1, x2, . . . , xT), where xt ∈ R3 = (time, λ, l),
λ is the longitude coordinate and l is the latitude coordinate. The feature sequence Y is calculated
to describe the trajectory path where Y = (y1, y2, . . . , yT), yt ∈ R4 = (λ, l, h, ∆v), h is the hour of day
and ∆v is the average velocity given the distance travelled between two points as calculated by the
Haversine Equation [37].

5.2.2. AI-HMM Modelling with Predefined Input τ

Beijing is a busy city that is known for congested streets throughout most hours of the day [38].
However, the trajectories of trips in peak and off-peak times are likely to have very different latent
dynamics. For this part of the case study, we assume that τt ∈ {1, 2} can represent peak and off-peak
traffic times respectively, and they are preset prior to modelling based on the time of day the trajectory
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point was recorded in. Due to the smoothness of the sampled GPS trajectories, we opted for a low VAR
order of p = 2. The hyperparameters γ, α and κ can be set experimentally by Bayesian model selection
or by placing an updatable prior over them as seen in Fox et al. [33]. After running the experiment
until convergence, the model identified six states corresponding to different movement behaviour as
presented in Figure 6.

AI-HMM GRU

Figure 6. Results obtained from analysing 10 taxi trajectories using the novel AI-HMM framework
(left) and the GRU technique (right). Each data point corresponds to a GPS observation where its
colour represents the state to which it was assigned. The plots depict the longitude λ against latitude l
reconstructions of the movements of the taxi locations on a map.

For comparison, a t-distributed Stochastic Neighbour Embedding (tSNE)-based technique [39]
was applied following the methodology of Singleton [40]. However, due to the complexity of the
data, the technique failed at identifying meaningful clusters; experimentally converging to the sample
data average. We also compare our framework with a deep learning Gated Recurrent Unit (GRU)
autoencoder embedding model with K-means clustering, similar to that proposed by Yao et al. [15].
To enable direct comparison, the number of clusters for the K-means algorithm was set to 6, following
the number of states that were automatically identified with the nonparametric AI-HMM framework.

Figure 6 shows the results obtained from the AI-HMM and the GRU frameworks while Table 1
shows the median velocity vmedian interquartile range (IQR) velocity vIQR, and the most prominent
time ranges hprominent for each of the states using both techniques. The plots depict a reconstructed
scatter map of the data where each point represents an observation with its corresponding value and
time-step, whereas the colours represent which state the points belong to according to the legend.
States 2 (orange) and 5 (purple) are mostly focused in the middle of the city with median velocities of
18 km/h and 19km/h, respectively. Their most prominent hours of day indicate that they represent the
morning and afternoon peak periods when the roads are highly congested. As night approaches and
traffic subsides, they are replaced by state 4 (red), which is also most prominent in the center of the city
with a median velocity of 23 km/h. State 1 (blue) is focussed on the highway network where velocities
are expectedly higher with a median velocity of 26 km/h. The observations belonging to state 3
(green) with a median velocity of 0 km/h are mostly distributed near Beijing capital international
airport, where taxis often spend prolonged periods of time in stationary motion awaiting customers.
As previously mentioned, GPS data can be very noisy with sporadic measurement errors causing
possible location jumps. This noise was not filtered prior to analysis; however, the model was capable
of identifying the noisy observations and separating from the rest of the data into state 6 (purple).
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Table 1. Cluster statistics (velocity in km/h).

State
AI-HMM GRU

vmedian vIQR hprominent vmedian vIQR hprominent

1 26 35 00:00–23:00 18 24 12:00–18:00
2 18 19 17:00–23:00 18 34 00:00–06:00
3 0 0 00:00–23:00 2147 7697 00:00–23:00
4 23 27 00:00–06:00 16 29 06:00–13:00
5 19 19 10:00–18:00 16 22 18:00–23:00
6 497 1336 00:00–23:00 186 176 00:00–23:00

The GRU analysis was also successful at identifying the noisy observations and filtering them
into states 3 (green) and 6 (brown); however, the remaining states have very similar median velocities.
Inspection of state velocity histogram distributions indicates that the clustering values have been
affected by long periods of stationarity (influenced by taxis at the airport). The distribution of the
data points in Figure 6 also shows that there is minimal location based clustering since most of the
states overlap between all regions of the city (e.g., city centre and highways). Therefore, the GRU
was effective at identifying the most separated clusters; however, it identified more specific and less
diverged behaviour patterns. The AI-HMM framework was capable of identifying meaningful states
that represent behaviour trends combining location information, velocity and hour of day patterns,
yielding more informative and representative results.

6. Adaptive Input

In cases where the contextual input τ is known or can be assigned to the data, the AI-HMM
demonstrates highly informative unsupervised analysis results outperforming other commonly used
time series sensor analysis techniques in the literature. However, it is often the case that τ is partially
missing, and must therefore be inferred from the data adaptively. To demonstrate the performance of
adaptively inferring the input vector τ given a pre-trained model, another experiment was conducted
on the T-drive dataset where τ was used to indicate the taxis identity. The full data of two different
taxis was extracted and separated into 75% training set and 25% test set. For the training data points,
the input was set to τt ∈ {1, 2} representing taxi 1 and taxi 2, respectively, and they were fit with the
AI-HMM model to learn all remaining parameters and variables ΘΘΘk, µµµk, Σk, Πv, βββv and ztrain. The aim
for the test data was to infer the values of ztest as well as τττtest using Equation (13) assuming they
are unknown.

As would be expected, the transition distributions of the two different taxis given the training
data showed some overlap in behaviour time dynamics with the addition of some differences.
This firstly proves the hypothesis that sensor data belonging to different contextual factors (i.e., person
identity in this example) follow different time dynamics in an HMM structure. Correctly identifying
these transition distributions allows for more accurate model fitting; the framework will refer to
a more specific transitions matrix representing the state transitions under the specified contextual
representation during optimisation, generating more informative clustering results. For example,
if transitions into state 4 representing late night, off-peak travel is absent from taxi 2’s behaviour
dynamics, indicating that this taxi avoids late night fairs and prefers to work at different times of day,
whereas taxi 1 may prefer to work in such less congested times.

The presence of differences in the transition dynamics allow for accurate estimation of τ given the
trained parameters on unseen data as reflected by the results obtained from the test data run. Figure 7
shows the AI-HMMs capability of estimating the correct identity of the taxi using adaptive τ inference
with an accuracy of 93%. The state transition behaviour of an entity can help discover its identity.
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Actual

Taxi 1 Taxi 2

Predicted

Figure 7. Prediction of the value of τt corresponding to the taxi identity on the test. The top plot shows
the sample labels, whereas the bottom plot shows the predicted τt values using the AI-HMM with an
accuracy of 93%.

7. Conclusions

This paper demonstrates a novel Bayesian nonparametric model for the identification of human
behavioural trends from smart city sensors. We address the unsupervised problem of analysing
complex data sequences representing human movement by designing a generative PGM that permits
for the adaptive contextual switching of transition dynamics. Results obtained from applying the model
to complex real-world data demonstrated effectiveness in identifying different dynamic behavioural
trends and noise filtering capabilities. We have motivated the value of the presented approach via
piratical problems in monitoring and compared the results to examples of alternative tools such as
RNNs. The presented framework allows for easy augmentation of existing systems with an adaptive
factor which can estimate the effect of discrete contextual information. By adaptively estimating the
input value given a pre-trained model, it is possible to accurately identify the contextual realisation
which the data belongs to, such as predicting the identity of the individual that generated the data.

As of now, the model is only limited to low dimensional time-series data. However, future work
will include broadening the model to scenarios where the observation model can be high dimensional
and where multiple dependent contextual variables can be included.
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Abbreviations

The following abbreviations are used in this manuscript:

AR Autoregressive
AI-HMM Adaptive Input Hidden Markov Model
AR-iHMM Autoregressive infinite Hidden Markov Model
CRHTI Chicago Regional Household Travel Inventory
DP Dirichlet Process
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FF-BS Forward Filtering Backward Sampling
GEM Griffiths, Engen and McCloskey
GPS Global Positioning System
GRU Gated Recurrent Unit
HDP-HMM Hierarchical Dirichlet Process Hidden Markov Model
HMM Hidden Markov Model
iHMM infinite Hidden Markov Model
IQR interquartile Range
LSTM Long-Short Term Memory
MCMC Markov Chain Monte Carlo
MLP Multi-Layer Perceptron
MNIW Matrix-Normal Inverse-Wishart
PC Principal Component
PCA Principal Component Analysis
PGM Probabilistic Graphical Model
tSNE t-distributed Stochastic Neighbour Embedding
VAR Vector Autoregressive
VAR-HMM Vector Autoregressive Hidden Markov Model
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