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The transition between strong and weak chaos in delay systems: Stochastic modeling approach
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We investigate the scaling behavior of the maximal Lyapunov exponent in chaotic systems with time delay.
In the large-delay limit, it is known that one can distinguish between strong and weak chaos depending on the
delay scaling, analogously to strong and weak instabilities for steady states and periodic orbits. Here we show
that the Lyapunov exponent of chaotic systems shows significant differences in its scaling behavior compared to
constant or periodic dynamics due to fluctuations in the linearized equations of motion. We reproduce the chaotic
scaling properties with a linear delay system with multiplicative noise. We further derive analytic limit cases for
the stochastic model illustrating the mechanisms of the emerging scaling laws.
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I. INTRODUCTION

Delay systems are a concept that applys to various dis-
ciplines, from neurons to lasers [1], where the delay stems
from finite signal propagation speed. Already the simplest
delay system, a nonlinear dynamical node with time-delayed
feedback, may generate high-dimensional chaos. Networks
of identical nonlinear units may synchronize to clusters of
common chaotic trajectories [2,3].

One important quantity to characterize chaos is given by the
maximal Lyapunov exponent which measures the evolution of
a small perturbation. In this paper we study detailed aspects of
the scaling of the Lyapunov exponent with the delay time. We
focus on the large-delay limit. A typical example in this context
are coupled semiconductor lasers, where the traveling time of
light between the lasers is much larger than the internal time
scale. Recently it has been shown that one can distinguish
between two different dynamical regimes, strong chaos and
weak chaos, which are characterized by the scaling of the
maximum Lyapunov exponent [4,5].

In Sec. II we briefly review the theory of strong and weak
chaos and discuss its limitations. In Sec. III we introduce a
linear stochastic model for the tangent dynamics of a delay
system. The principal element of this model is multiplicative
noise in its instantaneous part. We compare the scaling of the
Lyapunov exponent of a chaotic system to that of the linear
model, with and without noise. We show that the introduction
of noise, which takes into account the temporal fluctuations of
the chaotic dynamics, is essential to explain the scaling laws of
the Lyapunov exponent. Especially at the transition between
strong and weak chaos one observes qualitative differences
between the noise-free and the chaotic dynamics. In Sec. IV
we study this stochastic model analytically, derive scaling laws
for the Lyapunov exponent in several limit cases, and discuss
mechanisms of the interaction between the noise term and the
time delay. Beyond the comparison to chaotic dynamics, our
analytic study of the stochastic delay system provides also
useful new techniques for this class of differential equations,
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which up to now have only received a little attention and
therefore are lacking standard methods for investigation. In
Appendix A we show by the example of the skew tent map
how one can change between the noise-free and the noisy
types of scaling laws only by adjusting a dynamical system
parameter of the map. In Appendix B we include analytical
calculations on a different stochastic system not displaying the
typical chaotic scaling laws, in order to corroborate our theory
of the interactions between fluctuations and delay. Appendix C
contains analytical extensions of the scaling laws.

II. STRONG AND WEAK CHAOS

We consider a general delay system

ẋ = f(x,xτ ), (1)

where x ≡ x(t) ∈ RN and xτ ≡ x(t − τ ), with the delay time
τ > 0. The Lyapunov exponents of this system describe the
evolution of a small perturbation, which is calculated by
linearizing Eq. (1),

δ̇x = D1f (x,xτ ) · δx + D2f (x,xτ ) · δxτ . (2)

Here Dkf (x,xτ ) denotes the Jacobian of f(·,·) with respect to
its k-th argument. It is evaluated along the chaotic trajectory
x(t) and is therefore a time-dependent matrix. The Lyapunov
exponent is given by the average

λ = lim
t→∞

1

t − t0
ln

‖δx(t)‖
‖δx(t0)‖ . (3)

A delay system has infinitely many Lyapunov exponents
forming a spectrum. For the following discussion we only
consider the maximum Lyapunov exponent (maximum LE),
which is most important for the dynamics.

For sufficiently large delay τ , recently it has been shown
that the maximum Lyapunov exponent λ as a function of the
delay time shows two major types of scaling called strong
or weak chaos [4]. In strong chaos, the Lyapunov exponent
reaches a limit value,

lim
τ→∞ λ(τ ) = λ0. (4)
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In weak chaos, λ scales with the delay time as λ ∝ τ−1, such
that

lim
τ→∞ τλ(τ ) = μ̂. (5)

We call the product λτ the delay-normalized Lyapunov
exponent. The scaling of λ, by which we distinguish between
strong and weak chaos, depends on the sign of an auxiliary
exponent λ0. This exponent is given by the partial linearization
of Eq. (1), in which the delayed feedback is omitted,

δ̇y = D1f (x,xτ ) · δy. (6)

Note that, however, the unmodified trajectory x(t) of the delay
system (1) enters both linearizations Eq. (2) and Eq. (6). The
auxiliary exponent then reads

λ0 = lim
t→∞

1

t − t0
ln

‖δy(t)‖
‖δy(t0)‖ . (7)

It is called the sub-Lyapunov exponent (sub-LE), because it is
a conditional exponent describing a subsystem of the original
system [6–8]. Equation (7) allows for N sub-LE for each
attractor, from which for the following discussion λ0 denotes
the maximum. If λ0 > 0, there is strong chaos and λ0 from
Eq. (4) and Eq. (7) coincide. Otherwise, if λ0 < 0, weak chaos
is present and the limit multiplier μ̂ from Eq. (5) does not
depend trivially on λ0 [4].

In case of a scalar delay system with x(t) ∈ R, and the in-
stantaneous part of the linearization being u(t) = D1f (x,xτ ),
the evolution operator for the auxiliary variable δy ∈ R allows
for the simplified expression

δy(t) = δy(t0) exp

{∫ t

t0

u(t ′)dt ′
}
. (8)

Then the sub-LE emerges as

λ0 = 〈u(t)〉t ,
where the average 〈·〉t includes taking the limit t → ∞.

The same concepts apply to discrete maps. A general delay
system is in this case written as

xt+1 = M(xt ,xt−τ ), (9)

where t ∈ N and τ ∈ N are discrete time and delay time,
respectively. The corresponding linearizations read

δxt+1 = D1f (xt ,xt−τ ) · δxt + D2f (xt ,xt−τ ) · δxt−τ (10)

δyt+1 = D1f (xt ,xt−τ ) · δyt . (11)

The maximum LE and the sub-LE follow from the evolution
of δx and δy, respectively, by the same average as for the
continuous system in Eqs. (3) and (7).

For a scalar map the expression for the sub-LE simplifies
using the multipliers at = D1M(xt ,xt−τ ), so the analogon to
Eq. (8) reads

δyt = δy0

t−1∏
n=0

an.

We obtain the average

λ0 = 〈ln |at |〉t . (12)

Until now there have been very few methods available to
refine the analytical statements on how the maximum LE scales
with the delay time in dependence on the sub-LE. The methods
used in Ref. [4] allow for a rigorous proof of the primary
properties (4) and (5) under certain preconditions, but they
rely on generous upper bounds for the Lyapunov exponent,
providing no further information about its detailed behavior.
The standard procedure to study the Lyapunov exponent
consists of numerical integration of the full nonlinear system,
Eq. (1) or Eq. (9), together with the tangent linear system,
Eq. (2) or Eq. (10). Here we present an analytical method
based on stochastic modeling. This ansatz provides deeper
insights into the mechanisms involved in the driven linear
systems which determine the exponents. The focus lies on
the interaction of time dependence and delay. Our study has
been motivated by the scaling of the Lyapunov exponent at
the transition between strong and weak chaos, for which the
previous works have not presented an analytical prediction.

III. STOCHASTIC MODELING

We consider the linear stochastic model

ż(t) = [λ0 +
√

2Dξ (t)]z(t) + κz(t − τ ). (13)

Returning to the original system (2), the variable z > 0 can
be understood as a correspondence to ‖δx‖, and λ0 is the
sub-LE which enters here as a free parameter. The delay time
is τ ∈ R, and the average exponential growth rate of z is the
Lyapunov exponent λ. Although the model is stochastic, we
will call the dynamics strong or weak chaos depending on λ0, in
analogy to the deterministic case. The multiplicative noise term
is chosen as white noise 〈ξ (t)ξ (t + t ′)〉 = δ(t ′) and accounts
for the temporal fluctuations in D1f (x,xτ ) along the chaotic
trajectory. The generalized feedback gain κ > 0 is considered
positive. Despite the strong simplification in comparison with
typical chaotic dynamics, the model already reproduces many
of the scaling laws of the maximum LE in detail. Especially
the introduction of the multiplicative noise term is shown to
play a crucial role. In the following, we closely compare a
chaotic map with delayed feedback with a discretized version
of the stochastic model (13).

A. Delayed logistic map

By means of the logistic map M(x) = 4x(1 − x) with time-
delayed feedback

xt+1 = (1 − k)M(xt ) + kxt−τ , (14)

we study the chaotic scaling laws systematically. The max-
imum LE and the sub-LE of the map (14) are calculated as
described in the previous section. Figure 1 shows the maximum
LE and the sub-LE as a function of the feedback strength k.
For k = 0 the two exponents coincide, λ = λ0 = ln(2). At the
other extreme, k = 1 (not shown in the figure), the map reduces
to an ensemble of τ -many decoupled trivial maps xt+1 = xt−τ .
These maps evolve in parallel on the time scale of the delay,
so their degenerate spectrum of Lyapunov exponents collapses
on λ = 0. There are in total three transitions between strong
and weak chaos, from which we focus at the rightmost at
k ≈ 0.328. We also refer to these transitions as critical points.
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FIG. 1. (Color online) Maximum Lyapunov exponent [upper
curve, blue (gray)] and sub-Lyapunov exponent [lower curve (inset),
black] for the logistic map with delayed feedback for τ = 100 as a
function of the feedback strength k. The inset shows the sub-LE over
a wider range, including three critical points.

A change in the delay time does, in good approximation, not
affect the shape of the λ0(k) curve, because the sub-LE is
tightly linked to the distribution in x by Eq. (12), and this
distribution saturates quickly for increasing delay. Only the
maximum exponent λ shows its characteristic scaling in the
vicinity of the critical point.

We focus on the scaling of the maximum Lyapunov
exponent at three selected sections of the parameter plane
(k,τ ), which correspond to strong chaos, weak chaos, and the
transition point. For strong chaos, λ converges to λ0 if the delay
increases, as is shown in Fig. 2. In the weak-chaos regime we
are interested in the limit μ̂ of the delay-normalized exponent
λτ which depends on λ0, while λ0 itself depends on k. Figure 3
shows the delay-normalized LE for two different values of the
delay, τ = 1000 and τ = 106. Finally, we set k = 0.328, where
λ0 ≈ 0, and obtain the scaling of the delay-normalized LE as
a function of the delay time as shown in Fig. 4.

B. Discrete model systems

We compare the scaling laws of the maximum LE from the
delayed logistic map with the exponent of a discretized version
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FIG. 2. (Color online) Difference between maximum LE and
sub-LE in strong chaos at k = 0.27 as a function of τ . Lower
dashed line (green): Steady-state approximation. Solid line (blue):
True λ − λ0 from chaotic map. Line with markers (red): Stochastic
model.
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FIG. 3. (Color online) Delay-normalized maximum Lyapunov
exponent in the weak-chaos regime as a function of the sub-LE for
τ = 103 (lower curve of each pair) and τ = 106 (upper curve of each
pair). Coupling strength k has been varied from the critical point
k = 0.328 to k = 0.5 to achieve the variation in λ0. Pair of dashed
lines (green): Steady-state approximation. Pair of solid lines (blue):
True λτ from chaotic map. Pair of lines with markers (red): Stochastic
model.

of the stochastic model (13), which reads

zt+1 = exp(λ0 + σξt )zt + κzt−τ . (15)

Here ξt ∈ N (0,1) are independent Gaussian random numbers
with unit variance, and the noise strength is controlled by the
parameter σ . For a direct comparison with the results of the
chaotic system, we set κ = k and take the same delay time τ .
The sub-LE of the map is calculated according to Eq. (12) and
becomes λ0 = 〈ln(1 − k)|M ′(xt )|〉t . This value then enters the
model as a parameter.

In order to calculate the noise strength, we need to set
the parameter σ in a way that corresponds to the size of the
multiplicative fluctuations in at = (1 − k)M ′(xt ). As a first
idea, one may choose the standard deviation of ln |at | for σ ,
in analogy to the mean being λ0. However, investigating the
typical distribution functions of ln |at | more closely, this choice
appears inappropriate as, due to values of at ≈ 0 frequently
appearing, the distributions develop a pronounced asymmetric

100 1000
1

10

τ

λτ

FIG. 4. (Color online) Delay-normalized maximum Lyapunov
exponent at critical point k = 0.328 as a function of τ . Lower dashed
line (green): steady-state approximation. Solid line (blue): true λτ

from chaotic map. Line with markers (red): stochastic model.
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tail. Instead of this we accumulate the coefficients over a
certain time window, so, according to the central limit theorem,
the distribution tends to a normal distribution and fit σ from
there. Precisely, we choose one delay time for the sliding
average, so

Lt = 1

τ

t∑
n=t−τ+1

ln |an|

and the noise strength is set to

σ 2 = τ
(〈
L2

t

〉 − λ2
0

)
.

The resulting numerical values for σ are typically about a
factor 2 smaller than the standard deviation of ln |at |.

In summary, compared to the original dynamics described
by the linearization of Eq. (14), three aspects have been
simplified: Correlations are neglected and the model system
has only positive coefficients, while in the original dynamics
signs switch according to M ′(xt ) and higher moments of the
distribution are not included.

We additionally calculate the resulting Lyapunov exponents
from the model for the noise-free case σ = 0 by inserting
the remaining parameters into Eq. (15) like in the previous
case. These results can be referred to as the steady-state
approximation, because without the noise term Eq. (15)
resembles the linearization at a steady state xt ≡ x∗, where
the sub-LE trivially results from the local slope of the map
at x∗.

All of the numerical results are collected in Figs. 2–4
together with the true Lyapunov exponents. In all three
cases—strong chaos, weak chaos, and around the transition
point—the stochastic model yields a good approximation of
the true Lyapunov exponent, while the noise-free limit deviates
significantly from the chaotic system, especially for large
delays. For many parameter constellations the exponent of
the map and for the noisy system is much larger than the
steady-state exponent. More specifically, for the example of
strong chaos shown in Fig. 2, we find that the LE λ in all
cases converges approximately exponentially to the sub-LE
λ0. The decay rate is, however, smaller for the chaotic and the
stochastic system than for its noise-free limit. Moreover, the
introduction of fluctuations seems to change the scaling laws
qualitatively in weak chaos and at the transition point, as is
illustrated in Figs. 3 and 4, respectively. In the weak-chaos
regime, the delay-normalized exponent λτ of the chaotic map
and the stochastic model tends towards a power law with
respect to the sub-LE. For finite delay times as shown in the
figure, however, the exponents saturate to a finite value for
λ0 → 0, so the limit behavior cannot be concluded from the
numerical results. The stochastic model for the large delay
time indicates a power law λτ ∝ |λ0|−1, see Eq. (28), while
the chaotic map follows this behavior only in a small range. In
contrast, the noise-free system is known to converge to a limit
multiplier μ̂ which depends logarithmically on λ0, see Eq. (23),
which is approximately reproduced for the large delay shown
in Fig. 3. Finally, at the critical point and in its vicinity, for the
stochastic model and for the chaotic map the delay-normalized
exponent λτ seems to develop a power-law scaling with
respect to the delay time, as shown in Fig. 4. For large
delays both approximately follow the scaling law λτ ∝ √

τ . In

the noise-free model the delay-normalized exponent diverges
much slower, in agreement with the analytical expression given
by Eq. (24).

We found similar scaling properties of the Lyapunov expo-
nent as for the delayed logistic map in several other chaotic
delayed feedback systems, such as the Lang-Kobayashi [5],
Lorenz, and Rössler systems, on the one hand. On the other
hand, the LE in the delayed Bernouilli map [9] and the
continuous Ikeda system [10,11], which do not show temporal
fluctuations in the instantaneous term, are well approximated
by the noise-free case. In the following section we develop
analytical methods for the stochastic model which reproduce
the described scaling laws. In addition, we derive more details
about the dependence on the parameters of the model.

IV. ANALYTICAL APPROACH

For the general case of Eq. (13) with noise D > 0, we were
not able to derive a closed solution for the Lyapunov exponent.
Nevertheless, it is possible to derive limit expressions explain-
ing analytically the emergence of different scaling laws in the
presence of noise.

The stochastic delay-differential equation is interpreted
in the sense of Stratonovich in order to guarantee that an
originally smooth process is modeled. In this interpretation
we can transform Eq. (13) by w = ln(z), which emerged to
be useful for analytical discussion and also for numerical
integration. The logarithm w obeys an equation with additive
noise,

ẇ = λ0 +
√

2Dξ + κewτ −w. (16)

As an initial point of our considerations we use the model
for the logarithm, Eq. (16), in which additive noise interacts
with nonlinear terms. Figure 5 shows example trajectories
w(t) for the strong- and weak-chaos cases. Equation (16) has
been integrated with a stochastic Heun method at constant
step sizes dt ∈ [0.001,0.01], where for higher noise intensity
a smaller step size was chosen. However, the results are
robustly reproducible even at much larger step sizes. A typical
integration run covers several 103τ , where maximally the first
half of the trajectory is omitted as a transient.

10 20 30

0

30

t

ln
|z

|

10 20 30
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30

t

ln
|z

|

FIG. 5. Example trajectories of the stochastic system (16) for
parameters D = 1, k = 1, and τ = 10 (solid fluctuating curves)
together with the long-term average trend (dashed lines). Equa-
tion (16) was integrated with a stochastic Heun method and step
size dt = 0.001. Left: Strong-chaos case with λ0 = 1 and λ ≈ 1.009.
Right: Weak-chaos case with λ0 = −1 and λ ≈ 0.087.
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A. General methods

For the stochastic delay system there is no corresponding
theory to the well-known Fokker-Planck formalism. Existing
works on that field either focus on the small-delay limit or
provide techniques which do not retrace the phenomena in
which we are interested [12–15]. One can regard Eq. (16)
as solved if the distribution of the increment over one delay
time, ρ(w − wτ ), is known. The Lyapunov exponent can then
be calculated in two ways. The average displacement in one
delay time reveals the delay-normalized exponent

λτ = 〈w − wτ 〉, (17)

whereas the formulation by the average growth rate λ = 〈ẇ〉
results in an equivalent expression,

λ = λ0 + κ〈ewτ −w〉. (18)

Because of ergodicity, the average 〈·〉 can be flexibly un-
derstood as time or ensemble average. The latter requires
that the difference w − wτ follows a stationary distribution.
Combining Eqs. (17) and (18) it is possible to derive an
important basic result. We define the deviation from the
average trend as r(t) = w(t) − w(t − τ ) − λτ , which has a
vanishing mean 〈r(t)〉 = 0. For D > 0 its variance is finite.
Then, applying Jensen’s inequality, we obtain the estimate

λ > λ0 + κe−λτ .

We analyze this inequality using the principal branch W0(·)
of the Lambert function, which for the k-th branch is defined
as Wk(z) exp[Wk(z)] = z. It follows that for those values of its
argument, for which Re[W0(z)] is monotonically increasing
with |z|,

λ > λ̄. (19)

Here λ̄ is the exponent for the noise-free case at D = 0. The
precondition for this inequality is satisfied for positive κ and
all constellations of λ0 and τ . It means that, in general, the
introduction of multiplicative noise in our model leads to an
increase of the Lyapunov exponent. This is also supported
by the results of the discrete system in the previous section.
Our numerical results of Eq. (16) further indicate that this
argument can be extended to all values of κ , such that always
∂λ/∂D > 0.

B. Noise-free case

For the case of constant coefficients, i.e., D = 0, Eq. (13)
reduces to

ż = λ0z + κzτ . (20)

The scaling laws of this simple system apply for the Lyapunov
exponents of a Bernouilli map with delayed feedback [9]
and, in the case of diagonal feedback, for the characteristic
multipliers that determine the stability of a steady state and
for the Floquet multipliers of periodic orbits [16,17]. With
z(t) ∝ exp(λt) Eq. (20) reveals a characteristic equation,

λ = λ0 + κ e−λτ , (21)

The maximal LE is then given by λ̄ = max[Re(λ)].
Despite its extreme simplicity, Eq. (20) already displays

the main characteristics of strong and weak chaos. It further

provides detailed information on the scaling, including the
transition point. For strong chaos we have λ0 > 0, and for
large time delays we find the limit

λ̄ = λ0 + κe−λ0τ , (22)

meaning that the difference λ̄ − λ0 vanishes exponentially with
increasing τ . For weak instability λ0 < 0 the limit of the delay-
normalized exponent μ̂ = limτ→∞ λ̄τ becomes

μ̂ = ln

∣∣∣∣ κ

λ0

∣∣∣∣. (23)

When λ0 crosses zero, one observes a transition from weak to
strong instability. Equation (23) shows that μ̂ diverges loga-
rithmically with λ0 when the transition point is approached.
Finally, at the critical point λ0 = 0, the delay-normalized
exponent scales with respect to τ as

λ̄τ = W0(|κ|τ ). (24)

where W0 denotes the principal branch of the Lambert
function.

The scaling laws (22)–(24) agree well with the results of
the noise-free linear system in the previous section for large
delays.

C. Strong-chaos limit

For λ0τ � 1 and λ0 > D we can assume the variable w

in Eq. (16) to move steadily in a positive direction with a
rate of approximately λ0. Thus the difference w − wτ in the
exponential term can be said to be large enough in order
to neglect the coupling term in leading order. The variable
undergoes an unbounded Wiener process, so the relative
distribution is Gaussian with a variance of 2Dτ . We calculate
the average in Eq. (18) and obtain

λ = λ0 + 1

τ
Re{W0(κτe(D−λ0)τ )}. (25)

Comparing the noisy case, Eq. (25), and the noise-free case,
Eq. (22), using the approximation W0(z) ≈ z for |z| ≈ 0, we
find that in in both cases λ − λ0 decreases exponentially, as
shown in Fig. 2. The slower convergence of the stochastic
and the chaotic system are directly explained by means of the
multiplicative noise intensity D. The approximation is valid
for D < λ0, because we assume the average delay term to be
small compared to the instantaneous term. This is no longer
guaranteed if the noise intensity exceeds λ0, which can also
be seen from the argument of the Lambert function: For D >

λ0 it would be growing with τ at large delays, which is in
contradiction to the generally proven convergence λ → λ0. A
comparison of the analytical prediction (25) and numerical
solutions of the stochastic system is shown in Fig. 6. The
formula can be regarded as the limit behavior for D → 0 in
agreement with the preconditions of the derivation.

D. Weak-chaos limit

For λ0 < 0 we calculate the limit μ̂ = limτ→∞ λτ = 〈w −
wτ 〉. Essentially in this regime, the noise-driven coordinate w is
moving in a vibrating attractive potential V (w,wτ ) = −λ0w +
κewτ −w, which has a minimum at w − wτ = ln(−κ/λ0). This
is illustrated in Fig. 7(b).
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FIG. 6. (Color online) Noise dependence of λ − λ0 in strong
chaos for κ = 1 and different pairs of (λ0,τ ) (black curves with
markers). Red (upper) curves: Analytic limit case after Eq. (25).
Blue (lower) curves: Extension of the scaling law at critical point by
coordinate transformation after Eq. (C1). Vertical dotted lines indicate
D = λ0. Left panel: λ0 = 1, τ = 4.28. The limit of D � λ0 is well
approximated by Eq. (25). Right panel: λ0 = 0.1, τ = 78.5. The limit
of D � λ0 is well approximated by Eq. (C1).
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FIG. 7. (Color online) Panel (a): Evolution of the probability
distribution for the distance w(t) − w(t − θ ) for a displacement
θ ∈ [0,τ ]. Parameters are λ0 = −1, κ = 1, D = 1, and τ = 50. Blue
(gray) ensemble of curves: Density ρ(w − wθ ). The red curve (thick,
rightmost) highlights the distribution at θ = τ . Black (outer) and
light green (gray, inner) curves at the bottom indicate spread of a
Wiener process and the standard deviation of ρ, respectively. Panel
(b): For same parameters as panel (a), except D = 0.1, the trajectory
of w(t) (black curve) in the vibrating potential given by w(t − τ )
is shown for t ∈ [0,τ ]. The white highlighted region is a tube with
radius r = 0.7 around the potential minimum at wτ + ln(−κ/λ0).
Iterating this delay-tunneled process leads to a meandering effect
over successive delay windows.

In order to calculate the distribution ρ(w − wτ ), we
approximate the delayed system by a nondelayed system. In
particular, we first shift Eq. (16) by one delay time to obtain
an expression for ẇτ . The reduction of the delay system is
achieved by breaking up its recursive structure. We replace
the deterministic terms with an average trend given by the yet
unknown exponent λ. This ansatz reads

ẇτ ≈ 〈ẇτ 〉 +
√

2Dξτ = λ +
√

2Dξτ ≈
√

2Dξτ . (26)

In the last step we have used the fact that because of the scaling
λ ∝ τ−1 the drift in the long delay limit is negligible. Leaving
instead the LE λ in Eq. (26) would result in a finite delay
correction, see Appendix C.

It seems a rude approximation to neglect the fluctuations in
the deterministic terms. While in the limit case of very small
time scales this is possible because of the scaling properties
of the white-noise term, the question remains as to whether
the simplification holds for sufficiently large time scales
to serve as a meaningful approximation. Our numerical results
indicate that, on time scales θ shorter than the delay time θ �
τ , the unconditioned evolution of w(t) resembles a Wiener
process, in contrast to the relative motion w(t) − w(t − τ ).
This is illustrated in Fig. 7(a), where we show the relative
distribution ρ[w(t) − w(t − θ )]. This two-point distribution is
Gaussian for θ � τ , i.e., ρ[w(t) − w(t − θ )] = N (λθ,2Dθ ),
meaning that on short time scales the shape and the width of
the relative distribution can be explained by the Wiener process
solely. A simplified explanation for this phenomenon is given
by the fact that the increment w(t) − w(t − θ ) for θ �= τ is not
explicitly subject to boundary conditions from the equations of
motion (16) and thus explores the range provided by the noise
drive. The dynamical evolution of w(t) shows a meandering
effect as illustrated in Fig. 7(b). Within one delay time window
the variable w is narrowly restricted by a tunnel, which is
given by the vibrating potential from the delayed variable.
Over successive iterations of the delay time, however, the
shape of the tunnel is changed and the two-point distribution
is composed of the total set of all realizations of such paths.
This means that the neglected deterministic terms are indeed
relevant, but they alter the process in a self-consistent way.
As a result, the process becomes hardly distinguishable from
being generated by a different realization ξ̃ of the same noise
like ξτ and with the same intensity. A more elaborated theory
of the sketched mechanism is out of the scope of the present
study.

Using the described approximation, we can apply the
coordinate transformation u = w − wτ ,

u̇ = λ0 +
√

2Dξ −
√

2Dξ̃ + κe−u

= λ0 +
√

4D ˜̃ξ + κe−u. (27)

The last step follows from the property of independent noise
terms to add up in intensity. It shows that the potential
vibrations act as another noise source on the relative motion of
instantaneous and delayed variable. We have already observed
the same property also in other delay systems with additive
noise, in which the deterministic force is based on an attractive
potential of the type V (x − xτ ) [18,19].
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Equation (27) can be solved either using the Fokker-Planck
formalism or starting with a Boltzmann factor where the energy
is given by the potential

V (u) = κe−u − λ0u .

Its minimum is located at u0 = ln(−κ/λ0) which corresponds
to the equilibrium distance w − wτ for large τ in the noise-free
case. Noise excites the system around the potential minimum
resulting in a distribution ρ(u) ∝ exp[−V (u)/2D], where the
factor 2 arises from the doubled noise intensity in Eq. (27).
The distribution reads explicitly

ρ(u) =
(

κ
2D

) −λ0
2D

�
(−λ0

2D

) exp

{
λ0

2D
u − κ

2D
e−u

}

with the Gamma function �(z + 1) = z�(z). The exponent
we want to derive is the average displacement, μ̂ = 〈u〉 =∫

duρ(u)u. It reads

μ̂ = ln
( κ

2D

)
− ψ

(
− λ0

2D

)
. (28)

Here ψ(z) is the digamma function with ψ(z) =
d/dz[ln �(z)]. This formula incorporates both limits for the
almost-noise-free case and the case of strong fluctuations.
The limit of noise-free dynamics is D � λ0 and reveals
μ̂ = ln |κ/λ0|, which is the expected result. In the case of
strong noise or λ0 → 0−, it is in leading order μ̂ = −2D/λ0.
This agrees with the observed power law in Fig. 3, even the
slope matches the power-law exponent −1 in the intermediate
regime, before the finite delay leads to a saturation.

For the original stochastic system (13) we aim to compare
our analytic expression with numeric results from sufficiently
large delays and various combinations of λ0 and D. In a direct
comparison for τ = 103, the numerical and analytical results
are indistinguishable. In order to visualize the high accuracy
of Eq. (28), we first calculate the difference to the noise-free
exponent λ̄ from Eq. (21), λ = λ − λ̄. We want to cover
the entire range between the limit D � −λ0 and D � −λ0.
Thus we take the inverse tangent to compress the argument
−D/λ0 on the horizontal axis. This scale respects both limits
in an equivalent way. Since on this scale the values of λ start
from zero at the noise-free limit and diverge as −D/λ0 when
approaching the critical point λ0 → 0, we normalize λ and
plot vertically

h = −λ0

D
λτ. (29)

This quantity compresses the range of values appearing in μ̂

and highlights higher-order dependencies. Figure 8(a) shows
the comparison of the analytic and numeric values for h over
the argument −D/λ0. The comparison shows an excellent
agreement and the analytical curve serves as an upper limit
as expected. The remaining deviations are of higher orders
in D/λ0 and we conclude that they can be traced back
mainly to the finite delay time. The impact of the error
from our initial approximation cannot be estimated here.
Figure 8(b) shows two different finite delay corrections, which
we derive in Appendix C. These approximations complement
each other and thus provide an analytical description of the

0
1

2

(a)

arctan(−D/λ
0
)

h

π/2 −1 0
0

2

6

8
(b)

λ
0

λτ

FIG. 8. (Color online) Panel (a): Analytic limit curve (red) after
Eqs. (28) and (29) and numerical values (black dots) for κ = 1
and τ = 103. Values of λ0 ∈ [−1, − 0.1] and D ∈ [0,2] have been
chosen independently from a uniform probability distribution on the
intervals. Normalization of axes see text. Panel (b): λτ versus λ0 at
D = 1, κ = 1, and τ = 54.6 (black curve with markers). Comparison
of finite delay approximations after Eqs. (C2) (red, left asymptotic
curve) and (C1) (blue, right asymptotic curve).

emerging Lyapunov exponent over a relatively wide parameter
regime.

E. Transition between strong and weak chaos

Around the transition between strong and weak chaos, we
show that for large delays the dynamics in w resemble a
restricted random walk in each delay time window with a hard
boundary at wτ . The result is a one-sided diffusion, which is
equivalent to a drift. With λ0 = 0, Eq. (16) simplifies to

ẇ =
√

2Dξ + κewτ −w. (16′)

The scaling law can be derived from a scale invariance of this
equation at large delays. The only premise for this invariance
is the fact that the product λτ diverges for τ → ∞, which
follows from Eqs. (21) and (19). Thus the right step to take is a
rescaling of Eq. (16′) both in time, l = t/τ , and amplitude, v =
w/(λτ ). In the new coordinates (l,v) the equation of motion
reads

λv̇ =
√

2D
1√
τ

ξ + κeλτ (v1−v).

The scaling of the noise intensity follows from the self-
similarity properties of the Wiener process. The term v1 is
the delay term in the new coordinates. We multiply the above
equation with

√
τ and take the limit τ → ∞. By this “zooming

out” procedure, the exponential on the right-hand side turns
into a hard wall because of the diverging scaling factor in its
argument. Hence the limit term does not allow v to drop below
v1. Explicitly,

lim
τ→∞ eλτ (v1−v) = H (v,v1) =

{∞ v < v1

0 v > v1
,

where H (·,·) denotes the limit function. For sufficiently
large delays, the hard-wall property stays in good approx-
imation invariant under changes of the delay, so the limit

062918-7
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FIG. 9. (Color online) Delay-normalized exponent at the critical
point λ0 = 0. Panel (a): Delay dependence for κ = 1 and D = 1.
Numerical curve (black with markers) converges for τ → ∞ to the
analytical limit curve (red) after Eq. (30). Panel (b): Dependence on
coupling strength for D = 1 and τ = 100. Numerical curve (black
with markers) and analytical limit curve (red) are indistinguishable.

expression

λ
√

τ v̇ =
√

2Dξ + H (v,v1)

also must be invariant under variations of the delay. This is
possible only if λ

√
τ is constant. Further, using the linearity

H (ax,ay) = aH (x,y), we find also a scaling with the noise
intensity

λτ ∝
√

Dτ,

which confirms and explains the power law observed in Fig. 4.
The coupling strength κ does not appear in this expression.
This is correct in leading order with respect to delay time.
For a first correction, we compare the hard-wall limit—which
is valid for large delays—with the original exponential term.
Assuming monotonicity in λ(κ) one can find a coupling κ0 for
which the exact exponent coincides with the exponent obtained
by the hard-wall approximation. For a different coupling κ we
restore the coupling strength κ0 by adding a term ln(κ/κ0) in
the exponential. This term suggests that the delay-normalized
exponent is modified by an amount proportional to ln(κ/κ0).
Since we cannot analytically specify further the impact of this
term, we conclude with the ansatz

λτ = cD

√
Dτ + cκ ln

(
κ

κ0

)
. (30)

This expression is in excellent agreement with numerical
simulations, as can be seen in Fig. 9. We determined the
numerical values of the coefficients from various parameter
constellations as cD = 1.128 ± 0.003,cκ = 0.63 ± 0.01, and
κ0 = 1.2 ± 0.1.

V. CONCLUSION

We have compared the scaling of the maximum Lyapunov
exponent in the vicinity of the transition between strong
and weak chaos with a corresponding stochastic model and
a steady-state approximation. Although some basic features
are already reproduced by the steady-state approach, the de-
tailed behavior remains significantly different. The Lyapunov
exponent is underestimated, especially at large delays, and

shows qualitatively different scaling behavior. In contrast, the
stochastic model provides a much better approximation and
reproduces many of the observed features. Most remarkable is
the reproduction of the scaling at the critical point, which up
to now has not been explained.

The main element of the stochastic model is multiplicative
noise in the undelayed term, which corresponds to the finite-
time fluctuations of the sub-Lyapunov exponent. We have
analyzed limit cases of the stochastic model analytically and
have shown that the scaling can be traced back to these
fluctuations. In strong chaos the reduced rate of convergence
λ → λ0 with the delay time is related to the noise intensity.
In weak chaos the limit μ̂ of the delay-normalized exponent
diverges with a power law |λ0|−1 for λ0 → 0. At the critical
point we find a divergence of the delay-normalized exponent
with the delay time as λτ ∝ √

τ .
The question regarding to what extent the presented scalar

system is representative for vectorial delay systems cannot be
fully clarified yet. In particular, a delayed feedback via a single
dynamical component might pave the way to new mechanisms
than reported here. Further, the effect of correlation properties
of the underlying trajectories cannot be estimated entirely. One
might assume that a significant deviation from the idealized
white noise property leads to corrections. For discrete maps,
alternating signs might contribute to effects which within our
modeling cannot be accounted for by a real-valued noise term.

In summary, the scaling behavior of the Lyapunov exponent
of chaotic delayed systems is related to the fluctuations of the
coefficients in linearized equations of motion. Particularly at
the transition between strong and weak chaos the Lyapunov
exponent reveals a clear signature of the underlying noiselike
process. The mechanism behind the characteristic scaling laws
can be interpreted as an accumulation of random events during
the delay time, which in return leads to a delay dependent
increased impact of the feedback term.
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APPENDIX A: FROM NOISE-FREE TO NOISY

We introduce a simple chaotic model, in which one can tune
the fluctuations of the coefficients in its linearized equations
by changing a parameter r . Thus we observe a gradual change
of the three different scaling behaviors discussed before. We
consider the skew Bernoulli map,

Mr (x) =
{

2
1+r

x x � 1
2 (1 + r)

2
1−r

(
x − 1

2 (1 + r)
)

x > 1
2 (1 + r)

,

with delayed feedback such that

xt+1 = (1 − k)Mr (xt ) + kMr (xt−τ ).

The map has two different slopes, namely m1 = 2/(1 + r)
in the left regime and m2 = 2/(1 − r) in the right regime.
The maximum LE and the sub-LE are calculated from the
linearizations according to Eqs. (10) and (11), respectively.
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FIG. 10. Gradual change between different scaling behaviors in
the skew Bernoulli map. Panel (a): Parameter plane of (k,r) with
lines of constant λ0 as labeled. Squares, circles, and thick solid lines
mark the parameter values examined in (b)–(d), respectively. Lowest
curve in each of (b)–(d) corresponds to r = 0 (with no fluctuations
in the linearized equations), the middle curve to r = 0.3, and the
upper curve to r = 0.5. Panel (b): Strong chaos λ0 > 0 (close to
transition point); fluctuations decrease the decay constant α of λ −
λ0 ∝ exp(−ατ ). Panel (c): Critical point λ0 = 0; fluctuations change
scaling from λτ ∝ W(τ ) to λτ ∝ √

τ . Panel (d): Weak chaos λ0 < 0
at τ = 1.5 × 104. Fluctuations change scaling from μ̂ ∝ ln |k/λ0|
towards μ̂ ∝ λ−1

0 for λ0 → 0−.

The parameter r allows us to change the degree of asymmetry
in the map. For r = 0 the map is identical to the original
Bernoulli map with constant slope M ′

0(xn) ≡ 2. This leads to
λ0 = ln(1 − k) + ln 2, and because of the constant slope no
fluctuations from the chaotic trajectory enter the linearization
Eq. (10) for the maximum LE. Importantly, its instantaneous
part is constant, at ≡ exp(λ0). For large delays τ � 1 the
Lyapunov exponent is determined by Eq. (21) with κ = k.
Increasing the parameter r gradually introduces the fluctua-
tions of the chaotic system into the linearization by the two
different slopes m1 and m2. In order to study this effect of
multiplicative noise systematically, we aim to increase the
parameter r starting at r = 0, while setting the sub-LE λ0 to
any desired value. To this end, we have first recorded a phase
diagram λ0(k,r) for a sufficiently large delay, see Fig. 10(a).
There exist parameterizable curves connecting r(p) and k(p),
such that λ0[k(p),r(p)] = const. For a fixed value of λ0 > 0,
we scan the delay dependence of λ for different values of r ,
and we clearly observe the expected increase of the decay rate
of the exponent, as chaotic fluctuations enter the linear system
[Fig. 10(b)]. The emergence of the other two chaotic scaling
laws can be demonstrated in an analog way by changing from
r = 0 to r �= 0, Figs. 10(c) and 10(d). Most significant is the
impact of multiplicative noise at the critical point.

APPENDIX B: MULTIPLICATIVE NOISE IN
THE DELAY TERM

Modeling the linearization of a chaotic flow one might
encounter also fluctuations in the linearization of the delayed
part due to nonlinear delayed feedback. The question arises
as to whether in a stochastic model equation the introduction
of multiplicative noise in the delay term might produce the
same deviations from the noise-free case as the fluctuations in
the instantaneous term. However, we found that the situation
completely differs: Delay-term fluctuations do not change the
scaling behavior qualitatively and, in some cases, not even
quantitatively as if the noise averaged out completely. In the
following we briefly analyze the system

ż = λ0z + (κ +
√

2Dξ )zτ (B1)

case by case as we did for Eq. (13) in Sec. III.

1. Strong chaos

For λ0 > 0 the delay term zτ becomes exponentially small
with increasing τ compared to the instantaneous term z.
Hence the noise amplitude also decreases exponentially and
the deviations from the noise-free case become negligible.

2. Weak chaos

To analyze the case λ0 < 0, we start at the integral version
of Eq. (B1) which can be understood as a discrete map from
one delay window to another. Without loss of generality we
focus on t ∈ [0,τ ] and obtain

z(t) = eλ0t z(0) +
∫ t

0
dt ′eλ0(t−t ′)[κ +

√
2Dξ (t ′)]z(t ′ − τ ).

(B2)

From this we estimate upper bounds for z(t)

|z(t)| � eλ0t |z(0)| + κ

∣∣∣∣
∫ t

0
dt ′ eλ0(t−t ′) z(t ′ − τ )

∣∣∣∣
+

√
2D

∣∣∣∣
∫ t

0
dt ′ eλ0(t−t ′) ξ (t ′)z(t ′ − τ )

∣∣∣∣
= eλ0t |z(0)| + κ|I1| +

√
2D|I2|.

Using the Schwartz inequality and the notation ẑn =
max |z(t)|,t ∈ [(n − 1)τ,nτ [, we estimate for sufficiently large
τ the first integral by

|I1| � κ

|λ0| ẑ0.

For the second integral, it is reasonable to assume that the
white-noise term and the delay term are uncorrelated, so I2

consists only of fluctuations. We estimate

|I2| � c

√∣∣∣∣2D

λ0

∣∣∣∣ẑ0|rn|,

where rn is a Gaussian random number N (0,1) and c � 1 is
a constant independent of λ0. Then, going to the n-th delay
interval, we write the product of all multipliers on the right-
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hand side,

ẑn �
n∏

i=1

(
1 +

∣∣∣∣ κ

λ0

∣∣∣∣ + c

√∣∣∣∣2D

λ0

∣∣∣∣|rn|
)

ẑ0.

The additional 1 is an upper bound for the first exponential in
Eq. (B2). Neglecting boundary effects that vanish for large n,
we can write ẑn/ẑ0 = exp(λnτ ),

λτ � 1

n

n∑
i=1

ln

(
1 +

∣∣∣∣ κ

λ0

∣∣∣∣ + c

√∣∣∣∣2D

λ0

∣∣∣∣|rn|
)

� ln

(
1 +

∣∣∣∣ κ

λ0

∣∣∣∣ + c

√∣∣∣∣ 2D

πλ0

∣∣∣∣
)

,

where we used Jensen’s inequality to shift the average to the
argument of the logarithm. For λ0 → 0 the constant and the
noise term become negligible and the scaling law is the same as
for the noise-free case. This is in agreement with the meaning
of the divergence of λτ : The size of the delay term compared
to the instantaneous term vanishes and, in consequence, the
noise amplitude also vanishes.

3. Critical point

From the previous derivations it can already be concluded
that the scaling of λ at the critical point λ0 = 0 cannot
deviate significantly from the noise-free scaling. The formal
argumentation is analogous to the weak-chaos case. One has
to estimate the integrals I1/2 by taking the upper limit to τ ,
which will be the limiting factor instead of λ−1

0 which was
given by the exponential kernel for negative λ0. Thus the final
expression results in

λτ � ln(1 + |κτ | + c
√

2Dτ/π ).

APPENDIX C: EXTENSION OF SCALING LAWS

Using a coordinate transformation, it is possible to extend
the parameter region, in which a limit formula is valid. We
show this procedure for two cases.

1. Extension of the critical scaling

Starting at the semianalytical scaling law Eq. (30) one
can apply the coordinate transformation u(t) = w(t) − λ0t

in order to imitate the conditions of the critical point in the
new coordinates. The drawback is a rescaling of the coupling
strength which limits the accessible parameter range,

u̇ =
√

2Dξ + κe−λ0τ+uτ −u.

The resulting exponent for the original coordinates is

λτ = cD

√
Dτ + cκ ln

(
κ

κ0

)
+ (1 − cκ )λ0τ. (C1)

It can be applied in the vicinity of the critical point on both
sides, for strong chaos as shown in Fig. 6(b) as well as for
weak chaos, see Fig. 8(b).

2. Finite delays in weak chaos

Applying the coordinate transformation u(t) = w(t) − λt

and then using the limit formula Eq. (28), one obtains
an implicit expression for λ, in which the argument of
the digamma function contains the term λ − λ0. A linear
expansion for small λ reveals

λτ = μ̂

[
1 + ψ ′

(−λ0

2D

)
(2Dτ )−1

]−1

, (C2)

where ψ ′(x) ≡ dψ(x)/dx is the trigamma function. If
the product −λ0τ is sufficiently large, this approxima-
tion is accurate as can be seen from the comparison in
Fig. 8(b).
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