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Abstract—Dietary assessment is an important tool for
nutritional epidemiology studies. To assess the dietary in-
take, the common approach is to carry out 24-h dietary
recall (24HR), a structured interview conducted by experi-
enced dietitians. Due to the unconscious biases in such
self-reporting methods, many research works have pro-
posed the use of vision-based approaches to provide ac-
curate and objective assessments. In this article, a novel
vision-based method based on real-time three-dimensional
(3-D) reconstruction and deep learning view synthesis is
proposed to enable accurate portion size estimation of food
items consumed. A point completion neural network is de-
veloped to complete partial point cloud of food items based
on a single depth image or video captured from any conve-
nient viewing position. Once 3-D models of food items are
reconstructed, the food volume can be estimated through
meshing. Compared to previous methods, our method has
addressed several major challenges in vision-based dietary
assessment, such as view occlusion and scale ambiguity,
and it outperforms previous approaches in accurate portion
size estimation.

Index Terms—Deep learning, dietary assessment, point
cloud completion, three-dimensional (3-D) reconstruction,
volume estimation.

I. INTRODUCTION

ARECENT National Health Service (NHS) survey [1] dis-
closed that the proportion of adults in England who were

obese or overweight was 26% and 36%, respectively. Unhealthy
eating habits, which include nutritional imbalance and excess
calorie intake, are the main factors that lead to obesity [2].
Due to the raising awareness of chronic diseases, increasing
population pay more attention to their daily food intake. Pre-
vious studies indicated that commonly used dietary assessment
techniques, such as 24-h dietary recall (24HR), can effectively
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help people investigate into their dietary behavior and enable
targeted interventions to address the underlying health problems,
including Type 1 diabetes (T1D) [3]. In 24HR, participants
are required to recall the complete profile of the food items
eaten in the last 24 h and estimate the respective portion size
by naked eyes. To estimate the portion size, however, it relies
heavily on individuals’ subjective perception, which could be
highly biased and inaccurate. It is for these reasons that various
objective vision-based methods, ranging from model-based [4],
[5], stereo-based [6], depth camera based [7], and deep learning
approaches [8], have been proposed. While these approaches
present reasonable accuracy in portion size estimation, there
still exist several key challenges such as view occlusion and
scale ambiguity. Also, another concern is that current approaches
require participants to take images from different viewing angles
(in 360◦) before eating, which in turn complicates the process
and is not able to be embedded on wearable devices for long-
term health monitoring. With the technological advancements
in depth sensing, various existing mobile devices are already
equipped with three-dimensional (3-D) cameras. Inspired by [9],
a novel vision-based dietary assessment approach based on
deep learning view synthesis and depth sensing technique is
proposed in this article. This approach aims to address the key
problems, such as view occlusion and scale ambiguity, in volume
estimation by combining the merits of artificial intelligence and
depth sensing capabilities. In using such approach, the food
volume can be estimated precisely with a single depth image
or a video captured from any convenient position, which in turn
facilitates the implementation of pervasive dietary monitoring
on wearable devices. The main contributions of this article can
be summarized as follows.

1) Two network architectures UNet and VNet are proposed
to complete the partial point clouds due to view occlusion
and estimate the actual volume (cm3) of 3-D models,
respectively. Both of these networks take raw point cloud
as input.

2) A novel data augmentation method is developed
to enlarge the dataset of 3-D models using linear
latent interpolation to ease the network convergence.

3) Point cloud preprocessing techniques are developed to
facilitate volume estimation.

4) A new 3-D food dataset consisting of 4 k models with
actual volume labeled is constructed to train and eval-
uate the proposed volume estimation approach in the
wild.
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5) The generalization abilities of the point completion net-
works in handling food items with previously unseen
viewing angles, portion size, and shape geometries are
compared with previous network architectures.

6) A new vision-based dietary assessment approach is de-
veloped by combining real-time 3-D reconstruction and
deep learning view synthesis.

II. RELATED WORK

A. Volume Estimation Approaches

With the advances in computer vision, several vision-based
approaches have been developed to address the problem of
portion estimation. Specifically, they can mainly be categorized
into model-based and stereo-based approaches. Model-based
approach estimates the portion size by matching the input
of the food items with the prebuilt 3-D food templates. For
example, a previous work by [4] developed a virtual reality
method by using preconstructed 3-D food models with known
portion size to superimpose onto the image. This technique
requires users to translate, rotate, and scale the models until
the contour of the templates matches with the food items. The
accuracy of their proposed method in volume estimation can
achieve 79.50% on average (across the food items examined
by their research team in the wild). Similar works have also
been proposed in [10]. However, model-based method does not
possess the generalization ability, which hinders the approach
in handling objects with irregular shapes and previously unseen
objects. Besides, it always requires a certain level of user in-
puts such as rotating, shifting, and scaling of the prebuilt 3-D
models manually to match with the food images. To address
this problem, some research studies proposed to use a structure
from motion (SfM) technique to reconstruct the 3-D models.
SfM-based approach relies heavily on feature points matching
between multiple images, estimates the camera positions, and
makes use of the extrinsic camera parameters to reproject the
feature points from image-to-camera coordinate. This important
property facilitates the volume estimation of food items, which
are of irregular shape so that a wider range of food items can be
estimated automatically without any manual intervention and a
large-scale model library. Another 3-D reconstruction technique,
which has been extensively used is simultaneous localization
and mapping (SLAM). The difference between SfM-based and
SLAM-based 3-D reconstruction techniques is that the SLAM-
based approach estimates camera motion and reconstructs 3-D
models in real-time. In [6], the authors developed a real-time
3-D reconstruction method to estimate the food portion size.
This proposed technique can achieve around 83% accuracy
examined with similar food types captured in the wild. Despite
the promising estimation results, as mentioned in SfM-based
and SLAM-based approaches, there are still several challenging
problems unresolved. For instance, they require users to capture
multiple images from different viewing angles (normally in
360◦) during eating, which could be considered as tedious and
impractical. Furthermore, it requires feature points extraction
and matching. For those food items with smooth surface or less
significant texture, feature points cannot be extracted effectively,

which leads to failure in loop closure and 3-D reconstruction.
Most importantly, reference objects such as fiducial markers are
often required to be placed next to the food items for accurate
estimation, which makes the whole dietary assessment process
inconvenient.

B. Deep Learning in Volume Estimation

In recent years, several research works tried to use deep learn-
ing to assess dietary intake. One of the reasons for using such
approach is that the scale of the monocular RGB image can be
learned implicitly from global cues of the environment without
using any intrinsic and extrinsic parameters, which indicates
that reference objects or feature matching between frames can
be removed. In [11], convolutional neural network (CNN) has
been applied to a single RGB image to infer the depth image
and estimate the food volume through 3-D voxelization. With
the voxel representation, the portion size of each labeled item can
be estimated, respectively. Their model is pretrained based on
the NYU v2 RGBD dataset and fine-tuned using a self-collected
dataset named as GFood3d (captured by RealsenseF200 depth
camera) with different kind of meals from Google cafes. To
examine the efficacy of their method, they construct another
NFood-3 d dataset using 42 food replicas with known portion
size. However, for those artificial or real food items with dis-
similar color and texture property, the food segmentation fails
and the volume of individual food item cannot be inferred,
but estimated as a whole meal with error ranging from 50 to
400 cm3. Considering the number of food types in their meal
used for evaluation, the average error for each food item ranges
from 16 to 133 cm3. Similar idea has been proposed in [12],
which aims at predicting bread units (BUs), a representation
of food portion, for dietary assessment. In their work, CNN
is also applied to infer the depth image using a single RGB
image. Afterwards, the authors trained another network, which
follows the principal of Resnet-50 proposed in [13] by using
both RGB images and ground-truth depth images (captured by
Microsoft Kinect v2 sensor) as input. Instead of using a softmax
layer, the last layer is replaced by a single neuron with L2 cost
function to predict the BUs. For this article, the performance
of their proposed approach is evaluated using BUs so that it is
not straightforward to compare it directly with other works. It
is for this reason that we investigated into their depth prediction
model to analyze the performance. As we know, the accuracy of
volume estimation relies heavily on depth prediction. However,
the depth prediction model proposed by [12] still achieves root
mean square error (RMSE) of 65 cm in depth estimation, on the
dataset of NYU Depth v2 and achieve 12.9 cm, on their own
food dataset. This error is considered to be reasonably small if
it is used in mapping or robotic navigation but for the case of
food volume estimation, this error is still unsatisfactory.

C. Deep Learning View Synthesis on 3-D Models

From these previous findings, they showed that volume es-
timation by using depth prediction is inefficient due to the
reason of inadequate information given in a single image to pre-
cisely reconstruct the 3-D models and insufficient representative
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Fig. 1. (a) Photo/Video is captured using Intel RealSense (D415). (b) Food items are segmented out through a fine-tuned Mask R-CNN. (c) The
depth image is converted from image coordinate to camera coordinate in order to obtain the partial point cloud for each food item. (d) The partial
point cloud is directed to the point completion network to perform 3-D reconstruction. (e) The portion information is linked to nutrient datasets.

training data to train the model; however, volume estimation
based on deep learning is still worth investigating due to the
reason of practicality and the ease of use. After a comprehen-
sive exploration, we found that an integrated approach based
on deep learning and 3-D reconstruction could be one of the
potential solutions in aiding dietary assessment. Specifically,
deep learning view synthesis [14] can be used along with the
SLAM-based approach [6] to estimate the volume of food items
without the need for the users to shift and rotate the camera to
obtain the complete 360◦ view of the food. Although a number of
research works, such as PointNet [15] and PointNet++ [16], have
explored the efficacy of using raw point cloud for classification,
there are relatively fewer works using point cloud to perform
view synthesis. In [9], the authors proposed an AutoEncoder
(AE) architecture to tackle the problem of point cloud comple-
tion. Instead of directing the complete point cloud into the AE,
partial point cloud is used as the input. Similar idea has been
explored by [17]. A point completion network, an encoder–
decoder network, was proposed to complete the point cloud
with partial input. However, all these works are trained based on
ShapeNet in which the models are scaled to a unit cube, losing
the information about the portion size of the 3-D models. Also,
the partial and complete models are always aligned in canonical
coordinates (eight directions), which means the network trained
using this dataset is relatively difficult to complete partial point
cloud captured in the wild (in any convenient viewing angle).

III. PROBLEM STATEMENT

The unsolved problems can be divided into different parts.
First, it is necessary to explore an image capturing technique for
dietary assessment without requiring users to take images from
inconvenient viewing angles, such as from the back of the food
items, and tackle the problem of scale ambiguity. Instead of using
common 3-D reconstruction approaches to scan the whole object
items, it is preferable to scan the food items only from the front
side. To complete the partial point cloud caused by the limited
scanning angles, a point completion network is developed to
complete the occluded part of the food items. Furthermore, most
of the public datasets designed for view synthesis are normalized
and centered to ease the image analysis, which hinder portion
size estimation. To address this problem, 3-D models of ten

commonly seen food categories are constructed, tailored to
examine the proposed point completion network in the wild.

IV. DETAILED INFORMATION AND METHODS

The pipeline of exploiting 3-D view synthesis in dietary
assessment can be divided into different steps. First, a mobile
phone with depth sensors or a time-of-flight (ToF) camera, such
as Realsense or Kinect, is required to capture a single depth
image or a video from any convenient viewing angle, as shown
in Fig. 1(a). Second, food items for each frame are segmented out
through a fine-tuned Mask R-CNN, as shown in Fig. 1(b). Third,
the depth image is converted from image-to-camera coordinate
in order to obtain the partial point cloud for each food item,
as shown in Fig. 1(c). If a video is captured, a real-time 3-D
reconstruction technique, which has been proposed in [6], is
used as an alternative choice to reconstruct the partial point cloud
with more 3-D information compared to that using a single depth
image. Fourth, the partial point cloud is then directed to the point
completion network to perform 3-D reconstruction and estimate
the portion size of the food items, as shown in Fig. 1(d). Fifth,
once the food volume is estimated, the portion information can
be linked to nutrient datasets, such as USDA, for detailed dietary
analysis [18], as shown as Fig. 1(e). Note that this article mainly
focuses on food volume estimation using deep learning view
synthesis so that the procedure of dietary analysis will not be
covered.

A. Data Augmentation and Mesh Rendering

To examine the efficacy of the proposed volume estimation
method using point cloud view synthesis, a large-scale 3-D
database is required. Instead of using the benchmark shape
repositories such as ShapeNet, which do not involve many food
items and are normalized to fit within a unit cube, we used
AutoCAD to build a new food dataset, which consists of ten
commonly seen food categories including burger, fried rice,
pizza, etc. Each category has 20 food models with different shape
geometries and portion size. The scale of this dataset, however,
is not big enough to train a completion network, which can be
applied in the wild. Leveraging the learning representations for
3-D point clouds, a new data augmentation technique is applied
to further enlarge the dataset. In [9], their findings showed that
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Fig. 2. Linear interpolation on latent space for generating new 3-D
models.

TABLE I
RANGE OF EXTRINSIC PARAMETERS (AZIMUTH, ELEVATION, HEIGHT,

AND SHIFTING) USED IN MESH RENDERING

latent vectors, trained by a deep AE, enable shape manipulation
easily. Linear interpolation has been used in the latent space
among the same category to generate 4 k food models (each cat-
egory consists of 400 food models) with varying characteristics
and portion size, as shown in Fig. 2. The equations for linear
interpolation are shown in the following equation:

zi = zAi
+

n

d
(zAi

− zBi
) (1)

where zi is an element in a new latent vector, meaning i =
1, 2, . . ., 128, and d represents the number of fraction within
the range of the initial vectors. By tuning n, new latent vectors,
which represent different shape geometries, can be generated
through linear interpolation. The mathematical expression of
the new generated latent vector can be written as

z =
[
z1 z2 . . . z128

]
. (2)

After reconstructing new 3-D models using the latent vectors,
these models are annotated with their actual volume (cm3) for
portion size estimation, as described in Section IV-B. Further-
more, to evaluate the ability of the point completion network
in tackling the view occlusion problems in dietary assessment,
another 3-D dataset with occluded food items is constructed
through mesh rendering based on the models generated from
interpolation. In mesh rendering, the depth images of food items
captured from various viewing angles are randomly generated,
using the extrinsic camera parameter, as listed in Table I, to
simulate photo-taking events in the wild.

After that, we transform the depth images from image-to-
camera coordinate based on the intrinsic camera parameters
(same as Intel RealSense) to obtain the partial point cloud of
food items, as shown in

⎡
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where u, v refer to the coordinates of the depth image and x, y,
and z refer to the coordinates of the camera coordinate, D is
a scalar number that refers to depthimage(u, v), and K ∈ R3x3

Fig. 3. 3-D meshing of complete point cloud using the proposed
method.

refers to the intrinsic matrix. Unlike ShapeNet, the point cloud
constructed in this way is not centered and scaled to fit within
a unit cube, which enables portion size determination. Before
training the point completion network, several point cloud pre-
processing techniques are carried out to facilitate the training of
the network. First, the point cloud is centered to the origin by
subtracting the centroid of the point set, as shown in

centroid =

(∑n
i xi

n ,

∑n
i yi
n ,

∑n
i zi
n

)
(4)

where (xi, yi, zi) represents the camera coordinate of data points
i and n refers to the total number of points in the point set. This
alignment enables the point completion network to tackle food
items placed in any position without requiring the food items
to be placed in the center of the image. Second, the point cloud
is then down-sampled through a voxel grid filter, which takes a
spatial average of the data points in every single voxel. Third, a
statistical outlier removal filter is applied to remove the outliers
from the point set to alleviate the effects of environmental noise.
To remove the outliers, we first compute the average point to k
nearest neighbors distances (knn) for each point. Then, the point
with average distance larger than n standard deviation (S.D.) of
the average distance across the point cloud is marked as outlier
and removed as shown in

f(pi) =

{
outlier if d(pi) > n(S.D.)
inlier if d(pi) ≤ n(S.D.)

(5)

where d(pi) refers to average distance to k nn for pi and S.D.
represents the standard deviation of the d(pi) across the point
cloud. Note that n, k, and voxel size are determined empirically
in this article.

B. Volume Annotation

To annotate the generated models with their corresponding
volume, we calculate the bounding polygon of the models with
the alpha-shape algorithm [19], [20]. By using alpha-shape al-
gorithm, a sphere with a fixed radius is first defined. Afterwards,
the sphere is rotated with its circumference around the models
from a chosen starting point until the sphere touches another
point lying on the contour. The sphere is transferred to this point
and the process continues until reaching loop closure. In Fig. 3,
the complete point cloud of a 3-D banana model is converted
into a 3-D mesh using the alpha-shape algorithm. Once the
3-D mesh is obtained, the volume of the 3-D models can be
deduced easily. Afterwards, all the paired point cloud and its
corresponding volume information will be used to construct
the training dataset for training the volume estimation network.
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Fig. 4. Network architectures for dietary assessment. (a) Light-weight architecture with FC decoder for view synthesis. (b) UNet architecture for
view synthesis. (c) VNet architecture for volume estimation.

One more step is required before using this volume information
of 3-D generated models to estimate the actual volume of the
original food items. Since the partial point cloud is captured
using a depth camera, point-to-point distance should be carefully
calibrated, which represents a specific distance in the real world.
A real Rubik’s cube with known volume (343 cm3) is used
as a scale reference for calibration in this article. A similar
calibration method has also been proposed in [6]. When the
point cloud is completed using the point completion network
to form generated 3-D models, the volume of these generated
models can be estimated. By considering the scale difference
between the generated 3-D models and the original food items,
the volume of the generated 3-D models can be converted to the
actual volume of the food items using the calibrated scale/value.

C. Point Completion Network

Due to the problem of view occlusion by taking photos from
limited viewing angles, only the 3-D points from one side of
the food items can be observed. If using partial point cloud to
determine the portion size, the volume of the food items will be
largely underestimated. To address this problem, a novel point
completion network UNet, shown in Fig. 4(b), is built on top
of recent encoder–decoder architectures, tailored to predict the
occluded 3-D points using the partial input [9]. In the proposed
architecture, the partial point cloud with 2048 points (2048 × 3
matrix) is directed into a feature encoder, which consists of
several shared multilayer perception (MLP) layers. Through
these MLP layers, each data pointpi is converted into a pointwise
feature vector vi. Since the order of the point set will affect the
training of the network, it is necessary to make the point set
permutation invariant, which indicates that the order of the point
set does not change the geometry they represent. To achieve this,
the architecture follows the design of the PointNet [15], which

applies a max pooling layer after the MLP to squeeze the feature
vectors into a single representation known as a latent vector.
For the decoder, several network architectures are compared,
including fully connected [9] and UNet architectures, to evaluate
the generalization ability in predicting hold-out object items. For
FC architecture, it is considered as a light-weight implementa-
tion of the point completion network. After passing through the
latent vector, it is followed by several FC layers, as shown in
Fig. 4(a), to generate the geometrical representation of the com-
plete 3-D models. Regarding to the similarity between partial
and complete point clouds, we hypothesize that the pointwise
features near the partial input can provide significant guidance
in predicting the complete point cloud. In UNet architecture,
instead of using pure FC layers, pointwise features are con-
catenated to these FC layers after passing through max-pooling
layers, respectively, as shown in Fig. 4(b). Apart from this, the
symmetric version of Chamfer distance (CD) inspired by [14]
and [17] is used as the cost function of the point completion
networks. In using symmetric CD, penalty will be induced to
the cost function if the partial and complete point cloud are not
on the same scale. This facilitates scale determination as well as
volume estimation, as shown in the following:

CD(G,C) =
1
|G|

∑
gεG

min
cεC

‖g − c‖2 +
1
|C|

∑
cεC

min
gεG

‖c− g‖2

(6)
where G and C refer to the ground truth and complete point
cloud, respectively, g and c represent each point in the point
cloud.

D. VolumeNet (VNet)

To estimate the portion size, the common approach is to
carry out alpha-shape algorithm. While the performance of
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alpha-shape algorithm shows promising results, there still ex-
ist several procedures, which complicate the process such as
the radius of the sphere should be determined empirically, as
mentioned in Section IV-B, and the estimation error is easily
induced when the points are not evenly distributed. Specifically,
the real number α refers that the meshed model is constructed
by a set of edges and triangles with radii not over 1/α, which
relies heavily on the sampling rate and the geometries of the
meshed models. Thus, α is always determined empirically by
a user (calibration). To facilitate the dietary assessment and
enable automatic quantification, an alternative approach, VNet,
as shown in Fig. 4, is also proposed in this article to estimate the
portion size without requiring the use of alpha-shape algorithms.
To the best of our knowledge, this is the first work on using deep
learning to estimate object volume directly by taking raw point
cloud as input. The network for volume estimation is similar to
the architecture of the point completion network. The feature
encoder of VNet follows the design principle of completion
network, which also takes raw point cloud as input. By using
shared MLP and max-pooling layers, we can also ensure the
network to be permutation invariant. However, the complete
point cloud is directed into the network instead of the partial
one. After the latent vector, three FC layers are followed to infer
the actual food volume (cm3). In this case, a simple L1-norm is
used as the cost function, as shown in

Cost = |Vestimated − Vgroundtruth| . (7)

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Performance of Point Completion Network in
Handling View Occlusion

To examine the efficacy of the point completion networks,
various experiments have been carried out, which aim to evaluate
the generalization capability of the point completion networks
in handling different scenarios. To construct the training dataset,
2.4 k 3-D models (generated through linear interpolation) from
eight food categories, including banana, apple, burger, cake,
pizza, orange, rice, and donuts, are used. For each 3-D model,
20 partial inputs from different viewing angles are generated
through mesh rendering using the range of extrinsic camera
parameters, as shown in Table I. The networks are then trained
end-to-end by using 3-D models from these categories with
48 k partial inputs in total. For testing, 3-D food models with
unknown geometries, portion size, and viewing angles are di-
rected into the neural network to simulate the real-world photo
capturing. Specifically, 800 hold-out models from previously
seen categories (16 k partial inputs) and 200 models from another
2 novel categories (4 k partial inputs) are used to evaluate
the generalization capability of the networks in tackling food
items with previously unseen viewing angles and geometries,
respectively. Note that all the networks are trained using Adam
optimizer for 750 epochs with the batch size of 100. In Fig. 5,
the qualitative results of the point completion networks based
on deep learning view synthesis are presented. Partial hold-out
food items chosen from eight known categories and two new
categories captured from different viewing angles and positions
are processed using the FC and UNet architectures, respectively,

Fig. 5. Qualitative results of point completion networks in handling
occluded food items: banana, apple, burger, cake, pizza, orange, rice,
donuts, hotdog, and muffin.

which provide the evidence that point completion networks are
capable of addressing the problem of view occlusion. In previ-
ously seen categories, the performance in both of the FC and
UNet architectures is comparable; however, we found that the
extended UNet has a better generalization ability in predicting
new categories (hotdog and muffin). A similar conclusion can
also be drawn in the quantitative results, as shown in Table II.
Although the training loss measured by CD shows promise
in FC architecture, the performance of UNet outperforms FC
architecture in testing, which indicates that FC architecture is
easier to cause overfitting.

B. Performance of Food Volume Estimation Using Deep
Learning View Synthesis

The feasibility of using deep learning view synthesis to esti-
mate the actual portion sizes of food items is also evaluated. This
experiment is carried out on top of the point cloud completion.
Once the partial point clouds are completed, they are converted
to 3-D mesh by the alpha-shape algorithm and the food volume
is then computed. As shown in Table II, the experimental results
of food volume estimation using UNet is promising with average
training and testing accuracy up to 95.16% and 92.29%, respec-
tively. The system is also robust with only 5.12% in averaged
S.D. for the testing dataset. Furthermore, the accuracy for indi-
vidual food category is listed out in Table II. It is shown that the
categories of cake and muffin have significant improvement in
volume estimation by using UNet compared to FC architecture.
While the cake belongs to the seen category, the volume accuracy
drops sharply when FC architecture is applied. After compre-
hensive exploration, we found that the main reason for this is due
to the large variance between the training and testing datasets
for the cake models so that some of them are treated as unseen
objects by the FC network. Nevertheless, the UNet architecture
is generic enough to tackle the problem without overfitting and
predicts the complete models with promising accuracy. Again,
these results prove our hypothesis that pointwise feature vectors
can provide guidance in completing unseen shape geometries
and provide the network with better generalization ability. Most
importantly, all these findings conclude that point completion
networks can be used to estimate the food volume with unknown
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TABLE II
QUANTITATIVE RESULTS OF THE FC AND UNet ARCHITECTURES IN DEEP LEARNING VIEW SYNTHESIS AND VOLUME ESTIMATION

*Training loss and training accuracy are calculated based on the training dataset with 8 categories, each category contains 300 models and each model has 20 different
viewing angles (48 k partial inputs in total). Testing loss and testing accuracy are calculated based on the testing dataset with 10 categories, each category contains
100 models and each model has 20 different viewing angles (20 k partial inputs in total).

TABLE III
COMPARISON OF THE PERFORMANCE OF VNet TRAINED BY DATASETS WITH AND WITHOUT DATA

AUGMENTATION (GENERATED THROUGH LINEAR INTERPOLATION)

Fig. 6. Comparison of food volume estimation using VNet and
alpha-shape algorithm for each category.

geometries, portion size, and viewing angles, which in turn
makes our proposed method effective in quantifying the portion
size consumed by the users.

C. Efficacy of VNet in Volume Estimation

The performance of VNet is evaluated by comparing its results
with the results estimated by alpha-shape algorithm. Similar to
the previous experiment, hold-out food models are used to exam-
ine the trained VNet to ensure the fairness and test its robustness.
Thus, the complete point cloud of food items from eight cate-
gories with 16 k models completed by UNet are used in this
experiment. The average testing accuracy in volume estimation
for VNet can achieve up to 82.90%. Considering the light-weight
implementation, the VNet got a reasonable drop with error rate
in only 12.40% compared to the result estimated by traditional
alpha-shape algorithm. Comparison of volume estimation using
both of the methods for each category is also shown in Fig. 6.
Despite the performance of VNet dropping slightly compared
to the alpha-shape approach at the current stage, the VNet is a
generic feed forward neural network approach, which is more
efficient and easier to use. Furthermore, the performance of data

Fig. 7. Experimental platform for obtaining the ground truth volume of
food items in the wild.

augmentation, which refers to linear interpolation here, is also
evaluated in this experiment. Another training dataset is built by
eliminating 3-D food models generated by linear interpolation
of latent space, and VNet is trained using this newly constructed
dataset. The comparison of the performance of VNet trained by
datasets with data augmentation and without data augmentation
is described in Table III. This illustrates that the proposed data
augmentation technique significantly facilitate the training of
VNet and help better estimate the volume. Furthermore, it also
means that the accuracy of volume estimation relies heavily
on the size of the training dataset. From these findings, we
hypothesize that the accuracy of VNet can be further improved
when more 3-D models are generated using linear interpolation.

D. Point Cloud Completion in the Wild

To further evaluate the robustness of our proposed dietary
assessment method, experiments are carried out in the real-world
scenarios. Instead of using synthetic dataset, the trained point
completion network is evaluated using images of real food items.
An experimental platform is set up in a photo studio, as shown in
Fig. 7, to obtain the ground truth volume of food items by dense
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Fig. 8. Examples of using UNet for point cloud completion and 3-D meshing in the wild.

TABLE IV
QUANTITATIVE RESULTS OF FOOD VOLUME ESTIMATION USING 3-D

RECONSTRUCTION WITH AND WITHOUT UNet

3-D reconstruction. The food items are placed on an automatic
turning table, which keeps rotating while the depth camera is
recording. The 3-D models of real food items are constructed and
the ground truth volume can then be obtained using RecFusion,
a professional 3-D scanning system, which performs dense 3-D
reconstruction and volume estimation. After the ground truth is
obtained, the experiment of point cloud completion is carried
out. First, videos (six trials for each food item) are captured
from convenient viewing angles (only from the front side). A
3-D reconstruction is then applied to reconstruct the partial
point cloud as the input of UNet. The qualitative results of
using UNet to handle the problem of vision-occlusion are shown
in Fig. 8, which present the meshed partial inputs using 3-D
reconstruction, meshes of food items completed by UNet, and
the ground truth. Further experiments are carried out to examine
the performance of the proposed technique in comparison with
the method based on 3-D reconstruction only. As listed in
Table IV, the experimental results of food volume estimation
using both real-time 3-D reconstruction and UNet in the wild
are promising with mean accuracy up to 84.68%. In the table, it
also indicates that the proposed method can effectively address

the problem of view occlusion due to limited viewing angles
and ease the implementation of vision-based dietary assessment
system.

VI. DISCUSSIONS

A. Comparison With Related Works

The existing research studies on food volume estimation
have only examined their algorithms on self-constructed testing
datasets with several food items captured in the wild in which
there does not exist a benchmark that allows researchers to
conduct a fair comparison with previous approaches. Thus, it is
reasonable to evaluate our proposed algorithm from the perspec-
tive of practicality and implementation. For the model-based
approach as presented in [4], [10], and [21], they only examine
their algorithms on a few small model libraries consisting of
several simple geometric shapes, without considering the case
of unseen food shapes. As listed in Tables II and IV, instead,
our deep learning view synthesis approach has proven to be
effective in tackling unseen food categories, which achieves a
level of accuracy comparable to that of seen food categories.
With respect to stereo-based approaches [22], [23], they usually
have strong requirements on the number of images and their
capturing positions. However, our point completion network
addresses this problem by completing the partial point cloud
of the food items. Compared to [6], our proposed point com-
pletion method appears to be more advanced since the previous
method can only handle symmetrical food objects. Furthermore,
a traditional multiview 3-D reconstruction approach requires a
fiducial marker to determine the scale and facilitate the feature
matching between frames, which could lead to user compliance
issues as the user has to place the markers near the food items and
take photos/videos with the markers in the view. Regarding to
previous deep learning approaches [11], [12], they rely heavily
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on depth prediction models. These models can only be trained
using paired RGB and depth images captured in the wild, which
could be considered as inefficient. Instead, our proposed net-
works can be trained on synthetic 3-D models, which makes
the training process easier. Furthermore, the performance of
food volume estimation by means of depth prediction is rel-
atively unsatisfactory as presented in Section II-B. However,
in our proposed method, the average error is ranging from
15 to 79 cm3 as listed in Table IV, which shows promise
in the performance. Most importantly, the proposed technique
has strong potential in handling view occlusion, which can-
not be addressed by existing approaches. As demonstrated in
this article, an integrated system based on the depth sensing
technique along with deep learning view synthesis should be
one future direction in tackling the food volume estimation
problem.

VII. FUTURE WORKS

The proposed technique was initially designed to help dieti-
tians record down the entire portion of food items shown in the
meal times. Users are expected to capture the images/videos
at the beginning of the meal time for recording the full meal.
For the scenarios where the food items are just partially eaten,
this article has not yet covered and discussed. In addition, to
estimate the exact portion size taken, the algorithm should be
able to calculate the remaining food volume after the meal. It is
for this reason that a more advanced system could be developed,
which consists of newly trained neural networks to recognize the
partially eaten food items and estimate remaining food volume
in real-time.

VIII. CONCLUSION

A novel dietary assessment method based on real-time 3-D
reconstruction and deep learning view synthesis was presented
to estimate food volume in this article. The developed approach
showed the feasibility and efficiency in portion size estimation
under the circumstances of occluded views. By using the pro-
posed point completion network UNet, the point cloud of the
occluded food items can be completed using the prior learned
shape and the food volume can be estimated with accuracy up to
92.29%, which not only outperforms other deep-learning-based
approach, but also addresses several key challenges in the field
of dietary assessment.
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