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ABSTRACT: Due to their chemical, physical, and biological
properties, fluorinated compounds are widely employed
throughout society. Yet, despite their critical importance,
current methods of introducing fluorine into compounds
suffer from severe drawbacks. For example, several methods
are noncatalytic and employ stoichiometric equivalents of
heavy metals. Existing catalytic methods, on the other hand,
exhibit poor activity, generality, selectivity and/or have not
been achieved by heterogeneous catalysis, despite the many advantages such an approach would provide. Here, we demonstrate
how selective C(sp3)−F bond synthesis can be achieved via heterogeneous photocatalysis. Employing TiO2 as photocatalyst and
Selectfluor as mild fluorine donor, effective decarboxylative fluorination of a variety of carboxylic acids can be achieved in very
short reaction times. In addition to displaying the highest turnover frequencies of any reported fluorination catalyst to date (up
to 1050 h−1), TiO2 also demonstrates excellent levels of durability, and the system is catalytic in the number of photons
required; i.e., a photon efficiency greater than 1 is observed. These factors, coupled with the generality and mild nature of the
reaction system, represent a breakthrough toward the sustainable synthesis of fluorinated compounds.
KEYWORDS: fluorination, photochemistry, heterogeneous catalysis, spectroscopy, photocatalysis

■ INTRODUCTION
Increasing demand for fluorinated compounds, widely
employed as pharmaceuticals, agrochemicals, materials,1 or
tracers for positron emission tomography (as 18F),2 has
prompted a surge of interest in the development of new
strategies to perform selective fluorination. However, while
many breakthroughs have been made,3 such as the develop-
ment of safer electrophilic fluorinating agents such as
Selectfluor, the selective and catalytic formation of C(sp3)−F
bonds remains an immense challenge. Indeed, catalytic
methods for C(sp3)−F bond formation are rare, and even
when catalysis is achieved, other issues such as poor activity,
low selectivity, and/or factors associated with scalability
particularly recovery and reuse of the catalystare prevalent.
Among various enabling technologies,4 recent studies have

demonstrated the potential of using light to facilitate
fluorination chemistry, with Selectfluor as fluorinating agent
and homogeneous species as photocatalysts.5 Combining
fluorination with photocatalysis (photofluorination) represents
a very powerful and sustainable approach and represents a
major breakthrough for the field. However, several disadvan-
tages are observed with these previous methods. For example,
the reaction mechanisms predominating during such processes
have not yet been clearly identified, prohibiting detailed
structure−function relationships from guiding catalyst design.
More critically, the photocatalysts developed to date also suffer
from severe drawbacks, including the requirement for high
loadings of scarcely available and/or prohibitively expensive
metal centers (Ir, Ru), poor levels of intrinsic activity, and/or

difficulties associated with their molecular complexity and
homogeneous nature (recovery, reusability, scalability).5 Here-
in, we demonstrate that commercially available titanium
dioxide, TiO2, a nontoxic, stable, and readily available
semiconductor, can be efficiently employed as a heterogeneous
photofluorination catalyst. When combined with the decar-
boxylative fluorination reactiona powerful and sustainable
method for C(sp3)−F bond synthesis6selective photo-
fluorination of a variety of aliphatic carboxylic acids can be
achieved under mild electrophilic fluorinating conditions.
Under 365 nm irradiation, remarkable fluorine yields can be
achieved in very short reaction times (<10 min), resulting in
turnover frequency (TOF) values over 1 order of magnitude
larger than previously reported (1050 h−1).5 The employment
of water as solvent, the avoidance of precious metals, and the
facile recovery of TiO2reusable up to four timesalso
dramatically increase the sustainability of this method over
alternative fluorination methods. Spectroscopic studies with
diffuse reflectance infrared Fourier transform (DRIFT)
spectroscopy, temperature-programmed desorption mass spec-
trometry (TPD-MS), 19F magic angle spinning (MAS) NMR,
and X-ray photoelectron spectroscopy (XPS) are coupled to
classical mechanistic studies and actinometry, allowing a
preliminary reaction mechanism, in which a combination of

Received: July 19, 2018
Revised: September 17, 2018
Published: September 20, 2018

Research Article

pubs.acs.org/acscatalysisCite This: ACS Catal. 2018, 8, 10321−10330

© 2018 American Chemical Society 10321 DOI: 10.1021/acscatal.8b02844
ACS Catal. 2018, 8, 10321−10330

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

D
ow

nl
oa

de
d 

vi
a 

C
A

R
D

IF
F 

U
N

IV
 o

n 
M

ar
ch

 4
, 2

01
9 

at
 1

7:
32

:4
7 

(U
TC

). 
Se

e 
ht

tp
s:

//p
ub

s.a
cs

.o
rg

/s
ha

rin
gg

ui
de

lin
es

 fo
r o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s. 

pubs.acs.org/acscatalysis
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acscatal.8b02844
http://dx.doi.org/10.1021/acscatal.8b02844
http://pubs.acs.org/page/policy/editorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


TiO2-catalyzed steps and free-radical process combine, to be
proposed.

■ RESULTS AND DISCUSSION
Photocatalytic Fluorination. Among a range of well-

known photosensitive materials, we identified that commer-
cially available TiO2 (P25) possessed high levels of activity for

the decarboxylative fluorination of aliphatic carboxylic acids,
such as 2,2-dimethylglutaric acid (DMGA, 1a). Under classical
decarboxylative conditions (25 °C, Selectfluor, aqueous phase,
SI section 1, Scheme 1),6 rapid fluorination of water-soluble
acids could be achieved when TiO2 was irradiated by a solar
light simulator or a 365 nm LED torch. Under irradiation,
selective monofluorination of DMGA to 4-fluoro-4 methyl-

Scheme 1. Photocatalytic Decarboxylative Fluorination of 2,2-Dimethylglutaric Acid (DMGA, 1a) To Yield 4-Fluoro-4
methylpentanoic Acid (4F4MPA, 1b)

Figure 1. (Left). Yield of 4F4MPA (1b) with time over TiO2 (P25) (a) under standard conditions, (b) in the absence of TiO2, (c) in the absence
of K2CO3, and (d) in the absence of Selectfluor. (Right). Yield of 4F4MPA (1b) at 2.5 min with various amounts of K2CO3 over TiO2(P25).
Standard reaction conditions: 0.2 mmol of DMGA (1a), 0.4 mmol of Selectfluor, 0.0125 mmol of TiO2, 4 mL of H2O, 0.23 mmol of K2CO3, N2
atmosphere, 25 °C. Solar light simulator (300 W Xe arc lamp) was used to irradiate the reaction mixture.

Figure 2. (Left) Solid line: yield of 4F4MPA (1b) with time without filtering the catalyst. Dashed line: catalytic activity of the supernatant solution
following filtration of the catalyst at 2.5 min. (Right) Yield of 4F4MPA (1b) with time over TiO2 in light and dark (gray area) conditions. Reaction
conditions: 1.0 mmol of DMGA (1a), 2.0 mmol of Selectfluor, 0.0125 mmol of TiO2, 10 mL of H2O, 1.16 mmol of K2CO3, N2 atmosphere, 25 °C.
Solar light simulator (300 W Xe arc lamp) was used to irradiate the reaction mixture.
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pentanoic acid (4F4MPA, 1b) was observed, in line with the
radical-based mechanism recently reported for this reaction, for
which tertiary positions exhibit much higher activity than
primary and secondary ones.6 Rapid reaction rates were
observed, with around 80% 4F4MPA yield achieved in only 5
min of reaction time, when 6.25 mol % of Ti, relative to the
substrate, was employed (triangles, Figure 1 (left)). Control
reactions were also performed in the absence of K2CO3, TiO2,
and Selectfluor. In the absence of the fluorinating agent, no
4F4MPA was observed. Furthermore, in the absence of TiO2
or K2CO3, much lower levels of activity were observed. These
indicate the crucial role(s) played by the solid catalyst, the
fluorine source, and the base in the reaction network. To
further study the effect of base, a number of kinetic
experiments at different base loading were performed. Higher
activity was observed at 1.16 equiv of K2CO3 relative to
DMGA (Figure 1 (right)). Interestingly, with a higher amount
of base (2.32 equiv), a decrease of reaction rate was observed.
Notably, 4F4MPA selectivity >95% was observed in all
reactions.
To further optimize the reaction conditions, a number of

experiments were performed under more challenging con-
ditions. Excellent performance was still observed at 1.25 mol %
of Ti, with a 5-fold decrease in catalyst concentration (Figure 2
(left)) resulting in TOF values of 1050 ± 70 h−1 being
observed. Such values are an order of magnitude larger than
those reported for any other photofluorination catalyst to
date.5b To ensure that the reaction is catalyzed heteroge-
neously, a hot filtration test was performed (SI section 2). As
can be seen (Figure 2 (left)), removing TiO2 at 2.5 min
terminates the reaction, demonstrating catalysis to be
heterogeneous. To verify the photocatalytic nature of the
reaction, a light/dark experiment was performed by periodi-
cally switching the lamp on and off (Figure 2 (right)). Notably,
no 4F4MPA formation occurred in the absence of light,
confirming that constant irradiation is required for activity to
be achieved.
The general applicability of TiO2 to photofluorinate

carboxylic acids was also explored (Table 1, SI Appendix).
Interestingly, TiO2 was also found to be able to photo-
fluorinate primary carboxylic acids, such as succinic acid, 3a,
and 2-phenylacetic acid, 7a, albeit at lower levels of activity due
to the greater difficulty of forming primary alkyl radicals.7

Notably, TiO2 was also able to photofluorinate non-water-
soluble substrates when a mixture of water/acetone was used
as solvent.
One of the major advantages of heterogeneous catalysts over

their homogeneous analogues is the ease in which they can be
recovered and reused, leading to increases in process
sustainability and scalability. Thus, the durability of TiO2 to
be used in successive cycles was also investigated, using
DMGA as substrate and neat water as reaction solvent (Figure
3 (left), SI section 3). Notably, the same final yield values were
achieved after 10 min in every catalytic cycle for both fresh and
used catalyst. Although a decrease in reaction rate was
observed following the first reuse of TiO2 (Figure S1), no
further decrease in performance over successive cycles
occurred; i.e., the same kinetic performance was observed for
the second, third, and fourth cycles. The ability to reuse the
catalyst, without loss in maximum activity over extended
cycles, even in the absence of periodic regeneration treatments,
is notable and indicates the material possesses potential for
extended operation.8 Preliminary characterization of fresh and

used catalyst indicates that although no change in surface area
occurs during reaction (55 m2 g−1 for both fresh and used
sample, Table S1), conversion between the two crystalline
phases present in P25, i.e., anatase and rutile, occurs to some
extent (Table S2). The relative ratio anatase/rutile was found
to decrease slightly following each catalytic cycle, going from a
maximum of 86:14 for fresh TiO2 to a ratio of 78:22, observed
at the fourth catalytic cycle. The small phase transformations
observed, may, therefore, account for the slight decrease in
intrinsic kinetic activity.
To further investigate this, the photocatalytic activity of the

two pure crystalline phases, i.e., anatase and rutile, was
investigated under the conditions previously employed for P25
using a monochromatic LED torch at 365 nm (Figure 3
(right)). As can be seen, lower levels of performance were
exhibited by both pure rutile and pure anatase when compared
to P25, in line with previous studies.9 Although this may arise
from reported synergistic effects, we stress that the poorer
performance of both pure phases may also be related to their
different physical properties, such as surface area and crystallite
size (Figures S2 and S3 and Tables S1−S3).9 Notably, different
activity was also observed between anatase and rutile, with the
latter being less active. However, the higher levels of

Table 1. General Applicability of TiO2 for the
Photocatalytic Fluorination of Various Carboxylic Acids

aYields calculated as “mol (product)/mol (mol substrate) × 100” for
entries 1 and 3−7 and as “mol (2a converted)/mol(initial mol 2a)”
for entry 2 due to high product volatility. b2 mL of H2O and 2 mL of
(CH3)2CO as solvent. c0.115 mmol of K2CO3.

dReaction time 30
min. e5 mL of H2O, 5 mL of (CH3)2CO, 0.115 mmol of K2CO3.
fReaction time: 60 min. Yields calculated with 19F NMR using α,α,α-
trifluorotoluene and HPLC analysis against authentic standards.
Reaction conditions: 0.2 mmol of substrate, 0.4 mmol of Selectfluor,
0.0125 mmol of TiO2, 4 mL of H2O, 0.23 mmol of K2CO3, 25 °C, 10
min. Monochromatic LED irradiation of 365 nm was employed.
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photocatalytic performance exhibited by anatase compared to
rutile are in good agreement with several previous reports.10

Mechanistic Studies. Several potential chemical reactions
can occur during photofluorination. Accordingly, obtaining a
detailed understanding of the reaction mechanism(s) is
extremely challenging. Indeed, from the literature a number
of possible reaction mechanisms can be proposed, ranging
from SET processes between carboxylate groups bound on
TiO2

11 to SET processes between radical alkyl species and
Selectfluor.12 In addition, direct interactions between Select-
fluor and TiO2 could result in formation of Ti−F
intermediates,13 which may participate in the reaction
mechanism. Thus, to gain preliminary insight into the potential
mechanism, a variety of spectroscopic experiments were
performed.
To investigate the interaction between the substrate and the

catalyst, DRIFT studies were performed. These studies were
performed on pivalic acid (2a, Table 1), a more volatile
substrate than DMGA that also undergoes decarboxylative
photofluorination (Table 1). To first establish the nature of the
interaction between pivalic acid/TiO2 in the absence of light,
pivalic acid was adsorbed on TiO2 at 30 °C (Figure 4), and the
sample was subsequently heated to 600 °C (Figure 5). After
the adsorbate was dosed at 30 °C, new features appeared in the
IR spectrum ((i) blue line, Figure 4); a group of bands in the
region 3000−2850 cm−1 characteristic of aliphatic C−H
stretching, and other signals in the region 1700−1100 cm−1.
Interestingly, although the new C−H stretching bands
correspond well to those observed for free, i.e., nonadsorbed,
pivalic acid ((ii) red line, Figure 4), the signal at 1692 cm−1,
characteristic of the key −COOH group ((ii) red line, Figure
4), only appears in low intensity, clearly demonstrating that
only a negligible percentage of pivalic acid adsorbs onto the
catalyst surface in its free acidic form. However, new vibrations
in the region 1600−1100 cm−1 are observed, consistent with
those repor ted fo r depro tona ted p iva l i c ac id ,
(CH3)3CCOO−.14

The thermal stability of the adsorbed pivalic acid was
subsequently explored by heating the DRIFT cell to various

temperatures (Figure 5). While the residual feature at 1692
cm−1 disappears above 50 °C, indicating that the small
quantities of pivalic acid in its acid form are merely
physisorbed, the vibrations at 1600−1100 cm−1 and the C−
H stretching features at 3000−2850 cm−1 are stable during
heat treatment. Indeed, all these peaks are still clearly visible at
300−450 °C, temperatures much higher than the boiling point
of pivalic acid (165 °C). Therefore, all the new features
observed following interaction with TiO2 can be assigned to a
strongly chemisorbed (CH3)3CCOO− species (henceforth
denoted as (RCOO−)ads), indicating the formation of an
(RCOO−)TiO2 intermediate.
To evaluate the role of light during the reaction, and to

verify the changes observed to the chemisorbed (RCOO−)-
TiO2 intermediate during photoirradiation, an experiment was
performed whereby the DRIFT cell containing the TiO2-
bound carboxylate species was irradiated with a monochro-
matic light of 365 nm wavelength. Prior to irradiation, no
decrease of the intensity of this species was observed over

Figure 3. (Left) Reusability of TiO2 with DMGA (1a) as substrate. No intermediate treatments were performed between cycles. Reaction
conditions otherwise identical to Figure 1. (Right) Yield of 4F4MPA (1b) with time over (a) P25, (b) anatase, and (c) rutile. Reaction conditions:
0.2 mmol of DMGA (1a), 0.4 mmol of Selectfluor, 0.0125 mmol of TiO2, 4 mL of H2O, 0.23 mmol of K2CO3, N2 atmosphere, 25 °C. Forensic
monochromatic LED torch at 365 nm wavelength (Labino Torch Light UVG2 spotlight) was used to irradiate the reaction mixture.

Figure 4. (i) DRIFT spectrum of TiO2 after adsorption of pivalic acid
(blue line) and (ii) DRIFT spectrum of free pivalic acid (red line).
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several hours (Figure S4). Figure 6 presents the spectral
changes that occur throughout the irradiation period. Upon
irradiation, a continuous decrease of intensity for all the
features related to the (RCOO−)TiO2 intermediate was
observed. This clearly indicates that pivalate decomposition
occurs during the entire irradiation period. Loss of the pivalate
under these conditions likely results from its decomposition
from RCOO− into R• and CO2, as reported by Henderson et
al. and Manley et al. for classical decarboxylative reactions.11

Further evidence of this mechanism was obtained through the
observation of CO2 in the effluent of a TPD-MS experiment,
following photoirradiation of DMGA-treated TiO2 (Figures
S5−9). Accordingly, DRIFTS and TPD-MS studies indicate
that the carboxylic acid groups of the substrate bind to the
TiO2 surface in their carboxylate form and only decompose
from the surface under photoirradiation, accompanied by the
loss of CO2.

11,14

In addition to substrate/TiO2 interactions, the contribution
of potential F/TiO2 intermediates was also evaluated. Indeed,
fluorination of TiO2 surfaces, resulting in the formation of

various Ti−F species, has been widely reported.13 To
investigate the potential involvement of such species in the
reaction mechanism, 300 mg of TiO2 was treated with an
aqueous solution of Selectfluor under general reaction
conditions, but in the absence of the substrate. Analysis of
this sample by XPS revealed that, following treatment, residual
amounts of fluorine species (0.08 mmol g−1) with a binding
energy of 684.6 eV were found on the catalyst surface (Figures
S10−14). 19F MAS NMR analysis of the same sample (Figures
S15 and S16) indicates the covalent nature of this interaction
(henceforth denoted as F/TiO2), in line with the previous
report of Dambournet.15 Notably, these species were also
observed on used catalysts (Figure S10 and Table S4).
To investigate the potential role of F/TiO2, isolated samples

containing this species were screened for reactivity by
performing the photofluorination of DMGA in the absence
of other fluorinating agents but with F/TiO2 present as
catalyst. Although the catalyst containing a sufficient amount of
fluorine permitted up to 80% yield to be achieved, no
conversion and no 4F4MPA yield were detected under the

Figure 5. Spectral changes observed to DRIFT spectra of TiO2 after adsorption of pivalic acid at different temperatures, from 30 °C (bottom line)
to 600 °C (top line).

Figure 6. DRIFT spectra of TiO2-bound pivalate species during irradiation with a monochromatic UV light of 365 nm (Labino Torch Light UVG2
spotlight).
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standard photofluorination conditions over a period of 30 min.
This excludes the possibility of F/TiO2 species acting as the
active fluorinating species and suggests that Selectfluor
containing active fluorine (F-TEDA, Figure 7) is directly

responsible for fluorine transfer. To allow proper discrim-
ination among F-TEDA and its decomposition products, the
notations displayed in Figure 7 are adopted in the sections
below.
Following identification of F-TEDA as the active fluorine-

transfer agent, the stoichiometry of the decarboxylative
fluorination reaction, in terms of F-TEDA consumed to
4F4MPA produced, was explored, by decreasing the amount of
Selectfluor from the 2 equiv typically used under standard
conditions to 1 and 0.5 equiv, respectively. When 1 and 0.5
equiv were employed for DMGA decarboxylative fluorination,
4F4MPA yields up to 84% and 41% were achieved, respectively
(Figure 8 (left)). To better understand the stoichiometry, F-
TEDA consumption was also measured at different reaction
times via 19F NMR by monitoring the disappearance of signal
at δ = +48 ppm (characteristic to the N−F bond) (Figure
S17). This analysis confirmed that 1.2 equiv are required for 1
equiv of 4F4MPA to be produced at the lowest F-TEDA
concentrations (Tables S5 and S6). Notably, the initial
reaction rate (k) measured at different starting concentrations
of F-TEDA also demonstrated a linear dependence on the
initial concentration of F-TEDA (Figures S18 and S19),
indicating that F-TEDA is involved in the rate-determining
step of the reaction. However, the small excess of F-TEDA

required (1.2 equiv) also indicates that competitive reaction
pathways, leading to passivation of F-TEDA, occur. This is in
line with our previous findings (vide supra), involving the
formation of inactive F/TiO2 species, as observed by both XPS
and 19F MAS NMR.
The consumption of F-TEDA may occur from several

processes, such as (i) general instability under the aqueous
environment, (ii) selective consumption as a consequence of
reaction, i.e., following attack by the alkyl radical R•, (iii)
nonselective interactions with the base, and (iv) nonselective
interactions with TiO2, i.e., F/TiO2 formation. In order to
investigate the extent of these pathways, the amount of F-
TEDA converted at 10 min was monitored under otherwise-
standard reaction reactions, but (i) in the absence of TiO2, (ii)
in the absence of K2CO3, and (iii) in the absence of the
substrate, DMGA (1a) (Figure 8 (right)). Interestingly,
complete conversion of F-TEDA was observed even in the
absence of the substrate, when both TiO2 and K2CO3 were
present, indicating that F-TEDA can be converted even in the
absence of substrate. However, in the absence of either TiO2 or
K2CO3, much lower levels of F-TEDA were converted. In
addition to confirming the essential role of TiO2 in catalyzing
all stages of the reaction, this observation suggests that in
addition to being required to deprotonate the substrate,
favoring the formation of the (R-COO−)TiO2 intermediate, an
additional role of K2CO3 in the reaction mechanism may be to
act as a sacrificial electron donor (i.e., hole scavenger), favoring
charge separation e−/h+ in photoactivated TiO2.

16 This may
account for the observation that the optimal amount of K2CO3
is just over 1 equiv, relative to DMGA (Figure 1 (right)). In
the absence of substrate, TiO2 and K2CO3, no F-TEDA was
consumed, pointing to its otherwise stable nature under the
general reaction conditions. Additional experiments performed
replacing K2CO3 with a strong Brønsted−Lowry base, NaOH
(Figure S20), indicate that, although good catalytic perform-
ances are still observed in the presence of NaOH, higher
catalytic activity is achieved in the presence of K2CO3. This

Figure 7. Schematic representation of F-TEDA and its subsequent
decomposition products.

Figure 8. (Left) Yield of 4F4MPA (1b) with time over TiO2 with (i) 0.5 equiv of Selectfluor, 0.1 mmol (triangle), (ii) 1 equiv of Selectfluor, 0.2
mmol (squares), and (iii) 2 equiv of Selectfluor, 0.4 mmol (circles). Reaction conditions: 0.2 mmol of DMGA (1a), various amounts of Selectfluor,
0.0125 mmol of TiO2, 4 mL of H2O, 0.23 mmol of K2CO3, 25 °C, N2. Forensic monochromatic LED torch at 365 nm wavelength (Labino Torch
Light UVG2 spotlight) was used to irradiate the reaction mixture. (Right) Conversion of F-TEDA at 10 min (a) under standard conditions, (b)
under standard conditions but without TiO2, (c) under standard conditions but without K2CO3, and (d) under standard conditions but without
DMGA (1a).
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may be due to the ability of the carbonate species to consume
the photogenerated holes (h+), forming carbonate radicals.
Considering the radical nature of several species involved in

the reaction mechanism, the effect of O2, a well-known alkyl
radical scavenger, was also investigated.17 Performing the
reaction in O2, as opposed to N2, resulted in a decrease in
4F4MPA yield (Figure S21). The decrease in 4F4MPA in the
presence of O2 implies that alkyl radicals may be involved in
the rate-determining step. This is in line with the known ability
of O2 to trap carbon-centered radicals, hence prohibiting the
introduction of fluorine.17

Identifying the Photocatalytic Properties of the
System. In photocatalysis, the number of photons efficiently
employed in a chemical process is one of the key parameters to
describe the efficiency of the system, allowing proper
comparison with other existing photocatalytic systems. There-
fore, the apparent number of photons efficiently employed
(“apparent photon efficiency, ξ”) for decarboxylative fluorina-
tion under reaction conditions was measured by calculating the
ratio between the number of molecules converted over time
versus the number of incident photons under the same period
of time. It is noteworthy to mention that in heterogeneous
catalysis it is important to discriminate between the number of
incident photons and the number of photons efficiently
absorbed by the solid catalyst and the term quantum yield,
Φ (or quantum efficiency), can be correctly employed only as a
function of the number of photons actually absorbed by the
catalyst.18

ξ =

Φ =

molecules of substrate converted
no. of incident photons

molecules of substrate converted
no. of absorbed photons

Considering that the number of incident photons is always
higher that the number of photons absorbed by the
heterogeneous material, ξ is always lower than the quantum
yield, Φ, of the system. However, ξ may still be used to
investigate if light behaves as a true catalyst (ξ greater than 1)
or not (photosensitized process), even though it does not give
real information on the quantum yield of the system. To
investigate the catalytic properties of light in the system, the
photon flow through the aqueous reaction mixture was
determined using a standard ferrioxalate actinometry method19

under 365 nm light irradiation (Figures S22 and S23). Under
these conditions, a photon flow of (2.0 ± 0.5) × 1017 photons/
s was measured. This value was then used to measure the

“apparent photon efficiency” of the system as a ratio between
the number of molecules of DMGA converted (at 30 and 60 s)
and the number of incident photons (photon flow × 30 and 60
s, respectively), giving an “apparent photon efficiency” of 3.5 ±
0.5. An apparent photon efficiency greater than 1 implies an
even higher quantum efficiency of the system, thus indicating
that light is a true catalyst for this reaction, with one absorbed
photon being able to catalyze more than one catalytic cycle.
This further suggests that a free-radical chain mechanism
dominates, contributing to the overall reaction mechanism,
although light and TiO2 are both essential for the catalytic
activity to be observed. Preliminary investigation into the effect
of the intensity of the light on the reaction rate was also
performed, showing correlation between the intensity of the
light source and the reaction rate (Figure S24). The
observation of the catalytic nature of light in the system
further demonstrates the high levels of sustainability exhibited
by this system, relative to classical methods of fluorination.

Overall Reaction Mechanism. Based on all the
observations described above, an overall reaction mechanism
can be proposed (Scheme 2).
DRIFT analysis indicates that carboxylic acids bind to the

TiO2 surface in their carboxylate form (1).14 This may account
for the poor catalytic performances observed exhibited by TiO2
when K2CO3 is not present in the reaction mixture.
Simultaneous to substrate adsorption, photoexcitation of
TiO2 with UV light leads to the formation of electron−hole
pairs (2). The positive holes (h+) so generated can
subsequently withdraw an electron from the chemisorbed
carboxylate species according to the photo-Kolbe reaction20 via
SET, leading to the generation of radical species R-COO• (3).
These radicals can then decompose (β-scission) to yield CO2
(observed by TPD-MS in the absence of Selectfluor) and alkyl
radical species R• (4). The presence of R• is inferred from the
radical nature of the reaction (apparent photon efficiency
greater than 1) and the negative role exhibited by O2 in the
system.17 Alternatively, R-COO• species can also further react
with TiO2 via additional SET, re-establishing the R-COO−

species. Since it is known that F-TEDA (E0 = −0.296 V vs Ag/
Ag+ electrode)21 is able to functionalize such radical substrates
through SET, we hypothesize that following decarboxylation,
the alkyl radical species, R•, reacts with F-TEDA, resulting in
the formation of the desired R-F product, and an equivalent of
the radical TEDA• (5). Notably, the radical species TEDA•

can subsequently trap the free electron released by photo-
excitation of TiO2, resulting in the more stable species TEDA,

Scheme 2. Overall Reaction Mechanism
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in analogy to the mechanism proposed by the MacMillan
group for Ir-photocatalyzed decarboxylative fluorination (6).5a

Reaction step (7) can also occur, resulting in the formation of
F/TiO2 species (confirmed by XPS and 19F MAS NMR),
accounting for the excess of F-TEDA required for the reaction
(DMGA: F-TEDA stoichiometry of 1:1.2) with formation of
the radical species TEDA•. The ability of F/TiO2 species to
undergo to fluorine transfer was also investigated (8), however,
mechanistic studies confirmed that reaction step (8) can be
discounted from contributing to the catalytic mechanism (vide
supra), with F/TiO2 species found to be inactive. The excess of
holes (h+) formed by reaction step (7) explains the
requirement for an excess of K2CO3 (optimal amount found
to be 1.2 equiv), which, in addition to deprotonating the
substrate, is also a well-known hole scavenger, acting as a
sacrificial electron donor (reaction step (9)).16

In addition to this main catalytic cycle (Figure 9), another
free-radical pathway (blue arrow, pathway ii, Figure 9),
initiated by the main catalytic cycle, may occur, accountable
for the apparent photon efficiency greater than 1 (vide supra).
The radical TEDA• formed in reaction steps (5) and (7), in
addition to withdrawing an electron from TiO2 (6) (pathway i,
Figure 9), may also react with other electron donor species
present in the reaction systems,22 such as carboxylate ions (R-
COO−) or adsorbed (R-COO−)ads, according to reaction step
(10) (pathway ii, blue arrow, Figure 9), yielding to the
carboxyl radical RCOO• species. The new formed carboxyl
radical species RCOO•, can then decompose, according to
reaction step (4), yielding CO2 and alkyl radical R•, further
reacting with another molecule of F-TEDA, closing the second
cycle, accountable to the greater than one photon efficiency
previously measured with the actinometry. Despite the
presence of multiple pathways, light and TiO2 remain an
essential component of the system, since none of the catalytic
cycles can be closed in their absence. This accounts for the
catalytic nature of TiO2 i.e. the observation that no reaction
occurs in its absence, and the fact catalytic activity ceases in the
absence of light (Figure 2 (right)). Moreover, the overall
stoichiometry between F-TEDA and 4F4MPA remains
approximately 1:1.

■ CONCLUSIONS
In this work, commercially available TiO2 (P25) is found to be
an efficient and reusable heterogeneous photocatalyst for the
decarboxylative fluorination of various carboxylic acids in
aqueous media at 25 °C with electrophilic fluorine reagents

(Selectfluor). The high TOFs values observed (up to 1050 ±
70 h−1) as well as the ease of recovery and reusability of this
material (up to four catalytic cycles reported here) confer to
this method higher sustainability than any fluorination system
reported in literature, in addition to increased potential for
scale up. Spectroscopic and mechanistic studies performed on
this system indicate the presence of a complex reaction
network in which a combination of surface-catalyzed steps and
free-radical processes combine to result in exceptional levels of
activity, both in terms of yield and selectivity, but also in
photon efficiency.
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