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Abstract

Atherosclerotic lesions are non-uniformly distributed at arterial bends and branch 

sites, suggesting an important role for haemodynamic factors, particularly wall shear 

stress (WSS), in their development. Using computational flow simulations in ide­

alised and anatomically realistic models of aortic branches, this thesis investigates 

the role of haemodynamics in the localisation of atherosclerosis.

The pattern of atherosclerotic lesions is different between species and ages. Such 

differences have been most completely documented for the origins of intercostal ar­

teries within the descending thoracic aorta. The first part of the thesis deals with 

the analysis of wall shear stresses and flow field near the wall in the vicinity of 

model intercostal branch ostia using high-order spectral/hp element methods. An 

idealised model of an intercostal artery emerging perpendicularly from the thoracic 

aorta was developed, initially, to study effects of Reynolds number and flow division 

under steady flow conditions. Patterns of flow and WSS were strikingly dependent 

on these haemodynamic parameters. Incorporation of more realistic geometrical 

features had only minor effects. The WSS distribution in an anatomically correct 

geometry of a pair of intercostal arteries resembled in character the pattern seen in 

the idealised geometry. Under unsteady and non-reversing flow conditions, the effect 

of pulsatility was small. However, significantly different patterns were generated for 

reversing aortic near-wall flow and reversing side branch flow.

The work was extended to study the wall shear stress distribution within the aor­

tic arch and proximal branches of mice, in comparison to that of men. Mice are 

increasingly used as models to study atherosclerosis and it has been shown that, in 

knockout mice lacking the low density lipoprotein receptor and apolipoprotein E,



lesions develop in vivo at the proximal wall of the entrance to the brachiocephalic 

artery. Three aortic arch geometries from wild-type mice were reconstructed from 

MRI images using in-house and commercial software, and the WSS distribution was 

calculated under steady flow conditions to establish the mouse haemodynamic envi­

ronment and mouse-to-mouse variability. Approximated human aortic arch geome­

tries were further considered to enable comparison of the flow and WSS fields with 

that of mice. The haemodynamic environment of the aortic arch varied between the 

two species. The overall distribution of wall shear stress was more heterogeneous in 

the human aortic arch than in the mouse arch, although some features were similar. 

Intraspecies differences in mice were small and influenced primarily by the detailed 

anatomical geometry and the Reynolds number.

A number of simplifications were made in the above flow analyses, and clearly, relax­

ing these assumptions would increase complexity. Nonetheless, this thesis demon­

strates the fundamental features of flow, which underlie the disparate patterns of 

WSS in different species and/or ages, for simplified cases, and the results are ex­

pected to be relevant to more complex ones. Aspects of the observed WSS patterns 

in the simplified model of intercostal artery correlate with, and may explain, some 

of the lesion patterns in human, rabbit and mouse aortas. WSS distributions in the 

aortic arch of wild-type mice associate with lesion locations seen in diseased mice.
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Chapter 1

Introduction

Atherosclerosis, an inflammatory disease, is the underlying cause of most cardio­

vascular diseases, including coronary heart disease1, peripheral artery disease, heart 

failure, and stroke. Cardiovascular diseases at present are the leading cause of death, 

accountable for 30% of all deaths globally in 2005 (WHO, 2007), and are projected 

to remain so in the future according to the World Health Organisation. It is of 

no surprise, therefore, that the need for elucidating the mechanisms involved in the 

development and progression of these diseases is urgent and has been the subject of 

active research in the past decades.

Despite intensified research, there is currently controversy over the exact processes 

involved in the initiation and localisation of atherosclerosis. The reason may lie in 

the sheer complexity of the cardiovascular system, where multiple interactions take 

place. Several methodologies have been employed in an attempt to understand the 

functions of the vascular system, for example, in vivo and ex vivo experimentations 

on humans or animals, in vitro observations, or analysis using mathematical models. 

The implementation of numerical methods in the solution of equations describing 

the blood flow in arterial vessels has attracted considerable attention in recent years, 

mainly due to their capability of quantifying variables not measurable in vivo, their 

reproducibility and reliability, and their role as diagnostic and treatment tools for 

disease conditions. Limitations in the use of numerical methods are related primar­

1 Coronary heart disease is the main cause o f angina, myocardial infarction (heart attack) and 

sudden cardiac death.



ily to the complexity of the systems they can examine2, restricting them, hence, to 

more simple and basic theoretical problems. Abstract and simplified interpretations, 

however, have always been the cornerstone of understanding the physical world.

In relation to the initiation and localisation of atherosclerosis, this thesis focuses 

on the investigation of blood flow at arterial branches of (i) the descending thoracic 

aorta and (ii) the aortic arch, using computational methods for fluid dynamics. 

Specifically, it develops simplified and anatomically correct three-dimensional mod­

els of the thoracic aorta and aortic arch— increasing, therefore, the complexity from 

previous one- or two-dimensional models—to study flow and wall shear stress dis­

tribution near branch ostia. This thesis attempts to answer controversial issues 

concerning the localisation of atherosclerosis and establish detailed blood flow char­

acteristics within the two arterial sections.

This chapter gives a brief overview of the clinical aspects of atherosclerosis and 

a current proposed theory of atherogenesis, at a molecular level. It describes the 

role of wall shear stress in atherosclerosis by documenting prior literature and pre­

senting some elementary fluid mechanics aspects of flow in blood vessels. It sets 

the motivation for this research, and describes the objectives and general approach 

considered. Finally, it reports on publications of work presented in this thesis and 

a synopsis of the remaining thesis.

1.1 Pathophysiology of atherosclerosis

Atherosclerosis is a disease affecting mainly the larger systemic arteries of the car­

diovascular system3—the aorta and its major branches—and is characterised by the 

focal accumulation of lipids, inflammatory cells and connective tissue components 

within the arterial wall. Local accumulation of lipids and the formation of foam

2Cost-effectiveness, computer power and other issues are also important (See Chapter 2 for more 

details on numerical methods).

3The human circulatory system is a closed system transporting nutrients, oxygen and waste 

throughout the body. The systemic circulation transports oxygenated blood from the left heart to 

the body and returns deoxygenated blood to the right heart. The pulmonary circulation moves the 

deoxygenated blood through the lungs to oxygenate it and return it to the left heart.

17



cells generate the early lesions (fatty streaks), which can be detected as early in life 

as early childhood (Rose, 1991; Ajjan and Grant, 2006). A cascade of processes can 

gradually lead to the formation of a plaque, known as atheroma, which protrudes 

into the lumen of the vessel and causes narrowing (stenosis4) or occlusion. The 

disease may remain clinically silent for many years, until an abrupt change in the 

environment and composition of the plaque may induce Assuring in the cap of the 

plaque that allows the formation of a thrombus and later causes embolism (Richard­

son et al., 1989; Lucas and Greaves, 2001; Ajjan and Grant, 2006). It is still unclear 

what exactly causes a plaque to become unstable and rupture.

Several risk factors exacerbate the disease, such as smoking, high blood pressure, 

increased concentration of cholesterol in the blood, and diabetes (Rose, 1991). Al­

though recent advances in medical imaging have allowed for earlier diagnosis of the 

disease and the success rate of currently available treatments is high, the high rate 

of restenosis remains a major limitation.

1.1.1 Theory of atherogenesis

It is now well accepted5 that atherogenesis is associated with damage to the endothe­

lium ( endothelial dysfunction), which is the innermost layer of the arterial wall and 

is in direct contact with the flowing blood. Endothelial cells line the surface of the 

intima with only small gaps between the cells, about 200A wide (Bergel et al., 1976). 

The endothelium is further covered by a porous endothelial glycocalyx layer, a net­

work rich in carbohydrates (Reitsma et al., 2007). The endothelial glycocalyx layer 

has recently received great attention due to its possible role in the vascular biology 

of atherogenesis (Davies, 1995).

Endothelial cells, when they are healthy, protect the vessel wall from inflamma­

4There are several features that differentiate advanced atherosclerotic plaques such as a concen­

tric or eccentric lipid pool within the arterial wall and a thick (stable) or thin (unstable) fibrous 

cap overlying the plaque. The majority of the plaques, however, appear to be eccentric to the axis 

of the vessel (Richardson et al., 1989; Lucas and Greaves, 2001).

5Despite the recent attention due to the increasing number o f individuals affected, atherosclerosis 

is not a problem studied only in the present day. Rudolf Virchow proposed the initiating role of 

inflammation in atherosclerosis from as early as the mid 19th century (Mayerl et al., 2006).
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tion and prevent the migration of inflammatory cells. High concentrations of low 

density lipoprotein (LDL) molecules from the blood may build up in the lesion af­

ter entering the wall. Once within the wall, LDL molecules are oxidised to form 

ox-LDL molecules which are known to promote atherogenesis (Figure 1.1, After 

Hansson et al., 2006). Damage to the endothelium activates the endothelial cells 

and allows the expression of adhesion molecules on their surface. These adhesion 

molecules bind inflammatory cells from the blood stream and let them migrate into 

the vessel wall.

The inflammation continues with the recruitment of T cells to the site of early lesions 

and the activation of macrophages. Multiple processes take place at this stage which 

result in the formation of foam cells (Figure 1.1, After Hansson et ah, 2006). Local 

accumulation of lipids contributes to the formation of a core in the atheromatous 

plaque. In addition, proliferation and migration of vascular smooth muscle cells at 

the site of inflammation promotes the enlargement of the atheroma. The fibrous 

cap covering the lesion is originally thin but is stabilised with collagen. However, 

activation of macrophages produces matrix metalloproteinases (MMP) which result 

in the weakening of the cap by degradation of the collagen. This causes the plaque to 

destabilise and become vulnerable. Plaque rupture brings the blood in contact with 

the material in the plaque, resulting in the formation of a thrombus and possibly 

embolism (Hansson et al., 2006; Ajjan and Grant, 2006; Krams et al., 2003).

1.2 Shear stress and atherosclerosis

One significant observation is that atherosclerosis is not distributed uniformly within 

the arterial system; rather, it is highly patchy and shows a predilection for curva­

ture and branching points (Figure 1.2 shows a line graph of lesions localisation in 

the apolipoprotein E-deficient mouse; after Nakashima et al., 1994). Some regions 

of the arteries appear to be protected from the disease, whereas others are prone 

to it. Even when advanced atherosclerotic plaques have developed in one location 

within an artery, nearby locations may show no sign of the disease. The reasons 

why this occurs have not yet been established and remain under investigation. If 

the properties of the wall in regions free from the disease were known, one could
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LDL penetrates endothelium and 
is retained in the intima, where it 
undergoes oxidative modification.

LDL
Adhesion
molecules

Intima

oxLDL

Proinflammatory lipids 
released from LDL 
stimulate endothelial 
cells to express 
adhesion molecules.

Circulating monocytes adhere to 
endothelial cells expressing VCAM-1 
and other adhesion molecules. .

Monocyte

Intima . . respond to chemokines 
(e g . MCP-1) and migrate 
into the intima.

Lumen

Recruitment and activation o f  macrophages in atheroma. Macrophages, 
which are abundant in atheroma, are recruited from blood monocytes 
that enter through the surface endothelium. In advanced lesions, plaque 
microvessels may also provide a route o f  entry tor monocytes. Several 
leukocyte adhesion molecules and chemokines govern the recruitment 
process, w hich is follow ed by differentiation o f the monocytes into 
macrophages. During tin's process, pattern recognition receptors, such as 
scavenger receptors (ScRs), arc upregulatcd. ScRs mediate the uptake o f  
oxidized low-density lipoprotein (oxLD L), and cause the accumulation 
o f LDL-dcrived cholesterol and foam-cell formation. Other 
macrophages arc printed for activation when stimulated by the T  cell 
cytokine, interferon-y (IF N y). These macrophages arc activated by 
pathogen-associated molecular patterns that ligate toll-like receptors 
( I  LRs), as well as the pro-inflammatory cytokines interleukin (1L)-1 and 
tumor necrosis factor (T N F ). As a result o f  activation, the macrophages 
release a host o f  pro-inflammatory mediators, including reactive oxygen 
and nitrogen species, pro-inflammatory cytokines, vasoactive molecules, 
and several kinds o f  proteases. T h l , T helper-1; M C P -1 , monocyte 
chemoattractant protein-1 ;M -C S F , macrophage-colony-stimulating 
factor; V C A M -1 , vascular cell adhesion molecule-1; HSP60, heat shock 
protein 60.

Macrophage activation 
and foam cell formation

Macrophage
K  i > r .’ JLR  Microbial 

molecules 
HSP60 
oxLDL

oxLDL

ScR mediate /  V 
uptake of oxLDL j

1 S s

Th1

‘  ! Proinflammatory 
• . * . * . * . *  mediators

Figure 1.1: Initiation mechanism of atherosclerosis: Endothelial activa­
tion (top), Macrophage activation and foam cell formation (bottom) (After 
Hansson et ah, 2006).
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Figure 1.2: Predominant sites of atherosclerotic lesions (shaded) in the 
apolipoprotein E-deficient mouse (After Nakashima et al., 1994). 1: aor­
tic root, 2-3: aortic arch and its major branches, 4: carotid arteries, 5: 
branches of the abdominal aorta (celiac, superior mesenteric, and renal ar­
teries), 6: terminal branches of the abdominal aorta, 7: iliac arteries, 8: 
pulmonary arteries.

argue that induction of these properties in pro-atherogenic locations, by means of 

pharmacological agents, could prevent or eventually reverse the progression of the 

disease. Understanding, hence, what makes atherosclerosis to be a focal disease, 

affecting only discrete regions of the vasculature and not others, is crucial, since this 

can contribute to the development of future treatment methods and therapeutic 

strategies.

Several factors are believed to affect this preferential distribution of atherosclerotic 

lesions. Nevertheless, there are perhaps only three main elements that play a part:
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the vessel wall, and its components6; the blood, and its constituents; and the flow 

of the blood, and its characteristics. These elements may interact either in a purely 

mechanical or biological way, or in combination; that is, when mechanical stimuli 

initiate biological or chemical activity. Mechanical forces are applied through the 

exertion of stresses on the wall by the flow of blood. Biological processes, at a 

molecular, cellular and/or genetical level, are identified through activation of cells 

and expression of molecules within the wall. Biological or biochemical activity due 

to applied mechanical forces is observed in processes like vessel wall mass transport7 

(Tarbell, 2003), endothelial mechanotransduction8 (Davies, 1995), and others.

The stresses that blood flow exerts on the vessel walls are thought to be of critical 

significance in relation to the patchy distribution of atherosclerotic lesions. Mechani­

cal stresses can be resolved into stresses applied tangentially to the vessel wall (shear 

stress), and those applied in the normal direction to the wall (pressure). Of these 

two, pressure is thought to play a minor role in the distribution of lesions compared 

to that of shear stress. This is because pressure acts approximately uniformly on the 

vessel wall as a whole; its fluctuations due to the nature of blood flow are considered 

insignificant compared to the variations in shear stress which depends on the local 

velocity gradients and therefore varies substantially along the vasculature due to the 

non-uniformity of the blood flow pattern.

6The wall o f the blood vessels consists of three layers (from the vessel lumen outwards): the tunica 

intima, the tunica media, and the tunica adventitia. The former is the thinnest layer o f all and is 

covered with endothelial cells; the tunica media is the thickest layer, while the tunica adventitia of 

the aorta and larger arteries also contains a network o f nutrient capillaries (nosa vasorum) which 

can penetrate the tunica media from the side o f the adventitia (White, 1989; Langheinrich et al., 

2007).

7The vessel walls are porous and permeable, and allow the transport of materials between the 

blood and the subendothelial space. A full review concerning possible mass transport mechanisms 

can be found in Tarbell (2003).

8 Endothelial mechanotransduction refers to the activation o f multiple biochemical mechanisms, 

such as the activation of ion channels and signalling pathways, in response to mechanical stimuli 

originating from the flow o f blood or from blood pressure. See Davies (1995) for a detailed analysis 

of possible transduction mechanisms.
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1.2.1 Current consensus

For the past forty years or so, there has been much research attempting to identify 

the exact role of shear stress in the distribution of atherosclerosis. Early work by 

Fry (1969) and Caro et al. (1971) showed contradictory results; the former reported 

occurrence of lesions at sites with high shear stress, the latter at sites with low shear 

stress. The controversy remained for years and sparked intense research in the field 

with the use of experimental (in vitro and in vivo), theoretical and computational 

methods. To this contributed also the difficulty in measuring velocity profiles and 

gradients in vivo and hence accurately estimating in vivo wall shear stress. Today, 

there is accumulating evidence that atherosclerotic lesions are unlikely to develop 

at regions of high shear; instead, lesion patterns are recognised at regions where the 

wall shear stress is low and/or is spatially and temporally oscillating (Caro et al., 

1971; Ku et al., 1985). Furthermore, it is widely accepted that endothelial cells 

sense changes in the wall shear stress and can vary their shape and orientation as a 

result (Langille and Adamson, 1981; Malek et al., 1999). Finally, there is increasing 

evidence that processes such as mass transfer between the blood and the vessel 

wall and endothelial signalling depend highly on shear stress (Tarbell, 2003; Davies, 

1995).

1.2.2 Challenging features

However, human atherosclerotic lesions appear to change location with age. Studies 

near side branches of the human aorta have shown that during the foetal period, and 

infancy, sudanophilic lesions (early atherosclerosis) occur in a confined region down­

stream of the origins of branches (Sinzinger et al., 1980); in young adulthood, fatty 

streaks develop laterally and, later in age, upstream of the branch mouth (Svin- 

dland and Wallpe, 1985; Sloop et al., 1998); finally, in elderly people the disease 

completely surrounds branch ostia (Mitchell and Schwartz, 1965). Investigations 

have been made also in rabbit (Cornhill and Roach, 1976; Barnes and Weinberg, 

1998), murine (McGillicuddy et al., 2001), and pigeon (Cornhill et al., 1980; Richards 

and Weinberg, 2000) aortas, where several different lesion patterns have been ob­

served. Rabbit atherosclerotic lesions in weanlings and mature rabbits are similar 

to the two earliest distributions seen in humans (Barnes and Weinberg, 1998, 1999,
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2001), whereas lesions in mice of all ages are comparable to disease patterns of 

aged people (McGillicuddy et al., 2001; Weinberg, 2002). Consequently, age—and 

species—appear to be important in the distribution of atherosclerosis9. This implies 

that there may be changes in the shear stress forces applied on the vessel wall with 

age and/or species.

1.2.3 Blood flow mechanics in arteries

To demonstrate the importance of shear stress in the arteries and its local variations, 

we briefly present here, following in parts the description of Caro et al. (1985), some 

basic aspects of the mechanics of blood flow in idealised geometries. The arteries 

are considered as circular tubes with rigid walls, and the viscosity of the flow is 

assumed constant (Newtonian fluid10). These assumptions clearly do not represent 

the arteries in vivo, but are thought to capture the major features of the flow in the 

larger arteries11. For a detailed analysis of these concepts see Caro et al. (1978) and 

Pedley (1980).

1.2.3.1 Steady flow 

Shear stress

Shear stress, r, is the tangential force exerted on the vessel wall by the flow of blood. 

For a Newtonian fluid, shear stress is proportional to the gradient of the velocity, 

dU/dr (shear rate), and is given by:

(1.1)

where /z is the dynamic viscosity, and r is the radial direction. For flow moving next 

to solid boundaries the no-slip condition applies, which states that the velocity of 

the fluid is zero at the solid surface.
9In the current discussion, we ignore effects o f certain dietary loads on atherosclerosis, for ex­

ample in anorexic or obese people, and focus primarily on effects o f age and species.

10In reality, blood is composed of blood cells (red blood cells, white blood cells and platelets) 

suspended in plasma, am aqueous solution. Therefore, blood is a non-Newtonian fluid; that is, the 

viscosity varies with the applied shear rate.

11 Blood flow is to a large extent laminar, but under certain conditions may undergo instabilities 

and transition to turbulence. See Parker (1977) for a detailed analysis o f blood flow instabilities.
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Reynolds number

The characteristic dimensionless parameter that describes viscous flows is the Reynolds 

number, Rep, defined as:

Reo
pUD

( 1 .2)

where D  is the characteristic length (here taken as the diameter of a circular tube), U 

is the characteristic velocity (for example, the mean cross-sectional velocity), and p 

is the density of the Newtonian fluid. The Reynolds number is a measure of the ratio 

of inertial forces (pi/2) to viscous forces (pU/D). Thus, at high Reynolds numbers, 

inertial forces are dominant, whereas viscous forces become significant only at low 

Reynolds values. Blood flow in the aorta and larger arteries take Reynolds values of 

several hundreds up to a few thousands. In those arteries, therefore, inertial forces 

prevail {Rep »  1).

Flow in a straight pipe

Figure 1.3 shows the development of steady laminar flow in a straight tube. At 

the entrance to the pipe the velocity profile is almost uniform. Due to the no-slip 

condition, the velocity is zero at the walls and a velocity gradient is immediately 

generated with the neighbouring moving fluid. As a result of this traction, high 

shear stress appears on the wall and a viscous boundary layer starts to grow. The 

boundary layer progressively decelerates the near-wall fluid, while a concomitant 

acceleration occurs at the centre of the tube. The shear stress is gradually reduced 

on the wall, until it becomes constant when the boundary layer has filled the tube 

and a parabolic velocity profile has been established. This is the well-known steady 

fully-developed laminar flow (Poiseuille flow). The entrance length L—that is, the 

length in the tube until a fully developed velocity profile develops— is approximately 

equal to 0.03i?e£>D (Parker and Caro, 1993). For a Reynolds number of 1500, the 

entrance length would be about 45 aortic diameters and, hence, Poiseuille flow type 

velocity profiles would not occur in the aorta under steady flow. The boundary layer 

thickness, S, is proportional to ReL x, where R ei is the Reynolds number with 

respect to the distance L from the entrance of the tube, and x is the axial direction.
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Figure 1.3: Development of steady laminar flow at the entrance of a straight 
circular rigid pipe (Reproduced after Caro et ah, 1985).

Flow in a curved pipe

In curved tubes (Figure 1.4), the curvature forces fluid particles to change direction 

and accelerate in order to preserve the axial flow. A large pressure gradient is 

developed that drives this acceleration. If the initial flow is fully developed, the 

central highest velocities have high inertia and cannot be easily deflected. Fluid 

near the wall has less inertia and therefore is greatly displaced. Consequently, the 

highest velocities do not occur in the centre but are found closer to the outer wall of 

the curvature. The displacement also generates secondary motion in the transverse 

plane in the form of two counter-rotating vortices (Dean vortices), as shown in 

Figure 1.4. The skewness of the velocity profile implies that in a curved tube high 

shear stress is developed on the outer wall, and low shear stress on the inner wall 

(denoted as H and L in Figure 1.4, respectively).

Flow in a bifurcation

The arterial system has many generations of branching, with the aorta branching 

into the major arteries, the arterioles and finally into the capillaries. Figure 1.5 

demonstrates two general examples of Poiseuille flow in idealised bifurcating tubes. 

Fast moving flow arriving at the flow divider of the bifurcation is forced to follow 

one of the two branches. Due to its high inertia, the acting pressure gradient cannot 

displace it immediately into the axial directions of the daughter branches and, hence, 

the flow moves next to the inner walls of the bifurcation. High shear is developed, 

as a result, on the flow divider. On the contrary, near-wall fluid in the parent vessel 

has less inertia and can be greatly deflected. This generates secondary motion
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Figure 1.4: Steady flow in a rigid curved pipe and the presence of secondary 
motion with the formation of two Dean vortices (Reproduced after Caro 
et ah, 1985). Due to skewness of the velocity, high shear (H) develops on 
the outer wall of the curvature and low shear (L) on the inner wall.

in the transverse plane, while low shear regions develop on the outer walls of the 

bifurcation. New boundary layers develop along the inner walls that eventually re­

establish the Poiseuille flow type in both daughter branches further downstream. 

At very high initial velocities and sharp angles, large pressure gradients may cause 

separation of the flow and the formation of a recirculation zone or flow reversal at 

the outer walls (Figure 1.5b). Such zones are characterised by high particle residence 

times and low values of wall shear stress.

Arterial geometrxj

It is apparent from the above analysis that the exact geometry of a tube can influence 

the distribution of the velocity and wall shear stress, and can therefore alter the 

characteristics of the flow giving rise to various forms of secondary motion (Schroter 

and Sudlow, 1969; Caro et ah, 2002; Sherwin et al., 2000b). In fact, arteries in 

vivo are in general three-dimensional and non-planar, in addition to being branched 

(Caro, 2001; Caro et ah, 1996), implying that a detailed knowledge of their geometry 

is often essential to identify local distributions of flow and wall shear stress.
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L

m
Figure 1.5: Steady flow in a bifurcation (a) without separation, (b) with the 
formation of a separation zone (Reproduced after Caro et al., 1985). High 
shear (H) is developed on the flow divider, whereas low shear (L) appears 
on the outer walls.

1.2.3.2 U nsteady flow

Due to the contractions of the heart, blood flow in arteries is highly pulsatile. Flow 

waveforms can be, therefore, very complex to analyse, also due to peripheral wave 

reflections, local instabilities, and other disturbances (Parker, 1977). Some under­

standing is gained through more simple unsteady cases such as that of a sinusoidally 

periodic pressure gradient. The dimensionless parameter which is usually used to 

describe unsteady flows is the Womersley number, denoted as a (or Wo),  defined 

by Womersley (1955) for flow in a straight pipe:

where u> (— 2n/T) is the frequency of the oscillation and u (=  n/p) is the kinematic 

viscosity. The Womersley number is essentially a frequency parameter which char­

acterises the unsteady flow. For low frequencies, the flow is considered quasi-steady,

(1.3)
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that is, the velocity preserves its parabolic profiles throughout the cycle and is in 

phase with the oscillating pressure gradient. For high frequencies, there is a phase 

lag between the velocity and pressure waveforms, and the velocity profiles are not 

parabolic.

This distinction in the behaviour of the fluid at different values of the Womersley 

number can be identified also for non-circular geometries, such as that of a channel 

(Loudon and Tordesillas, 1998), which is going to be discussed in more detail in 

Chapter 3. Due to differences between the exact Womersley solutions for unsteady 

flow within a circular tube and a channel (the former involving the use of complex 

Bessel functions, Landau and Lifshitz, 1959), there may be differences in the devel­

opment of pulsatile flow in these geometries. However, it is predicted that the flow 

patterns are qualitatively similar; quantitative differences may be related with the 

range of Womersley values at which some flow pattern changes occur (as, for exam­

ple, changes in the frequency and/or the amplitude of the waveform with increasing 

or decreasing values of a), since the dependence on the parameter is different for 

each case.

Figure 1.6 shows velocity profiles (non-dimensionalised according to local maximum 

velocity) at three different Womersley numbers for flow between two parallel plates 

(After Loudon and Tordesillas, 1998)12. For a <  1, the velocity and pressure wave­

forms are in phase and the velocity profiles are parabolic (quasi-steady flow). For 

a  =  1, the phase lag between velocity and pressure has already appeared, but the 

velocity profiles remain in general parabolic. For higher frequencies, the phase lag 

is well established. The phase lag occurs due to the inability of the faster moving 

flow (with high inertia) to keep up with the changes in the pressure gradient. As a 

result, the highest velocities are no longer at the centre; instead, they are closer to 

the wall. At high frequencies, adjacent fluid particles may end up moving in opposite 

directions. The Womersley number in the human aorta can take values between 10 

and 15 (Caro et al., 1985; Parker and Caro, 1993), implying that the unsteady flow 

may play a role in the larger arteries.
12A more detailed discussion on this is presented in Chapter 3. See also Appendix A .l for a 

detailed derivation o f the Womersley solution for flow between two parallel plates.
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Time course of pressure gradient  causing flow:

Figure 1.6: Non-dimensional velocity profiles (bottom) when the pressure 
gradient is oscillating sinusoidally (top). Three different Womersley num­
bers (a or Wo) are considered for flow between two parallel plates (After 
Loudon and Tordesillas, 1998).

A sinusoidally oscillating pressure gradient alone has a zero net flow and is clearly not 

ideal for describing flow in the arteries where blood has to progress distally within 

the blood vessels. A summation of a steady (mean) and an oscillatory component is 

often assumed instead1,3. Physiological waveforms vary, depending also on the site 

of measuring. For further details on features of unsteady flows see Parker (1977); 

Parker and Caro (1993); Caro et al. (1985); Pedley (1995); Loudon and Tordesillas 

(1998).

i:!See also relevant discussion in Loudon and Tordesillas (1998).

30



Two other non-dimensional parameters can be used to describe unsteady flows, the 

Strouhal number, St:
D

UT
(1.4)

or its inverse, the reduced velocity, Ured (Sherwin and Blackburn, 2005):

Ur ed —
UT
~D (1.5)

where U is the velocity scale (for example, mean cross-sectional velocity), and T 

is the period of the pulse. The reduced velocity parameter can be seen as the dis­

tance (in diameters) that the mean flow covers within one period (axial information; 

Sherwin and Blackburn, 2005).

1.2.3.3 Navier-Stokes equations

Fluid flows, including blood flow, can be sufficiently described in a mathematical 

form by a group of partial differential equations, known as the Navier-Stokes equa­

tions. These are based on the laws of motion (momentum equation), conservation of 

mass (continuity equation) and conservation of energy (energy equation), and apply 

to most of the common fluids.

The Navier-Stokes equations can be written in conservation form using vector nota­

tion as (Sherwin and Mathews, 2004):

8
ätu + äiFl + ä?F»+ dz

d „  d a
Fz ~ Tx G x + d~yGy + d~zGz ( 1.6)

where the vectors of unknowns and the inviscid fluxes are described as:

p pu pv pw

pu pu2 -1- p pvu pwu

pv , Fx = puv > F v  = pv2 + p ,  F ,= pwv

pw puw pvw pw 2 +  p

.  pE . puH pvH , pw H

and the viscous fluxes as:

31



0 0 0

&xx Oyx cr zx

&xy >G y ~ ayy ,G Z = CTZy

&XZ °yz CTzz

(a ■ u)x + kTx _ (cr • u)ÿ + kTy (cr • u ) 2 -1- kTz

where:

(cr • u)x =  ucrxx +  vaxy +  wa:

(cr • u)v = U C T y x  + V C T y y  + WCT,

(cr • u)z = ucrzx +  vazy -I- wo-

and u=[u,v,w]T, p =  p{T). k is the coefficient of thermal conductivity. The viscous 

stress tensor cr is written as:

(Tij —  p
( dui duj \ 

dxj ^  dxi ) ¡ ¿ y (V -u )

where Ui is the velocity in the ith direction, Xj is the j th direction co-ordinate and 

Sij is the Kronecker delta (5y= l, if i =  j ,  and 8ij—0, if i ^  j) , p =  p(T).

The Navier-Stokes equations of Equation 1.6 are non-linear and coupled, and there­

fore too complicated to solve. For an incompressible and Newtonian fluid of (con­

stant) density p and dynamic viscosity p, the Navier-Stokes equations can be ex­

pressed as: r\

p~5t +  ’ v )u = “ V p  +  mV2u; (1J)

V u =  0

where u=[u, v, to] is the velocity vector and p the pressure.

1.3 Motivation, objectives and general approach

Motivated by the aforementioned considerations, this thesis investigates flow pat­

terns and wall shear stress distributions near branch ostia of (i) the descending
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thoracic aorta (in Chapter 3) and (ii) the aortic arch (in Chapter 4). In the investi­

gation of flow around aortic branches of the thoracic aorta, this study attempts to 

address for the first time age- and species-related changes in the wall shear stress 

distribution, and hence to find correlations between flow patterns and locations of 

atherosclerotic lesions. In the investigation of flow within the aortic arch and its 

major branches, this work aims to establish the flow characteristics and distribution 

of wall shear stress in the aortic arch of the mouse, to draw a comparison with the 

human case, and to find correlations with in vivo lesions.

1.3.1 Flow near side branches in the descending thoracic aorta

This project is particularly motivated by the observation that atherosclerotic lesion 

patterns vary with species and/or age near intercostal ostia in human, rabbit and 

mouse aortas—as described in Section 1.2.2 (Figure 1.7). A downstream triangular 

pattern has been observed in children and immature rabbits; a lateral and an up­

stream streak pattern has been seen in young and older adults, respectively. The 

former has also been seen in mature rabbits. Finally, a pattern completely surround­

ing the origin of the intercostal artery has been identified in elderly people and mice 

of all ages (reviewed by Weinberg, 2002).

Flow near an orifice on a wall, which has potential application to mouths of side 

branches such as intercostal ostia, has been previously studied mathematically by 

Sobey (1977a,b); Pedley (1980) and Tutty (1988) in steady flow, and by Tuck (1970) 

and DeMestre and Guiney (1971) in unsteady flow14. However, these studies were 

limited to relatively low Reynolds numbers and simplified flow conditions.

Our main hypothesis is that the change of lesion patterns with age and species may 

reflect differences in the distribution of wall shear stress (WSS) around intercostal 

ostia. Our main objective is to test this hypothesis and attempt to find correlations 

with in vivo observed lesion maps. The approach we adopt is to investigate, with the 

use of computational fluid dynamic methods, the effects of haemodynamic, geomet­

ric and other factors on shear stress patterns on the aortic wall around the origins of 

side branches, for such factors can vary in an age- and species-related way. In doing

14See Chapter 3 for a detailed review o f prior studies related to this project.
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H u m a n

Figure 1.7: Observed atherosclerotic lesions around intercostal ostia in hu­
mans [(a) Schroter, R. C., unpublished data from an anorexic young woman, 
(b-c) Sloop et al. (1998), (d) Mitchell and Schwartz (1965)], rabbits (Barnes 
and Weinberg, 1999), and mice (McGillicuddy et ah, 2001), and their vari­
ation with age.

so, we adopt an approach1'’ in which the simplest possible geometry representing a 

side branch is taken at first; additional conditions are included later to increase the 

complexity of the model and represent more accurately the physiology in vivo. This 

approach has significant advantages: (i) it allows examination and quantification of 

haemodynamic, geometric and other features that are difficult to measure in vivo, 

(ii) it enables identification of individual mechanisms and their influence on the wall 

shear stress, and (iii) it gives an insight into the use of more generalised (reduced 

model) arterial geometries versus subject-specific vessel geometries.

This project attempts to address the following specific questions:

• Can flow and WSS patterns explain atherosclerotic lesion patterns seen in 

human, rabbit and mouse aortas? 15

15Often referred to as a r e v e rse  en gin eerin g  approach.
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• Which features of the flow are significant?

• Which mechanisms can explain the variation of lesion patterns between differ­

ent species and/or ages?

The main contributions of this project are: (i) a systematic analysis of the effects 

of steady and unsteady flow parameters, as well as of geometric features, on the 

distribution of shear stress on the aortic wall near idealised and more realistic models 

of intercostal ostia, (ii) an understanding of the underlying role of haemodynamics in 

atherosclerosis, (iii) a consideration of age- and species-related effects not previously 

attempted, and (iv) an appreciation of the use of reduced model geometries in the 

research for understanding complex systems.

1.3.2 Wall shear stress in the aortic arch

During the past few years there has been an increased interest in the use of the 

mouse as a model for studying atherosclerosis. The apolipoprotein E-deficient mouse 

has shown several types of lesions throughout the arterial tree that share many of 

the features seen in human plaques (Nakashima et ah, 1994, see Figure 1.2) and 

have contributed to identifying the processes involved in atherogenesis. More re­

cently, Johnson and Jackson (2001) have documented the development of advanced 

atherosclerotic plaques and their susceptibility to rupture in apolipoprotein E knock­

out (apoE-/-) mice; the ruptures occur predominantly in the brachiocephalic (in­

nominate) artery (BCA)—the first major branch of the aortic arch16. Numerous 

studies have since attempted to characterise such advanced plaques (McAteer et al., 

2004; Won et al., 2007). Won et al. (2007) has shown that in lipoprotein receptor- 

deficient (ldlr-/-) mice lesions occur at the outer wall of the brachiocephalic artery, 

as well as at the inner (lesser) curvature of the aortic arch.

The success of the mouse as a model of atherosclerosis has also sparked investigation 

of the haemodynamics within the mouse aortic arch (Suo et al., 2007; Feintuch et al., 

2007). However, flow within the human aortic arch has long been studied (Farthing,

16The brachiocephalic (innominate) artery is quickly divided into the right common carotid artery 

(RCCA) and the right subclavian artery (RSCA).
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Figure 1.8: Summary of observed atherosclerotic lesion sites in the arch 
and thoracic aorta of humans, dogs, pigs and rabbits (Reproduced after 
Farthing, 1978). Arrows imply similar patterns. Inlet was added to show 
the names of the branches: brachiocephalic artery (BCA), left common 
carotid artery (LCCA), left subclavian artery (LSCA), and intercostal ar­
teries, which in humans, mice and rabbits are found in pairs.

1978; Shahcheraghi et al., 2002; Jin et al., 2003) and has shown several different 

distributions. Farthing (1978) has collected past observations of lesions within the 

arch and thoracic aorta of humans, dogs, pigs and rabbits that show some discrep­

ancies (Figure 1.8, Reproduced after Farthing, 1978). Hence, the haemodynamic 

environment of the aortic arch is still not well established.

Our main objective is to establish the wall shear stress distribution, and the flow 

characteristics, within the aortic arch of the wild-type mouse and compare them with 

those in humans. The Womersley and mean Reynolds numbers for each of these two 

species are a «  2 and Re «  100 for the mouse (the typical heart rate in the mouse is
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approximately 450 beats/min. Hartley et al.. 2000), and a ~  17 and Re m 1500 for 

the human (Suo et al., 2007; Feintuch et al., 2007). Computational models based on 

magnetic resonance (MR) images are used. Three geometries of different wild-type 

mice are obtained from MRI datasets (one imaged ex vivo and two in vivo) in an 

attempt to find flow features that are common in the mouse anatomy, independently 

of the individual geometries. Furthermore, two approximated human geometries are 

used to allow comparison with the mouse results.

This project attempts to address the following specific questions:

• What values does the wall shear stress take at the outer wall of the bra­

chiocephalic artery (in relation to the known location of advanced lesions in 

apoE-/- mice)?

• What is the distribution of wall shear stress at the inner (lesser) curvature of 

the aortic arch?

• What values does the shear stress take on the walls near the branch flow 

dividers?

• How is the flow developed within the aortic arch and at the entrance to the 

descending aorta?

• Does the detailed anatomy play a significant role?

The main contributions of this project are: (i) an analysis of the haemodynamic 

environment of the mouse aortic arch and major branches in relation to known 

localisation of atherosclerotic lesions, and (ii) a correlation with the human case.

1.4 Publications

Parts of the results presented in Chapter 3 have been published in the Journal of 

the Royal Society Interface (Kazakidi et al., 2008, published online before it appears 

in a printed issue). In addition, two conference abstracts have been published in 

the Journal of Biomechanics (Kazakidi et al., 2006) and in Heart Online (Kazakidi
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et al., 2007) concerning work of Chapter 3. During the course of this thesis, a con­

ference paper was accepted in the 16th Annual Conference of the CFD Society of 

Canada, Saskatoon, Saskatchewan, Canada, 9-11 June, 2008 (Sherwin et al., 2008). 

Posters with results of Chapter 3 and Chapter 4 were presented in five Physiological 

Flow Network meetings, two Hounsfield memorial lectures, two Cardiovascular Tech­

nology Network symposiums, the 5th World Congress of Biomechanics, the BSCR 

& BAS joint 2006 Autumn Meeting and the Bioengineering 08 conference. Oral 

presentations were given at the Departments of Aeronautics and Bioengineering, 

IC; the Inaugural International Conference of the Engineering Mechanics Institute 

(EM08) at the University of Minnesota, Minneapolis, USA, 18-21 May 2008; the 

RAEng UK Focus for Biomedical Engineering Futures Meeting, London, UK, 15-17 

September 2008; and the 7th European Fluid Mechanics conference (EUROMECH), 

Manchester, UK, 14-18 September 2008.

1.5 Synopsis of thesis

In the remainder of the thesis, Chapter 2 introduces the methodologies used, in par­

ticular the computational fluid dynamics and modelling methods. Chapter 3 deals 

with the investigation of flow and wall shear stress around the origins of intercostal 

arteries in the descending thoracic aorta. The cases of steady and unsteady flows are 

examined separately, and geometric considerations are taken into account. Chap­

ter 4 discusses wall shear stress results in the aortic arch and its major branches. 

Three mouse anatomies and two approximated human geometries are examined. 

This thesis closes with Chapter 5 where some final conclusions are given together 

with suggestions for further work.
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Chapter 2

Methods

This chapter briefly describes the fundamental theories of the methodologies and 

numerical algorithms used in the present work. The computations described in 

Chapter 3 were performed with the flow solver Nenrar, a spectral//ip element code 

(open-source). Section 2.1 introduces, therefore, the mathematical formulation of 

spectral//ip element methods. The Nenrar code utilises three-dimensional unstruc­

tured hybrid meshes obtained with a mesh generation technique which is described in 

Section 2.2. Chapter 4 presents anatomically correct geometries reconstructed from 

magnetic resonance imaging (MRI) datasets. The techniques used to perform such 

reconstructions are outlined in Section 2.3. Most of the computations of Chapter 4 

were performed with the commercial flow solver Fluent® 6.3. This is a finite volume 

solver which implements several numerical solution algorithms. The mathematical 

formulation of the finite volume methods (FVM) is out of the scope of this thesis 

and, hence, will not be discussed; instead, the book of Ferziger and Peric (2002) is 

suggested for reference. Other commercially available packages used for some of the 

models, such as Amira®—an image segmentation software—and Gambit—a mesh 

generation software for Fluent®—will also not be discussed in detail.



2.1 Spectral/ h p  element methods

2.1.1 Numerical methods: from finite element to spectral//ip ele­

ment methods

Numerical methods are widely used in finding approximate solutions to partial differ­

ential equations (PDE). These involve, in general, subdivision of the solution domain 

into a finite number of subdomains ( elements) and discretisation of the equations 

to be solved on the finite grid of elements. There are numerous formulations and 

discretisation schemes today. See Ferziger and Peric (2002) for a description of the 

most commonly used schemes.

In the original variational form of the finite element method the solution of the 

differential equation is found through a minimisation problem for which the solution 

is identical to the function that minimises a certain functional (Norrie and De Vries, 

1978). In the Rayleigh-Ritz approach the solution is approximated with a finite se- v 

ries of functions for which the unknown coefficients are solved in the (global) solution 

domain. Standard finite element methods (FEM) require conversion of the partial 

differential equation into an integral form and a weak form, and discretisation of 

the approximate solution with a linear combination of basis functions ( expansion 

basis). These functions are usually piecewise linear and are defined locally in each 

subdomain. Spectral element methods (SEM), on the other hand, use a finite set of 

high-order polynomial bases to approximate the solution. This is not to be confused 

with the spectral methods (SM) which include instead representation of the solution 

globally in the solution domain. There are two main approaches for the implemen­

tation of spectral methods: the collocation and the Galerkin formulations.

Spectral//ip element methods lie somewhere among the aforementioned standard nu­

merical schemes by utilising the Galerkin formulation and sharing properties from 

both the finite element and spectral methods: “A spectral//ip element method is 

either a high-order finite element method or a multi-domain spectral method” (Es- 

killson and Sherwin, 2005). Their advantage is associated with the accuracy of the 

solution, the type of convergence of the approximate solution to the exact solution, 

stability errors, cost of computational work and other.
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In the finite element methods the error in the numerical solution is reduced by 

increasing the number of elements in the mesh, while keeping the same expansion 

basis for the representation of the approximate solution. If h is the characteristic 

size of the elements in the mesh, convergence is reached by reducing h (that is, as 

h-+ 0). This type of convergence is known as h-type refinement, which helps capture 

complex geometries. In polynomial spectral elements, convergence is achieved by 

increasing the order p of the polynomial in the expansion basis (that is, as p—> oo), 

while the domain is the global solution domain. This is the p-type refinement in 

achieving convergence. While in the /i-refinement the solution error decreases by a 

fixed factor, in the p-refinement the convergence is exponential when the solution is 

sufficiently smooth; implying a much faster solution (rapid decrease of the solution 

error) which significantly reduces the computational cost and greatly enhances the 

accuracy. Therefore, for smooth solutions the p-type refinement is advantageous 

over the h-type refinement.

The ideal situation is that in which both types of refinement take place. This is 

known as the hp refinement. Hence, for smooth solutions hp refinement takes ad­

vantage of both the flexibility of the finite element methods in capturing complex 

geometries and the high accuracy of the polynomial spectral methods. Convergence 

is reached by both decreasing the size of elements in the mesh (as h—* 0 ) and in­

creasing the polynomial order of the expansion (as p—» oo).

Hp-finite element methods (ftp-FEM) make use of modal (or hierarchical) expan­

sion bases, that is, the expansion of order P  contains all the lower-order (less than 

P) expansions and the unknown coefficients have no physical meaning. Spectral 

element methods (SEM), on the other hand, use nodal (non-hierarchical) expan­

sion bases in which the approximate solution is evaluated at a set of pre-defined 

points (or nodes). Hence, the unknown coefficients have a physical meaning and 

correspond to the values of the function at the nodes of the element (nodal values). 

The general Galerkin formulation is the same for both hp-FEM and SEM, despite 

the differences in their implementation. Spectral//ip element methods are more gen­

eral and include both techniques, using either modal or nodal polynomial expansions.
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In the following sections, we follow Karniadakis and Sherwin (2005) to describe the 

basic formulation of the spectral/hp element methods (first introduced in Sherwin 

and Karniadakis, 1996). We start with the Galerkin formulation in Sections 2.1.2 

and 2.1.3 and we continue with the expansion bases in one and multiple dimensions in 

Section 2.1.4. The basic elemental operations for the implementation of spectral/hp 

element methods are described in Section 2.1.5. Finally, Section 2.1.6 presents the 

spectral//ip approach for solving the incompressible Navier-Stokes equations.

2.1.2 Method of weighted residuals

The standard Galerkin formulation is based on an older approximation technique, 

the method of weighted residuals (MWR), in which the weighted residual (error) 

between the exact and the approximate solution is required to be zero. First, let us 

define the L2(fi) inner product (Legendre inner product) as:

( / . » ) =  f  /(x)g(x)dx (2.1)
J n

where f (x ) ,g (x )  are functions defined in the domain fi.

We consider a linear differential operator D, defined in a domain fi, which acts 

on a function u and produces a function /  while the equation is constrained by 

suitable boundary conditions:

D(u(x,t))  =  f ( x , t )  (2 .2 )

We approximate the solution u(x, t) by a function us(x, t) such that:

Ndof
u(x, t) «  us(x, t) =  u0(x, t) +  ^ 2  «»(f)$ i(x) (2.3)

»=1

The function u<5(x, t) is a linear combination of basis functions, where $ i(x) are ana­

lytic functions ( trial or expansion functions), Ui(t) are unknown coefficients (Ndof), 

and u0(x, t) is a function satisfying the initial and boundary conditions. Substitu­

tion of the approximation u6 of Equation (2.3) into the differential operator D  of 

Equation (2.2) results in a solution that, in general, is not equal to f (x , t ) .  The 

error or residual R between the approximate and the exact solution is then:

R(us) =  D(us) - f t  0 (2.4)
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The unknown coefficients ut(t) are determined according to the method of weighted 

residuals, which requires that the Legendre inner product of the residual R and a 

test or weight function V j ( x )  be zero over the domain:

(V»(x), R) =  f  VjR{us)dx = 0. j  =  1, Ndof (2.5)
Jn

The choice of the test (weight) function v3, together with the choice of the expansion 

( trial) functions 4>i(x) that describe the approximate solution, determines the dif­

ferent numerical methods; including the collocation, finite volume/subdomain, least- 

squares, and Galerkin methods. In the latter formulation, the weight functions are 

taken to be the same as the trial functions: V j ( x )  — (Bubnov-Galerkin method). 

In the more generalised form of the Galerkin method (the Petrov-Galerkin method), 

the test functions Vj  are taken to be similar to the trial functions $ j(x ), but not 

identical: V j ( x )  /

2.1.3 Galerkin formulation

2.1.3.1 Basic concepts

A descriptive introduction to some fundamental concepts of the Galerkin formula­

tion is presented here by considering the one-dimensional Helmholtz equation. The 

Galerkin problem can then formulate in three steps:

• Problem definition

Suppose the one-dimensional Helmholtz equation:

D («) -  Au =  /  (2.6)

where A is a real positive constant. If the solution is considered in a domain fi =  

{a;|0 < x <  1 }, then the following boundary conditions can be chosen:

“ (0) =  9D, ^ ( 1 )  =  9N (2.7)

where go  and g s  are constants. The former condition is the Dirichlet (or essential) 

boundary condition applied on the solution, whereas the latter condition constraints 

the derivative of the solution and is known as the Neumann (or natural) boundary 

condition. 1
1 For more details on the methods o f weighted residuals see references in Karniadakis and Sherwin 

(2005).
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• Weak form and the Neumann boundary conditions

To construct the Galerkin problem, we write Equation (2.6) in its integral and weak 

forms. Following the method of weighted residuals, this is achieved by multiply­

ing Equation (2.6) by an arbitrary test (weight) function v(x), which is zero on all 

Dirichlet boundaries, and integrating over the domain fl (integral form):

(v
/“* d^u f x f x

,D ( u ) ) =  I v——,̂ dx — /  Xvudx = /  v f  dj
Jo ox Jo Jo

( 2.8)

Integrating Equation (2.8) by parts, produces the weak form:

f x d v d u  f x f x
I  — d x +  /  Atmdx +  /  v f d x  =  

Jo OX OX J0 Jo
du
dx

l

J 0
(2.9)

According to the Galerkin approximation, the solution to the original problem of 

Equation (2.6) is the solution to the weak form of the problem of Equation (2.9) 

when the solution u(x) is approximated by a discrete function u6(x). The function 

v(x) is also approximated by a finite function, v6(x). By definition, v(0) =  0, and 

by imposing the Neumman boundary condition [du(\)/dx =  gw], Equation (2.9) 

becomes2:

f 1 a.,6 rl f  l
/  —— -—dx + /  Xvsusdx +  /  vsfd x  =  i/(l)gAr (2 -10)

Jo dx dx Jo Jo

• Dirichlet boundary conditions (lifting)

To include the Dirichlet boundary conditions in the formulation, we express the 

approximate solution, us, as the sum of a known, uD, and an unknown, uH, function:

us = u D +  uH (2 .11)

The known ( lifted) function uD is defined on the Dirichlet boundaries and satisfies 

the Dirichlet condition: uD(dQo) — 9d • The unknown function uH is a homoge­

neous function defined in the interior of the solution domain; it has, therefore, a zero 

value on the Dirichlet boundaries: uw(9il/j) =  0. This process is known as lifting of

2 Equation (2.10) shows that the Neumann boundary conditions are incorporated automatically 

(naturally) in the Galerkin formulation.
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a known solution and is important because it reduces the complexity of the problem 

by limiting the approximate solution within the interior of the solution domain.

Inserting Equation (2.11) into Equation (2.10) and arranging the terms into un­

known (left-hand-side) and known (right-hand-side) leads to:

/ '  ^ ^ d x +  [ '  A „ V d x  =  v‘ m 9N-  [ '  ¿ f i x -  f  A x V d x -  [ '
Jo dx dx Jo Jo Jo Jo dx

dvs duDdx
dx
( 2.12)

Since both the homogeneous solution, uH, and the test function, v6, are finite expan­

sions and the right-hand-side terms are known, Equation (2.12) is a finite-dimension 

linear algebraic system which can be solved in a matrix form.

Another important property of the lifting process is that the homogeneous solu­

tion can have the same expansion space as the test function since both are zero on 

the Dirichlet boundaries3. This allows for the Galerkin4 spectra\/hp method to be 

applied by choosing the expansion basis of the homogenous solution, uH, to be the 

same as the expansion basis of the test function, v6.

2.1.3.2 M atrix form

The approximation of the solution it*5, as defined by Equation (2.3), and the test 

function, vs, can be expressed in matrix form as:

Ndot

^ (x j ,t )  =  ûj(t)$ j(xj) =  $ Tû (2.13)
i=l
Ndo f

A x j ,  t) = ' £  t>i(0*j(xj) =  * r v (2.14)
i=l

where both contain the same expansion basis $ i(x j ) and û[i] =  ûj, v[i] =  fy, 3>[i, j] =  

$i(xj) .  Equation (2.12) can then be written in a matrix form:

BnH = f (2.15)
3See Karniadakis and Sherwin (2005) for a full discussion on the lifting process.
4 For more details on the properties o f the Galerkin approximation see Karniadakis and Sherwin

(2005).
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where uH is a vector of the unknown coefficients of the homogeneous expansion ba­

sis, B is a constant matrix with components resulting from the inner products of the 

homogeneous expansion functions and their derivatives, and f  is a vector including 

the force function and the Dirchlet and Neumann boundary conditions.

If the domain Q in the above formulation is divided into more elements, Nei (h- 

refinement), the (global) matrix B can be subdivided into Be (elemental) submatri­

ces, each associated with one element and the local expansion functions. However, 

there are more local degrees of freedom than global degrees of freedom due to the 

requirement that the global expansion be C° continuous, as we shall demonstrate in 

Section 2.1.4.1.

2 .1 .4  E xpan sion  bases

2.1.4.1 Standard element

A fundamental concept in the spectraljhp element methods, which simplifies their 

numerical implementation, is the definition of a standard element within which stan­

dard local expansion bases can be defined. The global expansion bases are then 

assembled from these local bases as it will be shown in the following.

Suppose a solution domain fl =  {x  | 0 < x < ¿}, which is subdivided into Nei 

finite non-overlapping elements, fie 5:

fie =  {x  | i e- i  < x < xe}, e = l , 2 , ..,Nei (2.16)

We define a standard element, ilst, in terms of a local co-ordinate £, such that:

=  tfl -  1 < £ < 1} (2.17)

A local expansion basis, <&(£), can now be defined within the standard element QSf. 

Via a co-ordinate transformation, xe(£), the global co-ordinate x (x 6 fle) can be 

written as a function of the local co-ordinate £ (£ 6  Consequently, the global 

expansion modes, $ j(z ) , can be expressed in terms of the local expansion functions.

Suppose the example of a linear finite element decomposition over three non-equal 5

5 The union o f these finite elements produces exactly the original space fi.
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elements, Nei =  3 or f l1, fl2, Q3 (middle of Figure 2.1). There are four degrees of 

freedom in the expansion (Nd0f  =  4) and, hence, there are four global expansion 

modes $ 0(x), $ 1(1)1 $ 2(^)1 $ 3(-c) over the solution domain Q (top of Figure 2.1). 

However, in every element the global modes can be constructed by two linearly- 

varying functions (bottom of Figure 2.1). An appropriate local expansion basis 

defined within the standard element, Qst, would be:

M O  =  <
2 ’
0 ,

£ € fist

£ $■ ^si
01 ( 0  =  <

l± i2 ’
0 ,

£  €  f 1st 

£ &st
(2.18)

We can now transform the global co-ordinate x to the local co-ordinate £, and vice 

versa, via the mapping xe(0 :

xe (0 1 +É
* -e - l  "t~ n %e 1 £ € flst (2.19)

The finite element approximation, us, which was expressed in terms of the global 

epxansion modes, $¿(2;), can now be written in terms of the local expansion modes,

0p(O. as:

»doj- 1 Ncl p
us( x , t ) =  ^ 2  *t$i(x) =  J 2 ^ 2 u ep<t>ep (0  (2 .20)

i= l e= l p=0

where P  is the polynomial order of the expansion. However, the mapping is not 

complete without ensuring that the approximate solution us is continuous every­

where in the domain. In the above example, there are six local degrees of freedom 

[Nfoj =  Nei '(P +  1) =  6 ; P =  1, Nei =  3], but only four global degrees of freedom 

(Ndof =  4). Hence, we apply two constraints on the local coefficients to ensure C° 

continuity:

-1 -2u{ =

û2 -  Û3 u 1 — “ 0
(2.21)

By denoting with ûg a vector o f the global coefficients and ûj a vector of the local 

coefficients, then the mapping from local to global bases can be expressed in matrix 

form as:

û, =  w4ûg (2 .22)
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global bases

A« j

local bases

Figure 2.1: Local and global expansion bases and coefficients for a three- 
element discretisation of the solution domain U (After Karniadakis and 
Sherwin, 2005).

where A  is known as the assembly matrix, which is very sparse.

This type of elemental decomposition and further partitioning of the solution (/i-type 

refinement) is advantageous for resolving efficiently arbitrarily complex geometries 

and flows.

2.1.4.2 One-dim ensional expansion bases

Navier-Stokes equations in complex geometries often introduce localised flow struc­

tures that are difficult to resolve. An accurate solution can be reached by increasing
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the polynomial order of the expansion basis within each element (p-type refinement). 

Numerically the most efficient expansions are those that use orthogonal or near or­

thogonal polynomials, as they can lead to well-conditioned matrices. There are two 

choices for high-order expansions, modal and nodal expansion bases. As mentioned 

in Section 2.1.1, the main difference between these two categories is associated with 

the hierarchy in their construction. Modal expansions are hierarchical, that is, the 

expansion set of order P  contains the set of order P  — 1 and, hence, the basis is 

constructed from lower-order expansions without altering the existing modes. Nodal 

expansions, on the other hand, are non-hierarchical expansions, that is, the expan­

sion set of order P  does not form a subset in the set of order P  + 1. Thus, a change 

in the order of polynomial requires also change of all modes. In nodal expansions, 

the approximate solution is evaluated at pre-defined points (nodes) and, therefore, 

the unknown coefficients have a physical meaning corresponding to the values of the 

function at the nodes of the element.

Modal expansions are advantageous because they can use orthogonal or near orthog­

onal polynomials. However, h-type elemental decomposition on modal expansions 

adds an extra difficulty due to the requirement of continuity at the elemental bound­

aries. This is usually resolved by a boundary and interior decomposition, for which 

the local expansions are chosen such that the modes can be divided into boundary 

modes, which have a magnitude at one of the elemental boundaries and zero value 

at all other boundaries, and interior modes, which are zero on all boundaries and 

only have a magnitude in the interior of the element.

Modal expansion bases usually make use of the Jacobi polynomials, Pp ,/3(x), which 

is a family of solutions to a singular Sturm-Liouville problem. Defined in the region 

( - 1  <  x  < 1) this is expressed as:

_d_
Ax

(1 - x ) 1+Q(1 -I- x )1+^-j—Fp’^(x) 
dx =  Ap(l -  x )“ (l +  x )ßP£'ß(x) (2.23)

where Ap =  — p(a + ß +  p +  1), and p is the polynomial order. Jacobi polynomials 

are orthogonal polynomials:
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Figure 2.2: Modal expansion modes for polynomial order P  =  5 (After 
Karniadakis and Sherwin, 2005).

J l { 1 -  * )Q(1 + x ) ^ F f ^ ( x ) ^ ( x ) d x  =  CSn (2.24)

where C  depends on a, ¡3 and p, and Spg is the Kronecker delta function. According 

to Equation (2.24), when Pp'^{x) is integrated with respect to (1 -  x)Q(l +  x)^, it 

is orthogonal to all polynomials of order less than p (Karniadakis and Sherwin, 2005).

Based on the above formulation, we define a p-type modal expansion in the standard 

element, flst =  {£| — 1 < £ < 1}, such that:

i l l
2 ’ p =  0

<j>p{0 »-► ipP(0  = o < p < p

i ± i
2 ’ p =  P

(2.25)

where P  is the maximum polynomial order, and ip(£) is used to denote the specific 

polynomial basis. Figure 2.2 displays the shape of the modes for a polynomial or­

der of P  =  5, normalised to a maximum value of one. The modes for p =  0 and
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Figure 2.3: Nodal expansion modes for polynomial order P  =  5 (After 
Karniadakis and Sherwin, 2005).

p =  P  are the boundary modes, whereas the others sire the interior modes. The 

Jacobi polynomial PpiV f) preserves significantly its orthogonality and results in an 

elemental mass matrix which is largely penta-diagonal.

Likewise, a nodal expansion in the standard element fist is defined as:

M O

1, *=<p

M O  =
K - 1) «  +  i )^ p ( 0

p (P  + i ) M 0 ) ( 0 - 0 ’
£ ^

0 < p < P  (2.26)

where Lp(£) is the Legendre polynomial, the derivative of which can be linked to the 

Jacobi polynomial Pph\{£) (Karniadakis and Sherwin, 2005). Figure 2.3 shows the 

shapes of the nodal modes for P  =  5, normalised to a maximum value of one. All 

modes are of the same order P  and can be distinguished into boundary and interior 

modes6.

2.1.4.3 Multi-dimensional expansion bases

Equivalent to the one-dimenional expansion bases, we can define a standard element, 

n st, in the two- and three-dimensional regions (Q2, Q3), as the bi-unit square and

6For further details on the expansion bases see Karniadakis and Sherwin (2005).
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Figure 2.4: Two-dimensional expansion basis constructed from two one­
dimensional modal expansions of polynomial order P =  4 (After Karni- 
adakis and Sherwin, 2005).

cuboid, respectively:

t ts t  =  Q 2 =  u i  -  l  < 6 , 6  <  1}

fi.* =  C3 =  { 6 - i  < 6 , 6 , 6 < i }
(2.27)

where 6  (* =  1,2,3) are the local Cartersian co-ordinates. This is the simplest 

approach applied over structured partitioning of the solution domain, that is, the 

mesh includes quadrilateral (in two dimensions) or hexahedral (in three dimen­

sions) elements. The two- and three-dimensional expansion bases, (¡>pq{6 , 6 ) an(l 

0pgr(6 , 6 , 6 ) respectively, can then be constructed by the product of one-dimensional 

bases (tensors):

0 p g (6 ,6 ) =  0 p (6 M /(6 ), 0 <p,q ,  p < P i , q < P 2

0 p g r (6 ,6 ,6 )  =  0p(6)<£g(6)0r(6)> 0 < P, Qi r, P < A ,  <7 < P2 , r <  P3

where Pi, P2, P3 may not necessarily be equal. Figure 2.4 illustrates the normalised 

modes of a two-dimensional expansion of polynomial order P  = 4, constructed from 

the product of two one-dimensional modal expansions of order P\ — P2 — 4. This 

is the most common hp-finite element expansion in a quadrilateral mesh. Nodal 

(non-hierarchic) expansion bases can be equally used for the construction of a two- 

dimensional expansion. The boundary and interior decomposition introduced for

(2.28)
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Figure 2.5: Mapping of a quadrilateral element to a triangular element, 
and vice versa (After Karniadakis and Sherwin, 2005).

one-dimentionai expansions can also be applied in multi-dimensional bases dividing 

the modes into boundary (non-zero on the boundaries— vertex and edge modes) and 

interior modes (zero on the boundaries—face modes7). This type of decomposition 

ensures a C° continuity across the elemental boundaries.

However, standard regions in higher dimensions are not limited to quadrilateral or 

hexahedral regions (structured meshes). Unstructured meshes are more commonly 

used and are especially favourable for providing local refinement and solutions in 

complex geometries. Therefore, the standard regions in two dimensions can be ei­

ther a triangle or a quadrilateral, whereas in three dimensions Qst can be a prism, 

pyramid, tetrahedron or hexahedron (hybrid domains).

To ensure numerical efficiency in the triangular or hybrid expansions equivalent to 

the efficiency of the quadrilateral or hexahedral expansions at any polynomial order 

P, it is best to use a tensor product similar to that of Equation (2.28). The main 

difficulty that arises is in the definition of a triangular or tetrahedral element in the 

Cartesian co-ordinate system. As seen on the right of Figure 2.5, for a standard 

triangular element to be described in the Cartesian system, the co-ordinates £1,62

7See Karniadakis and Sherwin (2005) for further details.
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Figure 2.6: Triangular expansion basis in two-dimensions for a polynomial 
order of P =  4 (After Karniadakis and Sherwin, 2005).

have to be dependent on each other: T 2 =  {(£ i ,£2)|_  1 < £ i ,£2 )£i +  £2 < 0}. This is 

resolved by defining a collapsed co-ordinate system, in which the local co-ordinates, 

771, 7/2 , are independent:

t 2 =  - 1 <  m,V2 <  0 } (2 .29)

The mapping of a triangle to a square, and vice versa, or—in other words—the 

transformation from the collapsed co-ordinate system to the Cartesian one, and vice 

versa, is illustrated in Figure 2.5 and is defined as:

m = -  l
( !  “  6 )  (2.30)

V2 =  £2

A two-dimensional expansion basis for a standard triangular element can then be 

defined as a tensor product:

^ ( £ 1 , £2) =  ^p(m)^pq{v 2) (2-31)

where tf’p iv i)> are a one- and two-dimensional tensors, respectively, known

as modified principal functions (see definition in Sherwin, 1997; Karniadakis and
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Sherwin, 2005). Figure 2.6 shows the expansion inodes for P =  4. A boundary and 

interior decomposition of the expansion modes can again be applied.

Similar to the definition of a triangular standard element in two dimensions, we 

can define local collapsed co-ordinate systems in three dimensions to enable the def­

initions of tetrahedral, prismatic and pyramidic standard elements. Tethrahedral, 

prismatic and pyramidic expansion bases in three-dimensions can again be defined 

as tensor products in terms of modified principal functions (see Sherwin, 1997; Kar- 

niadakis and Sherwin, 2005).

2.1.5 Elemental operations

2.1.5.1 Integration

The mathematical operations of integration and differentiation can be numerically 

performed by using the Gaussian quadrature. In one-dimensional expansions, the 

numerical integration is approximated as:

Q-1
/  "'*“ (&) (2.32)

J~l

where re* are constants (weights) and ( - 1  < £, < 1) is an abscissa of Q quadrature 

points (zeros) at which u(£) is evaluated. Gauss quadrature allows for the exact in­

tegration of polynomials of order higher than Q — 1, and has zeros within the region 

— 1 < & < 1, where i =  0, ...,Q  — 1. The location of the Gauss zero points depend 

on the quadrature. There are three types: the Gauss quadrature, in which the zeros 

lie in the interior of the interval; the Gauss-Radau quadrature, which includes a 

zero point at one of the boundaries of the element (usually at £ = —1); and the 

Gauss-Lobatto quadrature, which contains both end points of the element (£ = ±1).

Similarly, numerical integration in two dimensions, Q2 =  { —1 < £1,62 < 1}, and 

three dimensions, Q3 =  { - 1  < £1, 62, £3 < 1}, in the standard quadrilateral and 

hexahedral regions, respectively, are performed as:
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(2.33)

► (2.34)

For triangular, tetrahedral, prismatic and pyramidic standard regions, numerical 

integration is performed in a similar way via an elemental mapping with the use 

of appropriate collapsed co-ordinate systems as defined earlier (see Karniadakis and 

Sherwin. 2005).

2.1.5.2 Differentiation

The differentiation operation can be numerically performed as follows. Suppose the 

one-dimensional approximation:

P

u\x) = Y ,*v<t>p{x{trl ) (2-35)
p=0

where \ (£ ) -1  *s the mapping from local to global regions. The function can be dif­

ferentiated as:

d t/(Q  =  du*(Q d£ =  A  . d fr ,(Q d{ 
da: d£ da: Up d£ dx (2.36)

where d̂ -- and can be evaluated with equivalent techniques if the mapping 

\(£) is iso-parametric, that is, if it uses the same order expansion functions to map 

the co-ordinates as the dependent variables. The derivative is then evaluated on the 

nodal points, & ( - 1  < t <  Q — 1):

du(Q
d£

Q- 1

=  £ u(^ )
i=€. >= 0

dfr(Q
d£

Q-l
=  u(Zj)

i=i. j =0
(2.37)

where dij is a derivative matrix. A similar derivative matrix can be also defined 

in multiple dimensions. Note that in two and three dimensions derivatives like 

need to be re-expressed because £(y) in not known. For the full formulation of the
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differentiation operation within the different types of hybrid elements see Chapter 

4 in Karniadakis and Sherwin (2005).

2 .1 .6  S p e ctra l//ip  m od e l for the in com p ressib le  N avier-S tokes equa­

tions

Most of the computational results presented in this thesis have been calculated with 

the flow solver Nenrar (Karniadakis and Sherwin, 2005). This is a spectral//ip 

element code that spatially discrétisés the incompressible unsteady Navier-Stokes 

equations:

¿ill 1 2
—  + u • Vu = — Vp + i/V2uat p

V ■ u =  0
(2.38)

where p is the fluid density, p is the static pressure, and u is the kinematic viscosity.

The Nenrar code can be applied in all dimensions; however, in this thesis we 

present flow results in three-dimensional geometries with the use of fully unstruc­

tured meshes, as it will be discussed in more detail in the next section (Section 2.2). 

In the solver, the solution is represented within each element by a C° continuous 

high-order expansion of polynomial order P. Discretisation in time is performed via 

a high-order splitting scheme as presented in Karniadakis et al. (1991).

Equations (2.38) can be expressed as:

chi 1 „  _ . , . .■q7 =  — V P +  j/L (u) +  N (u)
àt p in D

Q =  V u  =  0
(2.39)

where L and N are the linear diffusion and nonlinear advection operators respec­

tively8, and Q gives the continuity equation. The time-splitting scheme in a domain 

ii is:
8L(u) = V 2 • u =  V (V  • u) — V  x (V  x u), N (u ) =  - 5(11 • V u +  V (u  • u)] (Karniadakis et al., 

1991).
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(2.40)
— un 1
Â T  =  E  ¿ W u " - ' )

9 = 0

: - - V p n+l  
P

(2.41)

J , -  1

9= 0
(2.42)

where n is the discrete time level (tn =  nAi), p "+1 is the time-mean pressure gradient 

in time A t, (3q are the coefficients of an Adams-Moulton family scheme of order 

Je, and 79 are the coefficients of an Adams-Moulton family scheme of order Ji 

(Karniadakis et al., 1991). The Dirichlet boundary conditions are:

un+1 =  ~v0 in dQ (2.43)

According to the scheme, fi satisfies incompressibility in fi: V  • fi = 0. This leads 

the pressure field to (in fi):

v 2pn+1 = v  . (2.44)

where the errors can be minimised by a mixed implicit/explicit boundary condition 

in dfi (Karniadakis et al., 1991):

d f '  +  l 
dn

n
J e -  1 Jt - 1

j ] ^ N ( u n-«) +  i / j ] i J , ( - V x ( V
9= 0 9=0

X un" 9)) (2.45)

Hence, the pressure gradient is evaluated, and so does the field fi from Equation 

(2.41). Equation (2.42) becomes the Helmholtz equation, in which the fi is the 

forcing function. The full velocity field is obtained at the time step n + 1.

2.2 High-order mesh generation methods

Spectral/hp element methods, introduced in Section 2.1, are advantageous over other 

discretisation methods in terms of accuracy and convergence. However, an accurate 

solution depends also on the quality of the mesh. For complex geometries it is 

preferable to use unstructured grids as they can improve the representation of the 

boundary and allow automation of the mesh generation procedure. Triangular and
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tetrahedral elements give great flexibility in generating unstructured meshes; how­

ever, unstructured tetrahedral elements are avoided adjacent to solid boundaries 

because they can be thin and long, and may hinder the approximation of the solu­

tion. A structured layer made of high-aspect-ratio elements (prisms or structured 

tetrahedra) is used instead near wall boundaries. This is known as the boundary- 

layer mesh and is particularly favourable for modelling viscous flows where the 

development of a boundary layer is part of the solution (Ferziger and Peric, 2002). 

For highly curved geometries, these approaches can be extended to generate high- 

order curvilinear (body-conforming) elements which greatly enhance the boundary 

description and allow for high-order discretisations to be applied (Sherwin and Peiro, 

2002; Peiro et ah, 2002a).

The mesh generation technique we present here is based on the Felisa system by 

Peiro et al. (1994) and produces three-dimensional high-order elements suitable for 

spectral//ip element discretisations. Figure 2.7 illustrates the example of a simple 

cylindrical geometry. The process involves first the geometrical representation of the 

computational domain (Section 2.2.1, Figure 2.7a); next, the generation of a three- 

dimensional coarse mesh, including a boundary-layer mesh (Section 2.2.2, Figure 

2.7b); and, finally, the transformation of straight (linear) tetrahedral elements into 

high-order curvilinear elements (Section 2.2.3, Figure 2.7c).

2.2.1 Geometry representation

Any arbitrary three-dimensional domain can be described as a volume consisting of 

several surfaces (boundary faces), which are bounded by curves (boundary edges), 

which are themselves defined by points. A successful discretisation strategy that 

ensures accurate representation of the computational domain ( boundary representa­

tion or B-Rep, Figure 2.7a) proceeds in the reverse order. An example is illustrated 

in Figure 2.8a. Points are given in Cartersian co-ordinates in a sequence that defines 

the orientation of the curve they describe. Each curve (edge) is then represented as a 

piecewise interpolation of a cubic spline through a series of points. A boundary sur­

face (face) is defined in a similar way, by the interpolation of spline curves through 

a rectangular network of points (surface patch). Within this network of data points, 

a local co-ordinate system (v, w, N) (see Figure 2.8b) defines the sequence of the
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Figure 2.7: Mesh generation process: (a) Boundary representation (B-Rep). 
(b) Unstructured coarse (linear) mesh. The interior surface of the boundary 
layer is shown at the bottom, (c) High-order spectral mesh.

interpolation splines through the points of constant v or constant w, as well as the 

orientation of the surface. The surface normal is chosen to point towards the interior 

of the domain to be discretised (see Figure 2.8c).

2.2.2 Coarse mesh generation

Once the geometric representation of the computational domain is obtained, a three- 

dimensional discretisation is achieved using the “bottom-up” approach (Peiro et ah, 

1994; Karniadakis and Sherwin, 2005). According to this technique the mesh is con­

structed by first discretising the boundary curves (edges), then the surfaces (based 

on the edge mesh), and finally the volume (based on the surface mesh). Hence, the 

starting point of the discretisation of a subsequent component is the end result of 

the discretisation of a lower dimension component. In practice, a three-dimensional 

coarse mesh (Figure 2.7b) is generated in three steps:
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BOUNDARYEDGES BOUNDARYFACES 3D DOMAIN

(a) DISCRETIZATION PROCESS

Figure 2.8: Geometry definition: (a) Decomposition of a three-dimensional 
computational domain, (b) Surface definition, (c) Surface and curves ori­
entation. (After Peiro et al., 1994).

• Surface triangulation

The surface boundaries are triangulated according to a generalisation of the advanc­

ing front technique (Peraire et al., 1993), in which the mesh elements are constructed 

simultaneously9 (Figure 2.9). The technique is flexible in terms of size and stretch­

ing of the elements it generates.

Boundary curves are discretised by placing nodes along the edges and by connecting 

successive nodes with straight lines. The length of the line segments, and hence 

the number of nodes, is controlled by a prescribed value of element size (defined in 

the background mesh). These straight lines form the initial front, which is updated 

continuously during the triangulation process. Each segment from a boundary curve

9 As opposed to the Delaunay triangulation in which the mesh is constructed by connecting points 

which are predefined in the domain (Peiró et al., 1994).



Figure 2.9: Surface triangulation using the advancing front technique. The 
nodes and triangular elements are generated simultaneously. (After Peirô 
et al., 1994).

becomes a side to a triangular element. New nodes and elements are generated on 

the surface simultaneously. The front is updated after each element generation until 

it is empty (or the surface is meshed). The process is similar for non-planar surfaces 

using a mapping from planar (local) to non-planar (global) components (see Peirö 

et al., 1994).

The resulting mesh can be controlled with the use of a background mesh, which 

defines a minimum mesh spacing, and local sources, which can improve the mesh by 

local isotropic distributions of elements. These provide the flexibility for the gener­

ation of elements of various sizes and stretching, as well as local mesh refinement, 

which is advantageous for complex geometries. •

• Viscous layer mesh generation

The boundary (viscous) layer mesh is generated near wall boundaries using a mod­

ified advancing layers method (Sayma and Peirö, 1995; Peirö and Sayma, 1995). 

New nodes are added in the interior o f the domain along lines almost perpendicular 

to the solid boundary and at lengths that are consistent with the desired bound­

ary layer thickness. Prismatic or structured tetrahedral elements are produced by 

connecting these nodes. The boundary layer is a three-dimensional extrusion of the 

surface mesh (bottom of Figure 2.7b). The viscous layer is extended over continuous 

solid surfaces within the domain. At the intersections with non-solid boundaries the 

prismatic elements create a quadrilateral face.
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• Volume mesh generation

The internal triangular faces of the boundary layer elements (bottom of Figure 2.7b) 

form the base (initial front) for the generation of tethrahedral elements within the 

three-dimensional domain. New nodes and linear tetrahedral elements are produced 

simultaneously, in an unstructured fashion, using an advancing front technique sim­

ilar to that for surface triangulation (Peiro et al., 1994). The front is updated 

continuously after the generation of each tetrahedron until the volume is filled.

2.2.3 High-order elements mesh

Curvilinear and body-conforming elements in complex geometries can be produced 

based on a coarse mesh of linear tethahedra generated with the techniques discussed 

in Sections 2.2.1 and 2.2.2. A similar “bottom-up” approach is adopted by succes­

sively discretising the edges, the faces, and finally the interior of the linear tetrahedra 

to obtain high-order spectral elements (Sherwin et al., 2000a; Sherwin and Peiro, 

2002).

Figure 2.10 shows the different discretisation steps for the generation of a high-order 

spectral element. The linear edges are subdivided into P -l-1 points for a polynomial 

interpolation of order P. If the edge is part of a curve of the boundary represen­

tation (B-Rep) then the P  — 1 intermediate points axe added along the edge at 

equispaced positions (Figure 2.10a). When the edge is on a face of the B-Rep, the 

points are placed at equally spaced positions on the surface along a line connecting 

the two end points of the edge. These interpolation points form the high-order mesh.

High-order triangular elements (faces) can be generated by using a transfinite inter­

polation within the parametric plane, if the face lies on a B-Rep surface. Figure 2.10b 

illustrates the various steps of face discretisation. When the face does not belong to 

a B-Rep surface, a similar interpolation takes place to calculate the co-ordinates of 

the intermediate points. Transfinite interpolation leads to discretisation of the inte­

rior of the tetrahedra to form high-order spectral elements, as shown in Figure 2.10c.
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Linear Edge High-Order Edge

Figure 2.10: Generation of a high-order spectral element: (a) Discretisa­
tion of a linear edge, (b) Discretisation of a face of a tetrahedron, (c) 
Discretisation of a tetrahedral element. (After Sherwin et al., 2000a).

An example of using the above mesh generation technique is given in Figure 2.11a. 

In this complex geometry (an arterial bypass graft by Sherwin and Peiro, 2002), the 

prismatic elements are divided into three tetrahedra. If the local surface curvature 

is convex, then high-order mesh can be generated as described earlier. For locally 

concave surface curvature the process may lead to invalid high-order elements10. A 

hybrid discretisation consisting of a layer of prismatic elements (Figure 2.11b) and 

an inner mesh of linear tetrahedral elements (Figure 2.11c) can be used instead. 

This type of discretisation enhances the generation of valid high-order mesh, but it 

too can generate invalid elements. Curvature based refinement is another approach 

which takes into account the curvature of curves and surfaces in the calculation of 

the element size. Curvature refinement applied selectively to local regions of concave 

curvature can improve the quality of the mesh. For further details see Peird et al. 

(2002b); Sherwin and Peiro (2002); and Karniadakis and Sherwin (2005).

10 An element is invalid if the Jacobian is negative or zero (Karniadakis and Sherwin, 2005).
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Figure 2.11: Mesh generated on an arterial bypass graft, (a) The boundary 
layer consists of prismatic elements divided into three tetrahedra. Equally, 
the boundary layer can be a layer of prismatic elements (b) which surrounds 
a mesh of linear tetrahedra (c). (After Sherwin and Peiro, 2002).

2.3 Image-based computational modelling

Over the past decades, medical modalities such as the magnetic resonance imag­

ing (MRI) and computerised tomography (CT) have been proved powerful imaging 

and diagnostic techniques offering detailed medical images of the body and internal 

organs. An advantage of MRI over CT is the avoidance of ionising radiation. The 

demand for fast acquisition of images, automated data analysis and diagnosis, which 

can reduce the time spent in the hospital or the operating theatre, has driven the 

technology forward. Ongoing research in the field of medical physics attempts to 

improve the characteristics of these techniques and the quality of the images they 

produce.

Computational techniques have been more recently introduced to the field with the 

scope to reconstruct and produce automatically models of anatomical geometries 

appropriate for computational fluid dynamics (CFD) simulations. The technology 

is still under development. A major obstacle is that the automation of the image seg­

mentation process with the current MRI and CT technology is still user-dependent. 

Here, we briefly present a semi-automated process (freeware) by Giordana (2004); 

Giordana et al. (2005b); and Peiro et al. (2002a, 2007), which can successfully re-
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Figure 2.12: Image-based vascular modelling: (a) MRI or CT stack of med: 
ical images, (b) Image segmentation and the resulting two-dimensional 
contours, (c) Generation of interpolation points, (d) Interpolated implicit 
surface, (e) Marching cubes triangulation, (f) Curvature-based triangula­
tion. (After Peird et ah, 2007).

construct three-dimensional anatomically correct vascular geometries from MRI or 

CT medical data. The process is summarised in Figure 2.12 where a femoral bypass 

graft is used as an example (after Peiro et ah, 2007).

2.3.1 Image segmentation

MRI or CT produce stacks of two-dimensional cross-sectional slices like that shown 

in Figure 2.12a. Each slice is expressed as a matrix of pixels, each of which has an 

intensity value on a grayscale. Image segmentation, in other words the partitioning 

of the image into the region of interest and the background, is performed using 

thresholding. An intensity value on the boundary of the vessel wall on the slice 

plane is set as the threshold criterion and the vessel wall boundaries are segmented
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as a stack of pixelated plane contours (Figure 2.12b). The contours are smoothed 

by interpolation of spline curves using a least-square technique (Peiro et al., 2007). 

Interpolation points are generated, which serve as constraints during the implicit 

surface reconstruction (Figure 2.12c).

2.3.2 Surface reconstruction and triangulation

An implicit function is interpolated through the interpolation points of the plane 

contours and the surface is represented as the zero iso-contour of the implicit function 

(Figure 2.12d). The function is expressed as a combination of radial basis functions 

as described in Peiro et al. (2007). The choice of the radial function can influence 

the end result in terms of surface smoothing and convergence rates.

An initial triangulation of the implicit surface (Figure 2.12e) is achieved by using the 

marching cubes algorithm (for a detailed description of the method, see Peiro et al., 

2007). The marching cubes triangulation is useful for visualisation purposes, but 

the quality of the mesh it produces is inadequate for computational fluid dynamics 

solutions. Peiro et al. (2007) proposed a curvature-based, triangulation technique to 

improve the quality of the surface mesh (Figure 2.12f). The mesh quality is fur­

ther enhanced by smoothing, using a non-shrinking algorithm (modified Taubin’s 

smoothing algorithm, Giordana, 2004; Giordana et al., 2005b). The smoothing pro­

cess is applied locally and does not alter significantly the local geometry of the 

boundaries.

Other commercial packages, such as Gambit— a mesh generation software— can also 

be used for re-triangulation of the surface. Finally, Amira® is a commercial package 

which can also perform the image segmentation and surface reconstruction process.

Idealised models of intercostal arteries, which are presented in Chapter 3, were con­

structed with the high-order mesh generation methodology described in Section 2.2 

and the flow simulations were performed with the spectral//ip flow solver N enrar , as
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discussed in Section 2.1. An anatomically correct rabbit geometry was reconstructed 

from micro-CT images with the commercial packages Amira® and Gambit. The 

flow solution in this latter geometry was obtained with the commercial flow solver 

Fluent® 6.3. Anatomically correct mouse aortic arch geometries, which are pre­

sented in Chapter 4, were reconstructed with the techniques discussed in Section

2.3. Steady flow solutions were obtained with the commercial flow solver Fluent®

6.3. In all geometries considered in this thesis, the walls were assumed to be rigid 

and no wall movements were incorporated into the models. Detailed information on 

each of the geometries studied, including information on MRI and CT image data, 

are presented separately in Chapters 3 and 4.
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Chapter 3

Flow near side branches in the 

descending thoracic aorta

This chapter presents an investigation of wall shear stress patterns around the ori­

gins of intercostal arteries in the descending thoracic aorta, under both steady and 

pulsatile flow conditions. Section 3.1 begins with an introduction to this work. The 

model geometries, governing equations and boundary conditions considered for this 

study are described in Section 3.2. Section 3.3 presents wall shear stress patterns 

under steady flow. Effects of Reynolds number and side branch flow partition, as 

well as effects of arterial geometry, are examined. Instantaneous wall shear stress 

(WSS), time-averaged WSS and oscillatory shear index patterns under unsteady 

flow conditions are presented in Section 3.4. The chapter finishes with a discussion 

of the obtained results, in Section 3.5. Streamline patterns and flow fields for the 

cases studied are presented in that section.

3.1 Introduction

Atherosclerosis, the disease underlying most heart attacks and strokes, is charac­

terised by the focal accumulation of lipid, cells and connective tissue components 

within the arterial wall. The non-uniform distribution of these lesions in areas of 

branching and curvature is consistent with a controlling influence of stresses im­

posed on the wall by the flow of blood. The current consensus is that lesions occur 

most frequently in regions of low and fluctuating haemodynamic wall shear stress



(WSS). However, there are differences in the distribution of lesions between species, 

and between ages within a species, that challenge this consensus. Here we report an 

investigation of whether the pattern of WSS is sensitive to factors such as Reynolds 

number (Re), flow division and reversing flow and hence could vary with species and 

age, or whether it is invariant, implying that the consensus may not apply to all the 

observed lesion distributions.

Differences in the distribution of lesions between species and ages have been most 

completely documented for the origins of intercostal arteries within the descend­

ing thoracic aorta (see Chapter 1; Weinberg, 2002). In human fetuses, neonates 

and infants, fatty streaks occur around the downstream margins of these branch 

ostia (Sinzinger et ah, 1980). At later ages, however, they occur at the lateral and 

then the upstream margins (Sloop et ah, 1998), whilst advanced disease tends to 

completely surround the ostium (Mitchell and Schwartz, 1965). Spontaneous and 

diet-induced lesions in immature and mature rabbits show the first two patterns 

(Barnes and Weinberg, 1998, 1999) whereas lesions completely surround intercostal 

ostia regardless of age in knockout mice lacking the low density lipoprotein receptor 

and apolipoprotein E (McGillicuddy et al., 2001).

Numerous previous studies using analytical techniques, physical models or compu­

tational methods have investigated patterns of flow or WSS in the vicinity of arterial 

branch points. More recently, allometric studies have examined variations in WSS 

between species, proposing various scaling laws (Greve et ah, 2006; Cheng et ah, 

2007; Weinberg and Ethier, 2007). However, only a few have systematically studied 

the effects on WSS of varying Re or flow division between parent and daughter vessel 

(Cheer et al., 1998) and we are not aware of any that have attempted to explain 

the age- and species-dependent differences in lesion pattern. In addition, although 

pulsatile flows have been previously examined around arterial branches (Buchanan 

Jr. et ah, 1999), we are not aware of any study that has investigated effects of revers­

ing flow on WSS patterns. The present study used high-order spectral/hp element 

methods (see Chapter 2, Section 2.1; Karniadakis and Sherwin, 2005) to compute 

flow fields and wall shear stresses in the vicinity of model intercostal branch ostia 

using a range of these parameters. The range includes values appropriate for human
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subjects and for the smaller animals that are widely used as models of the human 

disease. For the majority of computations, a number of simplifying assumptions 

were made, but the work nevertheless gives insight into the patterns of wall shear 

stress (WSS) to be expected in vivo, the flow fields that explain them, and the 

possibility that changes in these parameters might account for different patterns of 

disease.

3.2 Computational models

3.2.1 Geometries

3.2.1.1 Idealised geometries

In people, rabbits and mice, intercostal arteries originate from the dorsal surface of 

the descending thoracic aorta in pairs. Effects of varying Re and flow division werg 

first examined on a single branch and subsequently on a pair of branches. For most 

computations, the geometry of the single branch was approximated as a cylindri­

cal tube, representing the intercostal artery, emerging perpendicularly from a flat 

surface, representing the dorsal wall of the descending thoracic aorta (Figure 3.1a); 

similar models of intercostal branches have previously been used by Sobey (1977a,b) 

and Tutty (1988). The assumption of a flat aortic wall is justified because the diam­

eter of the intercostal artery (£)&) is substantially smaller than that of the thoracic 

aorta (Da). Based on previous estimates (Sobey, 1977a,b; Tutty, 1988; Pedley, 1980) 

and in vivo measurements (Caro et al., 1978; Cornhill and Roach, 1976; Nichols and 

O’Rourke, 1998), Db'.Da was assumed to equal 0.1.

Taking (hereafter D) as the unit of length, a segment of aortic wall near the 

branch was approximated by a rectangular channel 26D  long in the axial (x) direc­

tion, 10D wide in the crossflow (y) direction and 5D  high in the z direction (Figure 

3.1a). The cylindrical tube representing the intercostal artery had length 5D. It was 

located on the longitudinal centreline of the aortic wall segment and its upstream 

lip was lOD from the upstream edge of the aortic segment.

In studies to assess the sensitivity of the solution to geometric assumptions, the
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Figure 3.1: Computational domains representing intercostal arteries 
branching from the thoracic aorta: (a) Simple model of one intercostal 
artery emerging perpendicularly from the thoracic aorta, (b) More real­
istic aortic geometry, (c) More realistic geometry of the aorto-intercostal 
junction, (d) Pair of branches at the same streamwise position. Dimensions 
in (b) and (c), other than those shown, are the same as in (a). The unit of 
length, D , is the diameter of the intercostal artery. The flow direction is 
shown in (b) and is the same for all models.

width of the aortic channel was doubled and the sharp edge of the aorto-intercostal 

junction was replaced with a rounded lip with radius of curvature 0.1 D. In a further 

study, the aorta was modelled as a half cylinder of diameter 10D and the branch 

junction as the intersection of two perpendicular cylinders (Figure 3.1b). Flow was 

also computed for a more realistic model (Figure 3.1c) in which the inflow tract
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and flow divider had geometries approximating those seen in histological sections 

(e.g. Sebkhi and Weinberg, 1994, 1996) and the side branch curved back toward 

the heart, as observed in corrosion casts (Nier and Weinberg, unpublished data, 

2005; Abrahams, 2001). The aim was neither to reconstruct an actual branch nor to 

define an average geometry but to determine whether the patterns of WSS seen in 

the simpler model are likely also to apply to geometries of the broad type seen in vivo.

For the case of a pair of intercostal arteries, the width of the domain was again 

doubled to 20D and two cylindrical tubes of the radius and height used previously 

were symmetrically situated about the longitudinal centreline with a centre-to-centre 

separation of 2.5D  and were (a) both positioned with their upstream lips 10D  from 

the upstream edge of the domain (Figure 3.Id), or (b) were staggered in the axial 

direction, their upstream lips being 10D  and 11D  from the upstream edge. The sep­

aration approximates the minimum observed in en face images of rabbit aortas fixed 

in situ at physiological pressure (Bond personal communication). Both unstaggered 

and staggered geometries were used since stagger tends to increase with distance 

down the aorta. In all cases, walls were assumed to be rigid.

3.2.1.2 Anatomically correct geometry

In addition to the idealised geometries of Figure 3.1, another model was considered, 

which captures correctly the anatomical features of a pair of intercostal arteries 

branching from the thoracic aorta.

A corrosion cast was prepared by hand-injection of resin (Batson’s No. 17 methyl 

methacrylate) through the thoracic aorta of a mature rabbit (Harlan Interfauna 

strain, male, 87 weeks old, 4.1kg) at physiological pressure (100 mmHg) and room 

temperature (Nier and Weinberg, unpublished data 2005). After solidification of 

the resin and tissue removal (by Nier and Weinberg, unpublished data 2005), the 

cast was carefully extracted from the thoracic tract. Figure 3.2 shows a cast from 

another mature rabbit (45 weeks old) with six pairs of intercostal arteries, prepared 

under the same conditions. A specimen, which included the third pair of intercostal 

arteries from the 87-week-old rabbit cast, was prepared by cutting an 11-mm-long 

section of the thoracic aorta around the pair. The specimen was placed in front
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Figure 3.2: Corrosion cast of the thoracic aorta of a mature rabbit with six 
pairs of intercostal arteries. The aortic flow is from left to right (Nier and 
Weinberg, unpublished data, 2005).

of a 40kV X-ray beam (at 1000/iA) of a micro-CT scanner (Skyscan-1074). Pro­

jections were acquired every 0.9° when rotating the sample between 0° and 185.4°, 

using an exposure time of 120ms. High-resolution two-dimensional images of size 

736x736 pixels were constructed by a back-projection algorithm (included in the 

Skyscan-1074 software) with a voxel size of 20.91pm3. In total, a data set of 511 

cross-sectional images was obtained which was then imported into Amira®, a com­

mercial image segmentation software.

Segmentation of the arterial lumen was performed on every slice in a semi-automated 

way based on thresholding, with the available tools. A three-dimensional representa­

tion of the arterial geometry, including an initial surface triangulation, was produced, 

which subsequently was imported into Rhinoceros® and Gambit for mesh editing. 

The geometry was smoothed over 500 iterations using an in-house non-shrinking al­

gorithm (modified Taubin’s smoothing algorithm, Giordana, 2004; Giordana et al., 

2005b) and its ends were opened with the use of in-house cutting tools. Figure 3.3 

displays the reconstructed arterial geometry in lateral and proximal to distal views. 

The geometry was 10.43mm long and had a proximal (inflow) aortic area of approx­

imately 15.05mm2, a distal (outflow) aortic area of approximately 14.61mm2, while 

the outflow areas of the proximal and distal branches were approximately 0.19mm2 

and 0.18mm2, respectively (measured with Rhinoceros®). The ratio of diameters 

between each intercostal artery and the upstream (proximal) end of the thoracic 

aorta was 0.113 for the proximal intercostal artery and 0.109 for the distal artery,
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Figure 3.3: Anatomically correct reconstructed geometry of a pair of in­
tercostal arteries from a mature rabbit corrosion-casted at physiological 
pressure, (a) Lateral view. The mean aortic flow is from left to right, (b) 
Proximal to distal view. Mean aortic flow is away from the observer.

which verifies our earlier assumption of Db'-Da =  0.1 for the idealised models. The 

walls were again assumed to be rigid.

3.2.2 Governing equations and boundary conditions

The flow was assumed to be governed by the Newtonian incompressible Navier- 

Stokes equations:

/5—  +  p(u • V )u =  - V p  + /¿V2U (3.1)

V ■ u =  0 (3.2)

where u=[tt, v, w] is the velocity vector, p the fluid density, p the static pressure and 

p the dynamic viscosity.

3.2.2.1 Steady flow

The flow is characterised by the Reynolds number defined as Re =  puaDa/p, where 

ua is the average velocity of the fluid in the aorta of diameter Da — 10D.

The near branch region was approximated as a channel in most simulations rather
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than a pipe. In these cases, the velocity profile imposed at the upstream end of the 

computational domain was assumed to be parabolic in the z-direction. Further, as 

the computational domain was defined over only half the aortic diameter, i.e. 5D, 

the peak of the parabolic velocity was imposed at the surface of the computational 

domain opposite to the aortic wall (the bottom plane of the computational domains 

shown in Figures 3.1a, 3.1c and 3.Id). The only non-zero aortic inflow velocity 

component was therefore ua — ua(z), which in non-dimensional form can be written 

(assuming z = 0 is the channel centerline) as:

25 D2
(3.3)

For the geometry of Figure 3.1b, the fully-developed pipe flow condition was con­

sidered, which in non-dimensional form can be expressed as

,.P»Pe \  _  (y -  Vao)2 
25Z>2 25 D2

(3.4)

where yao = 5D, and u%pe =  ua.

For the anatomically correct geometry of Figure 3.3, the fully-developed pipe flow 

was considered again, which for this case can be written as:

=  (r) = 2 (3.5)

where r is the aortic radius, Dra fa 9.1 D[ is the proximal aortic diameter, and 

Drb fa 0.48 is the average intercostal artery diameter.

In the simple idealised geometries, the aortic flow rate, Qa, was defined as:

Qa =  uaAa =  ua100D2 (3.6)

where Aa is the full height channel inflow area 100.D2. Clearly if the aorta had been 

modelled as a pipe the cross sectional area would have been Aapipe =  7rZ)a2/4  = 

0.8 x 100.D2 and so the equivalent pipe flow rate is 80% of that considered in the
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following.

The outflow velocity, Wb(x,y), at the side branch (where Ub =  ffc =  0) can be 

written in non-dimensional form as:

=r(x,y) = 2
wb

1 - 4 y - y o
D

2
(3.7)

where Wb is the side branch average velocity, Ab is the branch cross sectional area, 

and xo =  10.5.D, yo =  5D. Finally the side branch pipe flow rate, Qb, is defined as:

Qb =  wbAb =  wbTrD2/4. (3.8)

3.2.2.2 Time-periodic flow

Time-periodic flow is characterised by the mean Reynolds number defined as Rem = 

pu^Da/n, where u™ is the temporal average velocity of the fluid in the aorta of di­

ameter Da =  10D. To fully describe the flow, another non-dimensional parameter is 

required. Here, we adopt the reciprocal of the Strouhal number, St, which is known 

as the reduced velocity parameter and is defined as (Sherwin and Blackburn, 2005):

Ured =  - f r -  (3.9)
Is a

The Womersley number, a — Da/2y/w/v, which is commonly used in describing 

pulsatile flows, does not include information about axial length scales. Instead, Ured 

can be seen as the convective length in diameters that the mean flow progresses 

within a temporal period T. It is related to the Womersley and Reynolds numbers 

according to: Ured = it Re ¡{2a2).

A Womersley-type solution for two-dimensional flow driven between two parallel 

plates by a pulsating pressure gradient (Landau and Lifshitz, 1959; Loudon and 

Tordesillas, 1998) was applied at the inlet velocity profile. This is written in com­

plex form as [see Appendix A .l, Equation (A.6), for an analytical derivation]:

^ O S C  (■ £) t) iup
cosh (<̂ *1̂ 2575) 

cosh (m 1/ 2)
eluJt (3.10)
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where Ap is the amplitude of the pulsating pressure gradient =  —Apelu;t, u js the 

angular frequency, and 5D  is the channel half-height. The real part of the Equa­

tion (3.10) is analytically evaluated in Section A .1.1 of the Appendices [Equation 

(A.11)]. The analytical solution for the velocity gradient can be found in Loudon 

and Tordesillas (1998).

The sectionally averaged oscillatory component of the inflow velocity (over Aa = 

100D2) is:

1 - elujl (3.11)

which has a zero temporal average, resulting in zero net flow [see Equation (A.7) and 

Section A.1.2 of the Appendices for an analytical derivation of the above expression 

and evaluation of the real part].

The temporal waveform of the sectionally averaged inflow was described by a steady 

component plus a single sinusoidal harmonic. This is valid due to the linearity of the 

Navier-Stokes equations in the case of two-dimensional fully developed channel flow 

(Loudon and Tordesillas, 1998). The only non-zero aortic inflow velocity component 

was Ua =  Ua{z, t), which in non-dimensional form can be written (assuming z =  0 is 

the channel centerline) as:

“ « /  .x 3 A  _
U Pa i Z ,  ) ~  2 l,1 25 D2 +

3 LUp 

Apa2
5R{itosc(z ,i )} (3.12)

where uva is the sectional average, and 5ft{ }  denotes the real part of the complex 

function. Equation (3.12) was imposed additionally at the computational domain 

opposite to the aortic wall (the bottom plane of the computational domains shown 

in Figures 3.1a, 3.1c and 3.Id).

The unsteady aortic flow rate is QS =  Qa +  Aqelujt, where Qa =  uaAa =  uo100D2 

is the steady flow component and Aq is the amplitude of the pulsating volume flow
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rate. In general, there is a phase lag between the volume flow rate and the driving 

pressure gradient waveforms. In addition, the amplitude of the former decreases 

with increasing Womersley number (Loudon and Tordesillas, 1998). The oscilla­

tory component of the aortic volume flow rate is analytically expressed in Equation 

(A. 12) of the Appendices (Section A.2).

For simplicity, the outflow side branch velocity, w%(x,y,t) (where upb =  vb =  0), 

was expressed as a product of a fully developed Hagen-Poiseuille profile and a sinu­

soidal waveform of the same angular frequency, u>, as the aortic pulse. This can be 

written in non-dimensional form as:

wp
zA (x ,y ,t) =  2 [1 +  A sin(u>£ + 0)] (3.13)

where u>b is the side branch sectional average, A is the amplitude of the sinusoidal 

wave, <f) is the phase shift between the branch and the aortic waveforms, and xo = 

10.5-D, i/o =  5D. The side branch pipe flow rate is • [1 + Asin(u;t -|- <p)\,

where A\, =  7cD2/4  is the branch cross sectional area.

It is noted that the oscillatory components of the aortic and branch flow rates 

have a zero average in the above analysis, that is, the oscillating fluid volume alone 

results on average in zero net flow. The flow of fluid is driven by the steady com­

ponents. Hence, in Section 3.4, where results under unsteady flows are discussed, 

the flow rate ratio between the branch and the aorta refers to the average flow rates 

(Qb'Qam), which can be simply found from the steady components. Clearly, in­

stantaneous variations of the flow division [Qb-Qa(t)} may vary and a phase shift of 

(¡> =  0 between the branch and the aorta does not necessarily correspond to in-phase 

sinusoidal waveforms (see Section A.2 of the Appendices for an analytical expression 

of the oscillatory component of the aortic waveform).
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Time-averaged wall shear stress

The time-averaged wall shear stress magnitude can be expressed as:

where \tw\ is the magnitude of the wall shear stress vector.

(3.14)

Oscillatory Shear Index

A haemodynamic parameter that is often used to describe temporal oscillations of 

the wall shear stress is the oscillatory shear index or OSI (e.g. Buchanan Jr. et al., 

1999), defined according to He and Ku (1996) as:

O SI= \ 2 (3.15)

where tw is the instantaneous wall shear stress vector. The oscillatory shear index 

is a measure of the deviation of the wall shear stress vector from the axial direction 

of flow over the cycle. It takes values in the range of 0 to 0.5, with 0 corresponding 

to unidirectional wall shear stress, and 0.5 to zero time-averaged wall shear.

3.2.3 Computational methods

For the idealised geometries, non-propriety software was used to create a hybrid 

mesh of body-conforming prismatic and unstructured tetrahedral elements (Peiro 

et ah, 2002a; Sherwin and Peiro, 2002). A prismatic boundary layer mesh was used 

at the wall to enhance the modelling of viscous flows (Papaharilaou et ah, 2002); 

in all cases of Figure 3.1, it had a thickness of 0.3D. For the simple, single-branch 

geometry, a mesh of 452 prismatic and 2116 tetrahedral elements was generated. 

To test that this was sufficient, a mesh with 908 prismatic and 6536 tetrahedral 

elements was also created. The increase in the total number of mesh elements from 

2568 to 7444 changed the streamwise force on the aortic wall by < 0.01%. For 

the geometry of Figure 3.1b a mesh of 7034 elements (902 prisms, 6132 tetrahedra) 

was used. The mesh for the more realistic branch geometry (Figure 3.1c) contained 

25391 elements (1950 prisms and 23441 tetrahedra), while those for the staggered
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and unstaggered pairs of branches contained 13446 (1668 prisms, 11778 tetrahedra) 

and 13523 (1664 prisms, 11859 tetrahedra) elements, respectively.

The solution was computed using a spectral/hp element method described by Kar- 

niadakis and Sherwin (2005) (see Chapter 2). The code has previously been used 

in various applications (Sherwin et al., 2000b; Giordana et ah, 2005a). An increase 

in the order of the polynomial expansion within each element from 4 to 6 produced 

an approximately 2% decrease in the streamwise force. Hence the computations 

were performed at a polynomial order of 6, which for the main mesh of the simple 

geometry corresponds to 266 336 local degrees of freedom per variable.

For the anatomically correct geometry of Figure 3.3, surface re-triangulation was 

performed in Gambit. A prismatic boundary layer of thickness 0.1mm was added 

internally to the geometry, before the generation of a volume mesh of unstructured 

tetrahedral elements. The mesh contained 1 155 250 hybrid elements. The solution 

was computed using Fluent® 6.3 and a second-order upwind discretisation scheme 

with a second-order pressure scheme.

3.3 Steady flow

The main results of this study are summarised in Figure 3.4, which shows aortic 

WSS magnitude around the ostium of the simple model for a range of Re and flow 

divisions (Q b'.Q a)• (Because some features show better in grayscale, Section A.3 

of the Appendices shows grayscale versions of some of the figures in this chapter.) 

Surface streamlines indicating flow direction immediately above the wall are also 

shown. WSS was normalised by the inflow WSS (equivalent to the local shear rate 

relative to the inflow shear rate). Effects of holding Q b'.Q a  at its lowest value and 

varying Re (top row of Figure 3.4) are considered first, effects of varying Q b'.Q a  at 

the lowest value of Re (left hand column of Figure 3.4) are considered next, and 

lastly effects of changing Re and Q b'.Q a  together are described.
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3.3.1 Effect of Reynolds number at constant flow partition

The top row of Figure 3.4 shows results for Q b'.Q a  held at 0.08%. At Re — 30, the 

lowest value examined, normalised WSS (WSSn) was comparatively uniform around 

the ostium, with only slightly elevated values on the ostial lip, and the surface 

streamlines were everywhere almost parallel to the longitudinal axis. At Re — 150, 

WSS„ was slightly elevated immediately upstream and downstream of the branch 

orifice and the upstream streamtraces converged towards the ostium. As Re was fur­

ther increased to 500, the upstream and downstream regions of high WSS„ enlarged, 

the downstream region taking on the shape of a streak, and WSSn decreased at the 

lateral margins of the orifice. These trends in WSSn were exaggerated when Re was 

at its maximum of 1500. Streamlines in the upstream region converged more sharply 

towards the orifice (suggesting local acceleration of fluid particles) and diverged in 

the downstream region (suggesting local deceleration). In all cases, the streamlines 

were symmetrical about the centre line although this was not explicitly imposed by 

the numerical algorithm (see Discussion and Figure 3.16a for an analysis of the flow 

features underlying these patterns).

3.3.2 Effect of flow partition at constant Re

The left hand column of Figure 3.4 shows WSSn patterns and surface streamlines 

calculated for Re =  30. At the lowest side branch flow partition (Q b'.Q a  =  0.08%), 

WSSn was almost uniform except for slightly increased values on the ostial lip, and 

the streamlines were almost straight, as noted above. As Q b'.Q a  increased, a region of 

higher WSS„ developed upstream of the ostium, where the surface streamlines con­

verged towards the branch, suggesting acceleration of the near-wall fluid. Increases 

in Q b'.Q a  also reduced WSSn in a circumscribed region immediately downstream of 

the branch, except on the lip itself where it remained elevated. Streamlines diverged 

in this area. (Effects of increasing flow partition on the flow field underlying these 

patterns are presented in the Discussion and Figures 3.15 and 3.16b).

3.3.3 Effects of changing Re and Q b '.Q a  together

The remainder of Figure 3.4 shows WSSn patterns and surface streamlines for other 

combinations of these values of Re and Q b'.Q a. In all rows, increasing Re led to a
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Figure 3.4: Magnitude and direction of non-dimensionalised aortic wall 
shear stress around the ostium of the simple intercostal junction of Fig­
ure 3.1a. Mean aortic flow is from top to bottom. The simulations were 
performed at a range of Reynolds numbers and flow partitions to account 
for different species and ages within a species. Dashed lines indicate flow 
stagnation.

decrease of WSSn at the sides of the branch and an increase upstream and down­

stream. In all columns, increasing Q b'.Q a  enlarged the areas where WSS„ was altered 

and intensified the differences in its magnitude. It also moved the low-shear side 

lobes downstream and extended the downstream region of reversed flow. In every
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Figure 3.5: Magnitude and direction of non-diraensionalised aortic wall 
shear stress around the ostium of the simple intercostal junction of Figure 
3.1a. Mean aortic flow is from top to bottom. The simulations were per­
formed at a range of Reynolds numbers for the case of ligated side branch
(Qb =  o ).

case the upstream region was characterized by elevated WSSn; this region extended 

further upstream and around the orifice at higher Re and Qb'.Qa• At these higher 

values, stagnation lines were observed downstream of the branch ostium, and they 

enlarged with increasing Re and Qb'Qa-

3.3.4 Ligated side branch: Qb =  0

To simulate the case of ligation of intercostal arteries, which is a common practice 

during animal experiments or surgical operations of, for example, thoracoabdominal 

aortic aneurysms (TAAAs), the side branch flow was set to zero. Figure 3.5 shows 

WSS,i patterns and surface streamlines for three moderate Reynolds values. For 

Re =  150, WSS„ was slightly elevated on the ostial lip and surface streamlines were 

everywhere almost parallel to the longitudinal axis. For Re =  500 and 1500, the 

patterns were indistinguishable from those at lower Re values. The effect on WSSn 

of increasing Reynolds number for zero side branch flow appeared to be negligible.

84



3.3.5 Effects of arterial geometry

3.3.5.1 Sensitivity to geometric assumptions

To test the possibility that the side boundary conditions affected the results, WSSn 

and surface streamlines were examined after the aortic channel had been doubled in 

width. At Re =  500 and Q b'.Q a  =  0.79%, there was an approximately 3% increase 

in the mean WSS in a square region of size 3D centred around the branch ostium.

The effect of rounding the sharp edges of the aorto-intercostal junction with a 

rounded lip with radius of curvature 0.1D was also investigated at Re =  500 and 

Q b'.Q a — 0.79%. There was an approximately 1.7% decrease in the streamwise-acting 

force.

3.3.5.2 Paired intercostal branches

The two configurations for paired branches—ostia at the same and at staggered 

streamwise positions—were tested at Re =  500 and Q b'.Q a  =  0.79%. In both cases 

(Figure 3.6), the pattern of WSSn around each ostium was broadly similar to that 

observed for a single branch under the same conditions (third image in bottom 

row of Figure 3.4). Differences were restricted to the region between the two ostia, 

where the areas of low WSSn seen to the sides and slightly downstream of individual 

ostia were truncated and merged. The WSSn pattern was symmetrical about the 

axial midline when the ostia were at the same streamwise position, but not when 

they were staggered. Interestingly, no fluid flowing close to the wall between the 

two ostia appeared able to move downstream of the ostia; rather, the flow turned 

towards one or other of them. In the staggered case, there was a more complex 

pattern which maintained many of the topological features of the unstaggered case. 

However, the downstream centreline stagnation point in the unstaggered case split 

into two stagnation points in the staggered configuration.

3.3.5.3 Realistic aortic geometry

Modelling the aorta as a half cylinder (Figure 3.1b), with the junction being the 

intersection between two perpendicular cylinders, did not qualitatively alter the 

pattern of WSS around the branch ostium at Re =  500 and Qb'.Qa =  0.79% (Figure
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Figure 3.6: Magnitude and direction of non-dimensionalised aortic wall 
shear stress around a pair of intercostal ostia at the same streamwise posi­
tion (top, Figure 3.Id) and at staggered positions (bottom). Mean aortic 
flow is from top to bottom. The simulations were performed for Re =  500 
and Qb'.Qa — 0.79%. Dashed lines indicate flow stagnation.

3.7a). The high WSS„ region upstream and around the ostial lip was reduced slightly 

in magnitude.

3.3.5.4 Realistic branch geom etry

Using the more realistic geometry of Figure 3.1c, again at Re =  500 and Qb-Qa  =  

0.79%, the WSSn pattern (Figure 3.7b) appeared nearly identical in character to the 

equivalent obtained for the simple geometry. WSSr! remained elevated upstream of 

the ostium despite the gently curving inflow tract.
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Figure 3.7: Magnitude and direction of non-dimensionalised aortic wall 
shear stress around the ostium of (a) the aortic model of Figure 3.1b and 
(b) the realistic aorto-intercostal junction of Figure 3.1c. Mean aortic flow 
is from top to bottom. The simulations were performed for Re =  500 and 
Qb-Qa — 0.79%. Dashed lines indicate flow stagnation.

3.3.5.5 Anatom ically correct geom etry

Computation of the relative shear rate in the anatomically correct geometry of Fig­

ure 3.3, for ReDra =  500 and Q rb:Q ra =  0.79%, resulted in the pattern shown in Figure 

3.8. WSS was normalised in this case by the value that corresponds to a straight 

tube of diameter equal to that of the proximal aortic diameter, Dra, at the same mean 

flow rate; which can be expressed as 8p2ReD̂ a/(pDTa2), or 32pQra/(TiDra3). The same 

colour and contour levels as those for the patterns of the idealised geometries were 

used to allow comparison.

The localised WSS^ pattern around the origin of each intercostal artery was char­

acterised by elevated values upstream and downstream of the ostia and low values 

at the sides. It resembled in character the pattern seen in the idealised geometry for 

the same flow conditions (third image in the bottom row of Figure 3.4). However, 

the two patterns differed in that the high-shear region seen upstream and around 

the ostial lip in the idealised geometry, was less extended in the anatomically cor­

rect geometry. In addition, in the anatomically correct geometry, WSS7i had higher 

values in the downstream region than in the immediate upstream region; the oppo­

site was observed in the idealised case. Surface streamlines converged upstream and
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Figure 3.8: Magnitude and direction of non-dimensionalised aortic wall 
shear stress in the anatomically correct geometry of Figure 3.3. Mean 
aortic flow is from top to bottom. On the left, images show enlargements 
of the regions around the proximal (top) and the distal (bottom) branches. 
The simulations were performed for Repra — 500 and Q\,'-Qra — 0.79%.v

diverged downstream of both branch ostia. Near-wall fluid between the two ostia 

was able to move downstream of them, unlike the result for the staggered idealised 

geometry (bottom image of Figure 3.6). This seems reasonable since the streamwise 

distance and the centre-to-centre separation between the two ostia was larger than 

in the idealised staggered geometry (approximately 1.7D rb centre-to-centre distance 

in the streamwise direction and 3.7D[ centre-to-centre separation in the crossflow 

direction). Surface streamlines between the two ostia first slightly deviated toward 

the proximal branch, then changed direction toward the distal branch, and finally 

ran almost parallel to the longitudinal axis downstream of both branches.

3.4 Time-periodic flow

Effects of unsteady flow on the aortic wall shear stress magnitude around the ostium 

of the simple model of Figure 3.1a were examined for two moderate mean Reynolds
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numbers, Rem =  150 and 500, at the same average side branch flow partition, 

Qb-Qam =  0.79%, and reduced velocity parameter, Ured =  4 [defined in Equation 

(3.9), with respect to the aortic diameter Da\. The boundary conditions applied at 

the aortic inlet and side branch outflow have been described in Section 3.2.2.2. (It is 

noted that the use of the simpler geometry of Figure 3.1a, instead of the more real­

istic aortic geometry of Figure 3.1b, may involve somewhat different development of 

the flow due to the different Womersley solutions of unsteady flow within a circular 

tube and a channel—see discussion in Chapter 1. However, it is expected that the 

flow pattern is qualitatively similar in both geometries, as Figure 3.7a has shown for 

the case of steady flow.)

In addition to examining waveforms with 0 =  0 for the two mean Reynolds numbers 

(presented in Figures 3.9a for Rem — 150 and 3.10b for Rem =  500), effects of dif­

ferent phase lag and side branch peak-to-mean value were considered for Rem ='150 

(Figures 3.9b and 3.9c), and effects of changing the aortic peak-to-mean value were 

considered for Rem =  500 (Figure 3.10a). Patterns of time-averaged WSS and 

oscillatory shear index follow in Figures 3.11 - 3.14.

3.4.1 Effects of side branch flow waveform characteristics at i?em=150

3.4.1.1 Flow waveforms with 0 =  0

Figure 3.9a displays instantaneous WSSn patterns at four discrete times through the 

cycle for Rem =  150, average Q b 'Q a m =  0.79%, Ure<i =  4 (equivalent to St =  0.25 or 

a ~  7.7), and an aortic peak-to-mean flow ratio of approximately 1.11 (quasi-steady 

bulk flow). A sinusoidal waveform, with a phase shift of 0 =  0 with the aortic inflow 

waveform and with an amplitude of 0.5, was assigned to the branch outflow. Regions 

of high WSSn around the ostial lip, as well as upstream and downstream of it, were 

greatest in size during mid-deceleration, and lowest in size during mid-acceleration 

(second and fourth images of Figure 3.9a, respectively). At the same time points, the 

lateral low WSSn regions were also most and least extensive, respectively. During 

the rest of the cycle, the patterns were intermediate. However, the changes in WSSn 

pattern over the cycle were small; the main features remained qualitatively similar 

to the steady-flow case for the equivalent mean Re and Q b'-Q a  (second image in the
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bottom row of Figure 3.4). In all cases, surface streamlines in the upstream region 

converged towards the branch (suggesting local acceleration of fluid particles) and 

diverged in the downstream region (suggesting local deceleration).

3.4.1.2 Flow waveforms with 4> ^  0

Introducing a phase shift of (f> =  7r in the side branch flow waveform with respect to 

the aortic waveform, produced the instantaneous WSSn patterns shown in Figure 

3.9b. The rest of the flow conditions were unchanged [Rem — 150, Q b'-Q am — 0.79%, 

Ured =  4 (or St = 0.25, or a «  7.7), aortic peak-to-mean«l.ll, and side branch 

peak-to-mean=1.5]. Regions of high and low WSS„ were most extensive during 

late deceleration/early acceleration (third image of Figure 3.9b), and least extensive 

during late acceleration/early deceleration (peak aortic flow, first image of Figure 

3.9b). Hence, the greatest effects on the WSSn pattern appeared one-quarter of the 

time-period later than that for the previous case {<j> — 0, Figure 3.9a), despite' the 

180° phase shift between the side branch and aortic waveforms. Again, changes in 

WSSn over the cycle were small and the basic pattern was similar to the steady- 

flow result. Streamline patterns were similar to the previous and steady-flow cases, 

converging in the upstream region and diverging in the downstream region.

3.4.1.3 Reversing side branch flow waveform (</> /  0)

Assigning a peak-to-mean flow ratio of 2.75 to the side branch flow waveform, and 

thus making the side branch flow reverse for approximately one third of the cycle, 

while still with a phase shift of <f> =  n  with the aortic flow, generated the instan­

taneous WSSn patterns of Figure 3.9c. The rest of the flow conditions were again 

unchanged [Rem =  150, Qb'Qam =  0.79%, Ured =  4 (or St =  0.25, o r a «  7.7), and 

aortic peak-to-mean« 1.11]. Initiation of side branch flow reversal, at peak aortic 

flow (first image of Figure 3.9c), resulted in a new WSSn pattern. A localised semi­

circular region of low WSSn appeared immediately upstream of the ostium. WSSn 

values remained elevated on the ostial lip. Surface streamlines diverged in the up­

stream and lateral regions (indicating local deceleration- of the aortic flow particles) 

and were almost parallel to the longitudinal axis downstream of the branch. During 

the middle of the deceleration phase (second image of Figure 3.9c), the previously 

formed low WSSn values upstream of the branch decreased in size and moved fur-
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Figure 3.9: Magnitude and direction of non-dimensionalised instantaneous 
aortic wall shear stress for the simple geometry of Figure 3.1a. The simu­
lations were performed for Rem — 150, Q b'Q am — 0.79% and Ured = 4 (St 
=  0.25 o r a «  7.7). The side branch flow waveform had a phase shift with 
the aortic waveform of (a) 4> =  0, (b-c) (¡> =  n. In (c) the side branch flow 
was reversing for about one third of the cycle. Mean aortic flow is from top 
to bottom. Dashed lines indicate flow stagnation.

ther upstream. In addition, a streak of low WSSn values appeared immediately 

downstream of the ostium, and the high values surrounding the lip were shifted lat­

erally. Surface streamlines slightly diverged in the upstream and lateral regions, and
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converged in the downstream region. During late deceleration and for most of the 

acceleration phase, the side branch flow was forward-moving and the WSSn pattern 

returned to the quasi-steady flow characteristics, with high-shear values around the 

branch, as well as upstream and downstream, and low values laterally. The regions 

were substantially enlarged in size during late deceleration/early acceleration (third 

image of Figure 3.9c).

3 .4 .2  E ffect o f  aortic  w aveform  ch aracteristics  at i?em=500

3.4.2.1 M ore physiological aortic peak-to-m ean flow ratio

Figure 3.10a displays instantaneous WSSn patterns at four discrete times through 

the cycle for a mean Reynolds number of 500 and an average side branch flow 

partition of 0.79%. Ured was equal to 4 (equivalent to St =  0.25 or a  a  14), 

<p =  0, and the side branch peak-to-mean was equal to 1.5. The peak-to-mean 

flow ratio of the aortic inflow waveform was approximately 1.5 (increased amplitude 

of the pulsating pressure gradient). Regions of high WSSn were most extensive 

during the middle of the deceleration phase of the cycle (second image of Figure 

3.10a). Reversal of the near-wall fluid during late deceleration/early acceleration 

(third image of Figure 3.10a) produced a different pattern, in which WSSn was 

lowest in regions upstream and downstream of the ostium; high WSSn values were 

restricted to a small region in the vicinity of the ostial lip. This pattern gradually 

returned to the steady flow characteristics of high values upstream and downstream 

of the branch, and low values at the sides, late in the acceleration phase (left-hand 

image in Figure 3.10a). During most of the cycle, the upstream surface streamlines 

converged towards the branch and diverged downstream. However, during reversal 

of the aortic near-wall fluid, at the end of the deceleration phase, the streamline 

pattern was reversed. Streamlines converged towards the branch but in the opposite 

direction. Flow stagnation lines were observed downstream of the ostium during 

late acceleration and mid-deceleration but were absent during late deceleration/early 

acceleration.
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Figure 3.10: Magnitude and direction of non-dimensionalised instantaneous 
aortic wall shear stress for the simple geometry of Figure 3.1a. The simu­
lations were performed for Rem =  500, Qb-Qam — 0.79%, Ured =  4 (St — 
0.25 or a ~  14) and 0 =  0. The aortic waveform had a peak-to-mean of 
(a) 1.5 and (b) 1.03. Mean aortic flow is from top to bottom. Dashed lines 
indicate flow stagnation.

3.4.2.2 Reduced aortic peak-to-mean flow ratio

By reducing the aortic peak-to-mean flow ratio to approximately 1.03 (same pressure 

gradient as for i?em=150), the WSSn patterns were modified as shown in Figure 

3.10b. The other flow conditions were held at the same values as in the previous 

case, that is, Rem -  500, Qb-Qam =  0.79%, Ured =  4 (or St =  0.25, or a ~  14), 0 =  0, 

and side branch peak-to-mean=1.5. Regions of high WSSn upstream and around the 

ostium were lowest in size during the late deceleration/early acceleration phase of 

the cycle (third image of Figure 3.10b). however regions of high shear downstream of 

the ostium were lowest during mid-acceleration (fourth image of Figure 3.10b). High
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WSStj regions both upstream and downstream of the branch were most extensive 

during mid-deceleration. (Similar effects at this time-point were seen for Rem =  150 

when (j) =  0, Figure 3.9a.) Low WSS„ regions were greatly extended at the sides and 

further upstream at the end of the deceleration/beginning of the acceleration phase. 

Throughout the cycle, streamlines converged upstream of the branch, and diverged 

downstream of it. In addtion, stagnation lines were observed downstream of the 

ostium. However, despite the small changes in the pattern of aortic wall shear stress 

over the cycle, the main features remained qualitatively similar to the steady-flow 

case for the equivalent mean Re and Qb'.Qa (third image in the bottom row of Figure 

3.4).

3.4.3 Time-averaged wall shear stress

Normalised time-averaged wall shear stress patterns for the cases presented in Sec­

tion 3.4.1 are displayed in Figures 3.11b-d, and are compared with the steady'flow 

pattern for the equivalent mean values of Reynolds number and side branch flow 

partition (Figure 3.11a). The time-averaged WSSn patterns were similar in charac­

ter to the steady flow result, with elevated WSSn values around the ostial lip and 

upstream; and low values laterally to the orifice. The patterns of Figures 3.11b and 

3.11c were almost identical to the steady-flow result, and were only slightly different 

from the pattern for reversing side branch flow (Figure 3.lid ). In the latter, the 

high shear region downstream of the branch was absent.

For the cases examined in Section 3.4.2, normalised time-averaged wall shear stress 

patterns are presented in Figures 3.12b-c. Figure 3.12a shows the steady flow pat­

tern for Re =  500, Qb'.Qa =  0.79%. The time-averaged WSSn results were similar 

in character to the steady flow pattern. For an aortic peak-to-mean ratio of 1.5 

(Figure 3.12c), there were slightly more extended regions of high WSSn upstream 

and downstream of the branch, while the streamline patterns were indistinguishable 

from the steady-flow result.

The results of Figures 3.l id  and 3.12c demonstrate that the instantaneous changes 

in the WSS pattern during the cycle (in particular, the occurrence of low WSSn 

regions upstream and downstream of the branch ostium during reversal of aortic or
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Figure 3.11: Magnitude and direction of non-dimensionalised time-averaged 
aortic wall shear stress for Rem =  150, Qb'-Qam — 0.79% and Ured =  4, 
corresponding to the instantaneous patterns of Figure 3.9. (a) Steady flow 
result at the same mean flow values. The side branch flow waveform had a 
phase shift, with respect to the aortic waveform, of (b) (f> =  0, (c-d) <f> — it 
and in (d) it was reversing for about one third of the cycle. Mean aortic 
flow is from top to bottom.

Figure 3.12: Magnitude and direction of non-dimensionalised time-averaged 
aortic wall shear stress for Rem — 500, Qb'-Qam =  0.79%, and Ured =  4  

((f) =  0), corresponding to the instantaneous patterns of Figure 3.10. (a) 
Steady flow result at the same mean flow values. The aortic waveform had 
a peak-to-mean of (b) 1.03 (Figure 3.10b) and (c) 1.5 (Figure 3.10a). Mean 
aortic flow is from top to bottom.

side branch flow) had little influence on the time-averaged WSS„ patterns. This 

is explained by the magnitude of the lower WSSn values (which characterise the 

low shear regions during reversing flow) being proportionally small compared to 

the much higher WSSn values seen upstream and downstream of the branch for 

non-reversing flow.
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Figure 3.13: Oscillatory shear index for Rem =  150, Qb-Qam — 0.79% 
and Ured =  4, corresponding to the instantaneous and time-averaged WSS 
patterns of Figures 3.9 and 3.11. The side branch flow waveform had a 
phase shift, with respect to the aortic waveform, of (a) 0 = 0, (b-c) 0 =  7r 
and in (c) it was reversing for about one third of the cycle. Mean aortic 
flow is from top to bottom.

Figure 3.14: Oscillatory shear index for Rem =  500, Qb-Qam = 0-79% and 
Ured =  4 (0 =  0), corresponding to the instantaneous and time-averaged 
patterns of Figures 3.10 and 3.12, respectively. The aortic waveform had 
a peak-to-mean of (a) 1.03 (Figure 3.10b) and (b) 1.5 (Figure 3.10a). (c) 
Oscillatory shear index for a lower average flow division Q b-Q am =  0.08% 
(at Rem =  500, aortic peak-to-mean=1.5, side branch peak-to-mean=1.5 
and 0 =  0; instantaneous and time-averaged results are not shown). Mean 
aortic flow is from top to bottom.

3.4.4 Oscillatory shear index

Maps of oscillatory shear index (OSI) for the cases of Section 3.4.1 are displayed in 

Figures 3.13a-c. OSI, defined in Equation (3.15), is a description of the oscillation
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of the wall shear rate and takes values between 0 and 0.5. In all cases, the index had 

low values almost everywhere except in a circumscribed region downstream of the 

branch ostium where it was elevated. This region was greatest when the side-branch 

flow was made to reverse for part of the cycle (Figure 3.13c). The results suggest 

that temporal oscillations of the wall shear stress vector were largely negligible for 

the flow conditions examined in all three cases, except in a circumscribed region 

downstream of the ostium.

Figures 3.14a and b show patterns of oscillatory shear index for the results pre­

sented in Section 3.4.2. For an aortic peak-to-mean of approximately 1.5 (Figure 

3.14b), for which there was reversal of the near-wall fluid during the late decelera- 

tion/early acceleration phase of the cycle, the oscillatory shear index had a pattern 

which was almost the negative image of the time-averaged result (Figure 3.12c), 

with low values around the branch, upstream and downstream, and elevated values 

laterally. The result suggests that temporal oscillations of the wall shear stress vec­

tor were greatest in regions lateral to the branch and coincided with low values of 

time-averaged WSSn. However, for a reduced value of aortic peak-to-mean (Figure 

3.14a), temporal oscillations of the WSS vector were almost everywhere insignifi­

cant. Slightly elevated OSI values existed only in a confined region downstream of 

the branch.

Figure 3.14c presents the oscillatory shear index pattern for a lower average flow 

division of Q b -Q a m — 0.08% (at Rem =  500 and with an aortic peak-to-mean of 

1.5, a side branch peak-to-mean of 1.5 and 0 = 0; instantaneous and time-averaged 

results are not shown). OSI remained elevated lateral to the branch and reduced 

upstream and downstream of it. However, its overall magnitude was reduced and 

the lateral regions of elevated OSI moved next to the branch mouth (compared to 

the slightly downstream lateral regions at Q b'.Q am — 0.79%). This can be under­

stood from the steady flow results of Figure 3.4 (third column, for Re—500), where 

decrease of the branch flow partition resulted in reduction or cancellation of the 

stagnation region downstream of the branch, allowing thus the lateral regions of 

elevated OSI (in the unsteady case) to move upstream, adjacent to the ostial lip.
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3.5 Discussion

We used computational fluid dynamic techniques to examine the effect of Reynolds 

number, Re, and flow partition, Q b'.Q a, on aortic WSS around the origins of in­

tercostal arteries. The study was motivated by the observation that the pattern 

of atherosclerosis, putatively a shear-dependent disease, varies between species and 

with age at this site. We wished to determine whether patterns of WSS can also 

vary. The values of Re that we studied are appropriate for species ranging from 

mice to people (Buchanan Jr. et al., 1999; Feintuch et al., 2007; Shahcheraghi et al., 

2002). Flow partitions have not been measured accurately at intercostal branch 

sites in any species. Further, there is disagreement as to whether flow in general 

partitions according to the square or the cube of the ratio of vessel diameters (Cheng 

et al., 2007), which would correspond to Q b'.Q a  =  1% or 0.1%, respectively, for the 

models examined in the present study. Partitions will certainly vary with physiolog­

ical demand and may also depend on species and ages. We therefore investigated a 

wide range encompassing or closely approaching these values. Our main finding was 

that the pattern of WSS is highly dependent on Reynolds number and flow partition.

The fundamental features of the flow underlying the different patterns of WSSn 

shown in Figure 3.4 can be elucidated by computing streamlines along the mid­

plane of the aortic channel (Figure 3.15) and by computing streamtubes of fluid 

moving into the branch (Figure 3.16). To obtain the streamtubes, a ring of fluid 

particles at a distance 2D down the branch and with a diameter of 0.8D was traced 

backwards into the aorta to examine its origins (Coppola et al., 2001). (Figure 3.16 

includes simulations at higher values of Re and Q b'.Q a  than in Figure 3.4 to confirm 

the trend in their effects on the streamtube. Perspective views of the streamtubes 

are shown on the right side of the figure.)

These figures show that increasing Reynolds number causes fluid to enter the branch 

from regions closer to the aortic wall, where it will be flowing relatively slowly. For 

example, the streamline which divides the fluid entering the branch from that con­

tinuing down the aorta moves towards the aortic wall (Figure 3.15). At the higher 

Re, fluid particles in the mainstream have too much inertia to enter the branch; in-
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Figure 3.15: Streamlines along the mid-plane of the domain for the simple 
model of Figure 3.1a (Steady flow). The four panels correspond to the four 
combinations of highest and lowest Re and Q b'.Q a  in Figure 3.4. Mean 
aortic flow is from left to right.

stead, particles nearer the wall and from a wider area do so (Figure 3.16a), leading 

to a greater influence of the branch on WSS around the ostium. The inability of 

mainstream fluid particles to enter the branch explains the development of a stag­

nation line downstream of the ostium at higher values of Re and Q b'.Q a  (see last two 

rows of Figure 3.4).

Increasing the flow partition Q b'.Q a  necessarily increases the cross-sectional area 

of the streamtube in the aorta. However, these streamtubes remain similar in shape 

to the smaller ones seen at lower Q b'.Q a  (Figure 3.16b), explaining why greater flow 

into the branch intensifies and enlarges some features of the WSS patterns (columns 

of Figure 3.4) but does not fundamentally alter the flow physics. Additionally, the 

need for more fluid to enter the branch changes streamlines along the midline: fluid 

particles overshoot the branch mouth before entering it (Figure 3.15), explaining
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Qb:Qa=0.08% 
o Re=30
■ Re=150
• Re=500 
a Re=1500
♦ Re=2500

Figure 3.16: Computed streamtubes of fluid entering the branch (Steady 
flow), (a) Effect of increasing Re at Qb'-Qa = 0.08% (Re — 30, 150, 500, 
1500, and 2500). (b) Effect of increasing Qb'-Qa at Re =  30 (Qb-Qa =  0.08%, 
0.16%, 0.39%, 0.79%, and 1.73%). Perspective views of the streamtubes are 
shown on the right.

why the stagnation line (and probably also the lateral areas of low WSS„) move 

downstream as Qb-Qa  increases (columns of Figure 3.4). Although seemingly of mi­

nor importance, this property can lead to a shift from an increase to a decrease in 

WSSn in regions immediately downstream of the ostium.

Figure 3.17 is a line graph showing the changes in WSSn observed with increas­

ing Re at Qb-Qa — 0.08% (Figure 3.17a), and with increasing Qb-Qa  at Re =  30 

(Figure 3.17b) in the simple geometry (Figure 3.1a). Maps of WSSn are shown for 

these conditions in the top row and left column of Figure 3.4, respectively. In Figure 

3.17, WSSn is instead shown for three locations on the aortic wall: one side-branch
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(a) Re

(b) Qb:Qa

Figure 3.17: Change in normalised wall shear stress (WSS„) with (a) 
Reynolds number (for Qb'.Qa =  0.08%) and (b) flow partition (for Re =  
30), measured at three locations on the aortic wall for the simple geometry 
of Figure 3.1a (Steady flow): at distances ID upstream (U) of the ostial 
lip, ID  downstream (D) of it, and ID  lateral (L) to it (inset).

diameter (D ) upstream of the ostial lip. ID downstream of it, and ID lateral to it. 

At the lowest Re and Q b -Q a, WSSn was almost uniform around the branch and had 

a magnitude close to the inflow normalised value of 1 at all three locations. WSS„
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rose more rapidly downstream than upstream with increasing Re, but the opposite 

was seen with increasing Q b'.Q a, where values in the downstream region rose only 

slightly before falling again. Increasing either Re or Q b'.Q a  decreased WSS„ lateral 

to the lip.

3.5.1 Simplifying assumptions

Re and Q b'.Q a  were systematically varied in an idealisation of the aorto-intercostal 

junction consisting of a cylindrical branch emerging from a flat plate. Using an ide­

alised geometry can help elucidate underlying mechanisms that would be obscured 

or attributed to geometric features in a more complex model, but may also intro­

duce artefacts or fail to replicate important facets of in vivo flows. The effects of the 

simplification were examined by computing flows at some combinations of Re and 

Q b'.Q a  after the idealised geometry had been modified by (i) incorporating a second 

branch to form an unstaggered or a staggered pair of branches, (ii) rounding the 

corners of the junction, (iii) introducing a curved aortic wall, or (iv) incorporating 

a realistically curved inflow tract, flow divider and daughter vessel. None of these 

modifications had a significant effect on the fundamental flow features or pattern 

of WSS. Additional evidence for this is provided in Figure 3.18a, which shows that 

similar patterns of streamlines occur along the mid-plane of the aortic channel in 

the simplified and the more geometrically realistic model of a single branch. The 

streamline patterns for the unstaggered and staggered geometries (Figures 3.18b-c) 

were also similar to the single branch geometry. It therefore seems reasonable that 

the use of the anatomically correct geometry of Figure 3.3 did not alter the main 

conclusions (Figure 3.8).

The model was additionally simplified by assuming Newtonian rheology. This as­

sumption is widely used and has only modest quantitative effects on patterns of 

WSS at branches of large arteries; qualitative features of the pattern and of the 

fundamental flow are not affected (Perktold et al., 1991). Secondary flows emerging 

from the left ventricle or arising from the curvature aqd branches of the aortic arch 

were also ignored; they will have only a minor effect in the descending aorta, most 

likely by slightly skewing the branch-dependent effects.
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Figure 3.18: (a) Streamlines along the mid-plane of the domain in the 
simple model of Figure 3.1a (left) and the more realistic model of Figure 
3.1c (right). Streamlines along planes crossing the centres of each of the 
side branches in (a) the unstaggered (Figure 3.Id) and (b) the staggered 
geometries. Right (R) and left (L) branches are given with respect to their 
anatomical position in a top-to-bottom direction of mean aortic flow. In 
all cases, simulations were performed for Re =  500 and Q b'.Q a  = 0.79% 
(Steady flow). Mean aortic flow is from left to right.

The most important simplification in the results of Section 3.3 was the assumption 

of steady flow. Some effects of unsteadiness are not considered significant. First, 

because of the long wavelength of pressure waves within the aorta (5-10 m; Milnor,
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1979) and the small deformation of the aortic wall over each cardiac cycle (<10% 

change of aortic diameter), the velocity of radial wall motion is small compared to 

the radial flow components caused by the branch, and can be ignored. (This may be 

particularly true for intercostal branch points since they are situated in the dorsal 

thoracic aorta, which is tethered to the posterior chest wall. See Section 3.5.2.1 for 

a further discussion.) Second, changes in mean velocity during the cardiac cycle are 

sufficiently slow that the flow can be considered quasi-steady at each time point. 

This is best understood by using the Strouhal number, St, or its reciprocal, the 

reduced velocity parameter, Ure(i, as defined in Equation (3.9) (Sherwin and Black­

burn, 2005). For people (Re ss 1500, a «  15) and rabbits (Re «  500, a «  8), Ured 

is equivalent to ~10 aortic diameters, or ~100 intercostal branch diameters. Hence, 

flow near the branch is not dominated by unsteady phenomena and its character can 

be approximated by the steady flow result obtained at a value of Re appropriate for 

each part of the cardiac cycle.

However, some effects of unsteadiness could be significant. For example, the in­

let velocities should be spatially distributed with a time-varying Womersley profile 

rather than the Poiseuille profile appropriate for fully-developed steady flow. The 

different distribution of inertia would affect the origin of the streamtube flowing into 

the branch. We therefore conducted an investigation of unsteady flow in the simple 

model geometry of Figure 3.1a, which was presented in Section 3.4. This investiga­

tion demonstrated that despite alterations in the pattern of WSS during the cardiac 

cycle, mean WSSn patterns (Figures 3.11 and 3.12) are not significantly affected by 

the assumption of steady flow, at least for Ured =  4 (physically interpreted as the 

mean flow moving 40 intercostal diameters during one cardiac cycle, and equivalent 

to a Womersley parameter value of approximately 7.7 for Rem =  150, and 14 for 

Rem — 500). These values represent an upper bound of unsteadiness for the species 

and ages considered here.

Of course, endothelial cells may respond not only to mean WSS but also to deriva­

tives of WSS. Several parameters of potential importance have been proposed, in­

cluding the oscillatory shear index (OSI) and wall shear stress (spatial) gradient 

(WSSG) (Buchanan Jr. et al., 1999). We therefore investigated patterns of oscil­
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latory shear index (Figures 3.13 and 3.14). It was demonstrated that for relatively 

small oscillations of the aortic waveform, the temporal oscillations of the wall shear 

stress vector became important only within a restricted region downstream of the 

branch, while upstream and lateral regions experienced almost unidirectional wall 

shear stress throughout the cycle. Reversal of the side branch flow did not alter 

significantly this pattern (Figure 3.13c). However, for larger peak-to-mean values 

of the aortic waveform, which resulted in reversal of the near-wall fluid within the 

aorta for part of the cycle, the oscillatory shear index was profoundly altered (Figure 

3.14b). Temporal oscillations of the WSS vector were important almost everywhere 

around the branch. However, it was lateral to the branch that OSI was highest. 

The lowest values appeared upstream and downstream of the ostium. This pattern 

was almost the negative image of the time-averaged result (Figure 3.12c), suggesting 

that locations of lowest time-averaged WSS coincide with locations of highest OSI, 

and vice versa. Further understanding for this can be gained by examining pathlines 

along the mid-plane of the aortic channel at instantaneous time-points through the 

cycle, which will be discussed in the next section (see Figure 3.20).

3.5.2 Instantaneous variations

The effects of reversing side-branch and aortic near-wall flows on WSS were exam­

ined in the simple geometry of Figure 3.1a. These investigations were motivated by 

the work of Sloop et al. (1998), who measured Doppler ultrasound tracings of flow 

waveforms in the lower thoracic aorta and posterior intercostal arteries in human 

subjects of different ages. They demonstrated the existence of reversing (retrograde) 

flow in late systole/early diastole in both the thoracic aorta and intercostal arter­

ies of healthy young men. This retrograde flow progressively vanished with age, 

and in subjects over the age of 36 both the thoracic aorta and posterior intercostal 

arteries were characterised by continuously forward-moving (antegrade) flow. The 

amplitude and frequency of the flow waveforms differed among the subjects of their 

study, but no detailed report was given for each subject. We are not aware of any 

other work reporting reversing flow in intercostal arteries. Here, we assumed aortic 

and side-branch flow waveforms oscillating at the same frequency at two moderate 

Reynolds numbers. We examined several cases, in which the aortic and side-branch 

flow waveforms had a phase shift of either (j> =  0 or 0 /  0, and either the side-branch
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Our main finding was that the instantaneous pattern of aortic WSS around in­

tercostal ostia is greatly influenced by the existence of reversing side branch flow 

(Figure 3.9c) or reversing aortic near-wall flow (Figure 3.10a). For non-reversing 

flow, the effect of pulsatility was small and WSSn only slowly fluctuated over the 

cycle. The patterns (Figures 3.9a-b and 3.10b) resembled in character those seen 

with steady flow at the equivalent mean Reynolds and flow partition values.

To understand the mechanisms underlying the WSSn patterns obtained under re­

versing flow, lines along the mid-plane of the aortic channel were computed at in­

stantaneous time-points through the cycle. Figure 3.19 displays lines tangent to the 

instantaneous velocity vectors for the case of reversing side branch flow (Rem =  150, 

Qb'Qam =  0.79%, (j) =  7r, and Ured — 4). A jet of fluid particles from the branch (first 

image of Figure 3.19) entered the aorta impeding the upstream flow from moving 

downstream. This explains the formation of the low WSSn region seen immedi­

ately upstream of the ostium (first image of Figure 3.9c). At the next time-point, 

the jet protruded further toward the core aortic flow. As a result, the upstream 

low shear region was shifted further upstream, and another low WSSn region was 

formed downstream of the branch which extended into a streak of low values (sec­

ond image of Figure 3.9c). For forward-moving side-branch flow (last two images of 

Figure 3.19), the line patterns resembled those seen for steady flow for equivalent 

mean Reynolds number and flow partition.

The patterns of lines tangent to the instantaneous velocity vectors for partially 

backward-moving aortic near-wall flow are shown in Figure 3.20 (Rem =  500, 

Qb'Qam. =  0.79%, (/> =  0, and UTed =  4). From early- to mid-deceleration (first 

two images of Figure 3.20), aortic flow moved into the branch from regions away 

from the wall. Despite the significant difference in the size of the instantaneous high 

WSSn regions around the ostium between these two times (first two images of Fig­

ure 3.10a), the line patterns were almost identical; the line which divides the fluid 

entering the branch from that continuing down the aorta moved further away from 

the aortic wall but by a negligible amount. During the end of the deceleration/be-

or the aortic near-wall flow waveform was reversing for part of the cycle.
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ginning of the acceleration phase (third image of Figure 3.20), the line pattern was 

profoundly altered. Aortic fluid particles near the wall were flowing in the opposite 

direction to fluid particles further away from the wall. In the region downstream of 

the branch (with respect to the direction of the core aortic flow), reversing near-wall 

fluid moved in the upstream direction and entered the branch. Upstream of the 

branch, fluid particles close to the wall also moved further upstream (in the oppo­

site direction to adjacent particles of the bulk flow) causing the formation of a small 

vortex at a location above and upstream of the branch mouth where particles from 

the bulk aortic flow deviated from the axial direction to enter the branch. Aortic 

flow entered the branch from regions away from the wall. During the middle of the 

acceleration (last image of Figure 3.20), aortic near-wall flow moved again down­

stream and into the branch, but the line pattern was slightly deformed.

Returning to the discussion of the previous section on the pattern of oscillatory 

shear index for this case (Figure 3.14b), it can be seen that despite the reversal of 

the near-wall fluid during late deceleration/early acceleration, the aortic flow con­

tinued to enter the side branch at all times. The need for flow to enter the branch 

required fluid to be drawn from regions downstream of and lateral to the ostium, in 

addition to regions further away from the wall (from the bulk aortic flow). The de­

viation of the WSS vector from the axial direction lasted for longer time during the 

cycle in the lateral regions rather than in the downstream and upstream regions (as 

seen from the orientation of the instantaneous surface streamlines in Figure 3.10a). 

Temporal oscillations of the WSS vector were, therefore, greater lateral to the os­

tium (elevated OSI) than upstream and downstream of it (reduced OSI).

A number of simplifications were made in our simulations and analyses: we as­

sumed simplified pulsatile flow waveforms, a Newtonian fluid and a flat, rigid, and 

fixed aortic wall. Further, we limited our investigation of the effects of unsteady flow 

to a moderate range of average Reynolds numbers and flow partitions, and examined 

only a few flow waveform characteristics. Clearly, relaxing these assumptions would 

increase complexity. However, some fundamental features of the flow which underlie 

the disparate patterns of WSS were explained, particularly those for reversing side- 

branch and aortic near-wall flows. More complex systems are expected to include
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such features.

3.5.2.1 Oscillating walls

In all models presented in this work, the walls were assumed to be rigid and fixed. 

Under physiological flow conditions, however, the aortic walls undergo some degree 

of deformation. Secomb (1978) has analysed the two-dimensional flow in a channel of 

infinite ends whose walls are rigid and oscillate sinusoidally normal to their surface. 

For the simple single-branch geometry that we examined here, this motion could be 

expressed as:

z(t) =  ±5D (l +  ecosut) (3.16)

where t <  1. Assuming that the transverse velocity (for our case w „) is independent 

of x (the axial direction), Secomb (1978) showed that the axial velocity u™ is linear 

in x (the pressure gradient is quadratic), that is:

(x, z, t) =  u°(z , t) +  xula{z, t) (3.17)

where u° is the axial flow which, although influenced by and w™, is driven by a 

longitudinal pressure gradient; u\ is the flow driven by the oscillatory motion of the 

walls. The non-dimensional instantaneous volume flux across a cross-section (due 

to the wall motion alone) can be expressed as (Hydon and Pedley, 1993):

Q\{x,t) =  ^ jx s m u t  (3.18)

Secomb (1978) examined various Womersley numbers for a small displacement of 

the wall. By choosing a frame of reference in which the channel walls were fixed, the 

variables were expanded in powers of e. Secomb (1978) examined this type of flow 

also within an axisymmetric tube, while O ’Dea and Waters (2006) extended this 

analysis to include circumferential oscillations. The effects of such wall motions on 

the profile of the mean axial streaming velocity appeared to be restricted to the near­

wall region, although for high values of Womersley numbers and large displacements 

the effects extended further across the channel (or tube). For the flow regimes 

studied in this work and particularly for the thoracic aorta, which is tethered to the 

posterior chest wall, we expect these effects to be small, at least for time-averaged 

WSS patterns.
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3.5.3 Comparison with other studies

A number of authors, in seeking to explain the particularly frequent occurrence of 

lesions downstream of aortic side branches in cholesterol-fed animals (Fry, 1969; 

Cornhill and Roach, 1976), or the low frequency of human atherosclerosis at these 

locations (Caro et al., 1971), have speculated that this is an area of particularly 

high WSS. However, Sobey (1977a,b) and Tutty (1988), under the assumption of 

Stokes flow, showed for the two- and three-dimensional case, respectively, that WSS 

is elevated upstream of small branch orifices as well as downstream of them. Our 

results are in good agreement with their analyses at similar values of Re and Q b 'Q a  

but at other values we found different patterns, involving the occurrence of relatively 

low WSS at the sides of branches when Re is elevated and downstream of branches 

when Q b'.Q a  is elevated.

WSS has also been computed in models of the origin of the coeliac artery (Buchanan 

Jr. et al., 1999; Cheer et al., 1998). This branch is not strictly analogous to the 

one studied here, since the daughter vessel is comparable in size to the aorta (with 

a flow partition approaching 50%) and does not form part of a pair. Furthermore, 

although effects of Re and Q b ’.Q a  have been investigated individually (Cheer et al., 

1998), their interactions have not been studied. Nevertheless, a number of the fea­

tures and trends we identified can be discerned in the maps they present for this site.

Concerning results under the influence of pulsatile flow, Tuck (1970) and DeMestre 

and Guiney (1971) have previously examined unsteady flow through an orifice in 

a wall, which could also be applied to intercostal arteries. DeMestre and Guiney 

(1971) found that the flow is approximately quasi-steady for low Reynolds numbers. 

We have given evidence that in general is in agreement with their result by showing 

that the time-averaged WSSn patterns, produced for moderate Reynolds numbers 

(namely 150 and 500), differed very little from the equivalent steady flow results.

Although the effect of pulsatile aortic inflow waveform on WSS has been previously 

investigated (e.g. Buchanan Jr. et al., 1999, for the coeliac artery), reversing side 

branch flow and its effect on aortic WSS distribution has not been studied. We have
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demonstrated the existence of some new features in the wall shear stress patterns 

during side branch flow reversal, involving low WSS values upstream and down­

stream of the origin of the branch, and elevated values at the sides. During reversal 

of aortic near-wall fluid, other WSS features were observed. Most interestingly, the 

pattern of oscillatory shear index obtained for the case with reversing near-wall flow 

was very similar in character with the one presented by Buchanan Jr. et al. (1999) 

(whose model had a ratio of diameters «  0.6, Rem «  220, Q b'.Q am  & 43%).

3.5.4 Physiological and pathological relevance

This study is part of a larger research programme to determine whether the dif­

ferences in lesion distribution that occur between species and between ages within 

a species can be explained by differences in the pattern of WSS (or its spatial or 

temporal derivatives). Evidence for age- and species-related differences in WSS 

patterns has been obtained by examining endothelial morphology around branches. 

Endothelial cells and their nuclei align with the predominant flow direction and 

elongate with increasing shear. In young rabbits, endothelial nuclei are more elon­

gated downstream of branches than upstream, but the reverse pattern is seen in 

mature rabbits (Al-Musawi et al., 2004). Nuclear shape is approximately the same 

upstream and downstream of branches in both immature and mature mice (Bond 

and Weinberg, 2006).

Figures 3.21a-c show patterns of aortic lesion frequency around intercostal ostia in 

apolipoprotein E/low density lipoprotein receptor double knockout mice (McGillicuddy 

et al., 2001), immature cholesterol-fed rabbits, and mature cholesterol-fed rabbits 

(Barnes and Weinberg, 1999), respectively. The comparatively uniform pattern of 

WSSn we found for the lowest values of Re and Q b'.Q a  (Figure 3.4, top left) correlates 

with the approximate circumferential uniformity of lesion frequency seen in mice of 

all ages (Figure 3.21a). Similarly, the WSSn pattern found at relatively high values 

of Reynolds number and flow partition (e.g. for Re — 500, Q b'.Q a  =  0.79% in Figure 

3.4) correlates with some features of the lesion pattern observed in mature rabbits 

(Figure 3.21c). This lesion map (for mature rabbits) can also be correlated with 

the oscillatory shear index pattern obtained for reversal of the aortic near-wall flow 

(Figure 3.14b), at Rem =  500 and Q b'.Q am  =  0.79%, although the lateral regions of
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Figure 3.21: Patterns of lesion frequency around intercostal ostia (a) from 
6 mice aged 16 to 20 weeks (after McGillicuddy et al., 2001), (b) from 6 
young rabbits, 6 weeks old, and (c) from 5 mature rabbits of average age 
27 months (after Barnes and Weinberg, 1999). Frequency increases with 
shading. Mean aortic flow is from top to bottom and X marks the centre 
of the ostium.

elevated OSI occur slightly downstream of the ostium. Reduction of the average flow 

partition to Qb'-Qam — 0.08% moved these regions upstream, next to the lateral lips 

of the branch mouth (Figure 3.14c), but the OSI pattern was slightly decreased in 

magnitude and the lateral regions were reduced in size. Increase of Reynolds number 

(at this low flow partition) would increase OSI in the lateral regions and reduce it 

upstream and downstream of the branch (effect of Re, as it was seen in the opposite 

fashion in steady flow for WSS), and hence the pattern would possibly correlate 

better with the lesion pattern of mature rabbits. This also implies that regions of 

low WSS are associated with regions of increased oscillations of the WSS vector 

(elevated OSI), which both correlate with lesion locations around intercostal ostia 

of mature rabbits. However, we failed to find a pattern of WSSn that correlates with 

the downstream pattern of lesions seen in immature rabbits (Figure 3.210). Despite 

an apparent consensus, this work showed that many aspects of the relation between 

WSS and lesion occurrence remain obscure.
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Chapter 4

Wall shear stress in the aortic 

arch

In this chapter, patterns of wall shear stress in the aortic arch and the proximal major 

branches are investigated within three anatomically correct geometries of wild-type 

mice and two approximated human geometries. An introduction for this study is 

given in Section 4.1. Section 4.2 briefly describes the reconstruction of the image- 

based models, the governing equations and boundary conditions used. Patterns of 

haemodynamic wall shear stress (WSS) for each geometry are presented in Section

4.3. Finally, Section 4.4 gives a discussion of the obtained results. The flow within 

the aortic arch is analysed in that section.

4.1 Introduction

Atherosclerotic lesions, which are distributed non-uniformly around curved regions 

and branching points in the arterial system, are thought to develop by mechanisms 

dependent on haemodynamic parameters, particularly shear stresses developed on 

the arterial wall. The current consensus relates atherosclerotic plaque localisation 

to low and/or oscillating wall shear stress. The large curvature and non-planarity 

of the aortic arch, and in addition the branching of three major arteries from its 

outer surface (greater curvature), makes the aortic arch one of the most susceptible 

to atherosclerosis arterial sites in mice (Nakashima et al., 1994) and humans (Mi- 

tusch et al., 1997). Its size makes it also experimentally accessible. The recent use



of genetically modified mice as models of atherosclerosis has contributed toward an 

understanding of the development of the disease in the aortic arch. However, there 

is no clear correlation—in terms of haemodynamics— between the two species, and 

a full characterisation of the haemodynamic environment of the mouse aortic arch is 

needed. Here, we investigate distributions of wall shear stress (WSS) in the mouse 

aortic arch and the proximal major branches in an attempt to clarify some of the 

above issues.

Nakashima et al. (1994) have reported the occurrence of lesions near the origins 

of major branches in apolipoprotein E-deficient mice, the lesions sharing many of 

the features seen in human plaques (see line graph of Figure 1.2 in Chapter 1). In 

addition, Johnson and Jackson (2001); McAteer et al. (2004) and Schneider et al. 

(2004) have demonstrated the development of vulnerable atherosclerotic plaques 

within the brachiocephalic (innominate) artery of apoE knockout (apoE-/-)'mice. 

Won et al. (2007) have added to evidence for the development of lesions at the outer 

wall of the brachiocephalic artery with observations made in lipoprotein receptor- 

deficient (ldlr-/-) mice, in which lesions were also seen at the inner (lesser) curvature 

of the aortic arch.

Numerous studies, using experimental, analytical or computational methods, have 

attempted to analyse the haemodynamic environment in the aortic arch, or flow 

within curved pipes with application to the aortic arch; for example Shahcheraghi 

et al. (2002); Mori and Yamaguchi (2002); Jin et al. (2003); Suo et al. (2007); Fein- 

tuch et al. (2007), and Farthing (1978); Pedley (1980); Siggers and Waters (2008) 

(see also Chapter 1). However, there are severed discrepancies among the results ob­

tained from these studies, attributable to variability among geometries and subject- 

specific models or haemodynamic conditions, and only a few solid conclusions can 

be drawn; primarily that the distribution of shear stresses within the aortic arch 

is spatially heterogeneous. In this study, we used computational fluid dynamics 

methods to compute wall shear stresses in the aortic arch of the wild-type mouse 

(free of disease) and compare them with WSS distributions in the human arch. The 

simulations were performed assuming steady flow, since time-varying effects have 

recently shown insignificant differences between steady and time-averaged WSS for
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Reynolds numbers characteristic of the mouse (Feintuch et al., 2007). Although the 

assumption of steady flow is a simplification, mouse-to-mouse anatomical differences 

and varying physiological conditions were examined for their effects on patterns of 

WSS in the neighbourhood of the aortic arch and the three major branches. The 

results complement to the characterisation of the haemodynamic environment in 

the mouse and human aortic arch, and contribute to the analysis of atherosclerotic 

plaque localisation in that arterial site.

4.2 Image-based computational models

4.2.1 Geometries

Three anatomically correct mouse geometries (Figure 4.1), which were reconstructed 

from magnetic resonance (MR) images, were used to study patterns of haemody­

namic wall shear stress in the aortic arch (the MR images were generously provided 

by M.A. McAteer, J.E. Schneider, R.P. Choudhury, and K.M Channon, John Rad- 

cliffe Hospital, Oxford). The geometries included a portion of the ascending aorta, 

the aortic arch with the three major branches, and the proximal part of the descend­

ing thoracic aorta. Wild-type C57BL/6 mice (approximately ten weeks old) were 

imaged using an 11.7 T  (500 MHz) MR system (vertical magnet - Bruker, Rapid 

Biomedical) as described in McAteer et al. (2004); Schneider et al. (2004); and Ly- 

gate et al. (2006), as part of control groups.

Geometry 1 (Figure 4.1a) is from a wild-type mouse (ten weeks old) perfusion- 

fixed after sacrifice with 4% paraformaldehyde in phosphate-buffered saline via the 

left ventricle (McAteer et al., 2004; Schneider et al., 2004). The aortic segment, 

attached to the heart and spine, was perfused with perflouropolyether via the left 

ventricle and was removed and placed in a 13-mm glass MR tube including agarose. 

The subject was scanned using high-resolution, multi-contrast MR imaging (MRI) 

with a three-dimensional (3D) multiecho sequence. The resulting high-resolution 

T 2-weighted images had a voxel size of 23 x 23 x 31 pm3. A stack of 256 two- 

dimensional (2D) MR images (tiff, 16 bit) of size 512x512 pixels was obtained for 

the reconstruction of a 3D computational model.
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Geometries 2 and 3 (Figures 4.1b and 4.1c, respectively) are from wild-type mice 

(24±3g body weight) from the control group of a study by Lygate et al. (2006). The 

mice were anaesthetised with isoflurane and imaged repeatedly within 24 hrs in a 

supine position using high-resolution in vivo cardiac MRI. The mice were maintained 

under anaesthesia at 1.5-2% isoflurane and their temperature and respiration were 

controlled (Schneider et al., 2003). For Geometry 2, the resulting stack of 64 2D MR 

images (bright-blood) had an in-plane resolution of 33.3 x 33.3 gm2 and a thickness 

of 93.8 //m. For Geometry 3, the mid-ventricular, end-diastolic MR images had a 

voxel size of 33 x 89 x 33 /mi3 (192 slices).

Three-dimensional anatomically-correct computational models of the arterial geome­

tries were generated using in-house reconstruction tools. The process is summarised 

in Figure 4.2 for Geometry 2 (for a detailed description of the methodologies, see 

Section 2.3 of Chapter 2). The vessel lumen was segmented on each slice plane using 

thresholding, and the resulting pixelated contours were smoothed by interpolation of 

least-square spline curves. For Geometry 1 (black-blood MR images), segmentation 

was performed using the Scion Image 1.63 (Scion) software. The zero iso-contour of 

an implicit function, interpolated through the spline curves, was used to represent 

the surface. An initial surface triangulation was carried out using the marching 

cubes algorithm, and the surface was smoothed using a non-shrinking algorithm 

(modified Taubin’s smoothing algorithm, Giordana, 2004; Giordana et al., 2005b).

Segmentation of Geometry 3 originally included only short lengths of the proximal 

parts of the three major branches and the descending thoracic aorta. To avoid 

any influence of the outflow boundary conditions on the computed WSS patterns, 

straight flow extensions were added to the branches and the descending aorta using 

Rhinoceros®. The ascending aorta was also extended (by 2.5Do) and slightly en­

larged (by De=1.25Do) to ensure fully developed and non-reversing inlet flow (for 

Geometry 3, Do is the hydraulic diameter above the aortic root, measured at the 

point shown in Figure 4.1c, and is equal to approximately 1.6mm). Extensions were 

omitted in the other two geometries since the branches were sufficiently long (except 

for the left common carotid and left subclavian arteries in Geometry 1 which were 

left as segmented).
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Q rsca

Q bca

Figure 4.1: Image-based computational models of three wild-type mice 
scanned (a) ex vivo and (b-c) in vivo using high-resolution magnetic reso­
nance imaging (MRI). In the latter geometry (c), straight flow extensions 
were added to the flow boundaries. In Geometry 1 (a), a crease on the sur­
face around the bifurcation of the left subclavian artery and the descending 
aorta was an artefact due to local loss of the MRI signal (see Discussion). 
Qin is the inlet blood flow rate, Qb is the combined branch flow rate, and 
Qa is the flow rate in the descending thoracic aorta. Do is the diameter of 
the ascending aorta above the aortic root. (Qe, De in Geometry 3 are the 
flow rate and diameter, respectively, at the end of the aortic extension— 
see document). Q b c a , Q l c c a  and Q l s c a  denote the flow rates in the 
brachiocephalic, left common carotid and left subclavian arteries, respec­
tively. Q r s c a  and Q r c c a  denote flow rates in the right subclavian and 
right common carotid arteries, respectively.
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Figure 4.2: Reconstruction process of an anatomically correct mouse aortic 
arch (Geometry 2). The process involves segmentation of the vessel lumen 
from a stack of MR images (left), interpolation of spline curves (middle), 
and interpolation of an implicit surface (after smoothing and surface re- 
triangulation - right).

4.2.2 Numerical methods and boundary conditions

The time-independent Navier-Stokes equations of a Newtonian and incompressible 

flow were assumed. The flow is characterised by the Reynolds number, here defined 

as:

Reo0 —
pUDo

P
4 pQ in  

irpD0
(4.1)

where U is the average inlet velocity, Qin is the blood flow rate in the ascending 

aorta, and Dq is the diameter of the ascending aorta above the aortic root. The fluid 

density, p, was assumed equal to 1030 kg/rn3 and the dynamic viscosity, p. equal to 

0.004 kg/m sec (Nguyen et al., 2008).

A plug (blunt) velocity profile was assumed to describe the blood flow at the aortic 

inlet of all three geometries (Shahcheraghi et ah, 2002; Suo et al., 2007; Feintuch 

et ah, 2007). Geometry 3 was additionally tested with a fully developed (parabolic) 

velocity profile. In all geometries, the aortic walls were assumed to be rigid and 

the no-slip condition was applied. Finally, a zero traction boundary condition was 

imposed on the outlet of the descending aorta.
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Based on experimental measurements by Ethier (2005) (on C57BL/6 adult mice, 

approximately 20-25g body weight; Feintuch et al., 2007), the inlet flow rate in the 

mouse ascending aorta ( Q in ) was assumed equal to 26 ml/min. The ratio of the 

combined branch flow rate (Q b )  to the flow rate at the boundary of the descending 

thoracic aorta (Q a ) was Q b'.Q a  = 22.8 : 77.2. Individually for each branch, flow rates 

were taken equal to: Q b c a  =11.4%Qjn, Q l c c a  =6.9%Qj„ and Q l s c a  =4.5% Q in 

(Ethier, 2005). For Geometries 1 and 2, the brachiocephalic artery split into 6.9%Qin 

for the right subclavian artery (with equal splits into the two daughter branches for 

Geometry 1) and 4.5% Q in for the right common carotid artery (RCCA). Geome­

try 3 was also examined for a different flow division, Q b'.Q a — 30 : 70, in which 

Q b c a  ■ Q l c c a  ■ Q l s c a  =  15 : 8 : 7 % Q in  (Feintuch et al., 2007). Effects of varying 

Reynolds number on the wall shear stress pattern were investigated for Geometry 3 

by changing Q in { = Q e ) -

Furthermore, the two in vivo-scanned mouse geometries (Geometries 2 and 3) were 

scaled to an aortic diameter of Do=30mm, which is typical for people (Feintuch 

et al., 2007), in order to examine effects of scaling of the Reynolds number. This 

is justified, knowing the various existing scaling laws that correlate WSS variations 

between the two species (Greve et al., 2006; Cheng et al., 2007; Weinberg and Ethier, 

2007); however, it does not imply that direct scaling of a mouse geometry can ap­

proximate a real human geometry and the underlying flow features. The average 

inlet velocity (at D q) was assumed equal to 17.5cm/s (Feintuch et al., 2007) for the 

approximated human geometry, resulting in an inlet flow rate of approximately 7.4 

litres/min (slightly higher than the average 5 litres/min for healthy adults) and a 

Reynolds number (according to D q) of approximately 1352.

For all geometries, hybrid meshes of prismatic and unstructured tetrahedral ele­

ments were created in Gambit, after surface re-triangulation. Prismatic boundary 

layer meshes were used at the walls of the geometries to enhance the modelling of vis­

cous flows. A mesh of 518528 hybrid elements (156120 nodes) was used for Geometry 

1. The mesh for Geometry 2 included 595027 tetrahedral and prismatic elements 

(162912 nodes), while that for Geometry 3 contained 332300 elements (79125 nodes). 

The flow field was solved using Fluent® 6.3 and a second-order upwind momentum
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discretisation scheme with a second-order pressure scheme.

4.3 Results

Haemodynamic wall shear stress distributions for three different mouse aortas are 

presented in Figures 4.3-4.5 assuming equal inlet flow rates ( Q in ) and flow divisions 

(Q b 'Q a )• wss was normalised by the value that corresponds to a straight tube of 

diameter equal to that of the ascending aorta above the aortic root at the same mean 

flow rate. This can be expressed as 8/x2Rejj0/(pD$) or 32fiQlTl/(nDQ). Effects of 

varying Reynolds number and flow division on the wall shear stress distribution were 

examined for Geometry 3 (Figures 4.6 and 4.7, respectively). The effect of a fully 

developed (parabolic) inlet velocity profile on WSS within Geometry 3 is presented 

in Figure 4.8. Finally, Figure 4.9 shows WSS distributions in two approximated 

human geometries (scaled Geometries 2 and 3).

4.3.1 Geometry 1

Figure 4.3 shows the distribution of normalised wall shear stress (WSS„) in the aor­

tic arch and major branches of the ex vivo-scanned mouse geometry of Figure 4.1a 

(the side, top and bottom views of the geometry are displayed from top to bottom). 

The simulations were performed for Re£>0=181.9 (Qjn=26ml/min, Do «0.8mm) 

and Qb'.Qa—22.8 : 77.2 (Q r s c a  =6.9% Q i„  with equal splits into the two daughter 

branches, Q r c c a  =4.5% Q in , Q l c c a  =6.9%Qin and Q l s c a  =4.5% Q in ) .

WSSn was highly heterogeneous throughout the geometry. Variations in the magni­

tude of WSSn were larger along the outer (greater) curvature of the aortic arch than 

along the inner (lesser) curvature. WSS„ on the lateral walls of the aortic arch was 

patchy and asymmetrical between the ventral and dorsal walls (the dorsal wall is not 

shown in the figure), but rather moderate in magnitude. Along the greater curvature 

of the arch, WSSn was highest on the flow dividers of the three branching arteries 

and lowest on the proximal (outer) walls of the branches. The proximal wall of the 

brachiocephalic (innominate) artery (BCA), which has been described as a location 

prone to the development of vulnerable atherosclerotic plaques in apolipoprotein E 

knockout (apoE-/-) and lipoprotein receptor-deficient (ldlr-/-) mice (Johnson and
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Figure 4.3: Magnitude of non-dimensionalised wall shear stress in the aor­
tic arch and major branches of the ex vivo-scanned mouse geometry of 
Figure 4.1a (Geometry 1). The side, top and bottom views of the geom­
etry are shown (from top to bottom). Mean aortic flow is from left to 
right. The simulations were performed for Reo0 —181.9 (Qjn=26ml/min, 
Do ss0.8mm) and Qb-Qa= 22.8 : 77.2 (Q rsca =6.9%Q,-n with equal splits 
into the two daughter branches, Q rcca  =4.5%Qim Q l c c a=  6-9% Qin and 
Qlsca =4.5 %Qin).
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Jackson, 2001; Won et al., 2007; McAteer et al., 2004), was characterised by low 

values of WSS„. Shear stresses on the walls of the BCA distal to the junction were 

low to moderate, with only slightly elevated values at the origin of the right common 

carotid artery (RCCA). Along the lesser curvature of the arch, WSS„ was moderate, 

with few low values at the entrance to the aortic arch and elevated values at the 

distal end of the arch. A low shear region was observed on the proximal wall of the 

descending thoracic aorta, whereas WSSn had high values on the distal wall of the 

descending aorta.

Elevated values of WSS„ at the aortic inlet were due to the assumption of a plug 

(blunt) velocity profile without the use of a straight extension. Elevated values 

around the bifurcation of the left subclavian artery and the descending aorta were 

possibly due to the crease formed on the surface during surface reconstruction (this 

is an artefact due to local loss of the MRI signal during imaging, see Discussion), 

and thus should be ignored in the current analysis. It is noted that due to the 

known geometric artefacts in this geometry (see Discussion), there is a limitation in 

the conclusions that can be safely drawn from this case.

4.3.2 Geometry 2

Normalised wall shear stress distribution in the aortic arch and major branches of 

Geometry 2 (Figure 4.1b), which was obtained from a wild-type mouse scanned in 

vivo, is shown in Figure 4.4. Simulations were performed for the same inlet flow 

rate (Qin) and flow splits as for Geometry 1 (Qb'.Qa= 22.8 : 77.2, Q r s c a  =6.9%Qin, 

Q r c c a  =4.5%Qin; Q l c c a  =6.9%Q»n and Q l s c a  =4.5%Qin). The Reynolds num­

ber, measured above the aortic root, was i?e/)0= 106.7 (Do «1.3mm).

WSS„ was heterogeneous throughout the geometry, as in Geometry 1. Variations 

along the greater curvature of the aortic arch involved the occurrence of high shear 

stress values on the flow dividers (the highest being on the flow divider to the left 

common carotid artery—LCCA) and low on the proximal walls of the branches (ex­

cept for LCCA where WSSn was modestly low). A low shear region was observed 

at the proximal wall of the entrance to the brachiocephalic artery, similar to Ge­

ometry 1; however, in Geometry 2 this region was slightly more extended distally
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Figure 4.4: Magnitude of non-dimensionalised wall shear stress in the aor­
tic arch and major branches of the in vivo-scanned mouse geometry of 
Figure 4.1b (Geometry 2). The side, top and bottom views of the geom­
etry are shown (from top to bottom). Mean aortic flow is from left to 
right. The simulations were performed for Reu0= 106.7 (Qin=26ml/min, 
D0 ~  1.3mm) and Qb-Qa= 22.8 : 77.2 (Qrsca =6.9%Qjn, Qrcca =  4.5% 
Qin, Qlcca =6.9%Qin and Qlsca =4.5%Qjn).
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to the junction of BCA. The distribution on the lateral walls of the aortic arch was 

again patchy, although more symmetrical between the ventral and dorsal walls (not 

shown), and WSSn was lower than in Geometry 1. Along the lesser curvature of 

the arch, the shear stress pattern was more uniform and was described by relatively 

reduced values, except for a small region of low values at the entrance to the arch. 

Low WSSn was observed on the walls of the descending aorta. Elevated values at 

the aortic inlet were, as for Geometry 1, due to the assumption of a plug velocity 

profile without the use of a straight extension.

4.3.3 Geometry 3

Wall shear stress, normalised by the value that corresponds to a straight tube of 

diameter equal to Do (measured above the aortic root at the point shown), is pre­

sented in Figure 4.5 for Geometry 3 (wild-type mouse scanned in vivo). Simulations 

were performed for the same inlet flow rate and flow splits as for the two previous ge­

ometries (Qb-Qa= 22.8 : 77.2, Q b c a  • Q l c c a  • Q l s c a  =  11.4 : 6.9 : 4.5%Qin)- The 

Reynolds number was Rejy0=  86.3, defined according to the aortic diameter above 

the aortic root (£>o «1.6mm).

Similar to Geometries 1 and 2, the distribution of normalised shear stresses along 

the walls of the aortic arch of Geometry 3 was non-uniform. WSS„ was again highest 

on the flow dividers to the three branches, but only relatively low on the proximal 

walls. The low WSSn region seen in the previous geometries at the proximal wall of 

BCA was still visible but greatly reduced in extent and located more on the ventral 

wall. On the lateral walls of the arch, WSSn varied from relatively low values (at 

proximal locations) to moderate values (further distally) and was slightly asymmet­

rical between the ventral and dorsal walls (not shown). WSSn had moderate values 

along the lesser curvature, except for two confined regions of relatively low values 

at proximal and middle locations. Aortic WSSn downstream of the left common 

carotid bifurcation was elevated. A streak of low shear stresses was observed on the 

proximal wall of the descending aorta, whereas the distal wall was characterised by 

moderate WSSn values. Finally, a significantly low shear region was observed at 

the entrance to the aortic arch along the greater curvature. This feature did not 

appear to such an extent in the previous two geometries, and may be due to the local
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Figure 4.5: Magnitude of non-dimensionalised wall shear stress (WSSn) for 
the in vivo-scanned mouse geometry of Figure 4.1c (Geometry 3). The side, 
top and bottom views of the geometry are shown (from top to bottom). 
Mean aortic flow is from left to right. The simulations were performed for 
Rcd0—86.3 (Qm=26ml/min; Do ~  1.6mm was measured above the aortic 
root, at the point shown in the figure). Qb'Qa—22.8 : 77.2 (Qbca '■ Qlcca '■ 
Qlsca =  11-4 : 6.9 : 4.5%Qin).
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geometry, which appears to be of somewhat disproportionally larger cross-sectional 

area than the rest of the aortic arch.

4.3.4 Sensitivity analysis

4.3.4.1 Effect of Reynolds number

Effects of varying the Reynolds number (Re) on the distribution of normalised WSS 

were examined in Geometry 3 by changing the inlet flow rate ( Q in ) for constant 

Qb'Qa—22.8 : 77.2 (Do%h6mm, measured above the aortic root as shown in Fig­

ure 4.1c). The results are displayed in Figure 4.6. Reducing Re from 86.3 (for 

Qi„=26ml/min, Figure 4.5) to 39.8 (for Qin=12ml/min, a value reported for anaes­

thetised mice; Feintuch et al., 2007), resulted in a small overall reduction of the 

WSSn values throughout the geometry (Figure 4.6a). Moderately elevated WSSn 

values were observed on the flow dividers and the distal portions of the lateral walls 

and the lesser curvature of the aortic arch. The proximal wall of BCA was charac­

terised by relatively low WSSn values, but these were distributed more uniformly 

for lower than for higher Re values, and were not confined in a specific location.

Increasing the Reynolds number from 86.3 (for Q tn = 26ml/min, Figure 4.5) to 130.3 

(for Qin ~39ml/min), increased the high shear regions downstream of the flow di­

viders (in magnitude and extent), and slightly decreased in magnitude the low shear 

regions on the proximal walls of the branches (Figure 4.6b). An extended region 

of highest WSSn was observed on the walls downstream of the junction to the left 

common carotid artery (LCCA). A larger region of low values was seen at the outer 

wall of BCA which was slightly extended proximally.

4.3.4.2 Effect of flow division

Changing the ratio between the combined flow rate of the three branches and the 

flow rate in the descending aorta from Qb'.Qa—22.8 : 77.2 (Figure 4.5) to 30:70 (Fein­

tuch et al., 2007), while holding Qin equal to 26ml/min (Re£>0=86.3), had negligible 

effects on the WSSn distribution (Figure 4.7a). The most notable differences were 

observed at the origins of the three branches where WSSn was slightly increased in 

magnitude around the flow dividers, and the two low shear regions previously seen
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Figure 4.6: Magnitude of WSSn in Geometry 3 for varying R eo0- 
(a) ReD0= 39.8 (Qj„=12ml/min) and (b) R eo0—130.3 (Qm«39ml/min). 
Do «1.6mm, measured above the aortic root. Qb'Qa= 22.8 : 77.2 (Qbca ■ 
Qlcca '■ Qlsca — 11-4 : 6.9 : 4.5%Qjn). The side, top and bottom views 
are shown (from top to bottom). Mean aortic flow is from left to right.

proximally to BCA and LSCA vanished. Elevated WSSn values downstream of the 

LCCA junction were slightly reduced in extent. The individual flow rates for each 

branch were: Qbca =15VcQin, Qlcca =8%Qin and Qlsca =7%Qin-

The WSSn distribution for a lower Re, equal to 39.8 (Qin—12ml/min), while holding 

the ratio Qb'Qa at 30:70, is shown in Figure 4.7b. As also shown in Figure 4.6a, de-
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Figure 4.7: Magnitude of WSSn in Geometry 3 for Q b-Q a—30:70, exam­
ined for two different Reynolds numbers: (a) Rejj0= 86.3 (Qm=2(hn\/min) 
and (b) Reo0=  39.8 (Q in — 1 2 ml/min). In both cases, the individual branch 
flow splits were assumed as: Qbca =15% Q in , Qlcca = 8 % Q in and 
Qlsca =7% Q in  (Feintuch et ah, 2007). The top and bottom views are 
shown below the side view for each case. Mean aortic flow is from left to 
right.

crease of the Reynolds number reduced the overall WSS„ throughout the geometry. 

With respect to the original distribution of Figure 4.5, simultaneous reduction of Re 

and increase of Qb resulted in a distribution of WSSn which was less heterogeneous. 

The low shear region on the proximal wall of BCA vanished and shear stresses had 

relatively low to moderate values. The high shear regions on the flow dividers were 

also greatly reduced in magnitude.
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Figure 4.8: Magnitude of WSS„ in the mouse geometry of Figure 4.1c for 
a parabolic inlet velocity profile. Re£>0= 86.3 (Qin=26ml/min), Qb'Qa =  
22.8:77.2 (Qbca ■ Qlcca ■ Qlsca =  11.4 : 6.9 : 4.5%Qin)- The top and 
bottom views are shown below the side view. Mean aortic flow is from left 
to right.

4.3.4.3 Effect o f  inlet velocity profile

Finally, using a fully developed (parabolic) velocity profile at the inflow boundary 

of Geometry 3, for the same average inflow velocity and Reynolds number as for the 

case of Figure 4.5, did not alter significantly the distribution of heamodynamic wall 

shear stress in the aortic arch (Figure 4.8). Lower WSSn values were seen at the 

inflow region of the aortic extension, which was due to the use of a parabolic velocity 

profile. Regions of highest values of normalised WSS throughout the geometry were 

slightly reduced in size.
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4.3.5 Approximated human geometries

Figure 4.9 illustrates the distribution of normalised wall shear stress in two approx­

imated human geometries. Geometry 2 and Geometry 3 from the in vivo-scanned 

mouse data were both scaled to an aortic diameter equal to _D0=30mm (Feintuch 

et ah, 2007), measured above the aortic root (Figures 4.9a and 4.9b, respectively). 

Both geometries were tested with an average inlet velocity of 17.5 cm/s (Qin «7.4 

litres/min) and Re «  1352, while the flow division was held at Q b '.Q a =22.8:77.2 

(Q b c a  ■ Q l c c a  ■ Q l s c a  =  11.4 : 6.9 : A.h%>Qin).

Wall shear stress was normalised according to the value that corresponds to a straight 

tube of diameter equal to Do at the same mean flow rate. The distribution of WSSn 

along the aortic arch and major branches was clearly more heterogeneous in the 

human geometries (Figures 4.9a and 4.9b) than the distribution in the mouse ge­

ometries (Figures 4.4 and 4.5, respectively), as also found by Feintuch et al. (2007). 

Greatest variations in the shear stress pattern were observed for the scaled Geome­

try 2 (Figure 4.9a).

The overall low to moderate values of WSSn, which characterised the mouse ge­

ometry of Figure 4.4, were replaced by moderate to high values in the approximated 

human geometry of Figure 4.9a. Regions of high WSSn on the flow dividers to the 

three major branches were significantly intensified and enlarged. The low shear re­

gion at the entrance to the brachiocephalic artery remained low but was slightly 

shifted ventrally. The WSSn was low on the proximal wall of LCCA (whereas WSSn 

values at the equivalent location of the mouse geometry were only modestly low). 

The extended low shear region seen on the proximal wall of the left subclavian artery 

(in the mouse geometry) was split into two lateral low shear regions in the human 

geometry and was replaced by moderate shear values. The distribution on the lat­

eral walls and the lesser curvature of the human aortic arch was highly patchy and 

more asymmetric, as compared with the relative uniformity of the distribution in the 

mouse aortic arch of Figure 4.4. WSSn values were 'elevated on the lateral walls at 

the region around the junction to the left common carotid artery, and were reduced 

at the proximal and distal ends of the lesser curvature of the arch. Moderate shear
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Figure 4.9: Magnitude of normalised WSS in two approximated human 
geometries with Do—30mm: (a) scaled Geometry 2, (b) scaled Geometry 3. 
The simulations were performed for Rep0 ~  1352 (Qin ~7.4 litres/min, U— 
17.5 cm/s; Feintucli et al., 2007), and Qb-Qa—22.8:77.2 (Qbca  '■ Q lcca  '■ 
QlsCA = 11.4 : 6.9 : 4.5%Qjn)- The side, top and bottom views are shown 
(from top to bottom). Mean aortic flow is from left to right.

values were seen on the distal walls of the descending aorta, whereas the region of 

elevated WSS„ values on the aortic inlet, due to the assumption of a plug velocity 

profile without the use of a straight extension, was significantly enlarged.
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In the approximated human geometry of Figure 4.9b (scaled Geometry 3, Figure 

4.5), highest WSSn were observed almost circumferentially on the walls downstream 

of the junction to the left common carotid artery (LCCA). WSS„ was modestly high 

on the distal wall of the descending thoracic aorta. High WSSn values were also ob­

served at the distal end of the lesser curvature of the arch, however, the proximal 

end was characterised by moderate values, and a small region of modestly low shear 

values was developed at the middle of the lesser curvature of the aortic arch. The 

characteristically low WSSn region seen at the proximal wall of the greater curvature 

for the specific mouse geometry (Figure 4.5), was reduced in size and was replaced 

by modestly low values. WSSn was increased on the flow dividers of the branches. 

Three distinctly low wall shear stress regions were formed on the proximal walls of 

all three branches (characterised by only modestly low values in the mouse geome­

try). The low wall shear stress region on the proximal wall of the brachiocephalic 

artery took on the shape of a downstream triangle.

Simulations in the two scaled geometries were performed with the same bound­

ary conditions, as described above. The two WSSn distributions shared several 

common characteristics, for example elevated values on the flow dividers and re­

duced values on the proximal walls of the three branches. However, they slightly 

differed in that high shear regions on the lateral walls of the aortic arch were seen 

at different locations in each geometry (around the LCCA junction in the scaled 

Geometry 2, and upstream of the LSCA junction in the scaled Geometry 3). In 

addition, they differed in that the lesser curvature was characterised (following a 

proximal-to-middle-to-distal direction on the lesser curvature of the arch) by low- 

to-moderate-to-low values in the scaled Geometry 2, and by moderate-to-relatively 

low-to-high values in the scaled Geometry 3.

4.4 Discussion

We used computational tools to reconstruct and model the aortic arch and proximal 

major branches of three wild-type mice (free of disease), scanned ex vivo or in vivo 

with MRI. Furthermore, two of these geometries were scaled to an aortic diameter of 

30mm, which is typical of men, to approximate the human aortic arch. The distribu­
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tion of normalised wall shear stress within the arch of each geometry was computed 

assuming steady flow conditions, a uniform inlet velocity profile and branch flow 

splits within the physiological range of conscious or anaesthetised mice and healthy 

men (Shahcheraghi et al., 2002; Suo et ah, 2007; Feintuch et ah, 2007). Our main 

finding was that the distribution of wall shear stress varies significantly between 

the two species. Wall shear stresses had a more heterogeneous distribution in the 

human aortic arch than in the mouse arch, with elevated or reduced WSS values 

being intensified and enlarged in size in the human case. Other features, however, 

were similar in both species and the proximal wall of the brachiocephalic artery, a 

location susceptible to the development of atherosclerotic lesions, was characterised 

in most cases by low values of shear stress. Similar observations were published by 

Feintuch et al. (2007) whilst this work was being carried out.

Comparison of the magnitude of the normalising shear stress between the two species 

gives information about scaling effects. For the mouse of Geometry 2, the normal­

ising shear stress—which corresponds to a straight tube of diameter equal to Dq 

at the same mean flow rate— was approximately 74.77 dynes/cm2, whereas for the 

equivalent approximated human geometry the normalising WSS was approximately 

1.87 dynes/cm2. In Geometry 3, this value was approximately 39.58 dynes/cm2 for 

the mouse and 1.87 dynes/cm2 for the equivalent approximated human geometry. 

This suggests that the non-normalised WSS was approximately 40 times higher in 

the mouse than in the human case for Geometry 2, and 21 times for Geometry 3. 

The latter result is in good agreement with existing scaling laws which give a the­

oretical prediction of an approximately 20-fold difference in the WSS between the 

two species (Weinberg and Ethier, 2007) and experimental data (Greve et al., 2006) 

which give the same result. This is further supported by the results of Feintuch 

et al. (2007) who have reported a normalising shear stress, estimated according to 

the same formula, of 58 dynes/cm2 for a mouse and 1.63 dynes/cm2 for an approx­

imated human geometry, leading to an approximately 35-fold difference of WSS. It 

is noted that the normalising WSS value depends only on the Reynolds number and 

the diameter of the vessel lumen, which in turn depends on the location of measure­

ment and may vary between different geometries.
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Mouse-to-mouse anatomical variability showed that the WSS distribution is greatly 

influenced by the detailed anatomical geometry of the aortic arch and major branches. 

Nevertheless, some features of the distribution were common in all geometries, pri­

marily the occurrence of elevated WSS„ values on the flow dividers to the three 

branches and reduced values on the proximal walls of the branches. Flow divi­

sions in the three major branches may vary with physiological demand, however, 

we showed that their influence on WSS is relatively small within the mouse phys­

iological range. Varying the Reynolds number had a significant influence on the 

distribution of stresses on the walls of the arch. Increasing Re produced greater 

variations in the pattern of wall shear stresses. These influences were tested only 

for one of the mouse geometries (Geometry 3) but are expected to hold true also for 

the other two geometries. Between the two approximated human cases, for which 

common inflow and boundary conditions were used (and the same aortic diameter), 

the distribution of WSS„ slightly differed, again implying the importance of the local 

three-dimensional anatomy.

The anatomy was similar in all cases examined, with three major branches emanat­

ing from the greater curvature of the aortic arch; however, the detailed anatomical 

characteristics, such as the angle of branching of the major arteries, or the curvature 

and/or twisting of the aortic arch, varied among the three subjects. Small differences 

in the geometries may also be attributable to artefacts arising during the imaging, 

segmentation or reconstruction processes. Geometry 1, in particular, differed from 

the other two geometries in that it was obtained from a mouse scanned ex vivo by 

MRI. For that, the mouse was placed within an MR tube which unavoidably imposed 

some degree of twisting on the aortic root and the ascending aorta, despite the fact 

that the mouse was perfusion-fixed in situ and the arteries were still attached to the 

spine during the placement in the MR tube. For this reason, the aortic root and 

proximal ascending aorta was excluded from the geometry and was slightly corrected 

during the surface reconstruction process. In addition, loss of the MRI signal during 

image acquisition resulted in an artefact around the bifurcation of the left subclavian 

artery and the descending thoracic aorta. The region was corrected manually during 

reconstruction, which resulted in a crease on the surface. The other two geometries 

did not contain any major artefacts. However, semi-automated segmentation in all
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three geometries is inherently subjected to some degree of subjectivity and hence 

uncertainty.

A better understanding of the observed wall shear stress distributions can be gained 

by studying the flow field within the aortic arch and the three proximal branches. 

Through-plane velocities (contours) and in-plane streamlines were calculated on 

seven cross sections along the aortic arch and the major branches of Geometry 

2, for the mouse and human cases (shown in Figures 4.10 and 4.11, respectively). 

The velocities were normalised according to the average inlet velocity. The cross 

sections were perpendicular to the medial lines of the aortic arch and each of the 

branches, obtained using an in-house skeletonisation (thinning) algorithm (Giordana 

et ah, 2005b). The cross sections were considered at the same locations for both 

cases and are illustrated with successive numbers on the wall shear stress maps at 

the bottom of each figure. Aortic arch cross-sectional slices (top row of each figure) 

are oriented so that the top and bottom points correspond to points on the greater 

and lesser curvature of the arch, respectively. In addition, the left and right points 

of each cross section correspond, respectively, to points on the ventral and dorsal 

walls of the arch; i.e. the observer faces upstream, or—in other words—in a distal 

to proximal view, and the mean aortic flow is toward the observer. Cross sectional 

slices displayed at the middle row of each figure are oriented so that the top and 

bottom points correspond, respectively, to the proximal and distal walls of each ar­

terial branch. The left and right points correspond again to points on the ventral 

and dorsal side of the geometry, respectively. The mean aortic flow is toward the 

observer, in a cranial to caudal view. The relative dimensions of the cross sections 

were maintained to show vessel diameter variation along the arch and arterial vessels.

At a location upstream of the junction to the brachiocephalic artery (slice 1 in the 

mouse geometry of Figure 4.10), axial flow was only slightly skewed in the cranioven- 

tral direction. The displacement generated secondary motion in the transverse plane 

in the form of a pair of counter-rotating vortices, similar to the Dean vortices for 

planar curved pipes. However, these vortices were asymmetrical; the right-handed 

clockwise vortex was larger in strength and size than the left-handed vortex. Down­

stream of the flow divider to BCA (slice 2), peak velocities were highly skewed toward
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the greater curvature of the arch, taking on the shape of an asymmetric crescent. 

The pair of counter-rotating vortices was slightly more symmetrical than on the 

previous slice, and the centres of rotation for each vortex were rotated and shifted. 

Downstream of the flow divider to the left common carotid artery (LCCA, slice 3), 

the primary vortex pair was annihilated, while the peak flow was partly restored 

toward the axial centreline. At the entrance to the descending thoracic aorta (slice 

4), that is, downstream of the flow divider of the left subclavian artery (LSCA), the 

bulk flow was only slightly skewed toward the top part of the cross-section. Two 

new counter-rotating vortices were generated, which were relatively symmetrical and 

whose centres of rotation were near the lateral walls of the aortic arch. Flow within 

the first major branch of the aortic arch (BCA, slice 5) was skewed toward the distal 

wall. Slices 6 and 7 show contours of axial velocity in the LCC and LSC arteries, 

respectively. In the former branch, the flow was relatively symmetrical, whereas in 

the latter branch the bulk flow was skewed toward the distal wall. No vortical struc­

tures were apparent in the flow within the three branches of the mouse geometry.

Figure 4.11 shows cross sections along the aortic arch and major branches in one 

of the approximated human geometries (scaled Geometry 2; see figure caption for 

boundary conditions used). Although the simulation was performed using a uniform 

velocity profile on the aortic inlet, by slice 1 of the geometry, which was located up­

stream of the junction to the BCA, the bulk of the aortic flow was already highly 

skewed in the cranioventral direction, and low velocities appeared near the lesser 

curvature of the aortic arch. A highly asymmetric pair of counter-rotating vortices 

was generated, with the right-handed vortex being much larger than the left-handed 

vortex. Distal to the BCA (slice 2 ), peak velocities were concentrated near the 

greater curvature of the arch, whereas at the opposite wall, near the lesser curvature 

of the arch, through-plane velocities were restricted to low values. The right-handed 

primary vortex dominated in the transverse plane, annihilating the left-handed vor­

tex. A secondary vortex was generated at locations of slower-moving flow near the 

bottom of the section. By slice 3, which is located distal to the LCCA, the right- 

handed primary vortex was cancelled, although the smaller secondary vortex near 

the bottom persisted. The bulk of the flow occupied the top half of the cross section, 

closer to the greater curvature of the arch. Distal to the LSCA (slice 4), the flow was
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Figure 4.10: Non-diinensionalised through-plane velocities (contours) and 
in-plane streamlines at seven cross sections along the aortic arch and 
three major branches of the mouse Geometry 2 (top and middle rows). 
Each cross section is numbered and its location is illustrated on the non- 
dimensionalised wall shear stress map for this case (bottom row, Figure 
4.4). The relative dimensions of the cross sections were preserved to show 
vessel diameter variation along the different arterial locations. Aortic arch 
cross sections (in the top row) are oriented so that the top and bottom 
points correspond to points on the greater and lesser curvature of the 
arch, respectively. Cross sections at the middle row are oriented so that 
the top and bottom points correspond to the proximal and distal walls 
of each arterial branch, respectively. Mean aortic flow is toward the ob­
server (distal to proximal view for the top row, and cranial to caudal 
view for the middle row). The simulations were performed for i?ec>o=106.7 
(Qm=26ml/min, D q «1.3mm) and Qi,:Qa=22.8 : 77.2 (Q r s c a  =6.9%Qin, 
Q r c c a  =4.5%Qin, Q l c c a  =  6.9% Qin and Q l s c a  =4.5%Qin).
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greatly distorted and skewed in the craniodorsal direction. A single secondary vor­

tex, of clockwise rotation, was generated near the dorsal wall of the geometry. Flow 

within the three major branches of the aortic arch (slices 5-7) was highly skewed 

toward the distal walls of the branches, whereas the proximal walls had slow-moving 

fluid particles next to them. In BCA, a significant vortex was generated, rotating 

in an anticlockwise fashion. An anticlockwise-rotating vortex was observed within 

the LCCA, whereas in LSCA a pair of counter-rotating vortices was seen, the two 

vortices being only slightly asymmetrical.

It is apparent, from the above observations, that the flow field changes significantly 

by scaling the geometry (that is, the Reynolds number). Blood flow in human ar­

teries is characterised by much larger Reynolds numbers (Re «  1500) than flow in 

mouse arteries (Re «  100) and, hence, is dominated by inertial effects, which result 

in strong secondary flows and more heterogeneous wall shear stress distribution. In­

stead, the ratio of inertial to viscous forces is smaller in the mouse— but still highly 

inertial compared to viscous—and therefore the generation of secondary motion has 

less influence on the bulk of the blood flow and on the wall shear stress along the 

aortic arch.

In the mouse geometry of Figure 4.10, aortic flow was characterised by low iner­

tia and could be easily displaced to follow the curvature of the aortic arch; hence, 

it preserved much of its axial direction, which also explains the moderate wall shear 

stress values seen in that region. Nevertheless, a small displacement of the faster 

moving fluid particles, toward the proximal wall of the aortic arch, was imposed 

due to the curvature and torsion of the arch. This is apparent from the genera­

tion of asymmetrical vortical structures in slice 1 of Figure 4.10. In the vicinity 

of the flow divider of the brachiocephalic artery, the faster moving flow, which was 

already displaced closer to the outer wall of the arch and accelerated in order to 

preserve the axial flow, split and entered the BCA. Pressure gradients, developed 

downstream of the junction to BCA, could not displace immediately the flow into 

the downstream axial directions and, hence, the flow was skewed toward the inner 

walls of the bifurcation (distal wall of BCA and greater curvature of the arch). This 

explains the occurrence of high shear stresses on the flow dividers to all three major
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Figure 4.11: Non-dimensionalised through-plane velocities (contours) and 
in-plane streamlines at seven cross sections along the aortic arch and 
three major branches of the approximated human geometry (scaled Ge­
ometry 2, top and middle rows). Each cross section is numbered and its 
location is illustrated on the non-dimensionalised wall shear stress map 
for this case (bottom row, Figure 4.9a). The relative dimensions of the 
cross sections were preserved to show vessel diameter variation along the 
different arterial locations. Aortic arch cross sections (in the top row) 
are oriented so that the top and bottom points correspond to points on 
the greater and lesser curvature of the arch, respectively. Cross sec­
tions at the middle row are oriented so that the top and bottom points 
correspond to the proximal and distal walls of each arterial branch, re­
spectively. Mean aortic flow is toward the observer (distal to proximal 
view for the top row, and superior to inferior view for the middle row). 
The simulations were performed for Reo0 ~  1352 (<3m~7.4 litres/min, 
(7 =  17.5 cm/s, .Do =30mm) and Q b : Q a = 2 2 . 8  : 77.2 (Q r s c a  =6.9% Q i n , 

Q r c c a  =4.5% Q i n i  Q l c c a  =6.9%Qi„ and Q l s c a  =4.5% Q i n )-
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branches. Additionally, it explains the occurrence of low WSS values on the proxi­

mal walls of the three branches, since flow velocities in those regions were low. Due 

to low inertial forces in the flow within the mouse arch, wall shear stresses remained 

relatively moderate and uniform, and flow in the descending aorta was—to a large 

extend—restored to its axial direction, with the generation of two almost symmet­

rical (counter-rotating) vortices.

Flow in the approximated human geometry of Figure 4.11 was dominated by in­

ertial effects, and hence could not be easily displaced. A large pressure gradient 

was developed that accelerated aortic fluid particles in order to preserve the axial 

flow. Fluid near the wall had less inertia and therefore was greatly displaced. This 

explains the skewing of the highest velocities toward the proximal wall of the arch 

and the generation of a pair of greatly asymmetrical vortices at the entrance to the 

arch (slice 1). Wall shear stress was therefore reduced along the lesser curvature at 

that location and had more moderate values on the lateral walls of the arch. The 

accelerated fluid near the flow divider of the brachiocephalic artery had too much 

inertia and consequently the highest velocities remained closer to the inner (distal) 

walls of the bifurcation. As a result, high wall shear stresses were developed on the 

walls downstream of the junction. Blood flow velocities on the walls opposite to 

the junction, that is, the proximal wall of the BCA and the lesser curvature of the 

aortic arch, were low. However, lower velocities occurred slightly above the wall of 

the lesser curvature of the aortic arch resulting in relatively moderate (and not low) 

values of WSS at the middle of the lesser curvature of the arch. Flow within the 

descending aorta was highly skewed, rotated, and distorted due to its high inertia 

and the effect of the non-planar curvature and torsion of the arch.

Flow in the other geometries considered in this study was not analysed in detail; 

however, it is expected that it follows similar development to that presented for 

Geometry 2, for mouse and human haemodynamic conditions. The curvature, non­

planarity, cross-sectional area variation and torsion of the aortic arch have certainly 

an important influence on the flow and wall shear stress distribution in the aortic 

arch. For example, the wider cross-sectional area of the entrance to the aortic arch 

in Geometry 3 may explain why wall shear stresses upstream of the junction to
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BCA were more moderate in Geometry 3 than in Geometry 2. Similarly, the cross- 

sectional area downstream of the junction to LCCA in Geometry 3 was smaller, 

resulting in acceleration of the bulk flow and thus higher wall shear stresses almost 

circumferentially on the aortic wall. Geometry 2 had a more uniform cross-sectional 

area along sections of the aortic arch than Geometry 3; the largest cross-sectional 

area being downstream of the flow divider to BCA (as seen from the relative size of 

the slices in Figures 4.10 or 4.11).

Several simplifications were made in the above analysis, most importantly that of 

steady flow. Blood flow in people is certainly highly pulsatile and enforces the de­

velopment of large blood flow velocities and secondary flows within the aortic arch 

during left ventricular contraction. Our results indicated rotation of the bulk flow 

through the approximated human aortic arch, which may be intensified and result in 

a swirl or helical-type flow under unsteady conditions. More important are, however, 

the local flow features, such as the development of new boundary layers, variations 

in the local Reynolds and Womersley numbers, and reversal of flow, which may in­

fluence the WSS distribution. In the mouse, unsteady flow is not expected to alter 

significantly the results. However, local flow features and retrograde flow previously 

observed in the aortic arch (Feintuch et al., 2007) may influence the wall shear stress 

and flow patterns, particularly the distribution along the lesser curvature. Further­

more, simulations in this study were performed in geometries with rigid walls, which 

is another important simplification. The proximity of the ascending aorta and the 

aortic arch to the heart certainly imposes significant wall displacements, which in 

turn may alter the instantaneous distributions of wall shear stress. Time-averaged 

results, however, are expected to share some common characteristics with the steady 

flow patterns observed here, at least for the mouse geometries. Finally, another ma­

jor simplification was the inlet velocity profile, which is likely to be skewed and 

rotating in vivo.

4.4.1 Comparison with other studies

During the course of this study, two other independent studies by Suo et al. (2007) 

and Feintuch et al. (2007) were published, concerning flow and wall shear stress 

distribution in the mouse aortic arch. Our results are in good agreement with
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their findings for equivalent blood flow conditions. Feintuch et al. (2007) studied 

wall shear stress in a mouse geometry with an aortic root diameter of 1.3mm, very 

close to the diameter measured above the aortic root for the mouse of Geometry 

2 . Although they used slightly different inflow conditions and branch flow splits in 

a geometry with a relatively steeper curvature and smaller, more elliptical, cross- 

sectional areas, the wall shear stress distribution was characterised, as in Geometry 

2, by low to moderate and relatively uniform values. However, locations of elevated 

or reduced WSS were more distinct in the geometry presented here (Geometry 2), 

and flow velocities downstream of the BCA bifurcation were more skewed toward 

the greater curvature of the arch. WSS patterns in the mouse Geometry 3 showed 

similar characteristics. WSS distribution in Geometry 1 was in greater agreement 

with the results presented by Suo et al. (2007), where the variations of WSS along 

the arch were slightly larger, although they assumed higher Reynolds numbers in 

their simulations.

Concerning wall shear stress and flow patterns in the human aortic arch, our re­

sults are consistent—in general—with those of Feintuch et al. (2007). They showed 

an increase in the heterogeneity of the WSS distribution in the human arch and the 

development of stronger secondary flow motion (compared with WSS in the mouse 

arch) for a geometry scaled to an aortic root diameter of 30mm, similar to the results 

for the scaled Geometry 2. However, the significantly low wall shear stress region 

seen in their results along the lesser curvature of the arch was not apparent in the 

approximated human geometry presented here (scaled Geometry 2). This may be 

due to the smoother curvature of the arch in Geometry 2; a steeper curvature may 

have resulted in a similar low WSS region along the lesser curvature of the arch. 

However, flow velocities at cross sections along the human arch differed from those 

reported in Feintuch et al. (2007) in terms of velocity skewing and vortex gener­

ation. The flow development in the human arch was similar in character to the 

flow field reported by Shahcheraghi et al. (2002) during the forward-flow part of a 

periodic flow. Finally, more fundamental studies of flow in non-planar curved pipes 

(Mori and Yamaguchi, 2002) have shown asymmetrical vortical structures, as also 

presented here.

142



As previously discussed, variation between subject-specific models, and the use of 

different haemodynamic conditions, make difficult the comparison between different 

studies. Variations in the curvature, non-planarity, cross-sectional area and torsion 

of the aortic arch appear to be important geometrical parameters that influence the 

distribution of WSS. In addition, it was shown that the Reynolds number affects 

significantly the flow and WSS. The geometries studied here were within the physi­

ological and anatomical range of mice and men, and hence the results complement 

in the characterisation of their environments.

4.4.2 Physiological and pathological relevance

Low WSS values found at the outer (proximal) wall of the BCA correlate well with 

locations of vulnerable atherosclerotic plaques in apoE-/- mice as previously ob­

served in histopathological sections by McAteer et al. (2004) and Schneider et al. 

(2004). However, a study by Iiyama et al. (1999) showed high probability of mouse 

lesions on the inner curve of the ascending aorta (at the entrance to the aortic arch) 

and low probability on the outer wall. This cannot be explained by the results 

presented here, or by those published by Feintuch et al. (2007), but does correlate 

with changes in flow direction in the study by Suo et al. (2007). They observed 

co-localisation of low mean WSS values and increased expression of vascular cell ad­

hesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1) along 

the inner curvature of the mouse ascending aorta and aortic arch. Due to the high 

heart rate in the mouse, endothelial cells are subjected to large and rapid variations 

of WSS throughout the cardiac cycle. Furthermore, mean wall shear stresses are 

substantially larger than in the human aorta. However, Suo et al. (2007) suggest 

that because focal inflammatory changes are still observed, the relative change or 

direction of WSS may be more important than its absolute magnitude.

In the above analysis, we studied WSS and flow patterns in geometries of wild- 

type mice in an attempt to correlate these with lesions observed in diseased mice. It 

remains open to question, however, whether normal, and diseased mice have similar 

haemodynamic environments. Hartley et al. (2000) have reported differences in the 

magnitude and shape of the velocity waveform within the aortic arch of wild-type 

and apoE knockout mice. The apoE-/- mice have higher cardiac outputs and stroke
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volumes than wild-type mice (as well as lower hematocrits and higher ratios of heart 

weight to body weight), despite having normal heart rates and blood pressures. 

Nevertheless, with reference to the analysis presented here, it is expected that the 

differences in aortic velocity, and hence in Reynolds number, are not sufficiently 

large to fundamentally alter the flow characteristics and hence the wall shear stress 

patterns within the aortic arch.
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Chapter 5

Conclusions and further work

5.1 Conclusions

This research aimed to investigate the wall shear stress (WSS) distributions and 

the underlying blood flow patterns near arterial branches of the descending thoracic 

aorta and the aortic arch, using computational methods for fluid dynamics. The 

objectives were, first, to address for the first time age- and species-related changes 

in the wall shear stress distribution, in relation to the initiation and localisation of 

atherosclerosis; second, to establish the flow characteristics within the two arterial 

sites; and third, to find correlations with in vivo lesion maps. These three objectives 

have been met, to the extent possible and acknowledging limitations of the work. 

However, there are still several questions that remain unanswered.

In conclusion, this thesis contributes toward an understanding of the role of haemo­

dynamics in the localisation of atherosclerosis as follows:

(i). It demonstrates the effects of the Reynolds number (Re) (reflecting effects of 

different species and age, and hence body size) and flow partition (which may 

also vary with age and species) on aortic WSS around small side branches, 

such as the intercostal arteries in the thoracic aorta. Increase of these two 

parameters increases significantly the variation of the WSS around the branch 

ostium. Similarly, increase of the Reynolds number in the aortic arch increases 

the heterogeneity of the WSS distribution. Examination of the effects of flow 

division in the aortic arch was limited to one different value for low Re numbers



and therefore it is more difficult to conclude whether it shows the same effect 

as in the work of flow around model intercostal arteries.

(ii) . It shows the quasi-steady nature of the flow for moderate Re values and physio­

logical range of unsteady conditions. Consistent with earlier work, the effect of 

pulsatility is small under these conditions and the time-averaged WSS results 

are similar in character to the equivalent steady flow patterns.

(iii) . It demonstrates the importance of reversing (retrograde) flow, an effect which

changes with age (Sloop et al., 1998). Within the intercostal artery or the 

near-wall region of the thoracic aorta, reversing flow waveforms can cause 

significant alterations to the distributions of aortic WSS and oscillatory shear 

index (OSI). Elevated OSI values (hence, temporal oscillations of the WSS 

vector) correlate well with regions of low WSS values for reversing aortic near­

wall flow, whereas this is not true for reversing side branch flow or forward 

flow waveforms (antegrade flow).

(iv) . The use of more realistic geometries had little influence on the results of the

study of flow around intercostal arteries, demonstrating the practicability of 

using reduced model geometries for understanding complex systems. However, 

the use of subject-specific geometries in the study of the mouse aortic arch 

showed the importance of the general anatomy, such as the curvature, non­

planarity, cross-sectional area, torsion of the arch and angle of branching of 

the proximal arteries. In addition, more detailed geometrical features, such 

as small bumps or dips on the aortic wall, may cause local alterations of the 

WSS distribution (like the enlarged outer wall of the arch in Geometry 3, 

Chapter 4). Nevertheless, these differences concern primarily changes within 

a species. The use of the same geometries (Geometries 2 and 3, Chapter 4) 

for studying WSS differences between mice and men, showed that the flow 

conditions that in general characterise each species have greater influence on 

WSS (larger variations in the human case) than the specific geometry.

(v) . It successfully correlates WSS distributions around intercostal ostia with in

vivo lesion maps of mice of all ages (almost uniform WSS pattern at low Re 

and Qb'.Qa values) and of mature rabbits (low WSS and high OSI lateral regions
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under reversing aortic near-wall flow at higher Re and Qb'-Qa)- In addition, 

it correlates the low WSS region at the proximal wall of the brachiocephalic 

artery of wild-type mice with lesion locations in apoE-/- mice. Other locations 

of lesions, however, cannot be explained with the obtained results, perhaps 

implying that other localising mechanisms may also be important.

5.2 Suggestions for further work

Several suggestions can be made for further work, initially in terms of varying the 

boundary conditions in the models examined. In the study of flow around intercostal 

ostia, the use of a physiological velocity waveform at the inflow boundary condition 

could add to the characterisation of the WSS distribution. More importantly, how­

ever, the examination of a fully reversing aortic waveform could potentially produce 

new WSS patterns. Although it is expected to have little influence due to the small 

velocities of radial wall motion as compared to the radial flow components caused 

by the branch, it could be useful to take into consideration effects of oscillating wall 

motion in the model. In the study of WSS patterns in the mouse aortic arch, more 

accurate physiological boundary conditions could be examined, in particular an un­

steady or physiological velocity waveform at the inlet (spatially and temporally). It 

would be of great value to include also effects of wall motion in the model. Finally, 

accurate measurements of the inlet flow rate and the branch flow splits in mice and 

men could help standardise some of these values.

The work of this thesis could be further extended to more complex investigations. 

We examined the flow around one or two intercostal ostia, which helps understand 

and explain single mechanisms. However, this could be extended to involve anatom­

ically correct geometries including multiple pairs of intercostal arteries, or the whole 

arterial section from the aortic root to the abdominal aorta. This would identify 

whether there is any major influence of the upstream aortic flow. Arising from the 

left ventricle and flowing through the aortic arch, the flow may include features (in 

the form of secondary motions or skewed velocities) that may remain present at 

the level of intercostal arteries in the thoracic aorta, and therefore may affect the 

distribution of WSS. In addition, examining the WSS distribution in a number of
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different anatomically correct geometries, also perhaps of different age, could help 

identify intraspecies variations.

Similarly, the study of WSS patterns in the mouse aortic arch could be extended 

to study more geometries and, in particular, to include anatomically correct human 

geometries. In addition, it would be interesting to extend the study to geometries 

from diseased mice and investigate the progression of atherosclerotic lesions and 

how they alter the local haemodynamic environment, by examining variations of 

WSS at different stages of lesion progression. Finally, it would be valuable to in­

vestigate distributions of WSS around advanced plaques in conjunction with plaque 

characterisation by histopathology.

Idealised and simplified models help us understand the fundamental mechanisms 

behind distributions that otherwise would be difficult to identify. Ultimately, they 

should help identifying mechanical correlates of regions prone to athersoclerosis, and 

thus potentially help find mechanisms to prevent or reverse the disease.
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Appendix A

Appendix

A .l Womersley solution for prescribed average cross 

sectional flow between two parallel flat plates

The governing equations of motion for a Newtonian fluid of density p and dynamic 

viscosity p can be described by the incompressible Navier-Stokes equations (Equa­

tions 3.1-3.2). Flow between two parallel flat plates, with velocity components 

u =  u(z,t), v =  w =  0 (the flow assumed in the x-direction), can be expressed 

as:

du
dt

1 dp d2u 
pdx V dz2 (A .l)

where u — pip  is the kinematic viscosity of the fluid and dp/dx the pressure gradient.

If u(z,t) =  u'(z)elult and p =  p(x,t) =  Apxelwt, Equation A .l can be written as:

=  , A p > 0
dz* v pu

(A.2)

where Ap is a complex number representing a negative pressure gradient along the 

direction of flow.

Equation A.2 is a linear non-homogeneous second-order ordinary differential equa­



tion (ODE) which can be expressed as the sum of a particular, up(z), and a homo­

geneous, u'h(z), solutions: u'(z) =  u'p(z) +  u'h(z). The homogeneous ODE has an 

obvious solution (u'h =  0 ) and a general solution, expressed as:

uh =  C{eJ~"z + e (A.3)

where C is a constant. It is likely that the form of the particular solution is up — Cp, 

where Cp is a constant. By substitution is found that: u'p =  —

Hence the general solution to Equation A.2 is:

u'{z) = C { e ^ z +  e~ V ^ 2) -  (A.4)
pui

Taking Da to be the distance between the flat plates and by replacing

(where a = Da/2yf^ is the Womersley number), the solution to Equation A .l is

written as:

/  \ r „  , -2SL, : ' / 2 7  2 a  1 / 2 .u(z,t) =  [C{eDal 2 +  e ^  z) _  V ] eiwi
puj

(A.5)

Because of the no-slip condition, which requires u(Da/2, t) — u(—Da/2, t) — 0, it is 

possible to determine the constant C. Hence, the axial velocity for flow between two 

parallel plates is written, in its complex form, as:

u(z,t) -  -  — [1 
pui

cosh(m1/,2‘̂ -) .____ _̂____1V |  Irf
cosh(ai1/2)

(A.6 )

from which one must solve for the real part (see Section A.1.1).

However, a prescribed average cross sectional flow of the form u(t) =  A sincji +  

Bcosuit is required. Assuming that the width of the channel (in the y-direction) 

is equal to the distance between the plates, Da, so that Aa =  D2, the sectionally 

averaged velocity is found:

u(t) — — ̂ ^ [ 1 ------ tanh(m1//2)]elu'<
pui a i1/ 2

(A.7)
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from which one needs to evaluate the real part (see Section A. 1.2). 

By replacing:

Cf “f* i * Cj

1 -  tanh(ai1/ 2) =  Jr + i ■ Jj

cosh(ai1/2^-)
cosh(m1/2) J?(z) +  i -J?(z)

u(t) can be expressed as:

u(t) =  [(cy J r — Cj Jj) cosut — (cr Ji + a  Jr ) sinuJ]

+i ■ [(cy Jr — aJi) sinuJ + (<y Jj +  (y JT) cosuJ]

The real part of u(t) is therefore (u (i)} — (cy JT — cy Jj) cosuJ — (cr Jj +  Cj Jr) sinuJ, 

and equating the sine and cosine terms with the expression for the prescribed cross 

sectional flow, gives: A  =  CrJT — cy Jj, B  =  —cyJj — CjJr .

Substitution of Cj, cy into the solution of u(z, t) (Equation A.6), gives:

u(z,t) =  {[cyJ°(z) -  CjJ?(z)] cosuJ -  [cyJ°(z) +  CjJ°(z)] sinwi}

+i ■ { { C r J ° ( z )  + Cj J°(z)] COS U!t +  [Cr J ° ( z ) — Cj J °(z )\  sinwt}

Thus, the solution of flow between two parallel plates and prescribed average cross 

sectional flow is the real part of the above equation, i.e.:

3i{u(z, i) }  =  [cyj°(z) — Cj J°{z)] cosuit — [cyJ^z) + CjJ°(z)] sinuJ (A.8)

where

cr
A J r — B J i

j ? + j f

- A J i  -  B J r
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Jr =  » { 1  -  - h i  tanhtm 1/ 2)}

Jx =  9f{l -  - ± 2  tanh(m1/2)}

J° =  » {1
cosh (m 1//2-^-) 

cosh(az1/2) ^

3 {1  -
cosh (m 1/ 2-^-)

cosh(ai1/2)

The expression < 1 —
cosh(m: /2^ -)

cosh(m1/ 2)
¿ f -  > is evaluated in Section A. 1.1, from which:

J° =  ~  cosh <f>i cos $ 2  — cosh $ 2  cos J>i]

J° — ^[sinh $ 1  sin $ 2  +  sinh $ 2  sin $ 1 ]

The expression j l  — —[72 tanh(a*1/ 2)| is evaluated in Section A .1.2, thus: 

Jr =  1 ---- ¿7— • cosh(a\/2 ) sin(a\/2 )
757

Jx =  — • cosh(a\/2) sin(QN/2)
T57

where 7  =  coshtaV^) +  cos(a\/2 ), <?>/ =  ^ ( 1  +  ^ ) ,  $ 2  — ^ ( 1  -  ^ ) -
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This section presents the analytical evaluation of the real part of Equation A.6:

A. 1.1 Evaluation of the real part of Equation A .6

3? { u(z, t)} =  9?
cosh(m1/2-^-)

v_______ D a  y 1 ç t u l t

cosh (aiM2)
(A.9)

It follows:

cosh (m 1/ 2-^ ) 
cosh(ai1/ 2)

2ginh[f(l + ̂ )i» /»]sin h [f(l-^)ii/a]
C O sh(Q p/2)

= ' sinhl^ 2 (1 + zfM1 + *)] sinh[3a.<l -  £ ) ( l  + 0]

If 'C> =  i? 5 ( 1 +  Ä ) . ^  =  5^ a - Ä ) .  “ d * =  * e n

_  ____________2____________
cosh  K  cos /C + is in h  K  sin K.

(sinh /Ci cos /Ci +  i ■ cosh K.\ sin K.\) • (sinh /C2 cos /C2 + i • cosh /C2 sin /C2)

= cosh2 JC+cos2 iC-l (cos^ ̂  cos ^  — * ' sinh sin £ )  •
[(sinh /Ci cos /Ci sinh /C2 cos /C2 — cosh /Ci sin /Ci cosh /C2 sin /C2)

+ j • (sinh /Ci cos /Ci cosh /C2 sin /C2 +  cosh JC\ sin /C1 sinh /C2 cos /C2)]

_  _______ 2_______
I  [cosh ( q  \ /2) + c o s  (a 7W ]

{[(sinh/Ci cos/Ci sinh/C2 C0S/C2 — cosh/Ci sin/Ci cosh/C2 sin/C2) cosh /Ccos /C 

+ (sinh/Ci cos /Ci cosh/C2 sin/C2 + cosh/Ci sin/Ci sinh/C2 C0S/C2) sinh/C sin/C]

+ i ■ [—(sinh /Ci cos /Ci sinh/C2 COS/C2 — cosh/Ci sin/Ci cosh /C2 sin/C2) sinh/Csin/C 

+ (sinh/Ci cos/Ci cosh/C2 sin/C2 + cosh/Ci sin/Ci sinh/C2 cos/C2) cosh /C cos /C]}

= ± . { 0  + i - 6 }

where 7 =  cosh(a\/2) +  cos(c*%/2) and O, O are, respectively, the real and imaginary 

parts of the above complex expression within the braces.
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Equation A .6 can now be expressed as:

u(z , t) A v i

pu> ■ ± - { O +  i - 0 } - e iu3t

4 Ap
poj'y

• { [0 coswf + Osmut] -f i ■ [0 sinwt — O cosui]}

4̂ 4The real part of u(z, t) is then { u(z, t)}  =  — -  ■ [0  cosivt +  C/sinwf].
puj'y

More compact expressions for 0 and O can be found as follows:

0 =  — (sinh/Ci cos/Ci sinh/C2 cos/C2 — cosh/Ci sin/Ci cosh/C2 sin/C2)sinh/C sin/C

+ (sinh/Ci cos/Ci cosh/C2 sin/C2 + cosh/Ci sin/Ci sinh/C2 COS/C2) cosh/C cos/C

=  |{-[cosh(/Ci +  /C2) -  cosh(/Ci -  /C2)][cos(/Ci -  £2) +  cos(/Ci +  /C2)]

+ [cosh(/Ci +  /C2) +  cosh(/Ci -  /C2)][cos(/Ci -  /C2) -  cos(/Ci +  /C2)]}sinh/Csin/C 

+  ̂ {[sinh(/Ci +  /C 2) +  sinh(/Ci — ^2)][— sin(/Ci — /C 2) +  sin(/Ci +  /C2)]

+ [sinh(/Ci +  /C2) -  sinh(/Ci — /C2)][sin(/Ci -  /C2) +  sin(/Ci +  /C2)]} cosh /C cos/C

= i { [ — cosh(/Ci +  1C2) cos(/Ci +  JC2) +  cosh(/Ci — 1C2) cos(/Ci -  /C2)] sinh/Csin/C 

+ [sinh(/Ci +  /C2) sin(/Ci +  /C2) -  sinh(/Ci -  IC2) sin(/Ci -  /C2)] cosh /C cos /C}

=  ^ {—|[sinh(/C +  /Ci +  /C2) +  sinh(/C — /Ci — /C2)][sin(/C — K\ — /C2) +  sin(/C +  K\ +  /C2)]

+4[sinh(/C +  /Ci -  /C2) +  sinh(/C -  /Ci +  /C2)][sin(/C - K x +  /C2) +  sin(/C +  K x -  /C2)]

+ ±[sinh(/C + /Ci +  /C2) -  sinh(/C -  /Ci -  /C2)][ -  sin(/C — /Ci — /C2) +  sin(/C +  /Ci +  /C2)]

— |[sinh(/C +  /Ci -  /C2) -  sinh(/C -  /Cx +  /C2) ][ -  sin(/C -  /Ci +  /C2) +  sin(/C + K\ -  /C2)]}

=  j [ — sinh(/C + /Ci +  /C2) sin(/C — 1C 1 — /C2) -  sinh(/C — /Ci — /C2) sin(/C +  /Ci +  /C2)

+  sinh(/C +  IC1 -  /C2) sin(/C -  /Ci +  /C2) + sinh(/C -  /Cx +  /C2) sin(/C + /Ci -  /C2)]
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/C +  /C1 + /C2 =  q\/2

K - K . 1 - K 2  =  0

$ 1  =  /C +  /C1-/C2 =  ■^(i +  'Dl)

$2  -  /C-/C1 + /C2 =  7^ (1 - S ; )

Therefore:

0  =  ^[sinh $ 1  sin +  sinh $2 sin # /] (A.10)

Similarly:

O =  (sinh /Ci cos £1 sinh /C2 cos /C2 — cosh K\ sin /Ci cosh /C2 sin IC2) cosh /C cos JC 

+(sinh /Ci cos K\ cosh /C2 sin /C2 + cosh /Ci sin /C1 sinh /C2 cos /C2) sinh /C sin /C

=  ̂{ [c° sh(/Ci +  /C2) cos(/Ci +  /C2) — cosh(/Ci — /C2) cos(/Ci — /C2)] cosh/C cos /C

+[sinh(/Ci +  /C2) sin(/Ci +  /C2) — sinh(/Ci — /C2) sin(/Ci — /C2)] sinh /C sin /C}

= |[cosh(/C +  /Ci +  /C 2) cos (/C — /Ci — /C2) + cosh(/C — /Ci — /C2) cos(/C + /Ci +  /C2)

— cosh(/C +  /C1 — /C2) cos (/C — /Ci +  /C2) — cosh(/C — /Ci +  /C2) cos(/C + K,\ — /C2)]

=  1[cosh(a\/2) +  cos(a\/2) — cosh cos #2 — cosh $2 cos 0 /]

=  1[7 — cosh $ 1  cos $2 — cosh $2  cos # ;]

Hence:

However:

^4
—— ■ {[sinh 4>i sin $2  +  sinh #g sin $ 1]  cosuit 
pu 7
+  [7 — cosh $ 1  cos — cosh </>2 cos <?/] sinwf}

(A.11)

where

7 =  cosh(o\/2) +  cos(o\/2)
, a 2z , *

*  a  /,  2 z \

155



The following expression appears in Equation A.7 and can be evaluated as follows:

A .1.2 Evaluation of the expression appearing in Equation A .7

1 - — 777 tanh(«i1/2) 
on1'*

1 _  l sinhl^ ( 1+i)]
cosh[^(i+d]

1 _  1 sinh< 7 ; ) cos( ^ ) + i 'cc>s h ( ^ ) s i n ( ^ )
7 5  (1 +t) cosh( -J . ) cos( ̂  )+isinh( ̂  ) sin( ̂  )

If K, =  , then

1 1 (1 t) (cosh/C cos AC—i sinh AC sin AC) r * t_ ■ • t_ v~ * v~'\
= 1  ~  £  ^[(cosh AC cos AC)1̂+(sinh AC sin AC)'̂ ] ‘ [sinh /C COS 1C +  2 • COsh 1C Sin K]

=  1 “  ^  > sh(a^Hcos(a^)] ' * ' 2 cosh(2^ ) sin(2^)

= [ 1 ---- ^— • cosh(a\/2 ) sin(a ■ cosh(av/2) sin( av^)]
7 2 1 i k 1

where 7  =  cosh(a\/2) +  cos(a\/2).
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A .2 Volume flow rate for flow in a channel

The volume flow rate of a fluid flow in a channel, found by integration of the veloc­

ity [Equation (A.11)] over the full height channel inflow area D%, can be expressed as:

Q(t) =
APDj 
4 fia3

sinh(a\/2 )

\ 7
sin(a\/2 )

7
a\/2 [smh(a\/2 ) +  sin( a V 2)l

7
(A.12)

• sin(wi +  9)

where

6 =  arctan sinh(a:\/2 ) -  sin(a\/2 ) 
OL^sfi — sinh(a\/2 ) — sin(a\/2 )

7 =  cosh(ay/2) +  cos(a\/2)
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A .3 Figures of Chapter 3 in grayscale

Because some features show better in grayscale, this section presents grayscale ver­

sions of the WSSn patterns presented in Chapter 3. No further comments are given. 

The figure numbers corresponding to those of Chapter 3 are also provided.

Re 30 150 500 1500

Figure A.l: (Grayscale of Figure 3.4) Magnitude and direction of non- 
dimensionalised aortic wall shear stress around the ostium of the simple 
intercostal junction of Figure 3.1a. Mean aortic flow is from top to bottom. 
The simulations were performed at a range of Reynolds numbers and flow 
partitions to account for different species and ages within a species. Dashed 
lines indicate flow attachment.

158



Re 150 500 1500

Figure A.2: (Grayscale of Figure 3.5) Magnitude and direction of non- 
dimensionalised aortic wall shear stress around the ostium of the simple 
intercostal junction of Figure 3.1a Mean aortic flow is from top to bottom. 
The simulations were performed at a range of Reynolds numbers for the 
case of ligated side branch ( =  0).

Figure A.3: (Grayscale of Figure 3.6) Magnitude and direction of non- 
dimensionalised aortic wall shear stress around a pair of intercostal ostia at 
the same streamwise position (top, Figure 3.Id) and at staggered positions 
(bottom). Mean aortic flow is from top to bottom. The simulations were 
performed for Re =  500 and Qb'-Qa — 0-79%. Dashed lines indicate flow 
attachment.
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Figure A.4: (Grayscale of Figure 3.7) Magnitude and direction of non- 
dimensionalised aortic wall shear stress around the ostium of (a) the aortic 
model of Figure 3.1b and (b) the realistic aorto-intercostal junction of Fig­
ure 3.1c. Mean aortic flow is from top to bottom. The simulations were 
performed for Re =  500 and Qb'.Qa — 0.79%. Dashed lines indicate flow 
attachment.

Figure A.5: (Grayscale of Figure 3.8, right image) Magnitude and direction 
of non-dimensionalised aortic wall shear stress in the anatomically correct 
geometry of Figure 3.3.Mean aortic flow is from- top to bottom. The simu­
lations were performed for Repr =  500 and Qrb:Qra =  0.79%.
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(a)

(b)

Relative 
shear rate

Figure A.6: (Grayscale of Figure 3.9) Magnitude and direction of non- 
dimensionalised instantaneous aortic wall shear stress for the simple ge­
ometry of Figure 3.1a. The simulations were performed for Rem =  150, 
Qb'-Qa-m — 0.79% and Ured =  4 (St = 0.25 or a «  7.7). The side branch 
flow waveform had a phase shift with the aortic waveform of (a) <j> — 0, 
(b-c) (p =  7T. In (c) the side branch flow was reversing for about one third 
of the cycle. Mean aortic flow is from top to bottom. Dashed lines indicate 
flow attachment.
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Figure A.7: (Grayscale of Figure 3.10) Magnitude and direction of non- 
dimensionalised instantaneous aortic wall shear stress for the simple ge­
ometry of Figure 3.1a.The simulations were performed for Rem — 500, 
Q b'Q om — 0.79%, Ure({ =  4 (St =  0.25 or a  «  14) and <f> =  0. The aortic 
waveform had a peak-to-mean of (a) 1.5 and (b) 1.03. Mean aortic flow is 
from top to bottom. Dashed lines indicate flow attachment.
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Figure A.8: (Grayscale of Figure 3.11) Magnitude and direction of non- 
dimensionalised time-averaged aortic wall shear stress for Rem =  150. 
Qb'Qam — 0.79% and Ured — 4, corresponding to the instantaneous pat­
terns of Figure 3.9. (a) Steady flow result at the same mean flow values. 
The side branch flow waveform had a phase shift, with respect to the aortic 
waveform, of (b) (j> =  0, (c-d) <j> =  n, and in (d) it was reversing for about 
one third of the cycle. Mean aortic flow is from top to bottom.

Figure A.9: (Grayscale of Figure 3.12) Magnitude and direction of non- 
dimensionalised time-averaged aortic wall shear stress for Rem — 500, 
Qb'Qam — 0.79%, and Ured — 4 {(f) =  0), corresponding to the instanta­
neous patterns of Figure 3.10. (a) Steady flow result at the same mean 
flow values. The aortic waveform had a peak-to-mean of (b) 1.03 (Figure 
3.10b) and (c) 1.5 (Figure 3.10a). Mean aortic flow is from top to bottom.
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