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Abstract17

Population structure influences genealogical patterns, however data18

pertaining to how populations are structured are often unavailable or19

not directly observable. Inference of population structure is highly20

important in molecular epidemiology where pathogen phylogenetics is21

increasingly used to infer transmission patterns and detect outbreaks.22

Discrepancies between observed and idealised genealogies, such as those23

generated by the coalescent process, can be quantified, and where24

significant differences occur, may reveal the action of natural selection,25

host population structure, or other demographic and epidemiological26

heterogeneities. We have developed a fast non-parametric statistical test27

for detection of cryptic population structure in time-scaled phylogenetic28

trees. The test is based on contrasting estimated phylogenies with the29

theoretically expected phylodynamic ordering of common ancestors in30

two clades within a coalescent framework. These statistical tests have31

also motivated the development of algorithms which can be used to32

quickly screen a phylogenetic tree for clades which are likely to share a33

distinct demographic or epidemiological history. Epidemiological34

applications include identification of outbreaks in vulnerable host35

populations or rapid expansion of genotypes with a fitness advantage.36

To demonstrate the utility of these methods for outbreak detection, we37

applied the new methods to large phylogenies reconstructed from38

thousands of HIV-1 partial pol sequences. This revealed the presence of39

clades which had grown rapidly in the recent past, and was significantly40

concentrated in young men, suggesting recent and rapid transmission in41

that group. Furthermore, to demonstrate the utility of these methods42

for the study of antimicrobial resistance, we applied the new methods to43

a large phylogeny reconstructed from whole genome Neisseria44

gonorrhoeae sequences. We find that population structure detected45

using these methods closely overlaps with the appearance and expansion46

of mutations conferring antimicrobial resistance.47
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Quantifying the role of population structure in shaping genetic48

diversity is a longstanding problem in population genetics. When information49

about how lineages are sampled is available, primarily geographic location, a50

variety of statistics are available for describing the magnitude and role of51

population structure (Hartl et al. 1997). In pathogen phylogenetics, such52

geographic ‘meta-data’ has been instrumental in enabling the inference of53

transmission rates over space (Dudas et al. 2017), host species (Lam et al.54

2015), and even individual hosts (De Maio et al. 2018). Population structure55

shapes genetic diversity, but can the existence of structure be inferred directly56

from genetic data in the absence of structural covariates associated with each57

lineage, such as if the geographic location or host species of a lineage is58

unknown?59

The problem of detecting and quantifying such ‘cryptic’ population60

structure has become a pressing issue in several areas of microbial61

phylogenetics. For example, in bacterial population genomics studies, a wide62

diversity of methods have been recently developed to classify taxonomic units63

based on distributions of genetic relatedness (Mostowy et al. 2017; Tonkin-Hill64

et al. 2019, 2018; Beugin et al. 2018). In a different domain, pathogen65

sequence data have been used for epidemiological surveillance, and ‘clustering’66

patterns of closely related sequences have been used to aid outbreak67

investigations and prioritise public health interventions (Eyre et al. 2012;68

Dennis et al. 2014; Miller et al. 2014; Ledda et al. 2017). In both population69

genomics studies and outbreak investigations, a common thread is the absence70

of variables about sampled lineages that can be correlated with phylogenetic71

patterns. For example, in outbreak investigations, host risk behaviour and72

transmission patterns are not usually observed and must be inferred. It is not73

known a priori which clades are more or less likely to expand in the future,74
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although there is active research addressing this problem, such as to predict75

the emergence of strains of influenza A virus (Klingen et al. 2018) or to76

forecast the effect of antibiotic usage policies on the prevalence of resistant77

variants (Whittles et al. 2017).78

In time-scaled phylogenies, the effects of population structure often79

appear as a difference in the distribution of branch lengths in clades80

circulating in different populations (Dearlove and Frost 2015). Figure 1 shows81

a simulated genealogy from a structured coalescent process (Notohara 1990).82

In two clades, the effective population size grows exponentially, and in the83

remaining clade, the effective size remains constant. Consequently, the number84

of lineages through time show noticeably different patterns of relatedness. For85

the clades with growing size, most coalescent events occur in the distant past86

when the size was small.87

Supposing that the deme from which lineages were sampled was not88

observed, it is clear from visual inspection of Figure 1 which lineages were89

sampled from a growing population. Nevertheless, there is a paucity of90

objective methods readily available to automate the process of identifying91

temporally distinct clades. This process cannot be done manually when the92

differences in distributions are less obvious, and needs to be based on a93

theoretically grounded statistical test. Furthermore, in Figure 1, the red and94

yellow clades are distantly related. Their most recent common ancestor95

(MRCA) is at the root of the tree, but they have a very similar distribution of96

coalescent times suggesting that they were generated by similar demographic97

or epidemiological processes. For example, this can happen in infectious98

disease epidemics, when lineages independently colonise the same host99

population with greater susceptibility or higher risk behaviour (Dearlove et al.100

2017). It is therefore also desirable to have an automated method for101
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identifying polyphyletic taxonomic groups defined by shared inferred102

population histories as opposed to genetic or phenotypic traits.103

Here we develop a statistical test for detecting if clades within a104

time-scaled genealogy have evidence for unobserved population structure. Our105

approach is to develop a statistic based on an unstructured coalescent process.106

This allows us to test a null hypothesis that two clades are both generated by107

the same coalescent process. In this case, the coalescent model provides a108

theoretical prediction of the order of the coalescent times between the two109

clades in the absence of population structure. On the basis of this statistical110

test, we also develop algorithms for systematically exploring possible partitions111

of a genealogy into distinct sets representing evolution within latent112

populations with different demographic or epidemic histories. Notably, these113

algorithms not only allow us to detect outlying clades with very different114

genealogical patterns, but also to find and classify distantly related clades115

which likely have similar demographic or epidemic histories.116

Materials and Methods125

As a starting point for our methodology, we assume a time-scaled phylogeny126

has been estimated from genetic data, for example using one of the recently127

developed fast methods (To et al. 2016; Volz and Frost 2017; Didelot et al.128

2018; Sagulenko et al. 2018; Tamura et al. 2018; Miura et al. 2019).129

Alternatively, summary trees obtained from full Bayesian approaches as130

implemented in BEAST (Suchard et al. 2018; Bouckaert et al. 2014) or131

RevBayes (Höhna et al. 2016) can be used, although these typically132

incorporate population genetic models which presume a particular form of133

population structure or a lack of population structure. Some precise134

terminology and notation is required related to the structure of these135
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time
time

117

Figure 1: A genealogy simulated from a structured coalescent process with two

demes, one of which has constant effective population size (clade highlighted

in blue), and the other having effective population size growing exponentially

(clades highlighted in red and yellow). Migration of lineages occurs at a small

constant rate in one direction from the constant size deme to the growing deme.

The corresponding plots at the right show a caricature of the effective population

size and number of lineages through time in each clade.
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time-scaled trees since the basis of our approach concerns comparisons136

between different subsets of the tree.137

Notation138

The tree has n terminal nodes (nodes with no descendants), is rooted, and is139

bifurcating (there are n− 1 internal nodes each with exactly two descendants).140

Being rooted implies there is one node with no ancestor. Mathematically we141

describe this tree as a node-labelled directed acyclic graph:142

G = (N , E , τ)

where N is a set of 2n− 1 nodes, E ⊆ {(u, v)|u, v ∈ N 2} is the set of 2n− 2143

edges or ‘lineages’, and τ : N → R≥0 defines the time of each node. With144

reference to an edge (u, v) ∈ E we say that u is the ‘direct ancestor’ and v is145

the ‘direct descendant’ and we require τ(u) < τ(v). Nodes are further146

classified into two sets: ‘tips’ (terminal nodes) denoted T with no descendants147

and internal nodes denoted I with exactly two direct descendants. The trees148

may be heterochronous, meaning that tips of the tree can represent samples149

taken at different time points.150

For a node u ∈ N we define the clade Cu to be the set of nodes151

descending from u, that is, the node u and all v ∈ N such that there is a152

directed path of edges from u to v. We say that nodes v in Cu are ‘descended153

from’ u. We will also have occasion to define clades ‘top down’ in terms of a154

subset of tips in the tree. For this, we define the most recent common ancestor155

MRCA(X) of a set X ⊆ T to be the most recent node u such that X ⊆ Cu,156

that is, all other nodes v with X ⊆ Cv have τ(v) < τ(u). Then we let the157

top-down clade BX be defined as158
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BX = {u ∈ N|Cu ∩X 6= ∅}.

Note that BX includes the tips X as well as some nodes ancestral to159

MRCA(X).160

In general BX 6= CMRCA(X) since X does not necessarily include all161

tips descending from MRCA(X). We will also need to refer to the nodes162

corresponding to coalescent events among lineages of the set X only, excluding163

those between lineages of X and lineages of the complement of X,164

DX = X ∪ {u ∈ BX | ∃(u, v), (u,w) ∈ E , v 6= w,Cv ∩X 6= ∅, Cw ∩X 6= ∅},

Figure 2A illustrates a tree and the sets BX , DX , and CMRCA(X).165

Since each node has a time, we can define the set of ‘extant’ lineages166

A(t) at a particular time t to be the set of nodes occurring after time t with a167

direct ancestor before time t,168

A(t) = {v ∈ N | ∃(u, v) ∈ E , τ(u) < t ≤ τ(v)}.

We might also refer to the number of extant lineages at time t, a(t) = |A(t)|,169

and if considering the number of extant lineages within a particular clade170

ancestral to (and including) X we write171

aX(t) = |A(t) ∩BX |.
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Non-parametric test for a given pair of clades172

With the above notation, the rank-sum statistic can now be defined which will173

form the basis for subsequent statistical tests and can be used to compare any174

pair of clades in the tree.175

Let X and Y represent disjoint sets of tips as represented in Figure176

2B-D. Having sorted the nodes according to time and assigned a corresponding177

rank to each internal node, this statistic computes the sum of ranks in a given178

clade in comparison to a different clade:179

ρ(X|Y ) =
K∑
i=1

i1DX
(wi), (1)

where wi is an element of SX,Y = (w1, w2, . . . , wK) which is the sequence of180

internal nodes in DX ∪DY sorted by time (present to past). And, 1A(u) is an181

indicator that takes the value 1 if u ∈ A and is zero otherwise. Note that182

ρ(X|Y ) is asymmetric in X and Y . Also note that ρ(X|Y ) makes use of DX183

and DY , not BX and BY , because we are interested in the relative ordering of184

coalescent events among lineages of X and Y . Although the statistic is defined185

for all sets disjoint sets X and Y the examples we consider below apply to the186

case that the intersection of DX and DY is empty. Only the ordering of the187

events matter, the absolute times are immaterial to the test.188

Under a neutral coalescent process, the distribution of coalescent189

times in two clades ancestral to X and Y will depend on the number of extant190

lineages through time in both clades and on the effective population size Ne(t)191

(Wakeley 2009). However, the distribution of the relative ordering of192

coalescent times only depends on the sizes of the clades. This distribution can193

be computed rapidly by Monte-Carlo simulation as shown below, provided194
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that we know the probability that the next coalescent will be in X or Y as a195

function of the number of lineages ancestral to X and Y , given by aX(t) and196

aY (t). We here provide new theoretical results on the distribution of the197

relative ordering of coalescence times under the null hypothesis that both BX198

and BY are clades within a single tree generated by a neutral unstructured199

coalescent process. In the following we consider three different scenarios.200

Event E1. Suppose that a clade BX has a MRCA before any tip of X shares201

a common ancestor with the clade of another set of tips Y , disjoint to X.202

After lineages in X have found a common ancestor, the MRCA of X may or203

may not coalesce with lineages in BY before Y has found a common ancestor.204

Figure 2B-C illustrates trees that satisfy this condition. Note that in Figure205

2B, a lineage in Y coalesces with the MRCA of X before lineages in Y find a206

MRCA and in Figure C, both X and Y have a common ancestor before they207

find a common ancestor with one another.208

Observing a taxonomic pattern such as shown in Figure 2B-C is a220

random event in a stochastic unstructured coalescent process, and we denote221

this event by E1 (suppressing X and Y for convenience). Wiuf and Donnelly222

(Wiuf and Donnelly 1999) showed that the probability of observing E1, given223

the state of the tree at a particular time t, only depends on the number of224

lineages z = aX(t) and w = aY (t),225

Q1(z, w) =
2(z − 1)!w!

(z + w − 1)!(z + 1)
, z, w ≥ 1. (2)

The numbers of extant lineages in BX (or its complement) following

each coalescent event conditional on E1 is a Markov chain. The transition

probabilities of this chain are exactly those needed to simulate the null

distribution of the test statistic ρ(X|Y ). The probability that the next
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Figure 2: Coalescent trees for illustrating taxonomic relationships and notation

used throughout the text. In panel A, the shape and colour of nodes correspond

to variables BX , DX , and CMRCA(X) in relation to the set of tips X =

{x1, x2, x3}. All circles regardless of colour correspond to CMRCA(X). All filled

shapes (red or black, square or circle) correspond to BX . Note that this includes

nodes ancestral to the MRCA of X. All red filled circles correspond to DX . Two

coalescent events occur among nodes in DX at times t1 and t2. Panels B-D show

a coalescent tree and examples of potential taxonomic relationships between two

clades. Prior knowledge of taxonomic relationships between X and Y influences

the probability that the next coalescent event will be observed in clade X.
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coalescent event is among lineages in the clade BX given E1 (starting at a

particular time t) was found by Wiuf and Donnelly (Wiuf and Donnelly 1999):

(z, w) 7→ (z − 1, w) with probability
z + 1

z + w
, (3)

where the ancestral number of lineages of X and Y at time t are respectively z226

and w.227

Event E2. We further derive analogous probabilities under slightly different228

conditions. Suppose we have disjoint sets of tips, X and Y . Let all lineages in229

X share a common ancestor before any share a common ancestor with Y and230

vice versa, all lineages in Y share a common ancestor before any share a231

common ancestor with tips in X. Figure 2C illustrates a tree and two clades232

that satisfy this condition, which we denote by E2. As before, the number of233

ancestors in BX and BY will form a Markov chain, conditional on E2.234

The probability that the next coalescent event is among lineages in235

the clade BX given E2 at a particular time t and the current ancestral number236

of lineages of X, z = aX(t), and Y , w = aY (t), can be given as:237

(z, w) 7→ (z − 1, w) with probability
z − 1

z + w − 2
, z, w ≥ 1. (4)

To see this, note that without conditioning on E2, the probability that238

the next coalescent is among ancestral nodes in BX is239

z(z − 1)

(z + w)(z + w − 1)
.

This is simply the ratio of the coalescent rate in BX , which is
(
z
2

)
/Ne(t), to the240

rate in BX ∪BY , which is
(
z+w
2

)
/Ne(t). The effective population size is241
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homogenous through the tree by hypothesis of the statistical test, and it242

cancels out in this ratio. The probability that the coalescent event would be243

between the clades ancestral to X and Y would be244

2zw

(z + w)(z + w − 1)
.

Event E2 has probability Q2(z, w), which must fulfil the recursion245

(z + w)(z + w − 1)Q2(z, w)

= z(z − 1)Q2(z − 1, w) + w(w − 1)Q2(z, w − 1), (5)

where z, w ≥ 1. If there is exactly one lineage in both BX and BY , then246

Q2(1, 1) = 1. If there is one lineage remaining in BX and w > 1 in BY , then247

Q2(1, w) is the probability that the next w − 1 coalescent events only occur248

between lineages in BY and do not include the single lineage ancestral to X.249

The probability of the next coalescent event being in BY is the probability of250

not selecting the BX lineage when sampling two extant lineages without251

replacement:252

Q2(1, w) =
w∏

j=2

(
j

j + 1

)(
j − 1

j

)
=

2

w(w + 1)
, w ≥ 1. (6)

Similarly, Q2(z, 1) = 2
z(z+1) , z ≥ 1. This recursion can be solved explicitly to253

give254
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Q2(z, w) =
2z!w!

(z + w)!(z + w − 1)
, z, w ≥ 1. (7)

Now the transition probability (Equation 4) can be defined in terms of the255

rate of coalescence in BX and BY and the probability of E2 being satisfied256

following the coalescent event:257

(z, w) 7→ (z − 1, w) with probability

z(z − 1)Q2(z − 1, w)

z(z − 1)Q2(z − 1, w) + w(w − 1)Q2(z, w − 1)
=

z − 1

z + w − 2
. (8)

Event E3. Finally, we consider an event that is the union of events E1 and258

E2. We denote E3 to be the event that all X have a MRCA before sharing a259

common ancestor with lineages of Y and/or all lineages in Y have a MRCA260

before sharing an ancestor with lineages of X. All trees in Figure 2B-D satisfy261

this condition.262

The probability of the event E3 can be defined in terms of Q1 and Q2263

given previously:264

Q3(z, w) = Q1(z, w) +Q1(w, z)−Q2(z, w)

=
2z!w!

(z + w − 1)!

(
1

z(z + 1)
+

1

w(w + 1)
− 1

(z + w)(z + w − 1)

)
, (9)

with z = aX(t) and w = aY (t) being sample sizes at a particular time t, as265

before. The function Q3 satisfies the same recursion as above (Equation 5)266

with slightly different boundary conditions:267

Q3(1, w) = Q3(z, 1) = 1, z, w ≥ 1.
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Transition probabilities can be derived as above by substituting Q3 for Q2 in268

Equation 8. The probability that the next coalescent event is among lineages269

in DX conditional on E3 is270

(z, w) 7→ (z − 1, w) with probability
(z − 1)Rz−1,w

(z − 1)Rz−1,w + (w − 1)Rz,w−1
, (10)

where

Rz,w =
1

z(z + 1)
+

1

w(w + 1)
− 1

(z + w)(z + w − 1)
, z, w ≥ 1. (11)

Algorithms for detecting population structure271

The null distribution of the test statistic ρ(X,Y ) can be computed by272

Monte-Carlo simulation using Equations 3, 4 or 10 depending on the273

taxonomic constraints to be conditioned on. This can be computed given any274

pair of disjoint clades X and Y . Algorithm 1 in the Supplementary Material275

provides the simulation procedure for computing the two-sided p-values of an276

empirical measurement R̂ = ρ(X,Y ), and we denote these p-values ξ(X,Y,R).277

The algorithm works by simulating many replicates of the rank-sum statistic278

conditional on the sets X, Y , and the taxonomic relationship between these279

clades. Furthermore, the order of sampling events and coalescent events is part280

of the data within a time-scaled phylogeny. Thus the simulation procedure281

does not simulate coalescent trees per se, but rather the number of lineages282

through time aX(t) and aY (t) by proceeding from the most recent sample back283

to the MRCA of clades X and Y . Upon visiting a node in the ordered284

sequence of coalescent events, the algorithm selects at random a clade DX or285

DY for this event using the transition probabilities from Equations 3, 4 or 10.286

Upon visiting a coalescent event, aX(t) or aY (t) is incremented using the287

observed clade membership of the sample at that time. The end result of this288
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simulation procedure is a large set of replicate rank-sum statistics which serves289

as a null distribution for comparison with the value computed from the290

time-scaled phylogeny.291

While in principle this test allows comparison of any pair of disjoint292

clades, the number of possible comparisons is vast, and deriving a useful293

summary of taxonomic structure requires additional heuristic algorithms.294

These algorithms are designed to stratify clades into self-similar sets and to do295

so in a computationally efficient manner. Algorithm 2 in the Supplementary296

Material identifies ‘cladistic outliers’, which are clades that have a coalescent297

pattern that is different from the remainder of the tree. It performs a single298

pre-order traversal of the tree and greedily adds clades to the partition with299

the most outlying values of the test statistic. At each node u visited in300

pre-order traversal, Algorithm 2 examines all descendants v in Cu and301

compares Cv with to Cu \Cv. If no outliers are found, the algorithm will desist302

from searching Cu and the set of tips Cu ∩ T will be added to the partition. If303

at least one outlier is found in Cu, a search will begin on the biggest outlier304

(smallest p-value computed using Algorithm 1). The final result of this305

algorithm is a partition of m non-overlapping clades M = {X1, · · · , Xm}.306

In practice, it is often desirable to not compare very small clades307

against one another or much larger clades, so additional parameters are308

available to desist the pre-order traversal upon reaching a clade with few309

descendants. It is also often of practical interest to only compare clades that310

overlap in time to a significant extent, so yet another parameter is available to311

desist from comparing a pair of clades if few lineages in the pair ever coexist at312

any time.313

Additional algorithms are required to detect polyphyletic relationships314

as depicted in Figure 1 which arise if, for example, distantly related lineages315
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colonise the same area and have similar population dynamics or if316

near-identical fitness-enhancing mutations occur independently on different317

lineages. Figure 1 depicts two distantly related clades (yellow and red) with318

similar population dynamics, and it is desirable to classify these as a single319

deme based on shared population dynamic history. Algorithm 2 will partition320

tips of the tree into distinct clades with monophyletic or paraphyletic321

relationships, however an approach based on pre-order traversal of the tree can322

not on its own arrive at a polyphyletic partition of the tree. Therefore we can323

implement a final hierarchical clustering step in order to group similar clades324

as follows:325

1. For each distinct pair of clades X and Y in partition M , compute326

qXY = ξ(X,Y, R̂XY ).327

2. Convert the p-value into a measure of distance between all clades:328

dXY = |F−1(qXY )|, where F−1 is the inverse Gaussian cumulative329

distribution function (quantile function). Set dXX = 0 for all X.330

3. Perform a conventional hierarchical clustering using a threshold distance331

F−1(1− α/2) for confidence level α. Various clustering algorithms can332

be used at this point, and our software has implemented the ‘complete333

linkage’ algorithm (Everitt et al. 2001).334

Algorithms 1 and 2 as well as the final hierarchical clustering step are335

implemented as an open source R package called treestructure available at336

https://github.com/emvolz-phylodynamics/treestructure. The R337

package supports parallelisation and includes facilities for tree visualisation338

using the ggtree package (Yu et al. 2017). The package provides convenience339

functions to output cluster and partition assignment for downstream statistical340

analysis in R.341
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Simulation studies342

To evaluate the potential for treestructure to detect outbreaks we applied the343

new method to phylogenies estimated from newly simulated data using a344

structured coalescent model as well as previously published simulation data345

based on a discrete-event branching process (McCloskey and Poon 2017). We346

also simulated trees and sequence data under a Kingman coalescent process to347

examine the distribution of the test statistic under the null hypothesis and to348

assess how statistical power of the test depends on sample size and the349

differences between clades.350

The structured coalescent simulation was based on a model with two351

demes: a large deme with constant effective population size and a smaller352

deme which grows exponentially up to the time of sampling. Migration occurs353

at a constant rate in both directions between the growing and constant-size354

demes, and equal proportions of these two demes are sampled. Coalescent355

simulations were implemented using the phydynR package356

http://github.com/emvolz-phylodynamics/phydynR. All genealogies357

simulated from this model were comprised of 1000 tips with 200 of these358

sampled from the growing deme. Each of 100 simulations were based on359

different parameters such that there was a spectrum of difficulty identifying360

population structure from the trees. The sample proportion was chosen361

uniformly between 5% and 75% and, the growth rate in the growing deme was362

chosen uniformly between 5% and 100% per year. Bidirectional migration363

between demes was fixed at 5% per year. While most tips were sampled at a364

single time point, 50 tips from the constant-size deme were distributed365

uniformly through time in order to facilitate molecular clock dating. Multiple366

sequence alignments were simulated based on trees using seq-gen (Rambaut367

and Grass 1997). Each sequence comprised 1000 nucleotides from a HKY368
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model with a substitution rate of 10−3 per site per year, which is a typical369

value for RNA viruses. A neighbor joining tree was estimated from each370

alignment and dated phylogenies estimated using the treedater R package371

(Volz and Frost 2017) with a strict molecular clock. The treestructure372

algorithm was applied to each phylogeny using the default α = 1% threshold.373

In order to test the specificity of our method, we also simulated 1,000374

trees under an unstructured Kingman coalescent process using the rcoal375

function in the ape R package version 5.2. These trees each had 50 tips and an376

effective population size of 0.025. Sequence data and neighbor joining trees377

were generated as described above. The estimate.dates command (Jones and378

Poon 2016) in the ape R package version 5.2 was used to estimate time-scaled379

trees. The treestructure algorithm was applied to both the coalescent trees and380

to the trees estimated based on the simulated sequences. The test statistic was381

tabulated for each clade size from 5 to 45 leading to approximately 10,000382

observations of the test statistic in total, and about 250 observations for each383

clade size.384

A further set of Kingman coalescent simulations was carried out to385

assess the statistical power of our method. We simulated paired coalescent386

trees of different sizes and with different effective population sizes, and each387

pair of coalescent trees was then joined at a common root. Branch lengths at388

the root node were adjusted to ensure the trees were ultrametric. One tree in389

each pair was small with 10, 20 or 40 tips, whereas the other had 200 tips.390

The treestructure algorithm was used to compute the normalized test statistic391

at the MRCA of the minority clade. The effective population size in the392

minority clade was varied to provide differing levels of contrast. Note that393

even if the effective population size is the same in the majority and minority394

clades, the topology of the combined tree may differ substantially from the395
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Kingman model, so that the minority clade may be detected by the396

treestructure algorithm. To effectively ‘hide’ the structure caused by the397

construction of the combined trees, we can set the effective population size of398

the minority clade to be zNe/w where z is the number of tips in the minority399

tree, w is the number of tips in the majority tree, and Ne is the effective size400

of the majority tree. By doing so, the initial coalescent rate in both trees will401

be as expected under the Kingman model for the combined tree. This can be402

deduced by equating the transition probability in Equation 4 with the403

probability that the next coalescent will be in the minority clade, which is the404

ratio of the coalescent rate in the minority tree over the sum of coalescent405

rates in both the minority and majority trees.406

Simulation of 100 genealogies from a discrete-event birth-death407

process has been previously described (McCloskey and Poon 2017; Vaughan408

and Drummond 2013). These simulations were based on a process with409

heterogeneous classes of individuals with different birth rates. With some410

probability, lineages migrate to a class with higher birth rates. This could411

represent a generic outbreak scenario such as a set of individuals with higher412

risk behaviour or other exposures. In a separate set of simulations, the413

outbreak population differs from the main population along multiple414

dimensions: the birth rate and the sampling rate are both increased by a415

common factor (5×). 100 genealogies were simulated under both scenarios and416

the treestructure algorithm was applied to each. To create more challenging417

conditions for the method and to evaluate the sensitivity of the method to418

sample coverage, we also applied the method to genealogies based on419

subsampled lineages with a frequency of 25%. Complete descriptions of420

parameters and simulation methods can be found in (McCloskey and Poon421

2017).422
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430

Figure 3: The normalised mutual information (NMI) and adjusted Rand index

(ARI) as a function of classifications from several tree-partitioning algorithms

and membership of lineages in outbreaks or a constant-size reservoir. Each point

corresponds to a structured coalescent simulation where 20% of tips are sampled

from an exponentially growing outbreak.

431

432

433

434

435

The performance of treestructure was evaluated using the normalised423

mutual information (NMI) statistic and adjusted Rand index (ARI) computed424

using the aricode R package (Vinh et al. 2010). Both statistics quantify the425

strength of association between the estimated and actual structure of the tree,426

with larger values corresponding to higher quality reconstructions.427

Results428

Simulation studies429

The treestructure algorithm achieves relatively high fidelity of classifications in440

comparison to other methods in the structured coalescent simulations which441

included 20% of samples from a rapidly growing outbreak. Figure 3 compares442

the values of NMI and ARI for three methods of structure analysis. In these443

statistics, the partition of the tree computed by each method is compared to444

the true membership of each sampled lineage in outbreak or in the445

constant-size reservoir population. Across 100 simulations, treestructure has446

mean ARI of 41% (IQR: 20-57%). The FastBAPS method (Tonkin-Hill et al.447
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436

Figure 4: Entropy (H) of classification from several tree partitioning algorithms

applied to the structured coalescent simulations but only counting lineages

sampled from the exponentially growing outbreak.

437

438

439

2019) has mean ARI of 2.3% (IQR:1.2-3.3%) and the CLMP method448

(McCloskey and Poon 2017) has mean ARI 5.2% (IQR:-1-7.5%). The NMI449

statistic gives similar differences between the methods to ARI (Fig. 3).450

The lower performance of CLMP and FastBAPS in these comparisons451

is largely a consequence of false-positive partitioning of samples from the452

reservoir population, but CLMP and FastBAPS usually correctly identify a453

clade that closely corresponds to the outbreak. In contrast, the treestructure454

method seldom sub-divides clades from the reservoir. Figure 4 compares the455

entropy of partition assignments only within lineages sampled from the456

outbreak. This shows that all methods are assigning outbreak lineages to a457

small number of partitions and no method is clearly superior by this metric.458

The CLMP method has the lowest entropy (mean 0.40) but also several large459

outliers. treestructure has higher entropy (mean 0.57) but few outliers.460

FastBAPS has even higher entropy (mean 0.68) with a long tail of high values461

(Fig. 4).462

The performance of all methods depended on the sample density and463

growth rate of the outbreak. Fast growing outbreaks are easier to detect by all464

methods but the role of sample density is more ambiguous. The Pearson465
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479

Figure 5: The adjusted Rand index for 100 previously published simulations

(McCloskey and Poon 2017). This describes accuracy of classification of tips

into outbreaks using the treestructure method and CLMP. Results on the left

were based on simulations where both transmission and sampling rates varied in

the outbreak cluster, whereas simulations on the right only allowed transmission

rates to vary.

480

481

482

483

484

485

correlation of ARI with growth rate is 53%, 71% and 27%, for treestructure,466

FastBAPS, and CLMP respectively. Not all methods are equally sensitive to467

these parameters however and FastBAPS is especially sensitive to growth and468

sample density. The growth rate and sample density collectively explain 41%,469

60%, and 28% of variance of ARI in treestructure, FastBAPS, and CLMP470

respectively.471

We also performed analyses with Phydelity, a recently proposed472

method for transmission cluster identification (Han et al. 2018). This tended473

to generate a very large number of clusters, both within and outside of the474

outbreak demes, reflecting a different emphasis of this method on finding475

closely related clusters rather than addressing differences in macro-level476

population structure. Thus, results with Phydelity and other clustering477

methods were not easily comparable to treestructure.478

Figure 5 shows performance of treestructure on previously published486

tree simulations (McCloskey and Poon 2017). These simulations differ from487

the structured coalescent simulations presented above because both the488
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reservoir and outbreak demes are growing exponentially at different rates. The489

birth rate in the outbreak deme is five-fold the birth rate in the reservoir, but490

in one set of simulations, both the birth rate and sampling rate in the491

outbreak was also increased five-fold. In these simulations, the performance of492

treestructure (mean ARI 53%) is slightly lower than the CLMP method493

(McCloskey and Poon 2017) (mean ARI 72%) when only the birth rate differs494

in the outbreak deme. However treestructure maintains good performance495

when death and sampling rates also differ. In that case, treestructure has496

mean ARI 42% and CLMP has mean ARI 0%. The results are similar when497

using NMI instead of ARI (Supplementary Fig. S1). The difficulty of498

detecting outbreaks with different sampling patterns was previously499

highlighted as a challenge for CLMP (McCloskey and Poon 2017).500

Simulations of unstructured Kingman coalescent trees shows that the501

distribution of the standardized test statistic is approximately normal502

(Supplementary Fig. S2). The quality of the normal approximation depends503

on the extent of phylogenetic error. In estimated phylogenies based on504

simulated sequence data, there is substantial skew in the test statistic which is505

most pronounced for larger clades that have a more distant MRCA506

(Supplementary Fig. S3). The extent of error due to phylogeny estimation will507

depend on many variables as well as on the choice of methodology when508

estimating time-scaled trees; in this case, effective population size and509

substitution rates were chosen to yield a data set with comparable diversity to510

a real HIV sequence data set, and there is considerable error in the estimated511

date of the TMRCA and tree topology which was estimated using the512

neighbor joining method. In the absence of phylogenetic error, the false513

positive rate based on a 95% confidence threshold was 5.1%. With514

phylogenetic error, the false positive rate increased to 12.2%.515
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Analysis of trees simulated with predefined structure showed that516

statistical power increases as expected with sampling density and effective517

population size contrast between the two clades. Supplementary Figure S4518

shows the normalized test statistic for various sample sizes and contrasts of519

effective population size in two clades descended from the root of a tree. The520

statistic significantly deviates from zero with increasing sample sizes and with521

increasing differences in effective population sizes. For example, using a 95%522

confidence level, we find a significant difference between clades in 85% of523

simulations sampling 40 tips from the minority clade and with a two-fold524

difference in the rescaled effective population sizes. This decreases to 40% of525

simulations if sampling only 10 tips, but increases to 100% if there is a526

five-fold difference in the scaled effective population sizes.527

Clonal expansion of drug-resistant N. gonorrhoeae528

We examined the role of evolution of antimicrobial resistance in shaping the529

phylogenetic structure of N. gonorrhoeae using 1102 previously described530

whole genome sequences (Grad et al. 2016). These isolates were collected from531

multiple sites in the United States between 2000 and 2013 and featured clonal532

expansion of lineages resistant to different classes of antibiotics. We estimated533

a maximum likelihood tree using PhyML (Guindon et al. 2010) and corrected534

for the distorting effect of recombination using ClonalFrameML (Didelot and535

Wilson 2015). We estimated a rooted time-scaled phylogeny using treedater536

(Volz and Frost 2017). A relaxed clock model was inferred, with a mean rate537

of 4.6× 10−6 substitutions per site per year. BactDating (Didelot et al. 2018)538

was also applied for the same purpose and found to give very similar estimates539

for the clock rate and dating of clades.540

We focus on the origin and expansion of two clades which541
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independently developed resistance to cefixime (CFX) by acquiring the mosaic542

penA XXXIV allele (Grad et al. 2016). Note, however, that the level of543

susceptibility to CFX varies, particularly in the largest of these two clades. In544

one lineage within this clade, the mosaic penA XXXIV allele was replaced by545

recombination with an allele associated with susceptibility. Other isolates546

within this clade gained mutations that further modified the extent of547

resistance. The largest of the two clades emerged on a genomic background548

that was already resistant to ciprofloxacin (CIP), so that it has reduced549

susceptibility to both CIP and CFX. The smallest of the two clades is resistant550

to CFX but not CIP. To further analyse the relationship between CFX551

resistance and N. gonorrhoeae population structure, we focused our analysis552

on a tree with just 576 tips, representing the genomes from these two CFX553

resistant clades as well as genomes from the two clades that are most closely554

related to the two CFX resistant clades. The output of treestructure is shown555

in Figure 6, using unique colours to highlight each of the 11 clusters that were556

identified with α = 1%. The clusters reported by treestructure are highly557

correlated with CFX resistance. Among all distinct pairs of sampled isolates,558

84% share the same resistance profile and cluster membership.559

We compared treestructure with a different method for detecting560

community structure, FastBAPS (Tonkin-Hill et al. 2019), since BAPS models561

are often applied to bacterial pathogens. We applied FastBAPS using the562

same time-scaled phylogeny described previously and using a trimmed563

sequence alignment consisting of 38830 polymorphic sites and removing sites564

with many gaps. This produced a similar partition of the tree (Supplementary565

Fig. S5) with a few differences. The FastBAPS clusters overlap exactly with566

the clade featuring dual resistance (CIP and CFX), whereas treestructure567

classified a small number of deep-splitting lineages into a different cluster.568
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Note however that this behaviour is not necessarily problematic, and may569

represent a progressive increase in fitness following the acquisition of resistance570

through the evolution of compensatory mutations (Didelot et al. 2016).571

Indeed, we found a significant difference in the resistance profile of the two572

treestructure clusters within the clade resistant to both CIP and CFX: the573

smallest cluster had a greater frequency of high resistance to CIP compared to574

the largest cluster (100% and 81%, respectively).575

FastBAPS did not identify the smaller clade with resistance to CFX576

and not CIP and instead grouped that clade with its sensitive sister clade. In577

general, treestructure found many more clusters within the two sister clades578

and FastBAPS tended to group these together. We also applied the much579

more computationally intensive RhierBAPS method (Tonkin-Hill et al. 2018),580

and obtained almost identical results to FastBAPS. Overall, BAPS methods581

appear to give more weight than treestructure to long internal branches when582

identifying clusters.583

Epidemiological transmission patterns of HIV-1590

We reanalysed a time-scaled phylogeny reconstructed from 2068 partial pol591

HIV-1 subtype B sequences collected from Tennessee between 2001 and 2015592

(Dennis et al. 2018). Each lineage within this phylogeny corresponds to a593

single HIV patient sampled at a single time point, and various clinical and594

demographic covariate data concerning these patients can be associated with595

each lineage. In the original study, these sequence data were used to show high596

rates of transmission among young (age < 26.4 years old) men who have sex597

with men (MSM) (Dennis et al. 2018). Clustering by threshold genetic598

distance is often used in HIV epidemiology (Dennis et al. 2014) and indicated599

that young white MSM had the highest odds of clustering.600
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584

Figure 6: A time-scaled phylogeny based on 576 whole genomes of N.

gonorrhoeae, comprising two clades with reduced susceptibility to cefixime

(CFX) and their two sister clades. The top clade also has resistance to

ciprofloxacin (CIP). Different colours on the tree represent the partition detected

using the treestructure algorithm.
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We applied the treestructure algorithm with default settings to the601

time-scaled tree which yielded ten partitions with sizes ranging from 58 to 398.602

The tree and partitions are shown in Figure 7 where partitions are labeled603

according to the median year of birth among patients in each partition. Many604

of these partitions were polyphyletic, suggesting possible multiple importations605

of lineages to specific risk groups. We then compared the estimated partition606

of the tree with patient covariates. A particular partition stands out along607

multiple dimensions: it is the smallest (size 58), polyphyletic, arose in the608

recent past, and is characterised by very young MSM. The median year of609

birth in this partition is 1987, in stark contrast to the rest of the sample with610

year of birth in the 1970s. Clades within this young partition are also nested611

paraphyletically under other relatively young partitions (Fig. 7).612

We did not find a significant association between the tree partition613

and residential postal codes (Tukey analysis of variance, p = 0.097). This is in614

agreement with the original study which found minimal impact of geography615

on genetic clustering in this sample, however this is largely a consequence of616

the highly concentrated nature of the sample around Nashville. The ethnicity617

of patients (black, white, and other) was strongly associated with the618

estimated partition. Black MSM were strongly concentrated in the 1987619

partition in particular (83% in contrast to 26-38% in all other partitions). The620

odds ratio of black ethnicity given membership in the 1987 partition was 9.7621

(95% CI:5.2-19.8).622

Finally, we performed a phylodynamic analysis to investigate if the629

partition structure supported the previously published findings that young630

MSM were transmitting at a higher rate (Dennis et al. 2018). To estimate the631

temporal variations in the effective population size, we used the nonparametric632

skygrowth R package (Volz and Didelot 2018). We estimated Ne(t) for each633
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623

Figure 7: A time-scaled phylogeny estimated from HIV-1 pol sequences in

Tennessee (Dennis et al. 2018). The colours correspond to the ten partitions

identified using the treestructure algorithm. Several partitions are annotated

with the median year of birth of HIV patients from whom sequences were

sampled. Unannotated partitions had years of birth 1969-1972.
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partition individually using a range of precision parameters which control the634

smoothness (τ) of the estimated trajectories since we lack a priori information635

about volatility of these trajectories. Figure 8 shows Ne(t) for each partition636

with τ = 10 and Supplementary Figures S6 and S7 show results using different637

values of τ . The 1987 partition again stands out as the only group which638

shows evidence of recent and rapid population growth. Less dramatic recent639

periods of growth are also noticeable for other partitions with young patients.640

The current exponential growth in the 1987 partition is not consistent across641

all analyses, but when τ < 10 we find Ne(t) drops precipitously in 2014-2015642

(Supplementary Fig. S6). However, this could also be an artefact of643

non-random sampling and inclusion of transmission pairs within the sample.644

This analysis supports the hypothesis that there has been a recent and650

rapid increase in HIV transmissions among young MSM in Tennessee and in651

particular among young black MSM. This interpretation is mostly in652

agreement with the original study (Dennis et al. 2018), but we find that black653

MSM are a group at greater risk than young white MSM.654

Discussion655

Contrasting the distribution of ordering of nodes provides a natural criterion656

for distinguishing clades within a time-scaled phylogeny which are shaped by657

different evolutionary or demographic processes. The non-parametric nature of658

this classification method imposes minimal assumptions on the mechanisms659

that generate phylogenetic patterns. Thus, we have found this method660

maintains good performance over a diverse range of situations where661

phylogenetic structure is produced, including differential transmission rates,662

epidemiological outbreaks, evolution of beneficial mutations, and differential663

sampling patterns. Our work is related to the research on species delimitation664
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Figure 8: Estimated effective population size through time for each partition in

the Tennessee HIV-1 phylogeny. Each panel is annotated with the median year

of birth among HIV patients in each partition. Ne(t) was estimated using the

skygrowth method (Volz and Didelot 2018) with precision parameter τ = 10.
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methods (see for example Zhang et al. 2013) although targeted at665

within-species variation, and is also related to recent work on methods for666

detecting co-diversification of species (Oaks et al. 2019). This method appears667

relatively robust compared to other methods against false-positive668

identification of phylogenetic structure, but nevertheless has good sensitivity669

for detecting structure in most situations.670

There are many immediate applications of this method in the area of671

pathogen evolution where time-scaled phylogenetics is increasingly used in672

epidemiological investigations (Biek et al. 2015). We have demonstrated the673

role of selection in shaping phylogenetic structure of N. gonorrhoeae, and our674

method clearly identifies clades which expanded in the recent past due to675

acquisition of antimicrobial resistance. We have demonstrated the role of676

human demography and transmission patterns in shaping the evolution of677

HIV-1, and our method has shown distinct outbreaks of HIV-1 in specific678

groups defined by age, race, and behaviour. Furthermore, we have shown how679

clades detected by this method can be analysed using phylodynamic methods680

that can yield additional insights into recent outbreaks or the mechanisms681

which generated phylogenetic structure. For example, we have applied682

non-parametric methods to estimate the effective population size through time683

in HIV outbreaks detected using treestructure which highlighted particular684

groups that appear to be at higher risk of transmission. Such analyses would685

be more problematic using other partitioning or clustering algorithms because686

phylogenetic clusters can appear by chance in homogeneous populations of687

neutrally evolving pathogens, and this can give the false appearance of recent688

growth (Dearlove et al. 2017). This application of phylodynamics analysis689

methods is possible because the statistical test used in treestructure provides690

theoretical justification for treating each partition as a separate unstructured691
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population.692

Applications of the treestructure algorithms are scalable to relatively693

large phylogenies. The main algorithms require only a single pre-order694

traversal of the tree and all of the computations presented here required less695

than one minute to run. The method is based on a time-scaled phylogeny, and696

the computational burden of this preliminary step is typically higher than that697

of running treestructure, even though significant progress has been made698

recently in this area (Volz and Frost 2017; Didelot et al. 2018; Sagulenko et al.699

2018; Tamura et al. 2018; Miura et al. 2019). Future developments of700

treestructure and other methods post-processing time-scaled phylogenies (Volz701

and Didelot 2018; Didelot et al. 2017) should address the uncertainty in the702

input phylogeny, for example by accounting for bootstrap or Bayesian support703

values for phylogenetic splits, or by summarising results from multiple trees.704
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Data: 1) Disjoint sets of tips X and Y
2) Empirical value of test statistic R̂
3) Number of simulations nsim
4) Taxonomic condition E (see Equations 3, 4 or 10)
Result: Two-sided p-value denoted q = ξ(X,Y, R̂).
Initialisation;
Form a time-ordered sequence of nodes

U = (u1, · · · , u|DX |+|DY |)|ui ∈ (DX ∪DY ), τ(ui) ≥ τ(ui+1)

Form a corresponding numeric sequence:
Υ = (υ1, · · · , υ|DX |+|DY |) where

υi =


1 if ui ∈ X
−1 if ui ∈ Y
0 if ui ∈ (DX ∪DY ) ∩ I

for k = 1 to nsim do
z ← 0 (simulated lineages through time in clade X) ;
w ← 0 (simulated lineages through time in clade Y ) ;
rsim ← 0 (simulated rank-sum statistic) ;
c← 0 (number of coalescent events simulated) ;
for i = 1 to |DX |+ |DY | do

if υi = 1 then
Account for sample in X: z ← z + 1 ;

if υi = −1 then
Account for sample in Y : w ← w + 1 ;

if Wi = 0 then
Increment coalescent counter: c← c+ 1 ;

Compute probability p̃ = Q̃E(z, w) that next coalescent is in
DX or DY using Equation 3, 4 or 10;

Draw a random uniform variable ω ← Unif(0, 1) ;
if ω < p̃ then

z ← z − 1
rsim ← rsim + c

else
w ← w − 1

end
Record simulated statistic:
Rk ← rsim ;

end
Standardize the statistic:
R̄←

(
R̂− 〈{Rk}〉

)
/σRk

;

Return min(F (R̄), 1− F (R̄)) where F is the standard normal CDF.
Algorithm 1: Algorithm for computing the null distribution and associated
p-value of the test-statistic for cladistic outliers.

873

.CC-BY 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/704528doi: bioRxiv preprint first posted online Jul. 16, 2019; 

http://dx.doi.org/10.1101/704528
http://creativecommons.org/licenses/by/4.0/


Data: Time-scaled genealogy G
Result: Partition of tips of tree, denoted M .
Initialise ‘active set’ to consist of root node: Ω← {root} ;
Initialise partition: M ← ∅ ;
for u ∈ I (internal nodes) do

Initialise C̃u ← Cu ;
end
while |Ω| > 0 do

Initialise Ω′ ← Ω ;
for u ∈ Ω do

Find biggest outlier descended from u:
v∗ ← argmaxv∈Cu

f(v) = ξ(C̃u \ C̃v, C̃v) (Algorithm 1);

q ← ξ(C̃u, C̃v∗) ;
if q < α then

Ω′ ← Ω′ ∪ v∗ ;

C̃u ← C̃u \ Cv∗ ;

else
No significant outliers, so remove u from active sets:
Ω′ ← Ω′ \ u ;
Add the clade descended from u to the partition:
M ←M ∪ {(T ∩ C̃u)} ;

end
Ω← Ω′.

end
Return M .

Algorithm 2: Algorithm for detecting cladistic outliers.
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Figure S1: The normalised mutual information (NMI) for 100 previously

published simulations (McCloskey and Poon 2017). This describes accuracy of

classification of tips into outbreaks using the treestructure method and CLMP

(McCloskey and Poon 2017). Results on left were based on simulations where

both transmission and sampling rates varied in the outbreak cluster, whereas

simulations on the right only allowed transmission rates to vary.
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Figure S2: The distribution of the test statistic under the null hypothesis with
Kingman coalescent trees simulated with 50 tips. Top: The empirical density of
the standardized test statistic (Z score) across internal nodes in 1,000 Kingman
coalescent trees. Bottom: A quantile-quantile plot of the Z scores from internal
nodes in 1,000 coalescent trees and the standard normal distribution.
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Figure S3: Distribution of the standardized test statistic (Z scores) under the
null hypothesis and tabulated by clade size. Each box shows the range (whisker)
and interquartile range (box) of Z scores across 1,000 simulated coalescent
trees and for a particular clade size (number of tips). The red lines show the
interval corresponding to a 95% confidence region. The left part is based on
Kingman coalescent trees, while the right part is based on estimated time-scaled
phylogenies using simulated sequences as described in the text.
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Figure S4: Power to discriminate between clades as a function of sample size
and difference in effective population size. Each plot shows the absolute value of
the standardized test statistic of the MRCA of a minority clade. The minority
clade has an effective population size selected to provide various levels of contrast
with the majority clade (see text). The x-axis shows (N1

ew)/(N2
e z) where z and

w are the number of tips in the minority and majority clades, and N1
e and

N2
e are the effective population sizes in the minority and majority clades. The

red line corresponds to 1.96 which is the 95% quantile of the standard normal
distribution. The top, middle and bottom panels are each based on simulations
where the minority clade had 10, 20, and 40 tips respectively, whereas the
majority clade always had 200 tips.
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Figure S5: The output of FastBAPS classification applied to 1102 N.

gonorrhoeae isolates described in the main text. Clades indicated in green have

CFX resistance.
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Figure S6: Estimated effective population size through time for each partition

in the Tennessee HIV-1 phylogeny. Ne(t) was estimated using the skygrowth

method (Volz and Didelot 2018) with precision parameter τ = 1.
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Figure S7: Estimated effective population size through time for each partition

in the Tennessee HIV-1 phylogeny. Ne(t) was estimated using the skygrowth

method (Volz and Didelot 2018) with precision parameter τ = 100.
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