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24 Abstract

25 Humans have dramatically increased atmospheric nitrogen (N) deposition globally.  At the coarsest 

26 resolution, N deposition is correlated with shifts from ectomycorrhizal (EcM) to arbuscular mycorrhizal 

27 (AM) tree dominance.  At finer resolution, ectomycorrhizal fungal (EcMF) and arbuscular mycorrhizal 

28 fungal (AMF) communities respond strongly to long-term N deposition with the disappearance of key 

29 taxa.  Conifer-associated EcMF are more sensitive than other EcMF, with current estimates of critical 

30 loads at 5-6 kg ha-1 yr-1 for the former and 10-20 kg ha-1 yr-1 for the latter.  Where loads are exceeded, 

31 strong plant-soil and microbe-soil feedbacks may slow recovery rates after abatement of N deposition.  

32 Critical loads for AMF and tropical EcMF require additional study.  In general, the responses of EcMF to 

33 N deposition are better understood than those of AMF because of methodological tractability.  

34 Functional consequences of EcMF community change are linked to decreases by fungi with medium-

35 distance exploration strategies, hydrophobic walls, proteolytic capacity, and perhaps peroxidases for 

36 acquiring N from soil organic matter. These functional losses may contribute to declines in forest floor 

37 decomposition under N deposition. For AMF, limited capacity to directly access complexed organic N 

38 may reduce functional consequences, but research is needed to test this hypothesis. Mycorrhizal 

39 biomass often declines with N deposition, but the relative contributions of alternate mechanisms for 

40 this decline (lower C supply, higher C cost, physiological stress by N) have not been quantified. 

41 Furthermore, fungal biomass and functional responses to N inputs probably depend on ecosystem P 

42 status, yet how N deposition-induced P limitation interacts with belowground C flux and mycorrhizal 

43 community structure and function is still unclear. Current ‘omic analyses indicate potential functional 

44 differences among fungal lineages and should be integrated with studies of physiology, host nutrition, 

45 growth and health, fungal and plant community structure, and ecosystem processes. 

46 Keywords: nitrogen deposition, mycorrhizal fungi, community response, function, critical loads
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47

48 Capsule

49 Forest mycorrhizal fungal community composition responds strongly to N deposition across broad 

50 ranges of spatial, temporal and phylogenetic scales, with functional consequences—including altered 

51 tree nutrition and C, N, and P cycling—that are substantial but only partially understood. 

52
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53 1. Introduction

54 Trees and fungi form mycorrhizal symbioses, i.e., beneficial relationships between tree roots and root-

55 inhabiting fungi in which the tree provides the fungi with carbon (C), whereas the fungi provide the tree 

56 with nutrients, including nitrogen (N) and phosphorus (P) along with other benefits such as improved 

57 water uptake and protection from pathogens (Smith and Read 2010). Nitrogen deposition increases N 

58 availability and typically acidifies ecosystems (Tian and Niu 2015, Stevens et al. 2018), both of which 

59 alter the interactions of mycorrhizal fungi with their hosts and their abiotic environment. In this review, 

60 we emphasize newer research and synthesize N deposition effects on mycorrhizal fungi in forests, 

61 especially insights from studies into the large-scale distribution and physiological potential of 

62 mycorrhizal fungi.

63 Although N deposition and N fertilization experiments differ in multiple ways, we consider the latter 

64 useful in providing mechanistic insights, especially studies that attempt to mimic N deposition via 

65 chronic inputs. Most studies on N deposition and arbuscular mycorrhizal fungi (AMF) are from non-

66 forested ecosystems (see, e.g., Treseder and Allen 2000, Pardo et al. 2011b and references therein; but 

67 see van Diepen et al. 2007, 2010, 2011). For biological, practical and historical reasons, most research on 

68 N deposition effects in forests has focused on ectomycorrhizal fungi (EcMF) rather than AMF. In contrast 

69 with AMF, which produce belowground spores asexually, some EcMF produce large aboveground 

70 sporocarps, so a long record of the spatiotemporal patterns of reproduction can be related to trends in 

71 N deposition (Arnolds 1991). Additionally, some EcMF can be grown in pure culture whereas AMF 

72 require a host, so physiological studies on EcMF interactions with N are more feasible. Finally, Sanger 

73 sequencing DNA barcoding can be applied without cloning to ectomycorrhizas, whereas AMF required 

74 cloning PCR products, which made it simpler to characterize communities of EcMF prior to next-

75 generation sequencing. Several reviews have characterized various aspects of the relationship between 
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76 N deposition and mycorrhizal fungi, e.g., Wallenda and Kottke (1998), Treseder (2004), and Lilleskov et 

77 al. (2011).  Given the literature available and our focus on forests, the present review emphasizes EcMF 

78 and higher-latitude mycorrhizal responses to N while covering AMF and tropical studies where possible. 

79 1.1 Mycorrhizal diversity and its role in relation to nitrogen

80 Almost all trees form one of two types of mycorrhizal associations, either arbuscular mycorrhiza (AM) or 

81 ectomycorrhiza (EcM), which differ in fungal partners. Almost all AMF belong to the Glomeromycotina 

82 (Mucoromycota), a monophyletic clade that evolved more than 400 million years ago (Spatafora et al. 

83 2016). In contrast, EcMF evolved more than eighty times (Tedersoo & Smith, 2017), forming a 

84 convergent assemblage of fungi mainly belonging to the Basidiomycota and Ascomycota, plus a small 

85 number of Mucoromycotina (Mucoromycota). Major EcM host families include Pinaceae, Fagaceae, 

86 Betulaceae, Salicaceae, Cistaceae, Dipterocarpaceae, and Myrtaceae. Most other trees form AM. Trees 

87 forming functional symbioses with both AMF and EcMF are rare (e.g. some Myrtaceae and Salicaceae; 

88 Adjoud-Sadadou & Hargas 2017). 

89 The different types of mycorrhizal symbioses also differ in ecological niches. Read (1991) was first to 

90 explicitly link functional differences between EcM and AM symbioses to broad patterns of plant 

91 distributions, positing that gradients from AM to EcM dominance were parallel to increases in soil 

92 organic horizons, reliance on organic nutrients, and higher C:N and C:P litter. Furthermore, AM forests 

93 are typified by mull humus with thin to no organic horizons, whereas EcM forests generally have moder 

94 or mor humus with thicker organic horizons (Read 1991). In support of this model, more recent 

95 syntheses have confirmed that, whereas AMF can take up inorganic N and amino acids (Hodge and 

96 Storer 2015), they cannot mine organic N from complex organic matter using hydrolytic and oxidative 

97 enzymes, as many EcMF do (Read 1991, Read and Perez-Moreno 2003, Shah et al. 2016; but see Talbot 

98 et al. 2013). This model was extended by Phillips et al. (2013) in the MANE (mycorrhiza-associated 
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99 nutrient economy) framework. Comparing AM and EcM stands in the same area, they found that, 

100 relative to EcM stands, AM stands had soils with a higher pH, higher nitrification and more 

101 decomposable litter, but lower activities of N- and P-cycling extracellular enzymes, a lower ratio of 

102 organic N to inorganic N, and lower amounts of dissolved organic carbon. A further difference between 

103 AM and EcM systems is the relative importance of P versus N limitation, with AM plants more commonly 

104 P-limited and EcM plants more commonly N-limited, as judged by their leaf N:P ratios (Rosling et al., 

105 2016). There may also be parallel differences in root traits between EcM and AM trees (e.g., foraging 

106 strategy; Chen et al., 2016), although root traits may also vary independently of mycorrhizal type 

107 (Weemstra et al. 2016). Averill et al. (2014) found that temperate EcM forests had significantly higher 

108 C:N ratios of surface soil organic matter than temperate AM forests. This may be primarily attributed to 

109 lower N stocks rather than higher C stocks in EcM forests (Zhu et al. 2018; but see section 3.7). The 

110 conceptual framework for different niches of EcM and AM trees has been developed for temperate and 

111 boreal forests, and Tedersoo et al. (2012) argued that both AM and ECM tropical forests are equally 

112 characterized by an open and inorganic N cycle. 

113 Another important mycorrhizal fungal trait is the extent and anatomy of extraradical hyphal 

114 development (termed exploration type). In EcMF, this morphological characteristic appears to track with 

115 other important attributes such as C demand, enzymatic capabilities, and presence of rhizomorphs for 

116 long-distance transport (Agerer, 2006; Hobbie & Agerer 2010). EcMF have greater diversity of 

117 exploration types than AMF, whose exploration strategies are poorly characterized. 

118 Under this general model of AM and EcM nutrient economies, we predict that N deposition, with 

119 resultant declines in N limitation and/or increases in P limitation (Li et al. 2016, Braun et al. 2010, 

120 Johnson 2010)  will affect EcM and AM forests differently; therefore, we will treat the two types 

121 separately. As mycorrhizal symbioses are drivers of differential responses, N deposition could result in 
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122 plant-microbe-soil feedbacks and in legacies of N deposition that likely persist even if deposition levels 

123 have been substantially reduced (see below).

124  1.2 Spatiotemporal patterns and trends in N deposition 

125 Human activities have more than doubled N fixation globally over natural rates, much of which is 

126 mobilized into the atmosphere from fossil fuel combustion and agriculture (Fowler et al. 2013). Because 

127 atmospheric N residence times are relatively short, and forests have high aerodynamic resistance, 

128 atmospheric deposition of NHx, NOy or organic N does not fall evenly over the Earth’s surface. As a 

129 result, atmospheric N deposition can be locally elevated more than 10x over pre-industrial levels. During 

130 the 20th century, the highest N deposition levels were in Europe and eastern North America but with 

131 declines in Europe and increases in Asia, the latter now has the highest N deposition rates (Liu et al. 

132 2013, Kanakidou et al. 2016). Hence, forests globally have experienced spatiotemporally variable 

133 deposition of anthropogenic N. 

134 2. Patterns of taxonomic response at different scales

135 2.1 AM vs EcM responses 

136 Given EcM and AM differences in mobilization of organic N sources, N deposition should favor AM over 

137 EcM host plants by relieving N limitation, all else being equal. Consistent with this hypothesis, N 

138 deposition is positively correlated with greater growth and recruitment of AM trees compared with EcM 

139 trees in North America (Averill et al. 2018). However, co-variation between N deposition and climate 

140 change in the dataset is reason for caution. If N deposition is indeed the cause of this pattern, there are 

141 major implications for the future of forest composition, structure, and function in regions experiencing 

142 elevated N deposition. 
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143 2.2 EcMF responses 

144 Ectomycorrhizal fungal community composition changes in both sporocarp and belowground studies 

145 (Lilleskov et al. 2011, van der Linde et al. 2018). At local to regional scales, aboveground sporocarp 

146 surveys consistently indicate responses across EcMF genera and species ranging from negative for many 

147 nitrophobic species to positive for a few nitrophilic species (see below; Arnolds 1991, Lilleskov et al. 

148 2001, 2011). These changes in sporocarp production should affect long-term fungal population and 

149 community dynamics, but this is yet to be tested. Similarly, the belowground composition of EcMF 

150 communities in boreal and temperate forests shifts consistently with longer-term N inputs, driven by 

151 significant changes in the abundances of certain EcMF (Avis et al. 2003, 2008, Cox et al. 2010, Lilleskov 

152 et al. 2011, Jarvis et al. 2013, Suz et al. 2014, Morrison et al. 2016, van der Linde et al. 2018; see below). 

153 In a tropical montane forest, N addition shifted ectomycorrhizal communities similarly to high-latitude 

154 forests (Corrales et al. 2017), but studies in lowland tropical forests, with warmer conditions and more 

155 weathered soils, are rare (See section 4.3). 

156 Across both fruiting and belowground studies, Thelephora and Laccaria show largely positive responses, 

157 while Cortinarius, Tricholoma, Piloderma, Bankeraceae and Suillus show consistently negative responses, 

158 and species within Russula, Lactarius, Boletales, Thelephoraceae and Atheliaceae show divergent 

159 sensitivities to atmospheric N deposition (Lilleskov et al. 2011). At the species level, significant responses 

160 have been demonstrated for abundant fungi, most recently through the application of indicator analysis 

161 (Suz et al. 2014, van der Linde et al. 2018; Figure 1). EcM taxonomic richness seems most affected by pH, 

162 while EcM evenness and functional composition are more strongly influenced by N (Hobbie and Agerer 

163 2010, Suz et al. 2014, 2017). 

164 Host identity and condition (e.g. foliar nutrient concentrations) are major predictors of EcMF community 

165 diversity (Cox et al. 2010, Suz et al. 2014, Bahram et al. 2014, Tedersoo et al. 2014). Intensive below-
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166 ground analysis across Europe shows: 1) EcMF specialists (i.e. limited to conifers or broadleaves) match 

167 or exceed generalists (i.e. with conifer and broadleaves) in both richness and relative abundance, 2) 

168 conifer specialists outnumber broadleaf specialist EcMF, and 3) conifer specialists respond more 

169 negatively to elevated N (van der Linde et al. 2018). Based on both sporocarp and EcM data, the conifer-

170 specific fungi – most showing abundant hyphae and rhizomorphs – declined more than broadleaf-

171 specific and host generalist fungi over the 20th century in Europe when N deposition was increasing 

172 (Arnolds 1991), and were more negatively affected by increasing N than broadleaf-specific and host 

173 generalist fungi (van der Linde et al. 2018). 

174 2.3 AMF responses 

175 The AMF respond to N inputs in both temperate and tropical forests with strong declines in root 

176 colonization, spore density and external hyphal length (Treseder 2004, Zhang et al. 2018, Sheldrake et 

177 al. 2018), particularly in soils with initially low N:P where N deposition causes both N and P to be in high 

178 supply (Johnson et al. 2003). There are only a few studies on AM forests (van Diepen et al. 2007, 2010, 

179 2011, 2013; Camenzind et al. 2014; Sheldrake et al. 2018); as in EcMF, there are reports of nitrophobic 

180 AMF species with high soil exploration capacity (e.g. Gigasporaceae and Acaulosporaceae) and 

181 nitrophilic fungi with limited soil exploration (e.g. Glomeraceae) (Egerton-Warburton & Allen 2000, 

182 Treseder & Allen 2002, Johnson et al. 2003, Egerton-Warburton et al. 2007, Chagnon et al. 2013, 

183 Treseder et al. 2018). Thus, as predicted by theoretical models (Johnson 2010), the abundance and 

184 diversity of large-spored AM species declines, generally shifting in composition from Gigasporaceae 

185 under low N to Glomeraceae under high N (Eom et al. 1999, Egerton-Warburton et al. 2007, Antoninka 

186 et al. 2011, Allen et al. 2016, Chen et al. 2017, Williams et al. 2017, Jiang et al. 2018) and only rarely 

187 neutral or positive effects (Zheng et al. 2014). Small-spored fine root endophytes, which are 

188 anatomically and phylogenetically distinct from all other AMF, have recently been identified as 
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189 Mucoromycotina rather than Glomeromycotina (Orchard et al. 2017, Hoysted et al. 2018) and appear to 

190 be insensitive to high N conditions (Allen et al. 2016). Decreases in overall AMF functional diversity may 

191 also decrease functional capabilities (van der Heijden et al. 1998, Maherali & Klironomos 2007). 

192 2.4 Interactions with other global change factors 

193 The interactions of nitrogen deposition effects on mycorrhizal symbioses with the effects of other 

194 global-change factors, e.g., climate change, ozone, elevated CO2, have been addressed in detail 

195 elsewhere (see, e.g., Mohan et al. 2014 and references therein) so will only be summarized here. Briefly, 

196 these can act by moderating or exacerbating N deposition effects on host C fixation and belowground C 

197 flux (CO2, O3, temperature, drought) or by altering soil resource availability (temperature, drought). 

198 Under elevated CO2, mycorrhizal plants and fungi generally benefit (Alberton et al. 2005), although CO2 

199 fertilization effects are best explained by an interaction between N availability and mycorrhizal 

200 association (Terrer et al. 2016). EcM plants increased their biomass in response to elevated CO2 

201 regardless of N availability, apparently by accelerating N cycling (e.g., Drake et al. 2011, Phillips et al. 

202 2012), whereas for AM plants, low N availability limits the biomass response to CO2 fertilization. Thus, 

203 AM and EcM forests may differ in their responses to N deposition under rising CO2 levels. By increasing 

204 belowground C allocation, elevated CO2 may mitigate some negative impacts of atmospheric N 

205 deposition on EcMF, especially on nitrophobic species that are often more carbon-demanding (see 

206 below).  In contrast, ozone damage on aboveground tissues of trees has potential negative effects on 

207 belowground carbon allocation and mycorrhizas (Andersen 2003, Lilleskov 2005, Mohan et al. 2014). 

208 The effects of ozone can sometimes moderate those of CO2, e.g., on sporocarp production (Andrew et 

209 al. 2009), presumably by opposing effects on host C balance.

210 Climate change can have complex interactive effects on mycorrhizas.  For example, warming in the 

211 absence of drought could both (a) reduce host carbon supply by increasing respiratory costs more than 
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212 photosynthesis (Yamori et al. 2014) and (b) change soil resources by increasing N mineralization. Both 

213 could exacerbate N deposition effects on ecosystems, the former by reducing belowground C flux, and 

214 the latter by increasing soil inorganic N availability. However, in most warming studies, mycorrhizal 

215 hyphal abundance increases, but hyphal activity decreases (Mohan et al. 2014). Where moisture effects 

216 occur, one might expect a shift in hyphal anatomy and biochemistry, e.g., an increase in hydrophobic 

217 long-distance types or melanized hyphae with drought and increased hydrophilic taxa at higher humidity 

218 (Parts et al. 2013).  These shifts could affect the ability of mycorrhizal fungi to forage for nutrients, 

219 interacting with N deposition in as yet untested ways.

220 2.5 Recovery from N deposition

221 Due to plant-soil feedbacks, acidification, litter accumulation and long-term storage of soil N, N 

222 deposition can have long-lasting legacies (Hasselquist & Högberg, 2014). While the direct effects of N 

223 are likely larger than the acidification effects (many EcMF evolved under acid soil conditions and most 

224 boreal forests occur on somewhat acidic soils), simultaneous eutrophication and acidification can leave 

225 legacies from which recovery can also be very slow (Kjøller et al., 2017).  

226 Reduced levels of N deposition lead to a slow recovery of EcMF community structure over many years. 

227 From sporocarp surveys, Van Strien et al. (2018) noted widespread recovery of fruiting by some EcMF 

228 since the 1990s in the Netherlands concurrent with reduced N deposition, although the most 

229 nitrophobic species had not recovered, probably because deposition is still above critical loads (21-35 kg 

230 ha-1 yr-1). Nitrogen fertilization in Norway spruce led to residual fungal community effects even after 23 

231 years (Choma et al. 2017) or 47 years of recovery (Strengbom et al. 2001). In a boreal Scots pine forest, 

232 EcM sporocarp production and species richness had recovered to control levels 23 years post-

233 fertilization, but N availability was still elevated and the EcMF community was still enriched in nitrophilic 

234 taxa, especially Lactarius (Högberg et al. 2014, Hasselquist & Högberg 2014). 
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235 Where EcM forests are replaced in the understory by AM saplings and trees, it is likely that the system 

236 becomes dominated by litter inputs characterized by lower C:N ratios, lower lignin content and hence 

237 higher leaf litter decomposability (Phillips et al., 2013). This functional group replacement will therefore 

238 speed up the N cycling rate, creating positive plant – soil feedbacks, which slow down the return to the 

239 previous EcM state. Thus, N deposition needs to be reduced to lower levels for recovery of EcM forests 

240 than for short-term maintenance of EcM forests. In AM forests, as N deposition may affect carbon 

241 cycling due to alterations in decomposition and humification rates, recovery may be slow, as feedbacks 

242 and legacies could also affect restoration here. Restoration methods tested with some success focus on 

243 removal of the forest floor (see e.g., De Vries et al. 1995, Baar and Kuyper 1998, Smit et al. 2003) which 

244 would be difficult to implement at larger spatial scales. 

245 2.6 Critical loads

246 Critical loads are “a quantitative estimate of an exposure to one or more pollutants below which 

247 significant harmful effects on specified sensitive elements of the environment do not occur according to 

248 present knowledge’’ (UBA 2004). For mycorrhizal fungi this can be declines in abundance, diversity, or 

249 loss of species of EcMF. Wallenda & Kottke (1998) suggested a critical N load of 15-20 kg N ha-1 yr-1 for 

250 sporocarp production, and 20-30 kg ha-1 yr-1 for belowground EcMF communities in sensitive 

251 ecosystems. However, based on accumulation of data from long-term studies, more recent efforts 

252 (Bobbink & Hettelingh 2011) estimated a critical load of 10-20 kg N ha-1 yr-1, and Pardo et al. (2011a,b) 

253 and Jarvis et al. (2013) estimated critical loads at 5-10 kg N ha-1 yr-1 for conifer-dominated ecosystems.  

254 Suz et al. (2014) defined a critical load for temperate European oak forests of 9.5-17 kg N ha-1 yr-1 

255 depending on the level of EcMF community change. Recently, van der Linde et al. (2018) estimated a 

256 critical load of 5-6 kg ha-1 yr-1 from 137 intensively monitored European ICP Forests plots using threshold 

257 indicator analysis of ectomycorrhizas. Although they included pine, spruce, beech and oaks, the critical 
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258 load was largely determined by conifer ECM communities because few beech and oak occur in low-N 

259 deposition regions of Europe. There has been some partial community recovery in conifers and birch in 

260 the Netherlands (Van Strien et al., 2018) and a spruce site in Sweden (Choma et al., 2017) after 

261 reduction of deposition or cessation of fertilization, respectively.  The EcMF associated with conifers are 

262 more sensitive to N deposition than broadleaf-associated EcMF (Arnolds 1991, Cox et al. 2010, van der 

263 Linde et al. 2018). Therefore, host-specific analysis should assign a lower critical load for conifer-

264 dominated ecosystems than for deciduous ecosystems. 

265 Estimates of critical loads for AMF in forests are sparse. Based on changes in AMF community structure 

266 and loss of fungal biomass in roots and soil (van Diepen et al. 2007, 2010, 2011), a critical load for AMF 

267 in sugar maple-dominated forests of eastern North America was estimated at <12 kg ha-1 yr-1 (Pardo et 

268 al. 2011a, Gilliam et al. 2011). 

269 3. Causes and functional consequences of community change

270 Nitrogen deposition influences mycorrhizal fungi both directly (fungal- or soil-mediated) and indirectly 

271 (tree-mediated) (Smithwick et al. 2013). The relative importance of both pathways has long been 

272 disputed; here we suggest a middle ground of both viewpoints and propose how both pathways interact 

273 (Fig. 2). The impacts of these different pathways have been framed from the perspective of either fungal 

274 fitness (mycocentric) or plant fitness (phytocentric), both of which must be considered to understand 

275 the symbiosis.

276 3.1 Carbon supply from hosts 

277 As N availability increases, relative C allocation (carbohydrates) to roots declines. Depending on 

278 circumstances, trees could also reduce absolute C allocation to roots and their associated mycorrhizal 

279 fungi. Whether absolute C flux belowground decreases will depend on how photosynthetic rates 
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280 respond to higher N availability (Brassard et al. 2009) and the sinks for that photosynthate. In a meta-

281 analysis, N addition reduced soil microbial biomass and respiration but not fine-root litter inputs to soil 

282 (Liu and Greaver 2010). In several studies, elevated soil N leads to reduced fine-root density, mycelial 

283 biomass or production, or respiration (e.g., Kjøller et al. 2012, Almeida et al. 2018). Analysis of 13C 

284 tracers indicated that N additions to forests can reduce net belowground C flux to EcM PLFAs (Högberg 

285 et al. 2010). Similarly, six years of fertilization at 100 kg N ha-1 yr-1 suppressed hyphal respiration 

286 (Hasselquist et al. 2012). Furthermore, nitrogen inputs decrease the abundance of EcMF relative to 

287 saprotrophic fungi (Morrison et al. 2016), consistent with the greater declines in EcMF than saprotroph 

288 sporocarps in regions with high N input (Arnolds 1991)  Despite these declines in abundance, extreme 

289 decreases in percentage of roots colonized at high N levels are often assumed (Franklin et al. 2014), but 

290 not consistently observed (Taylor et al. 2000, Peter et al. 2001, Treseder 2004, Lucas & Casper 2008, 

291 Corrales et al. 2017).

292 One model of the effect of N on C allocation is that, because leaves are stoichiometrically constrained by 

293 N availability, C allocation belowground declines when aboveground growth sinks are stimulated by high 

294 N availability (e.g. Ingestad & Ågren, 1991, Poorter and Nagel 2000, but see Smithwick et al. 2013). 

295 These models avoid questions of ultimate causes of allocation toward mycorrhizal fungi, defining them 

296 as a sink like others (e.g., roots) directly feeding on host sugars, competing with other sinks in the 

297 process of balancing resource capture between above- and belowground resources. This model explains 

298 the common observation of greater sensitivity of sporocarp production than root tip colonization to N 

299 deposition: with enhanced carbohydrate competition due to N deposition, sinks for C that are farthest 

300 from the source (EcMF sporocarps) suffer more than sinks closer to the source (EcM root tips), even 

301 though root tip density is usually also reduced under high N availability. 
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302 One approach to incorporating mycorrhizal fungi into such models is to hypothesize that under nutrient 

303 sufficiency the change in C balance shifts mycorrhizal fungal communities towards different suites of 

304 beneficial traits (Fig. 2). Because fungi also vary in their sensitivity to this reduction in carbon flux, large 

305 changes in species richness and species composition could occur.

306 These models have the virtue of simplicity, but there are two concerns here. First, this formulation 

307 ignores the potential for non-beneficial mycorrhizal interactions. These can occur if both plant and 

308 fungus are limited by the same nutrient (Treseder and Allen 2002, Franklin et al. 2014) or if the plant 

309 cannot regulate carbon supply to mycorrhizal roots based on return for other benefits. The conditions 

310 under which plants can actively select for more mutualistic mycorrhizal fungal species on roots have still 

311 not been resolved. Preferential allocation to beneficial AMF occurs under some conditions (Bever et al. 

312 2009, Kiers et al. 2011, Zheng et al. 2015), but the generality of this phenomenon has been questioned, 

313 especially under high N (Johnson 2010, Walder and Van der Heijden 2015). There may also be 

314 evolutionary constraints to that solution for EcM trees, if the mechanism uses host N status as the 

315 regulating principle. In that case, under N deposition a tree might then reduce allocation to EcMF, 

316 including those fungal species specialized in P acquisition (but see section 3.3). 

317 3.2 N-supply from soils

318 In addition to tree-mediated mechanisms, high soil N may directly affect mycorrhizal fungi, particularly 

319 EcMF. Species sensitivity is partly phylogenetically conserved (Lilleskov et al. 2011), that is many fungal 

320 genera can be classified along this gradient from nitrophobic to nitrophilic (section 2.2). Species 

321 sensitivity is also correlated with morphological and physiological fungal traits, such as hydrophobic 

322 mycelium, abundance of extraradical hyphae and rhizomorphs, ability to acquire N from organic 

323 sources, production of proteolytic enzymes, and the 15N:14N ratios in mycelium and sporocarps, due to 

324 both differential access to organic versus inorganic N sources and differential N allocation from fungus 
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325 to tree (Hobbie & Agerer, 2010). One hypothesis is that differences in host specificity among EcMF are 

326 linked to differences in enzymatic capacities to acquire N directly from complex soil organic substrates 

327 and in resource exchange rate, e.g. if host-specific fungi transfer more soil N per unit of tree C than 

328 generalists (Gorissen & Kuyper 2000, Molina & Horton 2015). Alternatively, adaptations for mobilizing 

329 organic N may be more beneficial in the recalcitrant litter produced by most conifers than in deciduous 

330 litter. Host and soil pathways interact, as nitrophobic fungi are generally more C-demanding (Lilleskov et 

331 al. 2011), and hence respond more strongly to changes in C allocation by the tree.

332 Whether because of changes in host allocation, host selection, or soil-mediated direct effects, EcMF 

333 with organic N-mobilizing capacities decline with elevated soil N (Fig 1).  For example, elevated N greatly 

334 reduces the abundance of many Cortinarius species with strong peroxidative potential, which is 

335 hypothesized to be used to mobilize organic N (Bödeker et al. 2014, Lindahl and Tunlid 2015). Although 

336 AMF are not known to have such organic N-mobilizing capacity, it is possible that AMF with high uptake 

337 of amino acids are differentially affected by deposition. 

338 One hypothesized N-mediated community filtering mechanism was proposed by Wallander (1995). He 

339 proposed that under higher N, for species adapted to N deficiency that have obligate high N transfer 

340 rates to hosts, C will be used in acquiring and incorporating N into amino acids, and in the case of EcMF 

341 a significant amount of C will be transferred back to the host in amino acids transported from the 

342 fungus. For AMF, the fungus can transfer N as NH4
+ (Govindarajulu et al 2005), therefore the fungal 

343 carbon budget is more favorable because C skeletons from amino acids are retained by the fungus, 

344 although still at some cost related to hyphal transport as arginine (Hodge & Storer 2015). Typically, 

345 studies do not distinguish between the effect of host C supply limitation vs. additional costs of N uptake 

346 and transfer.  Without a full accounting of C costs of N and transfer to hosts and gross C flux into 

347 mycorrhizas, it will be difficult to distinguish the relative importance of the two as drivers of mycelial 
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348 biomass, production and respiration. Their relative importance is worth distinguishing because, although 

349 both mechanisms enhance C limitation, which should select for fungi that can persist with low C supply 

350 from hosts, only the Wallander (1995) mechanism posits a C penalty to EcMF that transfer more N to 

351 hosts, providing an additional agent of community structuring. 

352 3.3 N-mediated shifts in physiological potential 

353 3.3.1 Shifting limitations and P mobilization

354 In an extremely N-poor ecosystem both trees and mycorrhizal fungi may be limited by N (Treseder et al. 

355 2004; Fig. 2), resulting in a trap where plant growth can be constrained by N immobilization in the 

356 mycelium (Franklin et al. 2014; Püschel et al. 2016). With small increases in N availability the tree may 

357 still be N-limited, whereas the fungus is likely C-limited. With further increases in N the tree will no 

358 longer be N-limited. How do trees respond to those new conditions? In some cases, trees will likely 

359 maintain belowground C allocation, while in other cases they may not, selecting for fungi with a 

360 favorable N for C trade. As N is added, there are three potential host nutritional statuses likely to filter 

361 mycorrhizal fungi differently: 1) high overall nutrient availability, 2) limitation by cations, such as Mg or 

362 K, which is especially relevant with cation leaching due to acidification that normally accompanies N 

363 enrichment, 3) limitation by P, which can be exacerbated in acid soils by N deposition (Fig. 2). In the 

364 latter case, P limitation should stimulate belowground allocation (Ericsson 1995). In support of this 

365 conceptual model, K and Mg limitation suppressed C allocation to root growth (Wickström and Ericsson 

366 1995) and to EcMF growth, whereas P limitation stimulated C allocation to roots and EcMF growth 

367 (Hagerberg et al. 2003 and references therein). The spectrum of competitive fungal traits is likely to 

368 differ greatly among these three cases. 
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369 Case 1 and 2, C limitation. As discussed earlier, high overall fertility may sometimes reduce 

370 belowground C flux.  If high overall fertility and limitation by nutrients affecting light harvest more than 

371 growth (e.g., Mg, K) reduce C allocation belowground, lower C demand would likely be a strongly 

372 selected trait (Fig. 2c). It has been noted that under many N fertilization scenarios the medium-distance 

373 fringe and mat, and sometimes long-distance, exploration types decline in abundance (Lilleskov et al. 

374 2011, Treseder et al. 2018), being replaced by fungi with shorter-distance exploration types. If C 

375 limitation is a dominant community filter, one prediction would be that C limitation by any mechanism, 

376 regardless of site N status, might select for mycorrhizal communities with similar functional traits. 

377 Consistent with this, EcMF hemlock and birch seedling roots in densely shaded, low N availability rotting 

378 logs under hemlock canopies (Poznanovic et al. 2015), shared the same dominant taxa, Tomentella 

379 sublilacina and Lactarius tabidus (= L. theiogalus), as canopy spruce trees under high N deposition in 

380 Alaska (Lilleskov et al. 2002). This suggests that both low light availability and N deposition, by reducing 

381 belowground C allocation, may select similar dominants, despite large differences in N availability. 

382 Clearly, this hypothesis requires testing, especially in the case of cation limitation. Even if the same EcMF 

383 are selected by low C availability and high N availability, it remains to be tested whether these fungi can 

384 supply key nutritional or other benefits.  

385 For AM fungi, a recent trait-based synthesis suggests that elevated N selects for certain genera over 

386 others (Treseder et al. 2018). In a regional deposition gradient, the N deposition-associated taxa 

387 conferred a smaller P benefit on hosts than those negatively associated with N deposition, yet these 

388 taxa did not produce fewer extraradical hyphae. However, in a parallel analysis based on a large global 

389 sampling, taxa that were more commonly found at lower soil C:N were found to have lower external 

390 hyphal length, providing an equivocal view of the links between the two (Treseder et al. 2018). The 

391 latter is consistent with a model of lower C supply and consequent lower P benefit, whereas the former 

392 does not link reduced P benefit to C supply.  However, this synthesis study did not explicitly address 
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393 whether the community response to N depends on variation in soil P (see Case 3). The regional gradient 

394 was on relatively P-rich soils, but soil P varied widely in the global study.

395 Case 3, P limitation. Under P limitation, C allocation belowground should increase (Ericsson 1995), 

396 increasing C availability for fungi and increasing P demand for both fungal and host nutrition, which 

397 would favor a diversity of P-mobilizing strategies (Fig. 2a,b). Consistent with a model of P mediation of C 

398 supply to symbionts, Johnson et al. (2003) found that at a P-rich site, N addition decreased AMF 

399 biomass, whereas at P-limited sites N addition enhanced AMF biomass. 

400 Under these conditions, additional potential trait combinations could be favored because the increased 

401 C and limiting P create niches for fungi with higher C demand, lower N-mobilizing capacity, and greater 

402 inorganic P- or organic P-mobilizing capacity (Johnson 2010). Mycorrhizal fungi can enhance P 

403 mobilization via four mechanisms: high affinity transporters, increased soil exploration, mobilization of 

404 inorganically bound P, or mobilization of organically bound P. Although the diversity of P transporters in 

405 mycorrhizal fungi is unknown, with continued expansion of the pool of available fungal genomes (Martin 

406 et al. 2011, Grigoriev et al. 2014) and transcriptomes, the suite of transporters associated with taxa 

407 responding differentially to N deposition and resultant P limitation will become increasingly apparent. 

408 Different fungal exploration types should vary in their ability to forage for P in soils (Plassard et al. 2011). 

409 In particular, given the low mobility of P in soils, contact and short-distance exploration types (e.g., 

410 many Russula and Lactarius species), would likely do a poor job of exploring for P. In contrast many of 

411 the medium-distance fringe and mat types that are suppressed by elevated N, and especially the 

412 medium-distance smooth exploration types that are not suppressed, should be more effective at P 

413 exploration. Some species with rhizomorphic long-distance exploration types are suppressed by 

414 elevated N (e.g., Suillus spp.) whereas others may be stimulated e.g., Paxillus involutus, Tylopilus, and 

415 Imleria badia (Lilleskov et al. 2011, Almeida et al. 2018), and would be especially good candidates for 
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416 effective P scavengers under high-N conditions (Fig 2a, b). Consistent with this, the nitrophilic P. 

417 involutus was more efficient at inorganic P uptake than the nitrophobic Suillus bovinus under similar 

418 conditions, although both are long-distance exploration types (Van Tichelen and Colpaert 2000). 

419 Similarly, I. badia responded positively to P limitation enhanced by N additions, and preferentially 

420 colonized apatite ingrowth bags over quartz bags, apparently stimulated by primary inorganic P 

421 (Almeida et al. 2018). 

422 For AM fungi, taxa in the Gigasporaceae have more extraradical hyphae than taxa in the Glomeraceae, 

423 so would be expected to be better at mobilizing P, but to be suppressed by low C availability (Treseder 

424 et al. 2018). Therefore, one might expect that Gigasporaceae would be favored under N or P limitation 

425 when C availability is high, but not under high N and P conditions (Fig. 2). Consistent with this, at P-rich 

426 sites, Gigasporaceae were most abundant under N limitation, whereas at a P-poor site, Gigasporaceae 

427 were most abundant under N fertilization (Johnson et al. 2003), suggesting an overarching role of C 

428 supply rather than N availability in their abundance. Additionally, Gigasporaceae greatly enhanced foliar 

429 P compared to most genera, including Glomus (Treseder et al. 2018). 

430 The evidence for N-mediated increase in mycorrhizal taxa with high phosphatase activity is limited and 

431 mixed. Taniguchi et al. (2008) found higher phosphatase activity in EcMF from more N-rich forests 

432 (Tomentella and Amanita species) compared with those from more nutrient-limited forests (Suillus and 

433 Rhizopogon species). In contrast, in a montane tropical EcM forest, overall soil phosphatase activity was 

434 suppressed under elevated N inputs and was positively correlated with the abundance of the 

435 nitrophobic genus Cortinarius and negatively correlated with abundances of the nitrophilic genera 

436 Russula and Tomentella (Corrales et al. 2017). In these cases, understanding the P status of the soils will 

437 be critical, because high phosphatase activity should only be favored if P becomes limiting to growth. In 

438 the absence of P limitation, a decline in phosphatase activity could be associated with a decline in EcMF 
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439 biomass. Although AM fungi also produce acid phosphatases, including free phosphatases in soil 

440 solution (Sato et al. 2015) nothing is known about AMF community members differing in phosphatase 

441 activity in response to the interaction of N deposition, C and P availability to the fungi.

442 High concentrations of exuded organic acids can mobilize inorganic P (Lambers et al. 2006). High rates of 

443 organic acid production were found in both nitrophilic (e.g., Paxillus) and nitrophobic (e.g., Cortinarius, 

444 Piloderma, Suillus) EcMF genera (Plassard et al. 2011), suggesting that potential for inorganic P 

445 mobilization spans the spectrum of tolerance of N deposition. However, other nitrophilic taxa show little 

446 capacity for organic acid exudation (e.g., Thelephora, Tylospora, Laccaria bicolor, Hebeloma 

447 cylindrosporum). The AM species Rhizophagus clarus had higher organic acid concentrations in the 

448 rhizosphere and host foliar P than four other AMF species across a range of soil aluminum 

449 concentrations (Klugh and Cumming 2007).  It is unknown whether P limitation under high N conditions 

450 could stimulate this species, as was found for Gigasporaceae (Johnson et al. 2003). 

451 The above exemplifies the complexities involved in forms of P targeted and mechanisms of P 

452 mobilization, and our limited understanding of how P-mobilizing traits respond to shifts in both N and P 

453 limitation. Additionally, diverse traits could enhance P mobilization, pointing to a need to expand our 

454 profiling of phylogenetic distribution of suites of P-mobilizing traits to develop integrated estimates of 

455 the combined effect of the suite of traits, such as host stoichiometry. 

456 3.3.2 Host stoichiometry 

457 Given that EcMF capacities for uptake and transfer of different nutrients might shift under N 

458 enrichment, Lilleskov (2005) hypothesized that EcMF communities might shift the relative supply rate of 

459 different nutrients, at least partially buffering stoichiometric impacts on hosts. Surprisingly, effects of 

460 EcMF or AMF fungal taxa on host stoichiometry have been rarely investigated, although individual 
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461 studies are suggestive. For example, van der Heijden and Kuyper (2001) found that host N:P was 

462 regulated by fungal species, and the effect depended on substrate N:P.  Similarly, Taniguchi et al. (2008) 

463 found that when seedlings were N-fertilized, those inoculated with ectomycorrhizal fungal isolates from 

464 high N sites had lower N:P than those inoculated with isolates from low N sites. Smith et al. (2015) found 

465 large fungal species effects on the stoichiometry of white spruce seedlings. Under unfertilized conditions 

466 Amphinema sp. (Atheliaceae) had a strong negative effect on host N:P ratio compared with Thelephora 

467 terrestris and another Atheliaceae species, apparently by preferentially supplying P. Some Atheliaceae 

468 are nitrophilic, whereas others are not, (Lilleskov et al. 2011), and it is unclear where these two 

469 Atheliaceae lie on that spectrum.

470 There is evidence that AMF species also differ in effects on host stoichiometry, suggesting that N-

471 mediated community change could have stoichiometric consequences for hosts (e.g., Fellbaum et al. 

472 2014). Johnson (2010) synthesized conceptual understanding of resource stoichiometry impacts on AMF 

473 communities and function. Although not explicitly addressing the issue of how the fungal community 

474 affects host stoichiometry, she emphasized the limited evidence of AM benefit to host N nutrition vs the 

475 extensive literature on AM benefit to P nutrition. If correct, this suggests that the dominant mechanism 

476 by which AMF affect host stoichiometry would be variation in the P supply rate, rather than the N supply 

477 rate. 

478 3.4 EcM-AM comparisons

479 Given the apparent shifts from EcM to AM forest composition under N deposition in North America, it is 

480 critical to understand the functional consequences of such shifts. If we accept conceptual models in 

481 which, in contrast with EcMF, AMF lack the ability to mobilize polymeric or phenolically bound organic N 

482 from the environment but can access inorganic P effectively (Read 1991), we might expect that 

483 increased N deposition would favor AMF, and the findings of Averill et al. (2018) are consistent with this. 
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484 However, several experimental studies also suggest that AMF communities are less beneficial under N 

485 fertilization than under unfertilized conditions (e.g., Treseder et al. 2018), perhaps because high 

486 background P availability reduced the likelihood of a shift from N to P limitation and the potential for 

487 nutritional mutualism (Hoeksema et al. 2010). Key studies are needed to test the N-P interactions in AM 

488 trees. 

489 At the level of EcM—AM comparisons, it is worth integrating this conceptual understanding with that of 

490 Albornoz et al. (2016), who found that on roots of Acacia rostellifera, an N2-fixing dual mycorrhizal 

491 legume (where N supply should be sufficient), under high inorganic P availability AMF dominate, 

492 whereas as soils age and P is increasingly found in organic forms, EcMF dominate. They hypothesized 

493 that this trend was driven by the ability of the EcMF to access organic P via phosphatases, a function 

494 that is comparatively limited (Phillips et al. 2013, Rosling et al. 2016), but not absent (e.g., Sato et al. 

495 2015) in AMF. This has relevance to differential AMF-EcMF responses to high N deposition.

496 3.5 New insights from phylogenetics and omics 

497 Genomic methods are generating new insights into functional differences among and within groups that 

498 respond differentially to N deposition. The two sequenced Glomeromycotina genomes, Rhizophagus 

499 irregularis (Tisserant et al. 2013, Lin et al. 2014) and R. clarus (Kobayashi et al. 2018) revealed low copy 

500 number of CAZymes compared to many EcMF (Kuo et al. 2014, Kohler et al. 2015). Additionally, 

501 comparative genomics suggests the convergent loss of enzymes involved in the decay of lignocellulosic 

502 material in EcMF (Kohler et al. 2015), yet certain lineages appear to have retained high levels of 

503 oxidative activity, possessing Class II peroxidases hypothesized as potentially important mechanism for 

504 organic N mobilization (Lindahl & Tunlid 2015). These peroxidases are largely absent in the Ascomycota 

505 and early-branching Basidiomycota (Sebacinales) that form some ectomycorrhizal and other mycorrhizal 

506 symbioses (Nagy et al. 2015). 



21

507 Secreted proteases are also important in mobilizing organic N, and so we might expect taxa adapted to 

508 higher N conditions to possess a lower complement. Extracellular protease activity by many EcMF in the 

509 Ascomycota and Basidiomycota is well-documented (e.g., Talbot and Treseder 2010) but lacking or 

510 greatly reduced in the Glomeromycotina (Hodge and Storer 2015; Talbot et al. 2013). Consistent with 

511 this, the latter possess a reduced complement of serine proteases compared with saprotrophs and EcMF 

512 (Muszewska et al. 2017). A better understanding of the integrated function of secreted proteases will be 

513 necessary to link genomics to organismal function. 

514 Within the EcMF, taxa that have a lower genomic potential or expression of genes involved in mining 

515 organic N appear likely to thrive under higher N availability. Although full genome analyses are only now 

516 under way, there are hints revealed in the recent literature. For example, Laccaria bicolor is tolerant of 

517 elevated N deposition (Lilleskov et al. 2011). Like most EcMF, L. bicolor possesses a broad suite of an 

518 estimated 116 secreted proteases (Martin et al. 2008), which is surprising given its low but variable 

519 growth on protein as a sole N source (Lilleskov et al. 2011). It is possible that experimental conditions do 

520 not always capture its enzymatic potential, for example, L. bicolor may extract N from soil fauna such as 

521 Collembola (Klironomos and Hart 2001), perhaps via extracellular proteases that target animal protein. 

522 Some secreted proteases could be involved in functions other than nutrient mobilization (e.g., defense), 

523 and some modeled secreted proteases might not actually be transported into the soil. Consistent with 

524 this, Shah et al. (2016) found that L. bicolor had a smaller fraction of upregulated secreted peptidases 

525 when challenged with soil organic matter compared with Paxillus involutus, Hebeloma cylindrosporum, 

526 Suillus luteus and Piloderma croceum. The largest contrast was with P. croceum, a nitrophobic taxon that 

527 has both a larger number of secreted proteins and a larger fraction of those that are peptidases. These 

528 species also differed in their expressed suite of extracellular oxidative enzymes, which is also important 

529 for mobilizing N that is organically bound. Again, there is a need to characterize the integrated 

530 functioning of these suites of enzymes. 
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531 Since class II peroxidases are phylogenetically constrained (Bödeker et al. 2014), it is worth asking 

532 whether lineages possessing them are more sensitive to N deposition. A Cortinarius genome has 11 

533 copies of Mn peroxidases, equivalent to white rot fungi (Bödeker et al. 2014). The high sensitivity of this 

534 genus to N deposition is consistent with the hypothesis that EcMF with peroxidases are selected against 

535 under higher N conditions. Bödeker previously found class II peroxidases in 5 of 14 Cortinarius species 

536 screened, hence there is the possibility of infrageneric variation in presence of these enzymes. 

537 Cortinarius species also vary somewhat in their sensitivity, but whether this relates to peroxidase copy 

538 number or activity is untested. The only other sequenced EcM genomes with >1 copy of Class II 

539 peroxidases are Russulaceae and Hebeloma spp. The Russulaceae in particular vary widely in sensitivity 

540 to N deposition (Lilleskov et al. 2011, van der Linde et al. 2018). They also have variable numbers of 

541 peroxidase gene copies. Elucidation of the distribution of these oxidative enzymes among N tolerant and 

542 sensitive species, and tests of their extracellular function, would be enlightening. 

543 3.6 Implications of large-scale changes in tree nutrition

544 The preceding overview reveals clear functional diversity among and within mycorrhizal types, providing 

545 the potential for functional shifts as N, C and P shift in relative availability.  However, it is still uncertain 

546 whether N inputs lead to changes in mycorrhizal community structure that are optimal for the plant or 

547 that show reduced benefit for the plant (e.g., in P acquisition). This has been challenging to investigate 

548 robustly using dominant organisms at ecosystem scales. However, strong declines in tree mineral 

549 nutrition at ICP Forests plots across Europe, including lowered P and higher foliar N:P of EcM trees, and 

550 negative health effects at least for conifers, even under N-limiting conditions (Veresoglou et al. 2014, 

551 Jonard et al. 2015), suggest that limits to the nutritional buffering capacity of EcMF communities at high 

552 N deposition levels have been reached. Arbuscular mycorrhizal trees were not abundant enough at ICP 

553 Forests sites to evaluate in these studies. Field surveys and experiments in AM and EcM forest 
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554 ecosystems are needed to resolve the sign and magnitude of the integrated impact of N-mediated 

555 mycorrhizal fungal community change on host nutrition and plant community dynamics.

556 3.7. Nitrogen deposition, organic matter decomposition, and soil carbon storage

557 Whether changes in mycorrhizal communities in response to N deposition limit decomposition is an 

558 active area of research. In addition to direct nutritional and population effects on EcMF and trees, 

559 chronic N additions can suppress decomposition and increase soil carbon accumulation across AM and 

560 EcM temperate forests (Pregitzer et al. 2008, Frey et al. 2014). Changes in decomposition could be 

561 driven by multiple factors, including changing plant communities, litter chemistry, the environment, and 

562 both saprotrophic and mycorrhizal community function. 

563 In this context, there has been a long-standing debate about whether EcMF have retained not only the 

564 capabilities for organic matter transformation, but also still have a facultative saprotrophic lifestyle. The 

565 evidence strongly indicates that EcMF lack a fully saprotrophic lifestyle, but that they can have 

566 substantial capabilities to transform soil organic matter, thereby affecting soil carbon pools and fluxes 

567 (Lindahl & Tunlid 2015, Kuyper 2017).

568 Gadgil and Gadgil (1971, 1975) proposed a conceptual model in which EcMF competitively suppressed 

569 decomposer activity, thereby reducing net decomposition. Although developed for EcMF, recent 

570 evidence suggests that this effect may also be seen with AMF (Leifheit et al. 2015). Fernandez and 

571 Kennedy (2015) summarized the potential mechanisms by which EcMF could suppress saprotrophs, one 

572 of which is especially relevant to this review, i.e., competition for N between both fungal guilds given 

573 high belowground C allocation which advantages EcMF. Under this model of fungal N competition, 

574 increased N deposition should reduce the Gadgil effect, accelerating saprotrophic activity, all else being 



24

575 equal. However, that does not seem to align with observations of reduced decomposition under N 

576 deposition, suggesting other mechanisms are at play. 

577 An alternative mechanism is related to the peroxidative capabilities of certain EcMF (e.g., species of the 

578 genus Cortinarius; Bödeker et al., 2014) noted above, which could affect soil carbon dynamics, because 

579 peroxidases can cause extracellular mineralization of soil organic matter. These species show a high 

580 sensitivity to N deposition (Lilleskov et al. 2011), so their decline under N deposition could contribute to 

581 accumulation of soil organic matter. In fact, EcMF, which are less carbon-limited than saprotrophic 

582 fungi, may be more important in their contribution to the degradation of old soil organic matter than 

583 saprotrophic fungi (Lindahl et al. 2007). 

584 Models linking the capacity of EcMF to acquire organic N from soil organic matter to transformations of 

585 soil organic matter by free-living heterotrophs vary widely in predictions. Whereas Orwin et al. (2011), in 

586 agreement with the Gadgil effect, predicted that EcMF will slow down decomposition, Moore et al. 

587 (2015) suggested that EcMF would increase decomposition under some scenarios. These predictions 

588 have a direct bearing on how N deposition could have cascading effects via changes in EcMF functioning 

589 into carbon pools and fluxes. Orwin’s model, like that of Talbot (2008), predicts that, all other things 

590 being equal, decrease in EcM activity enhances decomposition rates, while some of Moore’s models 

591 suggest the opposite. However, N deposition clearly slows decomposition of litter (Knorr et al. 2005) and 

592 soil organic matter, especially by fungi. For that reason, it is uncertain how declines of EcMF under N 

593 deposition would directly affect carbon storage. 

594 Given possible shifts from EcM to AM forests under N deposition, it is important to determine the net 

595 effect of N deposition-mediated shifts between mycorrhizal types (EcM-AM) on C storage in the entire 

596 soil profile. Decomposition in organic horizons is only one determinant of soil carbon storage, and not 

597 necessarily the most important one (Schmidt et al. 2011). Most of the processes described above are 
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598 primarily focused on the organic horizon, and as such influence the most vulnerable pool of soil carbon, 

599 yet interactions of partially degraded root and microbial inputs with mineral horizons are important 

600 determinants of total soil carbon storage (e.g., Torn et al. 1997, Doetterl et al. 2015). Averill et al. (2018) 

601 state that an observed shift from EcM to AM trees under N deposition was associated with decreased 

602 soil carbon storage, but other studies have found elevated mineral soil C and total organic C under AMF 

603 (Craig et al. 2018, Zhu et al. 2018). The Averill et al. (2018) analysis only extends to 20 cm depth in the 

604 mineral soil, and so captures effects on surface soil C, but would miss deeper soil carbon captured by the 

605 other studies. EcM forests are associated with greater C storage near the surface (Vesterdal et al. 2013, 

606 Craig et al. 2018) and so a bias toward surface sampling would overestimate soil C loss with decreased 

607 dominance of EcM trees. 

608 4.  The way forward—recommendations for future studies

609 There is a need to move the science forward on multiple fronts. Although we have a good picture of 

610 fungal community responses to N deposition in some boreo-temperate forests, the functional 

611 consequences are much less well sorted out. Additionally, our understanding of tropical community 

612 responses is still limited. 

613 4.1 Integrating emerging ‘omic resources with field and laboratory investigations of fungal 

614 functioning. 

615 A fruitful line of research will be to test the predictive utility of the genomic and transcriptomic 

616 information vs. in situ assays of taxon-specific enzymatic and nutrient-mobilizing potential under 

617 variable levels of inorganic N addition. Currently, our understanding of the obligate vs. facultative 

618 extracellular and intracellular in symbio deployment of the genomic arsenal of peptidases and oxidative 

619 enzymes possessed by EcMF is rudimentary (Talbot et al. 2013). We do not yet understand interactions 
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620 between these enzymes in mobilizing N under field conditions (Pellitier & Zak 2018). For example, if 

621 certain Cortinarius species express intense peroxidative capacity, which is non-specific in bonds 

622 targeted, then where, when, and how do they mobilize proteases to complement those enzymes? Are 

623 taxon-specific traits of organic and inorganic N and P uptake correlated? How much predictive power do 

624 genome analyses provide regarding enzymatic potential to target complex organic matter? Are these 

625 suites of genes regulated together by higher level transcription factors that are sensitive to N 

626 availability? Although these are fundamental questions about fungal ecophysiology, they have clear 

627 implications for understanding how function is likely to respond to N deposition. 

628 4.2 Testing the concepts presented here in tropical forests. 

629 Most studies of N deposition impacts have been in temperate and boreal regions, yet lower latitudes 

630 deserve more attention given the rapid increase in N deposition, especially in Asia. Most tropical forests 

631 are dominated by AM trees, so it is important to understand how tropical AMF will respond functionally 

632 to N deposition. Given that P limitation predominates over N limitation in older, more weathered, 

633 tropical soils (Vitousek & Howarth 1991), combined with the apparent specialization of AMF on P over 

634 N, functional shifts with N deposition might simply push systems to even greater emphasis on P 

635 acquisition. However, especially given the uncertainty about whether N deposition will enhance or 

636 inhibit AMF acquisition of P (Johnson 2010, Treseder et al. 2018), the role of N in altering AMF nutrient 

637 acquisition in the tropics demands attention. Camenzind et al. (2014) found that in a high-elevation 

638 tropical forest, N additions decreased intraradical fungal abundance and reduced richness of 

639 Diversisporales but not of Glomerales, whereas P addition reduced Glomerales richness. Given the 

640 cooler environment and younger soils in montane forests, it remains to be determined whether this 

641 response is representative of warmer, more weathered low-elevation tropical forests. 
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642 Within EcMF, dominant tropical taxa are hypothesized to be poorly adapted for complex organic N 

643 uptake given the more open N cycle (Kuyper 2012). As for AMF, this raises the question of whether 

644 tropical EcMF would be as sensitive to N deposition. Tropical EcM forests can form monodominant 

645 stands with substantial litter accumulation on nutrient-poor soils where organic N use could be 

646 beneficial (Connell and Lowman 1989), and may reduce inorganic N availability (Corrales et al. 2016). 

647 Some tropical EcMF can grow on protein as a sole N source in sterile culture (Brearley et al. 2005), 

648 suggesting extracellular protease activity. Furthermore, tropical EcMF tend to be more diverse on low-

649 nutrient soils (Corrales et al. 2018). For example, Peay et al. (2010) found that EcMF associated with 

650 Dipterocarpaceae were more diverse at low-fertility sites with sandy soils than high-fertility sites with 

651 clay soils, with all 12 identified Cortinariaceae restricted to low-fertility sites. Similarly, N fertilization of a 

652 montane tropical EcM forest led to community shifts identical to those at higher latitudes (Corrales et al. 

653 2017). Given that the broadly dominant lineages in the tropics are the Russulaceae, Amanita, Boletus, 

654 Sebacina, and Thelephoracae (Corrales et al. 2018), none of which is known to predominantly harbor 

655 nitrophobic species, it is unclear whether the findings of Corrales et al. (2017) can be generalized across 

656 tropical EcM forests or limited to a small N-poor subset of ecosystems. Research is needed especially in 

657 subtropical China, considering its high levels of N deposition. In one such forest in Fujian, Fan et al. 

658 (2018) concluded that N deposition had increased both P limitation and EcM mobilization of organic 

659 phosphate. 

660 4.3 Additional areas for further investigation

661  Improved understanding of responses of AMF community structure and function to N deposition, 

662 with particular attention to integrated effects of C, N, and P limitations on functional organization 

663 of the community. 
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664  Experimental tests of the effects of N deposition on shifts from EcM to AM tree dominance and 

665 their consequences for soil C storage. 

666  Refined critical loads, especially for EcM temperate broadleaf, AMF, and tropical forests. 

667  Improved understanding of the strength of legacies and feedbacks to predict recovery rates after 

668 reduction of N deposition.

669  Improved understanding of mycorrhizal community mediation of shifts in P uptake rate and uptake 

670 mechanisms from different sources during the transition from N to P limitation. 

671  Robust data directly linking changes in 1) environment (soil, atmospheric), 2) mycorrhizal 

672 taxonomic and functional diversity, and 3) forest nutrition, growth, and health. 

673  Understanding the effects on ecosystem processes (e.g. nitrate leaching, greenhouse gas 

674 emissions) of transition to low-diversity nitrophile-dominated EcM forests with inorganic N 

675 enrichment.

676  Expanded investigation into interactive effects of N deposition and other global change factors on 

677 mycorrhizal community structure and function. 

678  Mechanistically linking mycorrhizal fungi into models of forest C, N, and P cycling.

679  Defining and testing C use efficiency and nutrient use efficiency by mycorrhizal fungi, especially in 

680 response to changing N and P availability.

681  Increased understanding of the functioning of the mycorrhizas of N-fixing trees as a natural analog 

682 to N deposition. 

683 5.  Conclusions 

684 Recent studies confirm the clear and strong sensitivity of mycorrhizal fungal communities to N inputs; 

685 this has clear conservation implications given their high beta diversity. The N impact on these 

686 communities is at all levels, including mycorrhizal types, as well as dominant families, genera, and 
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687 species. The functional differences at the coarsest phylogenetic and functional level (Dikarya/EcM – 

688 Glomeromycotina/AM) are clear, suggesting N-mediated shifts from EcM to AM forests would reduce 

689 the capacity to access organic N, organic P, and soil carbon cycling. The functional shifts at finer 

690 taxonomic levels within EcMF suggest that functional suites of soil exploration types have declined 

691 under N deposition, with a probable loss of N- and C-mobilizing enzymatic potential, and continuing 

692 uncertainty about effects on P cycling. Genomics has opened up new areas of investigation, 

693 simultaneously revealing both the presence of diverse suites of putative extracellular hydrolytic and 

694 oxidative enzymes and our lack of understanding of the functional integration of these enzymes. 

695 Similarly, taxon-level understanding of traits relevant to C, N, and P dynamics is improving, suggesting 

696 that community functional shifts may be contingent on P availability. How these trait suites are coupled 

697 and how they mediate the soil-fungal community-host system must be explored to understand the 

698 functional consequences of observed community shifts and to predict changes in ecosystem processes 

699 and forest condition under increased N deposition.

700
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1108 Figure legends

1109

1110 Fig. 1. a) The belowground abundances of individual EcM species in relation to nitrogen deposition 

1111 across 137 intensively monitored ICP Forests plots in Europe. Black symbols show species declining 

1112 with increasing nitrogen deposition (z−) and open symbols depict species increasing with increasing 

1113 nitrogen deposition (z+). The symbol size is proportional to the magnitude of the response (z-score). 

1114 The horizontal lines represent 5th and 95th quantiles of values resulting in the largest change in 

1115 species z-scores among 1,000 bootstrap replicates. Tree shapes next to species names indicate host 

1116 generalist, conifer- or broadleaf-specific species. b) In response to nitrogen deposition, a drastic 

1117 mycorrhizal community shift occurs at 5.8 kg.ha-1.yr-1, and a secondary shift occurs for positively-

1118 affected fungi at 15.5 kg.ha-1.yr-1, based on the community-level output of accumulated z-scores per 

1119 plot.  Reproduced from van der Linde et al. 2018.

1120

1121 Fig.2. As N availability increases, there are three scenarios of P availability represented in the three 

1122 panels: (a) low, b) medium, c) high; these are hypothesized to lead to different relative N and P 

1123 limitation of hosts and resultant C flux belowground available for ectomycorrhizal activity; and would 

1124 select differing dominant traits hypothesized to be associated with the shifting limitations.  We assume 

1125 that belowground C availability is high under low N or low P availability, but low under high N and P 

1126 availability. In scenario a) P is very low, and hence limitation transitions rapidly from N to P and stays 

1127 there, with relatively high C availability maintained by P limitation. In scenario b) P availability is higher, 

1128 so as N increases, N and P are both readily available, and belowground C declines until N stimulates 

1129 greater C flux belowground, or P availability declines because of uptake, acidification, or other factors, 

1130 leading to greater P limitation and a steeper increase in belowground C availability. In scenario c) P 
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1131 availability is very high, and as N availability increases, neither N nor P is limited, and belowground C 

1132 availability is reduced. (N→Mg limitation shift could also have an even more extreme effect on 

1133 belowground C availability). Dominant traits are coded according to their association with a putative 

1134 limiting resource: red = nitrogen limitation; blue = P limitation; black = C limitation, and dash style 

1135 corresponds to those of the three scenarios with which they are associated. E and A after traits refer to 

1136 putative EcMF and AMF traits, respectively. Note that AMF exploration types have not been formally 

1137 defined and should differ from those described for EcMF, so the short and medium smooth types are 

1138 considered approximations. (a), (b), and (c) after taxon names refer to the scenario in which that taxon 

1139 is expected to possess some of the dominant traits under high N. Green vertical lines indicate transitions 

1140 of nutrient and C limitations with increasing N in the three scenarios. 

1141
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