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Abstract—With the introduction of variable friction displays, either based on ultrasonic or electrovibration technology, new possibilities
have emerged in haptic texture rendering on flat surfaces. In this work, we propose a data-driven method for realistic texture rendering
on an electrovibration display. We first describe a motorized linear tribometer designed to collect lateral frictional forces from textured
surfaces under various scanning velocities and normal forces. We then propose an inverse dynamics model of the display to describe
its output-input relationship using nonlinear autoregressive neural networks with external input. Forces resulting from applying a
pseudo-random binary signal to the display are used to train each network under the given experimental condition. In addition, we
propose a two-step interpolation scheme to estimate actuation signals for arbitrary conditions under which no prior data have been
collected. A comparison between real and virtual forces in the frequency domain shows promising results for recreating virtual textures
similar to the real ones, also revealing the capabilities and limitations of the proposed method. We also conducted a human user study
to compare the performance of our neural-network-based method with that of a record-and-playback method. The results showed that
the similarity between the real and virtual textures generated by our approach was significantly higher.

Index Terms—Variable friction display, electrostatic, electrovibration, data-driven texture rendering.

1 INTRODUCTION

EXTURE rendering has been one of the challenging

topics in the haptics community. Realistic haptic tex-
ture rendering not only provides rich information but also
improves user experience. With the introduction of variable
friction displays, new possibilities have emerged in haptic
texture rendering on touchscreens. Collectively called sur-
face haptics, the technologies vary the surface friction acted
upon the user’s finger, enabling programmable tactile feed-
back. There exist two major approaches in surface haptics:
electrovibration [1], [2], [3] and ultrasonic vibration [4], [5],
[6], [7]. Whereas the former increases the surface friction by
modulating attractive electrostatic force, the latter decreases
the friction by vibrating the surface at an ultrasonic fre-
quency and creating an air gap. These technologies have the
potential for integration into consumer electronics such as
mobile phones and tablets. In particular, the electrovibration
technology has the advantages that it requires only electrical
components and that friction can be controlled uniformly
over the screen. Many applications can benefit from this
added functionality, such as Internet shopping, education,
security authentication, entertainment, etc. In this work, we
explore realistic texture rendering on an electrovibration
display by constructing an inverse dynamics model of the
display and then using it in order to synthesize actuation
signals from the lateral force data collected by scanning real
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textures.

1.1 Electrovibration Display

The earliest known observation of electrical attraction be-
tween the human skin and a charged surface was made
by Gray in 1875 [8]. Forgotten for a while, a similar phe-
nomenon was re-discovered later and called electroadhesion
by Johnsen and Rahbek in 1923 [9]. In 1953, Mallinck-
rodt et al. again reported a rubber-like sensation when a
coated metallic surface connected to a 110-V power line
was touched by a grounded finger [10]. This phenomenon is
called electrovibration and was explained based on the elec-
trostatic attractive force between a finger and a conductive
surface supplied by a high alternating voltage [11]. Most
of the early electrovibration displays were non-transparent
and consisted of an array of electrodes developed either for
texture rendering [12], [13] or pattern rendering [14]. With
TeslaTouch project [1] that presented a capacitive transpar-
ent panel (Microtouch, 3M, USA) enabling variable friction
on a touchscreen, the research interest in the electrovibration
technology has recently been revived [15], [16], [17], [18],
[19], [20], [21], [22]. A parallel research resulted in Tixel [23],
an electrostatic film developed by Senseg, which targeted
handheld devices and was used in several studies [24], [25],
[26]. Some other researchers developed their own electrovi-
bration display by stacking an insulator and an ITO layer on
top of a glass plate [27], [28]. A non-transparent electrostatic
friction display was also developed using an aluminum
plate covered with a thin plastic insulator film [29]. Based on
electroadhesion, Shultz et al. developed a non-transparent
electroadhesive surface from an aluminum disk coated with
carbon dielectric [30] and reported its application to render-
ing tactile, audible and ultrasonic force [31]. The authors de-
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veloped a high voltage-compliant current-controlled ampli-
fier with a very wide bandwidth. It allowed implementing
a modulation-based excitation technique that used a high-
frequency (a few ten kHz) carrier signal in order to mitigate
the frequency-doubling nonlinearity of electroadhesive dis-
plays. As a result, they reported a flat magnitude response
up to approximately 6 kHz. Although only the first-order
harmonic components were considered for that, such a wide
flat band was an impressive achievement and important
milestone for the advancement of electroadhesive displays.

Apart from such efforts for fabrication, many studies
have been conducted to investigate various properties of
electrovibration. The first mathematical model describing
the electrostatic normal force for a tactile pin array display
was introduced in [12]. Using a tribological method, Meyer
et al. verfied this model and showed the expected square
law of electrostatic normal force as a function of applied
voltage [15]. In a following work [28], an electrostatic dis-
play and an ultrasonic display were compared with respect
to their capability of rendering high-bandwidth force, which
led to a conclusion that the electroststic device was faster in
modulating sinusoidal and step signals. A more detailed
and improved model including the frequency-dependent
electrical properties of human skin was studied in [17]. The
polarity effect of square wave actuation signal was studied
in [32], and a comparison between sine and square waves
was given in [33]. Kim et al. proposed a current control
method to provide uniform friction intensity on an electrovi-
bration display regardless of operation conditions [19]. Kang
et al. investigated low voltage operation of electrovibration
display while providing the same perceptual strength [22].
Shultz et al. noted the prominent role of air gap electrical
impedance between the fingertip and the surface [34]. De-
spite these efforts, we still need more endeavours to fully
account for the complex electrovibration phenomenon in a
wide frequency range.

1.2 Data-driven Texture Rendering

Data-driven, or measurement-based haptic rendering, is a
general approach that uses recordings from real objects to
generate realistic haptic feedback in virtual environments
[35], [36]. It provides a unified framework to capture and
display a diverse range of physical phenomena, while not
requiring simulations of complex contact dynamics.

There have been many studies for data-driven texture
rendering. In a series of work by Lang et al., a handheld
device, called WHaT, is used to obtain surface texture and
compliance [37], [38]. A height profile is built from acceler-
ation data for texture modeling, and a heuristic model for
compliance is estimated from normal force and displace-
ment. The acceleration model is further improved by fitting
infinite impulse response (IIR) filter models to automatically
segmented data [39].

Another series of work has been conducted by Kuchen-
becker’s group for data-driven texture rendering based on
contact accelerations. In [40], a handheld probe with a three-
axis accelerometer is used to collect contact accelerations
from texture samples under constrained scanning condi-
tions. To each data set, an autoregressive (AR) model based
on linear predictive coding (LPC) is fit, and its inverse is
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used to synthesize accelerations. For scanning velocities and
normal forces not used in the model training, acceleration
values are calculated by bilinearly interpolating the model
coefficients from four adjacent models. Then the handheld
stylus is improved by adding a force sensor and two voice-
coil actuators for haptic interaction with a tablet [41]. This
stylus is used for both data collection and texture render-
ing employing the same LPC-based model. Their model is
refined by replacing LPC with an autoregressive moving
average (ARMA) model to better handle the weak stationary
nature of texture data and also to reduce the model size [42].
In [43], manual unconstrained data collection is allowed
from texture samples using the same stylus. The recorded
vibration data is parsed into short segments, and an AR
model is fit to each segment. By interpolating neighbor mod-
els, synthetic texture signals in response to user movements
are generated.

Special attention to anisotropic textures has also been
given. Shin et al. compared texture modeling using unified
and frequency decomposed neural networks, with the for-
mer being capable of handling anisotropic patterns [44]. In
addition, a dedicated data-segmentation and interpolation
method based on Radial Basis Function Network (RBFN)
for anisotropic textures is proposed in [45].

However, little work has been done on data-driven
texture rendering using electrovibration displays. Ilkhani
et al. proposed a data-driven texture rendering method by
recording accelerations from three real materials and play-
ing them back on an electrovibration display [18]. Through a
user study, they showed higher similarity of the data-driven
textures to the real ones in comparison with square wave
patterns. In the extended work [46], they applied the same
approach to the data taken from the Penn Haptic Texture
Toolkit [47] and performed multidimensional scaling (MDS)
analysis to create a perceptual space and extract underlying
dimensions of the textures. Their results confirmed rough-
ness and stickiness as the primary dimensions of texture
perception. To render the tactile texture of fabrics, Jiao et al.
[48] very recently proposed to estimate friction coefficients
by recording frictional and normal forces while a finger
sweeps over fabric textures, and then amplify and play back
the friction coefficients on an electrostatic display. Fiedler
and Vardar introduced a data-driven rendering approach
for homegeneous textures that can significantly reduce the
amount of data [49]. After analyzing contact acceleration
data in the frequency domain, they compress and re-
synthesize the data, and finally render the results back on
an electrostatic display. This was in line with the authors’
previous work that generates textures by modulating low-
frequency unipolar pulses, which have different waveforms
and spacing, with a high-frequency carrier signal [50]

Aside from these data-driven methods, there have been
a few other attempts for rendering natural textures on elec-
trostatic displays from visual representations of the textures.
Kim et al. proposed a rendering method based on the gradi-
ent technique for rendering fine 3D features on electrostaic
touch screens [16]. Haghighi et al. extended the idea to
a generalized gradient-based method for rendering large-
scale 3D geometries on an electrostatic tablet [24]. Wang et
al. extract hight maps from images with Gaussian bump
shading and calculate electrostatic driving signals from their
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local gradients [51]. In [52], Roberts filter is used to compute
the gradients of image textures, which are in turn used to
estimate stimulus signals to modulate the friction on an
electrovibration display.

1.3 Our Approach

Our goal was to apply the general paradigm of data-driven
rendering to texture rendering using an electrovibration
display. An electrovibration display modulates friction on
the sliding medium, and we choose lateral force to study
the textural behavior of a surface. We designed a linear
motorized tribometer for accurate and easy measurement
of force from the surface of a real texture sample. Normal
force and scanning velocity are the adjustable variables.

In order to reproduce signals measured from real tex-
tures using an electrovibration display without distortion,
the nonlinear dynamics of the display, which was examined
in the literature intensively as reviewed in Section 1.1,
must be compensated for appropriately. To this end, we
rely on a standard black-box approach in nonlinear system
identification: we identify and build an inverse dynamic
model of the electrovibration display using neural networks.
This approach has an advantage over the other approach
of physically-based modeling and subsequent compensator
design, in the simplicity of modeling process by not in-
volving the underlying complex contact physics and in
the accuracy of modeling results by including all system
responses experimentally. The black-box approach generally
has higher modeling power, and this merit makes it more
adequate for data-driven rendering.

We actuate an electrovibration display with a full-band
pseudo-random binary signal (PRBS) and collect the resul-
tant lateral forces. We then train a neural network inversely
to learn an appropriate input signal from the measured
forces. This inverse dynamics model of the display allows
us to render collected real texture signals with high fidelity.
Since texture responses largely depend on normal force and
scanning velocity, we repeat the inverse dynamics modeling
procedure for a set of normal forces and scanning velocities.

From a real texture sample, we collect lateral force data
by scanning on it with the same set of normal forces
and scanning velocities. We feed the force data of each
condition to the corresponding inverse dynamics neural
network model in order to generate a PRBS-like actuation
signal. This signal is used as input to the electrovibration
display to render a virtual texture similar to the real texture
when scanned with the normal force and scanning velocity
used for modeling. In addition, for arbitrary normal force
and scanning velocity, we propose a two-step interpolation
scheme that estimates an actuation signal from the adjacent
neighbours in a normal force-scanning velocity grid. The
generated signals are applied to the display for realistic
data-driven texture rendering.

A comparison between real and reconstructed forces in
the frequency domain shows promising results and reveals
the capabilities and limitations of our data-driven render-
ing framework. We also conducted a human user study
to compare the performance of our neural network-based
algorithm with that of the record-and-playback approach.
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Results showed the similarity between real and virtual
textures is substantially higher with our approach.!

2 DATA COLLECTION

This section describes the hardware we use to collect lateral
frictional forces. We then introduce the use of a capacitive
touchscreen panel as an electrovibration display.

2.1 Tribometer

We developed a motorized linear tribometer for precise
force measurement. It consists of two parts: a moving
platform and a measurement stylus (Fig. 1). The platform
includes a linear servo motor (MX80L, Parker, USA) capable
of following a trapezoidal acceleration profile with a travel
distance of 8 cm. The motor comes with a dedicated motor
drive and a power supply (VIX250IH and XLPUS, Parker,
USA). The stylus is made of stainless steel equipped with
a six-axis force/torque sensor (Nano 17, ATI Industrial
Automation, USA). The sensor had a 3 mN resolution and
a 7200 Hz resonant frequency. A sensitive touch pen is
attached to the lower end of the stylus to interact with the
texture sample. A mass component at the top adjusts the to-
tal weight of the stylus and hence the normal pressure. The
shaft is supported by a linear bearing and attached to the
motor carriage using an aluminum link. The measurement
stylus resembles a simple mechanical mass-damper system
subject to Coulomb (dry) friction between the shaft and the
linear bearing. We confirmed the accurate behavior of the
tribometer by exciting the 3M panel with sine waves with
different frequencies up to 400 Hz and then collecting the
resulting lateral forces and observing the main frequency
components and their harmonics.?

Each data collection trial starts with placing a texture
sample on the mounting seat under the touch pen. A custom
C++ program sends movement commands to the motor
driver via RS232C and records the force data using a data
acquisition card (PCI-6229, NI, USA) at 1 kHz rate.

We apply a high-pass filter to the collected force data
with a cutoff frequency of 5 Hz to remove the different DC
biases the force sensor encountered during moving left or
right. We then manually extract the segments corresponding
to the constant scanning speed from each data set. The
segments are then concatenated to make a data stream for
the texture sample under the given experimental condition.

2.2 Electrovibration Display

We use a capacitive touch panel (MicroTouch SCT3250,
3M, USA) to make an electrovibration display, as initially
proposed in [1]. It consists of a transparent conductive layer
coated with a thin insulator on top of a thick glass plate.
Applying a high voltage waveform (around 100 Vpp) to the
conductor and electrically grounding the human body mod-
ulates the friction between the sliding finger and the touch

1. Part of this work was presented earlier in the 2018 IEEE Haptics
Symposium [53]. In this paper, we also present an improved interpo-
lation scheme (Section 4), new experimental results (Section 5), and a
new user study (Section 6).

2. For all real materials used in our experiments, the collected signals
were bandlimited by 100 Hz. This relatively low frequency upper
bound could be due to the use of a soft touch pen for data collection.
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Fig. 1. Motorized linear tribometer. The measurement stylus is attached
to the moving platform using an Aluminum link. 1) Linear servo motor.
2) Mass component. 3) Linear bearing. 4) Linear shaft. 5) Force/torque
sensor. 6) Touch pen. 7) 3M capacitive touch panel (electrovibration
display).

panel. We use a high performance piezo driver (MX200,
PiezoDrive, Australia) that can amplify the input signal up
to 200 Vpp.

The panel also responds well to some touch pens. We
tested several types and found one that creates almost the
same level of electrostatic force as the human fingertip. The
test was conducted with the 3M panel placed on top of the
force sensor. Exciting the panel with a 100 Hz sine wave, a
bare finger or a touch pen was dragged over the surface, and
the resulting lateral forces were collected. Comparing the
forces in both the time and frequency domains, we selected
the touch pen that showed the amplitude and power density
closest to those of the bare finger. Using the touch pen
enables eliminating the effects of the human skin properties
that vary over time from force measurements, for consistent
data collection.

3 TEXTURE MODEL

In this section, we describe how to make an inverse neural
network model of the input-output dynamics of the electro-
vibration display. We use this inverse model to synthesize
actuation signals from the force recordings in order to create
virtual textures on the display as similar as the real ones.

3.1 Inverse Dynamics Model

Our first goal is to develop a model that describes the dy-
namics relationship between the input actuation signal and
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the output frictional force of electrovibration display. We
follow a classic system identification procedure to estimate
the system model based on observed input-output data. To
achieve this, we 1) define input and output variables, 2)
design proper actuation signals to drive the system, and
3) draw a dynamics model between the variables using an
appropriate framework.

3.1.1 Input and Output

As for our electrovibration display, the input is the actuation
signal u[n], and the output is the lateral force f;[n]. A usual
approach is to build a model g such that fi[n] = g(u[r]) and
then use the inverse model g~! to obtain u[n] for desired
fi[n] such that u[n] = g=*(f;[n]). Since an electrovibration
display exhibits considerable nonlinearity in its behavior
[15], [22], [33], nonlinear models such as neural networks
are appropriate for system identification. A problem is that
finding an inverse model for such nonlinear systems is not
always feasible. An alternative is to identify the inverse
model directly by using f;[n] as input and u[n] as output.
This approach, however, requires care to obtain dense sam-
ples of fi[n], and we use neural networks for the inverse
model identification.

3.1.2 Pseudo-Random Binary Signals

Next we need a proper actuation or perturbation signal
to excite the system and observe its response. An open-
loop experiment is required for such data collection, and
the input signal must contain sufficient distinct frequency
components in the frequency band of interest [54]. We use
a pseudo-random binary signal, which is a deterministic
signal with white-noise like properties. PRBS is widely used
for the identification of linear systems [54] and occasion-
ally for some nonlinear systems [55]. In case of nonlinear
systems, its applicability depends on the nature of system
nonlinearities. There are several successful implementations
[56], as well as some failed attempts [57]. For example, a
quadratic Wiener model can be identified using a PRBS
while a first-order Hammerstein model cannot be [56]. It
is claimed that because PRBS signals have only two levels,
they may not excite certain nonlinearities of the system, so
more input levels are required [58]. Nevertheless, we show
that PRBS works in our case and can adequately capture the
dynamic behavior of our electrovibration display.

A PRBS is characterized by three parameters: signal
level £c, order n, and clock period B. A PRBS fluctuates
between —c and +c¢; its maximum period is 2" — 1; and
it has to stay constant for at least B consecutive samples
before it changes. To have a full-band signal that spans
the entire frequency band up to the Nyquist frequency
(sampling rate/2=500 Hz), clock period must be set to 1.
Furthermore, considering the slowest scanning speed of 3
cm/s, it takes approximately 2667 ms for our tribometer to
complete an 8-cm travel. Therefore, the length of the PRBS
should not be less than the longest travel time. For a signal
with n = 9 (PRBS9 for short), the maximum length becomes
29 — 1 = 511, and with six repetitions, we obtain a signal
with the total length of 3066 ms. This is slightly longer than
the maximum travel time. An example plot of PRBS9 with
its frequency response is given in Fig. 2. It can be seen
that PRBS9 has a constant frequency response in its entire
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Fig. 2. An example of PRBS9 (n = 9).

frequency band. We use a Matlab function, idinput () to
generate our desired PRBS.

3.1.3 NARX Neural Network

With the PRBS in hand, we can now actuate the electrostatic
panel and record resulting lateral forces using the tribome-
ter. As a model, we use a NARX (Nonlinear AutoRegressive
with eXternal input) neural network [59]. NARX neural
networks are well suited for addressing nonlinear dynamic
systems [55], [60], [61]. They have a closed-loop structure
with a feedback loop connecting the output to the input (Fig.
3(b)). The past values of both input and output are used to
predict the future output. The defining equation is:

y[n] = f(y[n - 1]7 7y[n - ky]vx[n - 1]7 ,;C[?’L - kl’])a (1)

where y[n] is the output to be predicted and z[n] is the
external input exciting the system. k, and k, are the tap
delays for feedback and external input.

The next step is to determine the number of hidden
layers and the number of neurons in each layer, as well as
the size of tap delays for each input sequence. We tested
several different combinations and obtained nearly perfect
performance with 3 layers that have 15, 10, and 5 neurons,
respectively, and tap delays of both 10. We use the Matlab
neural network toolbox for training and evaluation. Training
is initiated by removing the feedback loop and inputting
the desired target sequence along with the external input
to the network (Fig. 3(a)). In our case, z[n] = fi[n] and
y[n] = u[n], where fi[n] is the lateral force, normalized
to handle the variability between readings under different
conditions, and u[n| is the designed PRBS9. The networks
are trained to update weight and bias values according to
Levenberg-Marquardt optimization. The data set is divided
into training, testing, and validation sets with the ratios of
0.70, 0.15, and 0.15, respectively. The training ends when
the error computed using the validation data set becomes
sufficiently low. For evaluation, we close the feedback loop
by removing the reference PRBS9 from the input and instead
feeding the estimates back (Fig. 3(b)). A result of closed-loop
evaluation of the trained network is given in Fig. 4. The

Hidden 1
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o B0
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10 5

(a) Open-loop training.

Hidden 1
Hidden 2 Output

£ D |

(b) Closed-loop evaluation.

15

Fig. 3. Block diagram for the training and evaluation of NARX network.
y[n] is the reference signal (PRBS9) and z[n] is the external input
(recorded lateral force).
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Fig. 4. Evaluation of failed and successful training of a NARX network.
This example is obtained under experimental condition with mass of
mg = 85 g and scanning velocity of v; = 3 cm/s. For clarity, only 50
ms of the recordings are shown. The green solid line is the reference
PRBS9, and the dashed black line is an estimate from the neural
network.

estimated PRBS (dashed red line) almost perfectly follows
the reference PRBS (solid blue line).

3.2 Synthesizing Actuation Signals

For synthesis, we train inverse neural networks using the
methods described in Section 3.1 for different lateral scan-
ning velocities and normal forces. These two variables affect
texture responses to the large extent [62], [63]. We obtain one
neural network for each combination of scanning velocity
and normal force. These inverse neural network models for
the electrovibration display enable us to synthesize actua-
tion signals for a texture material scanned under the same
condition.
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To this end, we first collect lateral forces from the sur-
face of a real material using the tribometer under different
scanning velocities and normal forces. We normalize each
force sequence to handle the variability between readings
from different materials. Then we input each force reading
to the corresponding trained neural network to generate a
PRBS-like actuation signal. The estimated actuation signal
attempts to recreate similar textural patterns to the real ma-
terial once applied to the capacitive touch panel. However,
these signals are only applicable to the same experimental
conditions under which they were obtained. For arbitrary
scanning velocity and normal force, we apply a two-step
interpolation procedure between the closest neighbors in
the velocity-force grid inspired by [40], [44]. Details about
the interpolation are provided in Section 4.

3.3 Error Metric

To assess the synthesis accuracy of virtual textures, we first
visually compare the FFT plots of real and virtual textures,
and then compute a relative spectral rms error as an error
metric [40], [44]:

g - BMS(Z(fu[n]) — F(fr[n])
’ RMS(F(fr[n)))

where F(-) is the operator for fast Fourier transform and
RMS is for computing the root mean square in the fre-
quency domain. In addition, f,[n] denotes virtual forces
and f.[n] real forces. We set the length of FFT equal to
the sampling frequency (1000 Hz) to generate a smooth and
less spiky spectrum with the main components easy to dis-
tinguish. A smaller value of E; indicates higher similarity
between two spectra and hence higher similarity between
virtual and real textures. We also apply the same error
metric over repeated recordings of the same real material
under the same experimental condition in order to establish
a baseline (lower bound) of this metric.

@)

4 INTERPOLATION SCHEME

For the conditions with arbitrary scanning velocity and
normal force, we require an interpolation scheme to estimate
the actuation signal. A potential solution is to estimate a
signal from the ones generated for the adjacent conditions
in the velocity-force grid. However, we previously showed
that linear interpolation between the neighbourhood signals
does not always produce satisfactory results [53]. While
the linear interpolation mostly works for the conditions
with the same scanning velocity but different masses, it
does not work well for the conditions with the different
scanning velocities. The issue was that the main frequency
components from the lower and higher velocity signals both
appear in the frequency response of the interpolated force
(refer to Section IV.C and Fig. 9 in [53]). We have designed
an improved interpolation scheme that solves this problem
and present it in this section.

4.1 Problem Definition

A closer look at the problem has revealed its origin and
a potential solution. Since FFT is a linear operator, linear
interpolation preserves the individual spectral components
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Fig. 5. Example of linear interpolation between two sine waves, y; and
y2, With frequencies f; = 10 Hz and fo = 20 Hz. Top plots show time-
domain signals, and bottom plots show their FFTs. At f3 = 15 Hz, y3 is
calculated from y3 = 0.5y; +0.5y2 by taking weighted average between
y1 and yo. lts time and frequency domain plots are given on the right.

in the resulting frequency response. For example, let us con-
sider two sine waves, y; = sin(27 f1t) and yo = sin(27 fat),
from which y3 is obtained by taking weighted average at
frequency f3 (fi < fs < f2). This linear interpolation can
be formulated as

ys = WAL o, o, for fo) = 1232y 4 S 1

TRt R
where WA is an operator for weighted average. Taking FFT
yields to

®)

+

fo— 13 fs—h
F(ys) P Flyr) + o h F(y2)- @)
That is, taking weighted average in the time domain is
equivalent to taking weighted average in the spectral do-
main because FFT is a linear operator.

An example with f; = 10 Hz, fo = 20, Hz and f3 = 15
Hz is given in Fig. 5. Linear interpolation does not result
in a single full power component at f3 = 15 Hz; instead
it makes two separate components at the lower and higher
frequencies, f; = 10 and f, = 20 Hz, with the half power.
Based on this observation, we propose a simple and effective
solution for interpolation.

4.2 Potential Solution

The example given in Section 4.1 indicates that the prob-
lem comes from the spectra of individual components be-
ing linearly combined by Fourier transform. Therefore, a
straightforward solution to this problem could be shifting
the spectra in the frequency domain. If we shift the spectra
to the desired frequency, the lower one to right and the
higher one to left, then taking weighted average between the
shifted spectra will make a single component at the desired
frequency with full power.

Shifting in the frequency domain can be done by re-
sampling in the time domain. The degree of re-sampling
is determined by decimation factor (DF) [64]. Re-sampling
with DF > 1 corresponds to down-sampling®, yielding a
signal with its frequency components shifted right (to higher
frequency). Up-sampling with DF' < 1 makes the frequency
components of a signal shifted left (to lower frequency). We
define a re-sampling operator as y" = RS(y,p,q), where
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Fig. 6. Re-sampling and averaging applied on the previous example in
Fig. 5. The original signals are shown in blue, and the re-sampled ones
in red. Time domain plots are given on top, and FFT plots on bottom.

y" is the re-sampled version of y with a rational decimation
factor DF' = p/q. p and q are obtained from the current and
target frequencies. DF' = p/q means that y" is re-sampled
at 1/DF = q/p times of the original sampling rate.

Taking weighted average of two re-sampled signals,
ie, y3 = WA(YT, 5, f1, f2, f3) will not suffer from the
aforementioned problem. This is shown for the previous
example in Fig. 6. Each spectral component is first shifted
to the desired frequency and then combined to generate a
single component at the target frequency with full signal
power.

4.3 Scanning Velocity vs. Frequency

The proposed re-sampling process requires us to know
the desired frequency that we intend to land and also the
lower and higher frequencies that we are about to shift.
During rendering under an arbitrary scanning velocity, we
only know the current scanning velocity of a user and the
nearest lower and higher velocities at which texture data
were collected. From these three velocities, we need to
obtain two decimation factors for up-sampling the lower-
frequency texture signal and down-sampling the higher-
frequency one, respectively, for interpolation.

To this end, we rely on the simple relationship between
scanning velocity and main component frequency in a si-
nusoidal texture. If the spatial wavelength of a sinusoidal
texture is L, the frequency f of response force during
scanning the texture at linear velocity v is [65], [66]

v

If (5) holds for a texture, the decimation factor DF =
vi/v(v > wv1) has the effect of up-sampling the lower-
frequency texture signal at f; to one that has the main
frequency component at f. Similarly, the decimation factor
DF = vy/v(va > v) has the effect of down-sampling the
high-frequency texture signal at f to the signal with the
main frequency component at f. Note that v; and vy are
known and only v needs to be measured during rendering.

We investigated whether the theoretical relationship in
(5) actually holds with real texture samples. An example
is shown for a rippled paper shown in Fig. 7. The rippled

3. Down-sampling is called decimation in signal processing.
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Fig. 8. Power spectra of the lateral forces collected from the surface
of a rippled paper under five different scanning velocities. The inset
plot at the upper right corner shows a linear relationship between the
frequencies of the main component and their corresponding velocities.

paper had almost perfect sinusoidal patterns. Using our
tribometer, we collected lateral forces under five scanning
velocities: 3, 4, 5, 6, and 7 cm/s. Fig. 8 shows the frequency
spectra of the measured lateral forces with an inset for
a graph between frequency and scanning velocity. These
data exhibit an almost perfect linear relationship between
frequency and scanning velocity. We also tested six other
materials (Fig. 10) used in experiments for performance
evaluation. For each material, we found a linear relationship
between the frequency of the main spectral component and
the corresponding scanning velocity. These results validate
our replacement of frequencies with scanning velocities in
the re-sampling process.

4.4 Process Formulation

With the re-sampling idea described above, we can design a
complete interpolation scheme for an arbitrary condition of
scanning velocity and normal force from the four adjacent
conditions (nodes) in the velocity-force grid (Fig. 9). Just to
emphasize, the re-sampling is required only for the condi-
tions with different scanning velocities. For the conditions
with different masses, linear interpolation is sufficient. Each
node U; ; in Fig. 9 represents an actuation signal obtained
from the trained neural network under the specified nor-
mal force and scanning velocity, (m;, v;). The interpolation
scheme has two steps. First, we obtain a signal from the
nodes with the same scanning velocity but different masses
(normal forces). Second, we re-sample the newly generated
signals to the desired frequency (scanning velocity) and then
take weighted average.

Let the user-applied force be m,, (m; < m, < m;;1)and
the current scanning velocity be v, (v; < v, < v;41). Then
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Fig. 9. Improved interpolation scheme. (m., v.) denotes user-applied
normal force and lateral scanning velocity. Blue squares are the adja-
cent actuation signals obtained from the neural networks trained under
corresponding experimental conditions. Blue arrows indicate steps 1.1
and 1.2, applied on the vertical nodes to yield blue dashed circles. Long
green arrows indicate steps 2.1 and 2.2, applied on the horizontal nodes
to yield green dashed circles. Short green arrows indicate the final step
2.3, applied on the re-sampled signals (green dashed circles) to obtain
the green square, the final output of interpolation.

the interpolation process can be formulated as follows:
L1 Uwj =WAU,;j, U1, mi, miy1,my)
1.2, Uyjt1 = WA(Ui,jH, Ui+1,j+17miami+17mU)
2.1. U:;j = RS(Uu’j,Uj7Uu) (6)
2.2.
2.3.

r _
wit1 = REWUu,j4+1, 0541, Vu)
— T T
Uu,u = WA(Uu,j, Uu’j+1,1)j,’l)j+1,’l}u)

Steps 1.1 and 1.2 are for taking weighted average be-
tween the signals with the same scanning velocity (to handle
different masses). Steps 2.1 and 2.2 are for re-sampling the
outcomes (to handle different frequencies), and step 2.3 is
for taking average between the two re-sampled signals (to
handle different velocities). For scanning velocities slower
than v,,;, = v or faster than v,,,, = vs, we set v, to
the corresponding extreme limit. The same is done for m,,
outside the range of [Myin, = M1, Munas = M3).

5 EXPERIMENTAL RESULTS

This section presents the performance evaluation methods
and results of our data-driven method of recreating virtual
textures from real ones. We rely on frequency spectra for
visual comparison and E; values for objective evaluation.
For that, we collected force data using the tribometer from
six texture samples shown in Fig. 10. We used three masses
(mp = 60, my = 85, and ms = 110 g) and five scanning
velocities (v1 = 3, v3 =4, v3 =5, vy =6, and v5s = 7 cm/s)
in the experimental conditions. As shown in Fig. 11, we
trained neural networks for the conditions marked by blue
squares and performed cross-validation for the conditions
marked by green squares.

5.1 Baseline Performance

We first evaluated the similarity between the repeated mea-
surements from the same material under the same experi-
mental condition to establish the baseline performance for

Fig. 10. Six texture samples used in the evaluation. From left to right:
dotted sheet (dot), chair fabric (chr), felt fabric (£1t), painting canvas
(can), transparent plastic sheet (p1a), and scrunched paper (scr).
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Fig. 11. Mass-velocity grid for cross-validation. m; (i = 1, 2, 3) indicates
mass and v; (j = 1,2,3,4,5) and v, (k = 1,2,3,4) scanning ve-
locities. For the experimental conditions highlighted by blue squares,
actuation signals is obtained from the corresponding trained neural
networks. For the others marked by green squares, the signals are
obtained by interpolating neighbors.

the error metric E;. Ideally, I; should be zero in such cases,
but due to various noises and uncertainties, the values of
E; are always greater than zero. Two baseline FFT plots, the
best and the worst, are given in Fig. 12 with E; = 0.05 and
0.27, respectively. See Fig. 1 and Fig. 2 in Appendix for the
FFT plots of all the six materials with F values.

In general, the repeated measurements looked very sim-
ilar for most of the materials and were almost identical for
the dotted sheet. The average I/s was 0.14 with the standard
deviation of 0.06. We also observed that increasing the scan-
ning speed tended to shift the main frequency component
to right (to higher frequencies).

5.2 Training Performance

Next, we examined the similarity between the virtual forces
generated by the synthesized PRBS-like actuation signals
and the real texture forces. Initial attempts showed that
when the actuation signal is amplified with the default gain
(1.0 corresponding to 100 V), the amplitude levels of the
power spectral densities of virtual textures do not match
those of real ones in some conditions. Thus we tested a
range of gains from 0.6 to 1.4 with a step size of 0.2, and we
picked the one that generated almost the same maximum
magnitude of power density.

Out of all the results, the best and the worst cases are
shown in Fig. 13. Interested readers can refer to the results
of all the experimental conditions given in Fig. 3 and Fig. 4
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in Appendix4. In most cases, the neural networks estimated
actuation signals successfully so that the virtual spectra
were similar to the real ones. Note that the E, values in
Fig. 13 should be interpreted in reference to the baseline
E, values® Among the six materials, dotted sheet showed
the highest similarity with the average E, = 0.33, while
chair fabric the lowest with £, = 0.61. Painting canvas
showed the second best performance (£, = 0.35) followed
by plastic sheet (Es = 0.38), felt fabric (F, = 0.40), and
scrunched paper (E; = 0.42). The average F across all the
materials was 0.42 with the standard deviation 0.13. A closer
look reveals that the three best materials have some sort of
uniform patterns on their surfaces, are made from sturdy
materials, and generally feel rough. In contrast, the three
worst materials are all made from soft fabrics with random
or no clear textural patterns on their surfaces.

The worst case in Fig. 13 reveals the prominence of
harmonic content in the virtual spectrum obtained from the
chair fabric, one of the soft materials. We speculate a few
reasons for this behavior, which includes complex surface
properties and limitation of the data collection system.
First, measurements from soft materials exhibit significant
stochastic nature as opposed to the harder samples resulting
in regular patterns (compare the two plots in Fig. 12; the
right one for felt fabric shows much worse consistency
between repeated measurements). Such stochastic proper-
ties cannot be modeled adequately using the deterministic
model (neural network) used in our system. This problem
could have been made worse by the use of the touch pen
with a soft rubber tip for scanning all the materials. Second,
we observed that for most of the soft materials the overall
magnitude of the re-created spectra was lower than for the
real ones. We applied a gain to adjust the magnitude and
reduce the difference, and it tended to cause all frequency
components (desired or undesired) to be emphasized.

5.3 Cross-validation

We next tested how well for untested conditions (for which
no neural networks were trained), our two-step interpola-
tion between adjacent tested conditions (for which neural
networks were trained) generates adequate actuation sig-
nals. These untested conditions are shown by green squares
in Fig. 11 and include one mass (m2 = 85 g) and four
velocities (v.y = 3.5, veo = 4.5, ve.3 = 5.5, and vy = 6.5
cm/s). For each untested condition, the actuation signal is
obtained by interpolating four adjacent actuation signals.
For example, for condition (mg, v.1), the actuation signal is
estimated from (mq,v1), (m1,v2), (m3,v1), and (ms, va).
Two FFT plots that showed the best and worst cross-
validation performance are shown in Fig. 14. Similar to the
training performance reported in the previous section, the
best was achieved for painting canvas with £; = 0.19 and
the worst for chair fabric with E, = 0.87 (also see Fig. 5
in Appendix for the plots for all cases). The average E; was
0.49 (standard deviation 0.17). Comparing these results with
those of Section 5.2 indicates that our two-step interpolation

5. It is unclear how to compare two different Es values, e.g., it can be
additive or multiplicative, or neither.

5. The appendix is included in the multimedia object available sepa-
rately in IEEE Xplorer.
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Fig. 12. Best (left) and worst (right) baseline FFT plots for the repeata-
bility of measurements. The best was achieved with plastic sheet under
the condition (m1, v1) and the worst with felt fabric under (m1, vs).
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Fig. 13. Best (left) and worst (right) synthesized FFT plots. The best
was achieved for painting canvas under (ms, v4) and the worst for chair
fabric under (m1,v3). The real spectra are shown in blue and the virtual
ones in red.
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Fig. 14. Best (left) and worst (right) cross-validation FFT plots. The best
was achieved for painting canvas under (ma, vc4) and the worst for chair
fabric under (m2, v.3). The real spectra are shown in blue and the virtual
ones in red.

scheme works appropriately. The worse case in Fig. 14
was expected since it was interpolated from the worst case
spectrums in Fig. 13.

6 USER STUDIES

In the previous section, we have shown that our data-driven
texture modeling method can create adequate virtual spec-
tra similar to real spectra for both tested and untested con-
ditions. We also evaluated the performance of our texture
modeling and rendering algorithm by means of two user
studies. The emphasis of User Study 1 was on the perceptual
similarity between real and virtual textures, evaluated in an
absolute manner, while User Study 2 focused on comparing
the perceptual performance between our method and the
record-and-playback method (similar to [18], [46]). The user
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Fig. 15. Experimental setup used in the two user studies. 1) 3M capac-
itive touchscreen as an electrovibration display. 2) Load cell, installed
under the panel, to measure user-applied force. 3) Infrared frame to
track the user’s finger position. 4) Real texture sample. 5) Curtain to
block participants’ view.

studies were approved by the Institutional Review Board at
the author’s institution (PIRB-2017-E070).

6.1 Methods
6.1.1  Stimuli

Our data-driven texture modeling and rendering algorithms
were applied to the six real texture materials used in the per-
formance evaluation (Fig. 10). The experimental conditions
for data collection were also the same. For rendering, we
added an infrared frame (T Series 10”7, E&T Tech, China) on
the 3M panel to sense finger position (Fig. 15). A bar-type
load-cell (CBCL-2L, CAS Scale, South Korea) was attached
to the bottom of the 3M panel to measure user-applied force.
Users were asked to wear an anti-static wristband to ensure
that their bodies were electrically grounded. The wristband
had a 1 MQ current-limiting resistor to prevent excessive
current from passing through the user’s body.

A computer program read user-applied force and finger
position at every 25 ms (40 Hz) and updated the output
actuation signal at every 100 ms (10 Hz). A data-acquisition
card (PCI-6229, NI, USA) was used to read analog input
from the load cell and generate analog output (actuation
signal) with a sampling rate of 1 kHz. For velocity estima-
tion, we employed a differentiation method based on the
first-order adaptive windowing [67] to obtain reliable and
stable velocity estimates from position data.

During the experiments, participants sat in a chair in
front of a desk on which the experimental hardware was
set. A real texture sample was placed on the right of the 3M
panel. To remove all irrelevant sensory cues, participants’
vision to the hardware was blocked by a curtain.

For User Study 2, we implemented the record-and-
playback method for texture rendering. First, the lateral
forces were recorded by scanning the surface of each texture
material under the given experimental condition. Then, the
signals were amplified and directly applied to the 3M panel.
For the conditions under which no force data was collected,
the same two-step interpolation method was applied before
amplification.

10

6.1.2 Performance measure

Given a pair of textures, either real vs. real or real vs. virtual,
participants were asked to evaluate the perceived similarity
in a scale of 0-100, with 0 being completely different and
100 being completely same. Participants were told to fo-
cus on the surface textural patterns, but not the materials
themselves.’Note that our texture modeling and rendering
method still uses an electrovibration display, which can
only generate lateral force. Other haptic properties, such as
stiffness, viscosity, surface height variation, and heat trans-
fer, are out of our control. Those differences between real
samples and virtual stimuli (giving glassy feel other than
virtual textures) are likely to negatively affect the subjective
similarity.

6.1.3 Task and Procedure: User Study 1

User Study 1 consisted of two phases. In the first phase,
participants were provided with side-by-side pairs of only
real texture samples and were asked to rate their similarities.
The objective was to measure the overall upper and lower
bounds of perceived similarity since humans tend to avoid
giving extreme values (e.g., see [70]). Additionally, this
phase helped participants stabilize their perceptual bases
and scales for similarity rating. Participants were randomly
presented with 12 pairs of materials, six of the same ma-
terials and the other six of different materials. The latter
was composed of one from the materials giving similar
sensations (pla—-scr, dot-pla, and scr-can) and the
other from the rest with quite different feels (dot-flt,
can-chr, and chr-£1t). We call the former a moderately-
different group and the latter a highly-different group.

In the second phase, participants evaluated the similarity
between a virtual texture and its corresponding real texture.
The order of the six texture pairs was randomized for each
participant. Each texture pair was repeated three times,
making a total of 18 trials. Participants were instructed to
explore each texture, either real or virtual, from side to side
maintaining a regular scanning speed, not too fast and not
too slow, within the range of 3 to 7 cm/s. They were also
told to apply a constant normal pressure, not too heavy and
not too light, within the range of 60 to 110 g.

We recruited 20 participants (13 males and 7 females;
18-26 years old with an average of 22.4) who had no
prior experiences in variable friction displays. None of them
reported any known sensory or motor impairment. Partici-
pants signed an informed consent form after we explained
the goals and procedure of the experiment. Each participant
was paid KRW 5,000 (>~ USD 4.5) after the experiment.

6.1.4 Task and Procedure: User Study 2

User Study 2 was to compare the user-perceived similarity
of a virtual texture to a real texture when the virtual texture
was modeled and rendered using our method or the record-
and-playback method. Similar to the second phase of User
Study 1, in User Study 2, participants were presented with

6. It is unknown how well humans can make judgments with such
perceptual decomposition. Nonetheless, some very recent studies re-
ported users studies that used more explicitly decomposed perceptual
criteria [68], [69], and they observed no detrimental evidence against
the validity of the approach.
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Fig. 16. Average pairwise similarity scores between real textures. Left:
two different real materials. Red bars are for highly-different textures,
and blue bars for moderately-different textures. Right: two similar real
materials. Error bars show standard errors.

pairs of a real material and a virtual texture rendered using
the record-and-playback method. Each pair was repeated
three times, making a total of 18 trials per participant.
Twelve volunteers (8 males and 4 females; 20-27 years old,
average 23.9) participated in this study. Each participant was
paid KRW 5,000 (~ USD 4.5) after the experiment.

6.2 Results

In User Study 1, we collected 600 similarity scores (20
participants x (12+18) pairs). The average similarity scores
between different real objects and between identical real
objects are shown in Fig. 16. Among the different pairs,
scr-can received the highest score (44) and can-chr the
lowest (9). The grand average was 30. For the identical pairs,
chr-chr obtained the highest score (96) and can-can the
lowest (78) with the grand of 89.

The average pairwise similarity scores between real ma-
terials and their virtual counterparts rendered by our data-
driven method are shown in Fig. 17. For each of the six
materials, the average is taken from 60 scores (20 partici-
pants x 3 trials). The plot also represents lower and upper
bounds by yellow bars. lower(3) indicates the average of
only the highly-different group (3 pairs) while lower(6)
is the average of both the highly-different group and the
moderately-different group (6 pairs). Plastic sheet received
the highest score (70) while chair fabric the lowest score
(43). The grand mean was 60 with the standard deviation of
15.16.

The results of User Study 2 are summarized in Fig. 18.
For all the materials, our neural-network based method
outperformed the record-and-playback method by consider-
able differences. Note that the results of the neural-network
method were measured in User Study 1. The average simi-
larity scores were 60% and 39%, respectively. We conducted
a two-way between-subject ANOVA with rendering method
and material as the two independent factors. The results
showed that similarity score was significantly different
across the six materials (F'(5,564) = 10.29, p < 0.001) and
between the two rendering methods (F(1,564) = 97.78,
p < 0.001). Their interaction term was not statistically
significant (F'(5,564) = 1.49, p = 0.1896).

6.3 Discussion

Our neural network-based data-driven texture rendering
method resulted in the similarity scores well above both the
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Fig. 17. Average similarity scores comparing real and virtual textures.
Mean values are given on top of each bar. Error bars indicate standard
errors. The yellow bars show lower and upper bounds, with lower(3)
including only the three highly-different textures and lower(6) including
both highly- and moderately-different groups (6 pairs).
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Fig. 18. Comparison between the neural network-based and record-and-
playback (rp) methods for the perceived similarity of a virtual texture to
a real texture. Error bars indicate standard errors.

lower limits for all the materials, as shown in Fig. 17. How-
ever, Fig. 18 says that the same is not true for the record-
and-playback method. The means were 18% (lower(3)) <
30% (lower(6)) < < 39% (record and playback) <60% (our
method) < 89% (upper). This comparison indicates that
1) the simplistic record-and-playback algorithm performs
poorly, sometimes resulting in mediocre output, e.g., chr
in Fig. 18; 2) our method evidently excels the record-and-
playback method in capturing and re-creating surface fine
details, supporting the effectiveness of our neural network-
based method in capturing and compensating for the non-
linear dynamics of electrovibration display; and 3) however,
our method is still left with considerable room for further
improvement in order to accomplish the same level of
realism between identical real texture patches.

In the two user studies, participants were asked to rate
the pairwise similarity between real and virtual textures on
the basis of textural patterns while ignoring other material
differences such as softness and temperature. This was in-
evitable because an electrovibration display is a partial force
transducer and a user feels both real stimuli (normal force
and temperature from the stiff 3M panel glass) and a virtual
stimulus (modulated vibrational frictional force); in this
regard, an electrovibration display is for haptic augmented
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reality [71]. For this reason, we cannot guarantee that the
perceptual similarity scores reported in the user studies
were determined solely by the textural similarity.

This issue of data validity can be confirmed partly by
examining how well the perceived similarity scores matched
the error metrics F, between real and virtual textures. For
each texture material, (average similarity score, ES) were
dot (62%, 0.55), chr (43%, 0.68), £1t (48%, 0.43), can (68%,
0.32), pla (70%, 0.44), and scr (66%, 0.50). Their correlation
coefficient was -0.61, indicating a strong relationship be-
tween the similarity score and E,. However, the two metrics
did not have exactly the same order. In terms of similarity
score, the order of the materials from the best to the worst
was pla, can, scr, dot, £1t, and chr. In terms of E,, the
order was can, f1t, pla, scr, dot, and chr. Considering
that the similarity scores of pla, can, scr, and dot were
quite similar (Fig. 17; compare the error bars), the only
notable exception was f1lt, which had the second worst
similarity score in spite of the second best E;. Although the
source of this peculiarity is unknown at the moment, the
results of perceptual similarity rating appear to reflect the
textural differences to a reasonable extent.

Two materials received particularly low scores: chair
fabric (43%) and felt fabric (48%). Only these two were
made of soft materials, and the other four samples were
stiff. Electrovibration displays using a glass-based 3M panel
cannot render surfaces with different softness values. Al-
though the participants were instructed to rate the similarity
of texture, such apparent dissimilarity in softness could
have affected their scores. In addition, when scanned, chair
fabric and felt fabric feel much smoother than the other four
samples. Driving an electrovibration display with square
waves generally elicits rougher sensations than with sine
waves of the same frequency. Our actuation signals using
PRBS behave like square waves, and it could have hindered
rendering softness sensations.

On the other hand, our method can be appropriate for
producing sharp and crisp sensations. This advantage is
deemed to have contributed to the high performance (over
62% of perceptual similarity) of the other four materials.
The best performance (70%) was achieved with plastic sheet.
This sample had equally spaced diagonal ridges on the sur-
face, which are in good perceptual agreement with square
waves. Its rigid surface also felt very similar to the glass
surface of the 3M panel. Textures made of solid materials
with distinguishable patterns have more chance for realistic
re-creation through our system.

7 CONCLUSIONS AND FUTURE WORK

In this work, we presented a neural network-based data-
driven method for realistic texture rendering on an elec-
trovibration display. Our intention was to build an inverse
dynamics model for the electrovibration display and then
use it for texture rendering. To this end, we applied a full-
band PRBS signal to the display and collected resulting
forces using a motorized linear tribometer under known
normal force and scanning velocity conditions. Then, we
inversely trained NARX neural networks to learn from the
forces and mimic the actuation signals. We used the trained
network to estimate an actuation signal from the forces
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collected from the surface of a real material under a given
condition. For arbitrary conditions, we proposed a two-step
interpolation scheme to estimate an actuation signal from
the ones generated under known conditions. We then actu-
ated the electrovibration display using the estimated actu-
ation signals and collected resulting forces. Comparing the
rendered forces with the real ones, we showed promising
agreement between their corresponding frequency spectra.
We also conducted a human user study to measure the
perceptual similarity between the real and virtual textures
rendered using our method. The scores were then compared
to those obtained from rendering virtual textures using
a record-and-playback method. Our neural network-based
method resulted in higher similarity scores than record-and-
playback with 60% vs. 39%, respectively. This suggested that
our data-driven texture modeling and rendering method,
accompanied by an interpolation scheme, significantly im-
proves the quality of virtual textures rendered on an elec-
trovibration display.

In general, our inverse black-box model is an alterna-
tive to physics-based force models. Other researchers have
pursued the latter approach while improving the bandwidth
and accuracy of the models [15], [17], [32], [72]. The most ad-
vanced one has been recently developed by Shultz et al. [31],
who proposed using a current controlled high-frequency
sinusoidal modulation to achieve broadband force render-
ing. Their model provides precious insights to the behav-
ior of electroadhesive displays and led to a input signal
design method that yields a flat frequency response up to
6 kHz when single sine waves are applied. Additionally,
the system is shown to exhibit a linear overall behavior
in response to a bandpassed white noise signal within the
range of 500 to 1500 Hz. However, the nonlinearity of the
system still appears in response to a 100 Hz-15 kHz chirp
signal, and how it will respond to real texture signals that
have wideband continuous spectra remains to be seen. In
addition, their setup requires higher reactive current, a high-
performance current controller with advanced electronics,
and precise knowledge of the system being used.

In comparison, our method preserves the general merits
of black-box approach. Its modeling power is very high
as long as suitable input-output samples are provided,
and using a complete inverse dynamics model provides
better transparency for data-driven texture rendering. Our
method should be applicable to all electrovibration displays
requiring only basic electronics components and consuming
relatively low current. However, further investigations are
needed to study the bandwidth our method can offer and
the extent of nonlinearity it can handle.

We are keen to improve the current work in several
aspects. The proposed method did not perform well with
soft materials. We speculate that our force measurement
system with a soft rubber touch pen is not ideal for record-
ing the random and complex surface properties of these
soft materials. We will try a different type of tool for
their influence and/or other machine learning models. In
addition, pseudo-random binary signals may be replaced
with pseudo-random multilevel signals to better capture
such complexities. Furthermore, we will examine a more
compact model with an interpolation scheme embedded
inside, instead of having multiple models with a separate
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interpolation procedure.
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