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Background.  Gonorrhea incidence is increasing rapidly in many countries, while antibiotic resistance is making treatment more 
difficult. Combined with evidence that two meningococcal vaccines are likely partially protective against gonorrhea, this has renewed 
interest in a gonococcal vaccine, and several candidates are in development. Key questions are how protective and long-lasting a 
vaccine needs to be, and how to target it. We assessed vaccination’s potential impact and the feasibility of achieving the World Health 
Organization’s (WHO) target of reducing gonorrhea incidence by 90% during 2018–2030, by comparing realistic vaccination strat-
egies under a range of scenarios of vaccine efficacy and duration of protection, and emergence of extensively-resistant gonorrhea.

Methods.  We developed a stochastic transmission-dynamic model, incorporating asymptomatic and symptomatic infection and 
heterogeneous sexual behavior in men who have sex with men (MSM). We used data from England, which has a comprehensive, 
consistent nationwide surveillance system. Using particle Markov chain Monte Carlo methods, we fitted to gonorrhea incidence in 
2008–2017, then used Bayesian forecasting to examine an extensive range of scenarios.

Results.  Even in the worst-case scenario of untreatable infection emerging, the WHO target is achievable if all MSM attending 
sexual health clinics receive a vaccine offering ≥ 52% protection for ≥ 6 years. A vaccine conferring 31% protection (as estimated for 
MeNZB) for 2–4 years could reduce incidence in 2030 by 45% in the worst-case scenario, and by 75% if > 70% of resistant gonorrhea 
remains treatable.

Conclusions.  Even a partially-protective vaccine, delivered through a realistic targeting strategy, could substantially reduce gon-
orrhea incidence, despite antibiotic resistance.

Keywords.   gonorrhea; vaccination; antibiotic resistance; transmission model; treatment failure.

The World Health Organization (WHO) classifies Neisseria 
gonorrhoeae as a priority bacterial pathogen, due to the high 
global burden of infection combined with evolution and global 
spread of resistance to every antibiotic historically used against 
it [1, 2]. Countries such as the United States [3], Australia [4], 
the United Kingdom (UK) [5], and other European countries 
[6] have reported rapidly growing epidemics, particularly 
among men who have sex with men (MSM).

Due to the threat of antibiotic-resistant (ABR) gonor-
rhea, it has been suggested that vaccination may be the only 

sustainable solution to gonorrhea control [7]. Vaccine devel-
opment has been hampered by genetic variability in the gon-
ococcus and the lack of a measurable correlate of protection 
and a suitable animal model [8]. None of 4 vaccine candidates 
that progressed to clinical trials was effective [9]. However, in-
dication that vaccination against gonorrhea might be feasible 
came from surveillance reports from Cuba and New Zealand 
showing a decline in gonorrhea incidence following vaccina-
tion initiatives against the closely related Neisseria meningitidis 
[10–12]. A  retrospective case-control study of 15  000 young 
adults in New Zealand who had received an outer-membrane 
vesicle meningococcal B vaccine (MeNZB) estimated 31% 
(95% confidence interval [CI], 21%–39%) protection against 
N.  gonorrhoeae [13], and a recent study reported that the 
Bexsero meningococcal B vaccine may be more protective than 
this [14]. There are now multiple vaccine candidates in preclin-
ical development [11, 15].

Key questions to inform development and use of vaccines 
to control gonorrhea are the preferred product characteristics 
of a gonorrhea vaccine (ie, what efficacy and duration of pro-
tection are required) [16] and how best to deploy vaccines to 
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decrease the overall burden of disease [17–19]. In 2016, the 
WHO announced a global health sector strategy on sexually 
transmitted infections, with a target of 90% reduction in gon-
orrhea incidence by 2030 [2]. We investigated how protective 
and long-lasting a vaccine would need to be to reduce total 
incidence below the WHO target using a stochastic model (ac-
counting for variability due to random chance) of gonorrhea 
epidemiology in MSM in England calibrated to surveillance 
data [20, 21], with varying future levels of antibiotic resist-
ance. We compared the impact and efficiency of 3 realistic 
vaccination strategies, studied the interplay between vaccina-
tion and antibiotic resistance levels, and quantified the effect 
of differing levels of vaccine uptake. Finally, we assessed the 
potential impact of vaccines with a partially protective profile 
similar to MeNZB.

METHODS

Model Structure

We developed a stochastic compartmental transmission-
dynamic model to project the future course of a gonorrhea 
epidemic under different vaccination scenarios, considering 
antibiotic-sensitive and ABR strains. We used data from 
England, which has a comprehensive, consistent, nationwide 
surveillance system [20, 21]. We considered transmission 

within MSM as they have the highest per-capita rate of infec-
tion. We simulated gonorrhea transmission from 2008 to 2030, 
using surveillance data from the period 2008–2017 for cali-
bration and then projecting scenarios to 2030. We extended a 
previous model [22] to incorporate heterogeneity in sexual risk 
behavior by dividing the population into low- and high-risk 
groups with characteristic rates of sexual partner change, based 
on the Natsal-3 survey [23].

Following acquisition of gonorrhea, individuals initially 
pass through a short incubation period, after which they ei-
ther develop symptoms or remain asymptomatically infected 
(Figure 1). Surveillance data are not stratified by infection site 
(rectum, pharynx, urethra); hence, estimated parameters can be 
interpreted as an average across infection sites. Infected indi-
viduals are treated after seeking care due to symptoms or after 
testing positive in sexual health screening. Treated individuals 
become uninfected, except for a proportion of those infected 
with the ABR strain for whom treatment fails, leading to per-
sistent infection for which the same dynamics are assumed as 
for asymptomatic cases [22]. Recovery from untreated infection 
also occurs naturally over time. Infection does not confer nat-
ural immunity [24, 25]. We consider a situation in which the 
ABR strain emerges globally in 2020 and is imported into the 
highly sexually active group.

Figure 1.  Model structure flow diagram. The population is divided into compartments representing different states, with changes of state occurring due to various pro-
cesses. Individuals enter the sexually active population (arrow 1) at age 15 years. They are initially uninfected (U), and belong to a sexual activity group g (low or high). 
Individuals become infected with either the antibiotic-sensitive (ABS) strain (2) or antibiotic-resistant (ABR) strain (3). Infected individuals pass through an incubating state 
(I), before either developing symptoms (4) and entering the symptomatic infection state (S), or remaining asymptomatic (5) and entering the asymptomatic infection state (A). 
Symptomatic individuals seek treatment (6) and enter the treatment state (T). Asymptomatic infections can be identified through screening and treatment (7), with individuals 
entering the treatment state (T), or there can be natural recovery (8), returning individuals to the uninfected state (U). All treated infections are cured (9), with the exception of 
a proportion of ABR infections for which treatment fails, resulting in persistent infection (10). Depending on the vaccination strategy, individuals are vaccinated before entry 
into the sexually active population (in which case all vaccinees are uninfected), upon gonorrhea diagnosis (with vaccination given to those who are treated), or upon clinic 
attendance for gonorrhea screening (with all individuals attending clinics being eligible). Upon vaccination, individuals enter corresponding compartments indicated with a 
circumflex (^). Vaccine protection eventually wanes (11), with individuals moving into the corresponding compartments (without a circumflex). Individuals leave the sexually 
active population at age 65 years, regardless of infection or vaccination status (12).
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Model Calibration and Accounting for Uncertainty

We calibrated the model, in a Bayesian framework, to the an-
nual number of gonorrhea cases in MSM in England between 
2008 and 2017 [20]. These data were considered as the observed 
realizations of a complex underlying unobserved Markov pro-
cess (Figure  1). Prior parameter distributions were based on 
published evidence where available, and uninformative priors 
used otherwise. All unknown parameters were calibrated, with 
a particle filter [26] used to produce an unbiased estimate of the 
likelihood of the observed data given the model, in a particle 
Markov chain Monte Carlo process, which produced a posterior 
sample of the model parameters given the observed data [27, 
28]. We accounted for uncertainty in estimated parameters by 
using 1000 samples from the joint posterior distribution. Full 
details of the model, the parameter values, and prior distribu-
tions are shown in the Supplementary Materials. We varied the 
frequency of treatment failure for the ABR strain (0%–100%).

Vaccination Scenarios

We considered 500 hypothetical vaccine profiles of varying 
protection (1%–100%) and duration (1–20 years). Partial pro-
tection was assumed to be “leaky” (ie, degree-type) [29], with 
all vaccinees being less likely, but still able, to acquire infection. 
Vaccine protection only affects the probability of acquisition 
and does not affect progression through stages of infection after 
acquisition.

We considered 3 realistic strategies for the vaccine deploy-
ment: “vaccination before entry” into the sexually active pop-
ulation (where adolescents are vaccinated before they become 
sexually active); “vaccination on diagnosis” with gonorrhea (a 
practical strategy designed to target those most at risk, as gon-
orrhea diagnosis is used as a proxy measure for risk of future 
exposure); and “vaccination on attendance” at a sexual health 
clinic for any reason, including seeking testing and treatment 
for symptoms or asymptomatic screening (which broadens the 

eligibility criteria of the “vaccination on diagnosis” strategy to 
include all clinic attendees). Vaccine uptake among eligible in-
dividuals was varied (50%–100%) for each strategy. Scenarios 
were compared to baseline projections without vaccination.

RESULTS

The model was successfully calibrated, with simulated epidemic 
curves being in close agreement with the observed data for all 
years (Figure  2A). For example, the model estimated 21  900 
(95% CI, 18 900–25 200) cases in 2017, in good agreement with 
the data (21 300 cases) [20].

In the best-case scenario, with no worsening of resistance, 
the model predicted 23  500 (20  000–27  600) cases in 2030. 
However, emergence of an ABR strain causing treatment fail-
ures would increase the projected number of cases (Figure 2B): 
The higher the frequency of treatment failure, the greater the 
onward transmission of drug-resistant infections and the 
greater the predicted number of cases. In the worst-case sce-
nario of 100% treatment failure for the ABR strain, the model 
predicted 48 500 (23 600–80 100) gonorrhea cases in 2030.

Focusing on the worst-case scenario where treatment of ABR 
gonorrhea always failed, we assessed the impact of each hypo-
thetical vaccine profile (ie, combination of level and duration 
of protection) under the 3 deployment strategies by calculating 
the expected reduction in gonorrhea cases in 2030 (Figure 3) 
compared with no vaccination. Achieving the WHO target cor-
responds to < 2600 cases in MSM in England in 2030 [2]. In the 
vaccination-before-entry strategy, even a fully protective vac-
cine lasting 20  years achieved only a 34% (17%–52%) reduc-
tion in expected cases in 2030 (Figure 3A), well below the WHO 
target. Under this strategy, only adolescents entering the sexu-
ally active population are vaccinated, so vaccine coverage across 
the entire MSM population is slow to accumulate, reducing the 
impact of the intervention. Vaccination on diagnosis with this 

Figure 2.  Simulated annual gonorrhea cases between 2008 and 2030 in the absence of vaccination. The model is fitted to data in the period 2008–2017 and then projected 
beyond that period. A, Number of cases if a novel resistant strain does not emerge. The solid line depicts surveillance data; the horizontal line shows the World Health 
Organization target of 90% reduction in incidence relative to 2018. Shaded areas show 99% posterior predictive intervals, based on 1000 simulations. B, Expected number 
of cases in 2030 depending on the frequency of treatment failure for a novel antibiotic-resistant strain emerging in 2020. Abbreviations: ABR, antibiotic-resistant; GUMCAD, 
the Genitourinary Medicine Clinical Activity Dataset. 
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idealized vaccine also fell short of the WHO target but achieved 
a much higher reduction of 92% (82%–98%) (Figure 3B). By ex-
tending vaccination to all MSM tested for gonorrhea (ie, vacci-
nation on attendance, both those seeking care for symptoms and 
those screened in the absence of symptoms), the WHO target 
could be achieved using a ≥ 52% effective vaccine protecting 
for ≥ 6 years, or equivalently a ≥ 70% effective vaccine lasting 
≥ 3 years (Figure 3C). Under the vaccination-on-diagnosis and 
vaccination-on-attendance strategies, a vaccine lasting 8 years 
had similar benefits to one offering the same protection for a 
longer period (Figure 3B and 3C).

Under the vaccination-before-entry strategy, the proportion 
of MSM protected in 2030 was < 20% irrespective of the du-
ration of vaccine protection (Figure  3D), because most indi-
viduals were already sexually active and therefore ineligible for 
vaccination. Under the vaccination-on-diagnosis strategy, the 
protected proportion was generally higher (Figure 3E) because 
more individuals were eligible for vaccination. Interestingly, the 
proportion protected decreased as vaccine efficacy increased, 
because a highly protective vaccine reduced transmission, 
which in turn reduced the number of cases treated and hence 

individuals vaccinated alongside treatment. This effect also oc-
curred under the vaccination-on-attendance strategy, but it was 
much less pronounced as patients attending for screening were 
also vaccinated. The maximum proportion protected under 
vaccination on attendance was 86% (85.8%–86.4%), if the du-
ration of protection were 20 years (Figure 3F).

We assessed how the impact of vaccination would differ 
depending on the treatability of the emergent gonorrhea 
ABR strain and the uptake of vaccination by eligible MSM 
(Figure  4). The less treatable the ABR strain, the more pro-
tective a vaccine would need to be to meet the WHO target. 
The vaccination-before-entry strategy was unable to achieve 
the WHO target, no matter how protective and long-lasting 
the vaccine, even in the best-case scenario of no treatment 
failure. The vaccination-on-diagnosis strategy met the WHO 
target for a range of vaccine profiles, in scenarios where at 
least 20% of ABR cases were treatable, provided all eligible 
MSM accepted the vaccine when offered and protection lasted 
almost 20  years (Figure  4A). With 75% vaccine uptake, vac-
cination on diagnosis could not meet the target if ABR treat-
ment failure exceeded 70% (Figure 4B). With an uptake of only 

Figure 3.  Impact of different vaccination strategies against gonorrhea, given the emergence of a resistant strain in 2020 for which antibiotic treatment always fails. 
Vaccination was implemented from 2020 and administered to individuals entering the sexually active population (A and D), or to patients diagnosed with gonorrhea (B and 
E), or to patients on clinic attendance (C and F). Level (horizontal axes) and duration of protection (vertical axes) were varied. A–C, Mean reduction in the expected number 
of cases in 2030. D–F, Proportion of men who have sex with men protected by the vaccine in 2030. Vaccine profiles (ie, combinations of level and duration of protection) for 
which the World Health Organization incidence target was achieved by 2030 are highlighted with a dotted line (this is only achieved in part of C). Abbreviation: MSM, men 
who have sex with men.
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50%, the target could only be met provided treatment failure 
remained below 50% (Figure  4C). The lower the uptake, the 
greater the vaccine protection level and/or duration required 
to achieve a given impact (Figure 4A–C). The vaccination-on-
attendance strategy resulted in much higher coverage, meaning 
that less-protective vaccines were able to achieve the WHO 
target (Figure 4D–F). For example, in the absence of treatment 
failure, a 31% protective vaccine lasting 10 years could meet the 
WHO target (Figure 4D), whereas under the vaccination-on-
diagnosis strategy, the vaccine would need to be 67% protective 
(Figure 4A). At the other extreme, if treatment of ABR cases 
always failed, then the WHO target could be achieved with the 
vaccination-on-attendance strategy but would require, for ex-
ample, a protection duration of 6 years and efficacy of 50%–
70% depending on uptake (Figure 4D–F).

Currently, the only vaccine with estimated effectiveness of 
protection against gonorrhea is MeNZB, which offers 21%–
39% protection [13]. While there are no robust estimates of the 
duration of protection of MeNZB, we modeled a conservative 
2- to 4-year duration in line with initial indications [13]. We 
considered deployment of a similar vaccine using the 3 strat-
egies and compared the expected number of cases in 2030, the 
proportion of antibiotic resistance, the proportion of protected 

MSM, and the number of cases averted over 10  years per 
person vaccinated (Figure  5). If there were no emergence of 
ABR gonorrhea, then a vaccine with properties like MeNZB 
could have a substantial impact on the projected epidemic. 
With uptake of 100%, vaccination on diagnosis would reduce 
the expected incidence in 2030 by 41% (18%–65%; from 23 500 
[20 000–27 600] to 13 900 [8200–18 700]), and vaccination on 
attendance would reduce incidence by 75% (40%–98%) to 5900 
(450–13 600) cases. The greater impact of vaccination on at-
tendance was due to much greater coverage, with much lower 
efficiency: The mean number of cases averted per vaccination 
was 0.10 (0.07–0.13) compared with 0.51 (0.32–0.75) for vac-
cination on diagnosis. It should be noted that even vaccination 
on attendance was insufficient to meet the WHO target in 75% 
of the simulations. The vaccination-before-entry strategy was 
ineffective with an MeNZB-like vaccine, achieving only a 7% 
(0%–23%) reduction in 2030 incidence, even without emer-
gence of ABR.

The greater the frequency of treatment failure for ABR in-
fections, the greater the predicted incidence in 2030 and the 
less likely the epidemic could be controlled by a MeNZB-like 
vaccine (Figure  5A). Vaccination on attendance was always 
the most effective strategy, regardless of the treatability of the 

Figure 4.  Protection level and duration of vaccine needed to reduce incidence below the World Health Organization (WHO) target by 2030 for gonorrhea strains with varying 
degrees of resistance. Results are shown for vaccination on diagnosis (A–C ) or on clinic attendance (D–F), under varying levels of vaccine uptake: 100% (A and D), 75% (B 
and E), and 50% (C and F ). The vaccination-before-entry strategy is not shown as it did not achieve the WHO target for any scenario considered.
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resistant strain. In the extreme case where ABR treatment al-
ways failed, vaccination on attendance with an MeNZB-like 
vaccine with 100% uptake reduced the expected number of 
cases by 45% (18%–77%). This equated to the prevention of 
around 20 900 cases in 2030, reducing the expected diagnoses 
from 48 500 (23 600–80 100) to 27 600 (8000–55 800). The pro-
portion of cases expected to be ABR in 2030 was unaffected by 
vaccination, regardless of the vaccination strategy: Vaccination 
reduced the expected diagnoses of both the resistant and sus-
ceptible strains proportionately (Figure  5B). The proportion 
of individuals protected by the vaccine, and the corresponding 
number of vaccine doses dispensed, depended more on the 
vaccination strategy than on the treatability of the ABR strain 
(Figure 5C), with vaccination on attendance resulting in a much 
higher proportion of protected individuals. Vaccination on di-
agnosis proved to be the most efficient strategy overall, with on 
average about 1 averted case for every 2 vaccine doses admin-
istered, which remained constant for almost all resistant strains 
(Figure 5D).

DISCUSSION

We developed a stochastic transmission-dynamic model of gon-
orrhea that incorporates heterogeneity in sexual behavior and 
considers use of health services for care-seeking and screening. 
The model was calibrated using 10 years’ data using Bayesian in-
ference methods to estimate model parameters, and then used to 
examine the population-level impact of potential vaccines, ad-
ministered via 3 realistic strategies. Our results show that even 
a partially protective vaccine could be valuable in controlling 
the gonorrhea epidemic and combating the spread of antibiotic 
resistance. Provided infections remain ultimately treatable, as 
vaccinating all MSM attending sexual health clinics from 2020 
onward with a 40% protective vaccine lasting at least 4 years, or 
a 50% protective vaccine lasting at least 2 years, would be suffi-
cient to meet the WHO target of a 90% reduction in annual in-
cidence between 2018 and 2030 [2]. While this requires greater 
protection than the 31% (95% CI, 21%–39%) that MeNZB ap-
pears to offer [13], Bexsero is expected to be more protective 
due to its neisserial heparin binding antigen component [14]. 

Figure 5.  Potential impact and efficiency of an outer-membrane vesicle meningococcal B (MeNZB)–like vaccine. Vaccination was implemented before entry into the sex-
ually active population, on diagnosis, or on clinic attendance. Shaded bars depict the 95% predictive interval; diamonds indicate the mean. A, Expected gonorrhea cases in 
2030, with the dashed line depicting the World Health Organization target. B, Proportion of gonorrhea cases expected to be resistant in 2030. C, Proportion of men who have 
sex with men protected by the vaccine in 2030. D, Mean cases averted per course of vaccination. Abbreviations: ABR, antibiotic-resistant; MSM men who have sex with men.
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In addition to protecting against infection with gonorrhea, vac-
cination with MeNZB might also be protective against severe 
disease if infection is nevertheless acquired [30].

We investigated the interplay between antibiotic resistance 
and vaccination, making the conservative (and likely pessi-
mistic) assumption that antibiotic resistance did not incur a 
fitness cost. In the extreme case where treatment for the ABR 
strain always fails, a 52% protective vaccine lasting 6 years, ad-
ministered to all MSM attending sexual health clinics, would be 
necessary to achieve the WHO target.

Imperfect vaccines are usually modeled as providing either 
take-type protection (where a proportion of vaccinees are fully 
protected and the remainder not at all), or degree-type protec-
tion (where all vaccinees have a partial reduction in the proba-
bility of infection upon exposure) [29]. Here we used the latter, 
even though it is unknown what type of protection a future gon-
orrhea vaccine might provide, or indeed if it would conform 
to one type or another or a mixture of both. For vaccines with 
degree-type protection, greater coverage is necessary to reduce 
the prevalence of infection than with take-type protection [31], 
so that our choice is conservative. Furthermore, a take-type 
protection vaccine is similar in result to the effect of partial 
uptake for a highly protective degree-type vaccine, which we 
considered separately (Figure 4). Degree-type protection could 
conceivably manifest as a reduction in infectiousness [32], 
rather than the reduction in susceptibility we model here; pre-
vious modeling has found the impact to be similar [17].

Uptake of vaccination is clearly a critical determinant for the 
success of any vaccination program, and societal concerns about 
vaccines are a potential barrier to achieving high coverage [12]. 
However, a recent pilot program for human papillomavirus vac-
cine in UK MSM recorded uptake of 45%, which is likely to be 
an underestimate due to incomplete recording [33]. Therefore, 
the 50% uptake scenario we modeled could be considered a re-
alistic lower bound, especially for the vaccination-on-diagnosis 
and vaccination-on-attendance strategies, in which the vaccine 
would be offered to individuals likely to be concerned about 
gonorrhea infection.

Our study is the first to consider vaccination against gon-
orrhea in the context of antibiotic resistance, and to assess the 
potential real-world impact that could be achieved using a vac-
cine with protection profile similar to MeNZB as well as po-
tentially superior gonorrhea vaccines, which are expected to 
include Bexsero [14]. Previous modeling studies have focused 
on assessing the potential impact of hypothetical vaccines in 
small populations of either heterosexual individuals [17] or 
MSM [34]. In accordance with our findings, they concluded 
that a vaccine of moderate level and duration of protection 
(60% for 10 years) could substantially reduce prevalence of in-
fection by > 30% [17]. Our analysis is novel in considering the 
effect of vaccination on the scale of all MSM within a country, 
by comparing alternative realistic deployment strategies, and 

by incorporating the possible global emergence of a new exten-
sively resistant strain, as well as incorporating a statistically rig-
orous fit to incidence data.

We considered scenarios in which sexual health services are 
able to meet the additional demand caused by increasing levels 
of gonorrhea incidence and antibiotic resistance. However, in 
recent years, access to UK sexual health services has worsened 
for individuals with symptoms of an acute sexually transmitted 
infection [35]. This insufficient capacity in sexual health clinics 
could create a vicious circle, where treatment delays cause on-
ward transmission, increased incidence, and further unmet 
treatment need, a situation that would be exacerbated by an-
tibiotic resistance [36, 37]. A  gonococcal vaccine would offer 
important benefits of easing this pressure by averting infections, 
thereby reducing demand on clinics and avoiding the vicious 
circle.

There are 2 important areas for attention by public health 
researchers and policy-makers: first, the criteria on which 
treatment guidelines are formulated, and second, the need 
for well-designed vaccine trials that incorporate the aim 
of improving our understanding of the natural history of 
N.  gonorrhoeae. Treatment guidelines are currently based on 
the proportion of diagnosed cases that are drug-resistant, with 
exceedance of a 5% threshold prompting changes to recom-
mendations. However, it is important for policymakers also 
to consider the total number of resistant cases—especially in 
scenarios where resistant gonorrhea becomes more difficult and 
costlier to treat, as exemplified by a recent case of multidrug-
resistant gonorrhea that required 3 days of inpatient treatment 
with intravenous ertapenem [38].

Trials of vaccine candidates need to be designed to address 
important gaps in knowledge, including the possibility of per-
verse outcomes. For example, if vaccination reduces the bac-
terial load, then this might reduce transmission by reducing 
infectivity. Alternatively, it might promote transmission if it 
reduces the probability or severity of symptoms and thereby 
increases the proportion of infections that are left untreated 
and hence persistent [32]. Not only could persistent infections 
lead to increased transmission, but they may increase the prob-
ability of drug resistance evolving within asymptomatic hosts 
[39]. Conversely, the resistance selection pressures could be re-
duced if fewer infections are being treated with antibiotics [18]. 
The relationship between determinants of drug resistance and 
antigenicity is not known and trials should monitor the diver-
sity of lineages of N. gonorrhoeae. If a determinant of drug re-
sistance is immunogenic and included in the vaccine, then this 
would enhance the beneficial impact of vaccination, while a vac-
cine that is more effective against drug-sensitive strains could 
increase the relative prevalence of resistance. Notwithstanding 
these interrogations and need for further research, a gonococcal 
vaccine could offer the hope of bringing the current epidemic of 
gonorrhea under control.
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