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Abstract—This paper investigates the self-sustainability of an
overlay Internet of Things (IoT) network that relies on harvesting
energy from a downlink cellular network. Using stochastic
geometry and queueing theory, we develop a spatiotemporal
model to derive the steady state distribution of the number
of packets in the buffers and energy levels in the batteries of
IoT devices given that the IoT and cellular communications
are allocated disjoint spectrum. Particularly, each IoT device
is modelled via a two-dimensional discrete-time Markov Chain
(DTMC) that jointly tracks the evolution of the data buffer and
energy battery. In this context, stochastic geometry is used to
derive the energy generation at the batteries and the packet
transmission success probability from buffers taking into account
the mutual interference from other active IoT devices. To this
end, we show the Pareto-Frontiers of the sustainability region,
which define the network parameters that ensure stable network
operation and finite packet delay. Furthermore, the spatially
averaged network performance, in terms of transmission success
probability, average queueing delay, and average queue size are
investigated. For self-sustainable networks, the results quantify
the required buffer size and packet delay, which are crucial for
the design of IoT devices and time critical IoT applications.

Index Terms—Spatiotemporal models, stochastic geometry,
queueing theory, energy harvesting, packet transmission success
probability, two-dimensional discrete-time Markov chain, stabil-
ity conditions.

I. Introduction

The Internet of Things (IoT) is the paradigm that bridges
the physical and cyber worlds such that everything and any-
thing will be connected to the Internet. Such ubiquitous and
massive connectivity has unlimited potential to advance our
life (e.g., smart cities, automated diagnostics, autonomous de-
riving, smart agriculture, public safety, etc.) [2]. Realizing the
IoT paradigm brings potentially billions of new devices (e.g.,
sensors, actuators, machines, robots, vehicles, etc.) to the al-
ready congested wireless spectrum. In addition to the spectrum
scarcity problem, IoT intrinsic features impose several new
challenges to conventional wireless networks. For instance,
IoT involves a multitude of heterogeneous devices with diverse
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quality of service requirements. Recharging/changing batteries
of massive numbers of devices, that are distributed over a large
scale area, represents another acute challenge for sustainable
IoT operation. Hence, revolutionary wireless technologies and
network designs are required to address the unprecedented
challenges that arise in IoT networks [3], [4].

From the practical perspective, several new technologies
and standards are evolving to cope with the surging IoT traffic.
For instance, the recent 3rd Generation Partnership Project
(3GPP) amendments propose Narrowband IoT (NB-IoT) and
machine type communication (LTE-MTC) to accommodate
IoT traffic within cellular networks [5]. Furthermore, several
new low power wide area networks (LPWANs) are being
developed and tailored for IoT use cases such as Sigfox,
Weightless and LoRa [4], [6]. The 3GPP amendments and the
LPWAN account for the intrinsic features of the IoT such as:
massive density, sporadic traffic, multitude heterogeneity, and
high-energy efficiency. At the device level, transceivers with
energy harvesting capabilities are being developed to alleviate
the administrative overhead of sustaining IoT networks [7].

In conjunction with the aforementioned industrial progress,
the research community is developing rigorous mathematical
techniques to characterize, design, and operate IoT networks.
In this context, stochastic geometry (see [8] for a tutorial)
is indispensable for characterizing the performance of inter-
ference limited IoT networks [9]–[11]. However, stand-alone
stochastic geometry models fail to account for the sporadic
traffic patterns of the IoT devices. Recently, several studies
have integrated stochastic geometry and queueing theory to
characterize the network performance while accounting for
the spatiotemporal traffic generation. For instance, the work
in [12], [13] characterizes the delay and the maximum spa-
tiotemporal traffic that grant free and scheduled uplink cellular
networks can accommodate. Random access for massive IoT
uplink networks with unsaturated traffic is characterized in
[14]. The work in [15], [16] studies the delay in downlink cel-
lular networks with unsaturated traffic. The effect of different
scheduling schemes on the delay in downlink cellular networks
is studied in [17]. The work in [18] studies the percentile based
performance (e.g., transmission success probability and delay)
for a static ad hoc IoT network. However, the studies in [12]–
[18] assume that all devices have perpetual energy sources.
The problem of energy scarcity and harvesting for large-scale
networks is considered in [19]–[22] via unsaturated energy
queues. However, these studies [19]–[22], assume saturated
data buffers for all devices. None of the aforementioned
works consider unsaturated data buffers and unsaturated en-
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ergy queues to study the self-sustainability of large scale IoT
networks. To the best of the authors knowledge, this paper
is the first to characterize self-sustainability frontiers, delay,
coverage probability in a large scale IoT network that is
powered by recycling ambient energy.

This paper proposes a novel spatiotemporal mathematical
model, based on stochastic geometry and queueing theory,
to characterize and design self-sustainable IoT networks. We
consider an IoT network modeled via a Poisson bipolar process
(PBP), where each device is equipped with a data buffer and an
energy queue (i.e., battery). Data is generated, and stored for
transmission, at each buffer according to an independent and
identically distributed (i.i.d.) geometric distribution. Batteries
are replenished by scavenging radio frequency (RF)-energy
from a downlink cellular network, where the base-stations
(BSs) are modeled via an independent Poisson point process
(PPP). A transmission attempt occurs from an IoT device when
the data buffer is non-empty and the energy stored in the
battery is sufficient for transmission. The transmission attempt
is successful if the signal-to-interference ratio (SIR) at the
receiver is above a certain threshold.1 Hence, each bipolar link
is modeled via a two-dimensional discrete-time Markov Chain
(DTMC) and the IoT network is considered as a network of
spatially interacting DTMCs. To this end, we obtain the packet
transmission success probability at the network steady state
and characterize the self-sustainability region of the network.2

The main contributions of this paper are summarized below:

• To the best of our knowledge, this paper presents the first
mathematical model that jointly accounts for spatiotem-
poral traffic generation, energy harvesting problem, and
mutual interference between devices in a large scale IoT
network. A novel spatiotemporal model is developed to
account for the unsaturated batteries and data buffers for
IoT networks powered by cellular downlink energy.

• A novel two dimensional quasi birth death DTMC is de-
veloped to jointly track energy generation/depletion along
with packet generation/transmission in the IoT devices.
While the packet generation is assumed to be geometric,
energy generation and successful packet transmissions are
model via a phase type (PH) distribution that accounts for,
respectively, energy harvesting from the downlink cellular
network and mutual interference among the IoT devices.

• We show the Pareto-frontiers of the sustainability region,
which characterize the maximum spatiotemporal traffic
that an IoT network can accommodate via recycling
the RF-power of a cellular network with a given BS
density. We also study the performance metrics such as
the transmission success probability, the average queue
size, and the average queueing delay.

• We illustrate the spectrum scarcity and energy scarcity
tradeoff within self-sustainable IoT networks.

1The scarcity of the wireless spectrum along with the massive density
of devices leads to aggressive spatial frequency reuse. Consequently, the
aggregate interference dominates the thermal noise effect and becomes the
performance limiting parameter

2The self-sustainability region defines all network parameters that ensure
stable data buffers and finite transmission delay across the network.

Figure 1. Downlink cellular network with BSs communicating with cellular
users, and EH-enabled IoT transmitters communicating with intended IoT
receivers.

II. SystemModel

For the sake of organized treatise, we discuss the spatial,
temporal, and energy harvesting models in separate sections.

A. Spatial and Propagation Models

We consider an IoT network that is spatially distributed in
R

2 according to a homogeneous PBP with spatial intensity λD.
That is, the IoT network is constituted from IoT transmitter-
receiver pairs, denoted as bipolar links, where each link has
a fixed length of r0 and a uniform random orientation ε ∈
[0, 2π]. According to the PBP, the IoT transmitting devices
constitute a PPP, denoted as ΦD = {y j : j = 1, 2, . . . }, where
y j ∈ R

2 denotes the location of the j’th IoT transmitter.3 The
IoT network coexists with a cellular downlink network that
consists of BSs that are spatially distributed according to an
independent PPP, denoted as ΦB = {zi : i = 1, 2, . . . }, with
spatial intensity λB, where zi ∈ R

2 denotes the location of the
i’th cellular BS.

We consider a Rayleigh fading environment with i.i.d.
unit variance channels. The channel gains between the BSs
and the IoT devices are denoted by h and the channel gains
between IoT devices are denoted by g. All channels gains are
assumed to be independent from each other as well as from
the spatial locations. We utilize a power-law path loss model
such that the signal power decays at the rate r−α, where r
is the propagation distance and α is the path loss exponent.4

The path loss exponent between IoT devices is denoted as
αD, which is generally different from the path loss exponent
between a BS and an IoT device, denoted as αB.

3For bidirectional communications, the D2D transmitter and receiver within
the same D2D link can exchange roles. By virtue of the displacement theorem
of PPPs, the same analysis applies for either the forward or reverse links.

4The utilized unbounded path loss model is verified in [23] for the aggregate
network power received at a typical point for path loss exponents less than
or equal to 4.
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Each BS becomes active with probability b ∈ [0, 1]
independently of other BSs, where active BSs transmit with
a fixed power PB.5 The IoT network operates at a dedicated
spectrum that is universally reused by all the IoT devices (e.g.,
LTE direct). Hence, the IoT devices mutually interfere with
each other but there is no interference between the cellular
and IoT networks. All IoT devices randomly and uniformly
access 1 out of Nc channels. Each IoT transmitter inverts its
path-loss towards its associated receiver such that the useful
average received power at each IoT receiver is maintained at
a known value ρD [26]. Since the distance between the IoT
transmitters and their intended IoT receivers is fixed, each IoT
transmitter requires a transmit power PD to transmit one packet
such that PD is given by PD = ρDrαD

0 .

B. Temporal and Queueing Model

We consider a discrete-time slotted system with slot
duration of Ts seconds. Each IoT transmitter is equipped
with a data buffer. The data packets are generated at each
IoT device according to an i.i.d. geometric distribution with
parameter a ∈ [0, 1]. For each device, the generated packets
are stored in the data buffer to be transmitted over the wireless
channel to the intended receiver according to the first-in
first-out (FIFO) discipline. Packets are transmitted one-by-
one, where a transmission attempt takes place if and only if,
there is sufficient energy in the device battery for path loss
inversion and the data buffer has at least one packet. Due to
the mutual interference between devices, a packet transmission
fails if the SIR at the receiver is less than a predetermined
threshold θ. If a transmission failure occurs, the failed packet
will be persistently retransmitted in the following transmission
attempts until successful transmission.6 Only packets that are
successfully transmitted to the intended receiver are discarded
from the buffer.

C. Energy Harvesting Model

All IoT transmitters rely on scavenging the downlink RF-
energy from the cellular network to replenish their batteries.
Hence, each IoT transmitter is equipped with an energy re-
ceiver and rechargeable battery (i.e., energy queue) for energy
harvesting with capacity B. The energy receiver is tuned to
the downlink cellular frequency, which is different from the
IoT dedicated frequency. As such, the IoT transmitters only
harvest from the cellular network downlink power.

The IoT transmitters employ the well-known “harvest-then-
transmit” protocol, which is suited for IoT devices due to its
simplicity. All IoT devices are equipped with a single antenna
switching between the energy receiver and information trans-
mitter. Due to channel inversion power control, the sufficient
energy to invert the path loss towards the intended receiver
is PD = ρdrαD

0 . Hence, each packet transmission attempts

5The activity factor b reflects the time-varying user loads and traffic per
BS [24], [25].

6Different from conventional collision models, the considered D2D network
has several sources of randomization (e.g., fading, EH, and channel access)
to resolve conflicts in packet retransmissions.

deducts PD from the device’s battery.7 It is assumed that
the full energy capacity of the battery at each IoT device is
sufficient for transmitting N packets, i.e. B = NPD. In this
paper, we assume that information transmission is prioritized
over energy harvesting. Hence, all transmitters with non-
empty data buffers and sufficient energy in their batteries
are in the information transmission mode. Devices with non-
empty buffers and insufficient energy in their batteries will
persistently harvest energy, in the energy reception model,
until the threshold PD is achieved. Once the battery level
PD is achieved, the transmitter switches to the information
transmission mode in the subsequent time slot. Only devices
with empty buffers can persistently harvest energy until the
battery is full. Note that any packet arrival, to a device
with empty buffer and sufficient energy in its battery, will
interrupt the energy harvesting and switch the device to the
information transmission mode. We denote the transmutation
activity probability, i.e., the probability of having non-empty
data buffer and sufficient energy for transmission (at least PD),
with d.

D. Methodology of Analysis

In many IoT use cases (e.g., smart parking meters), the IoT
devices are fixed. Furthermore, in nomadic and low-mobility
IoT scenarios, the fading and device/BS activity vary at a much
shorter time scale compared to the time required to make
tangible location displacement for IoT devices. Hence, it is
reasonable to assume an arbitrary, but static, cellular and IoT
networks where only fading and devices/BSs activity change
over time. In such a static network setting, each IoT device
may have its own location dependent performance [18], [27],
[28] in terms of harvesting and transmission success probabil-
ity. However, the activity probabilities b and d mitigate such
location dependent discrepancies (i.e., decrease the variance)
across the IoT devices performance [12], [27]. Exploiting this
fact, we use the following approximation:

Approximation 1: The spatially averaged harvesting prob-
abilities and transmission success probability of a typical IoT
device is representative of all IoT devices in the network.

Remark 1: The effect of Approximation 1 diminishes as b
and d decrease as different realization of, respectively, active
BSs from ΦB and active devices from ΦD appear in each
time slot. Note that the foreseen ultra-densification of cellular
networks will dramatically decrease the load served by each
BS and will lead to small activity factor b. Furthermore, d is al-
ready small in the depicted network model due to the sporadic
pattern of the IoT traffic along with the employed “harvest-
then-transmit” scheme. Note that the analysis becomes exact
in high mobility scenarios [28].

Remark 2: The cellular network is not utilized for infor-
mation transfer within the IoT network and is used for energy
harvesting only. Hence, the aggregate downlink power at each
time slot comes from the independently thinned PPP ΦB, with

7Other energy consumption sources (e.g., circuit power) and losses (e.g.,
mismatch losses) can be incorporated by defining the transmission threshold
as ρdrαD

0 + C, where C is the energy required to power the circuits and for
signal processing.



4

intensity bλB, and the nearest BS to the IoT device is not
necessarily contributing to the harvested energy. Hence, the
energy harvesting variance among the devices does not saturate
when decreasing b as in the case of success probability in
downlink information transfer shown in [27].

Remark 3: The analysis in this paper can be extended to
the case of static network with high b and/or d by following
the same methodology in [18], which is postponed to future
extension.

For simplicity, we discretize the battery into N×M energy lev-
els of equal amount ω = B

NM = PD
M . Let p = [p0, pm, · · · , pNM],

where pm, 0 ≤ m ≤ NM, is the spatially averaged probability
that the harvested energy is sufficient for replenishing m
battery levels in one time slot. Furthermore, let pc denote the
spatially averaged probability of successful packet transmis-
sion and let (·̄) = (1 − ·) denote the probability complement
operator. Exploiting Approximation 1, the microscopic (i.e.,
individual) behavior of any IoT device can be modeled via the
two-dimensional DTMC shown in Fig. 2 to track the temporal
evolution of the packets in the buffer (levels) and energy in the
battery (phases). As shown in Fig. 2, the battery may recharge
m phases per time slot with probability pm. On the other hand,
a single-step transition can occur between data buffer levels
as only one packet can be generated and/or transmitted per
time slot. Note that a packet departure can only take place
from the phases greater than or equal to M such that the
stored energy is sufficient for at least one transmission attempt.
After each transmission attempt, the battery is depleted and
the DTMC goes down with M phases. Another transmission
attempt happens if the remaining energy is greater or equal
to PD and the data buffer is nonempty. Otherwise, the DTMC
resets the energy harvesting process. Note that while all IoT
devices are represented via the same DTMC model, different
IoT devices can have different buffer and battery states at a
given time slot.

While the DTMC in Fig. 2 describes the microscopic behavior
of an IoT device, the parameters p and pc are functions of the
macroscopic (i.e., network wide) mutual interactions among all
IoT devices and BSs. Particularly, the harvesting probability
vector p is determined according to the distribution of the
aggregate downlink power at the IoT transmitter from all
active BSs. Furthermore, the transmission success probability
pc is function of the interference power received by the
IoT receiver from all other active IoT transmitters. Hence,
stochastic geometry is employed to find the parameters p and
pc in Section III-A and queueing theory is utilized to find
the steady state distribution vector of the DTMC in Fig. 2 in
Section III-B. Note that the stochastic geometry analysis and
queueing theory analysis are interdependent because i) finding
pc requires the intensity of mutually interfering IoT devices
dλD; and ii) obtaining d (i.e., from steady state probability of
the DTMC) requires pc. Such interdependence is solved via
an iterative solution in Section III-C based on the fixed point
theorem.

III. SpatiotemporalModel

A. Stochastic Geometry Analysis

In this section, we use stochastic geometry to derive the
spatially averaged transmission success probability pc and the
energy harvesting probability vector p. Without loss of gener-
ality, we focus on a test device located at an arbitrary origin,
which becomes the typical device under spatial averaging.

1) Packet Transmission: Let Φ̃D be the point process of
mutually interfering IoT devices and let the IoT receiver of
the test bipolar IoT link be located at an arbitrary origin.
Conditioned that a transmission attempt at the test link took
place, a successful packet delivery occurs if the SIR at the test
receiver is above a certain detection threshold θ. Hence, the
transmission success probability is given by

pc (θ) = P

 ρDg0

PD
∑

y j∈Φ̃D\y0
g j‖y j‖

−αD
> θ

 , (1)

where ‖ · ‖ is the Euclidean norm. The transmission success
probability is characterized via the following theorem.

Theorem 1: The packet transmission success probability for
a typical IoT link is given by

pc (θ) = exp

− 2π2dλDr2
0

αDsin
(

2π
αD

)θ 2
αD

 . (2)

Proof: The transmission success probability in (1) is
expressed, using the complementary density function (CDF)
of the exponential distribution with unit mean, as

pc (θ) = Ey j,g j

exp

− θ

ρD
PD

∑
y j∈Φ̃D\y0

g j‖y j‖
−αD


 = LD

(
θ

ρD

)
,

(3)

where LD (·) is the Laplace transform (LT) of the aggregate
interference derived in (40) in Appendix A, which proves
Theorem 1.
If the fixed distance r0 assumption is relaxed by assuming a
density function for the distance r0, we have the following
corollary.

Corollary 1: If the distance r0 between the D2D transmitter
and its dedicated receiver is random according to a certain PDF
fr0 (·), the packet transmission success probability becomes

pc (θ) = Erd

exp

− 2π2dλD

αDsin
(

2π
αD

)θ 2
αd r2

d


 . (4)

Proof: The proof follows the same steps as in Ap-
pendix A.

Proposition 1: When the receiver is uniformly distributed
in a circle of radius Rc around the transmitter, i.e. frd (r) = 2r

R2
c

with 0 ≤ r ≤ Rc, the success transmission probability is given
by

pc (θ) =

1 − exp

− 2π2dλD

αD sin
(

2π
αD

)θ 2
αd R2

c


2π2dλD

αD sin
(

2π
αD

)θ 2
αd R2

c

. (5)

Proof: The proof is a direct application of Corollary 1.
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Figure 2. Markov chain diagram

Note that, for the random r0, we still have to harvest an amount
of power PD, but the received power is no more ρD, but another
value equal to PDr−αD

0 .
2) Energy Harvesting: For a given time slot, let Φ̃B be

the point process of simultaneously active BSs. We denote by
Pr = PB

∑
zi∈Φ̃B

hi‖zi‖
−αB the received power at the test IoT

transmitter at the origin. The CDF of the received power Pr

is characterized in the following theorem:
Theorem 2: The CDF of the received power in a generic

time slot is given by

FPr (y) = 1 −
αB

2π

∞∫
0

exp
(
−y

(
t
κ0

) αB
2
− t cos

(
2π
αB

))
sin

(
t sin

(
2π
αB

))
t

dt

(αB=4)
= erfc

(
π2δ0

4
√

y

)
, (6)

where κ0 =
2π2bλBP

2
αB
B

αB sin
(

2π
αB

) , δ0 = bλB
√

PB, erf (z) = 2
√
π

∫ z
0 e−t2

dt is

the error function and erfc (·) = 1−erf (·) is the complementary
error function. For αB = 4, the probability density function
(PDF) of PH is expressed as

fPr (y) =
δ0

4

(
π

y

)3/2

exp

−
(
π
2

)4
δ2

0

y

 . (7)

Proof: See Appendix B.
Most research works consider a linear energy harvesting

model to describe the relationship between the received power
Pr and the harvested power PH at the test IoT transmitter.
However, the linear model is accurate only for low powers
where the practical energy harvesting model is approximated
by the linear model [29], [30]. For higher powers, the linear
model is no more accurate in practice. For moderate to high
powers, the practical energy harvesting model is approximated

by the nonlinear model until it saturates at a certain point [30].
There are different nonlinear energy harvesting models in
the literature: sigmoidal model [31], multi-sine model [32],
heuristic model [33], etc. To generalize our energy harvesting
model and take into consideration either linearity or non-
linearity, we consider a general function Ψ (·) modelling the
relationship between Pr and PH at each IoT device as

PH = Ψ (Pr) = Ψ

PB

∑
zi∈Φ̃B

hi‖zi‖
−αB

 . (8)

The function Ψ (·) is continuous differentiable and can be
either linear (i.e. Ψ(x) = ζx, where ζ ∈ [0, 1] is the harvesting
efficiency) or nonlinear and has a couple of properties, for
x ≥ 0, such as

0 ≤ Ψ (x) ≤ x, and Ψ−1 (x) , 0. (9)

Following that, the CDF of the harvested power PH is given
in the following proposition:

Proposition 2: Given that Ψ (·) is continuous, differentiable
and invertible, the CDF of the harvested power in a generic
time slot is given in the following proposition
FPH (x) = FPr

(
Ψ−1 (x)

)
= 1 −

αB

2π

∞∫
0

exp
(
−Ψ−1 (x)

(
t
κ0

) αB
2
− t cos

(
2π
αB

))
t

sin
(
t sin

(
2π
αB

))
dt

(10)

(αB=4)
= erfc

 π2δ0

4
√

Ψ−1 (x)

 . (11)

For αB = 4, the probability density function (PDF) of PH is
expressed as

fPH (x) =
(
Ψ−1 (x)

)′ δ0

4

(
π

Ψ−1 (x)

)3/2

exp

−
(
π
2

)4
δ2

0

Ψ−1 (x)

 . (12)
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Proof: The proof is an immediate result of Theorem 2
applied to FPH (x) = FPr

(
Ψ−1 (x)

)
.

Remark 4: If Ψ (·) stands for the linear energy harvesting
model, we have Ψ−1 (x) = x

ζ
, and

(
Ψ−1 (x)

)′
= 1

ζ
, where ζ ∈

[0, 1] is the harvesting efficiency.
In addition, if Ψ (·) stands for the nonlinear sigmoidal energy

harvesting model, we have Ψ(x) =
Me

1+e−ae (x−be ) −MeΩ

1−Ω
, Ψ−1 (x) =

be −
1
ae

log
(

(1−Ω)(Me−x)
MeΩ+(1−Ω)x

)
, and

(
Ψ−1 (x)

)′
= Me

ae(Me−x)(MeΩ+(1−Ω)x) ,
where Ω = 1

1+eaebe , Me is the maximum harvested energy, ae

and be are experimental parameters [31].
Given that the battery is discretized into N×M equal levels,

the probability of harvesting 0 ≤ m ≤ NM levels of energy is
expressed as

pm =


FPH ((m + 1)ω) − FPH (mω) , if m = 0, . . . ,NM − 1,
1 − FPH (NPD) , if m = NM,
0, otherwise.

(13)

For the special case of αB = 4 and the linear energy
harvesting model, the derivation of the harvesting probabilities
simplifies as in the following corollary:

Corollary 2: For αB = 4 and the linear energy harvesting
model, the harvesting probabilities pm is given by

pm =
αB=4


erf

(
π2δ0

√
ζ

4
√

mω

)
− erf

(
π2δ0

√
ζ

4
√

(m+1)ω

)
, if m = 0, . . . ,NM − 1,

erf
(
π2δ0

√
ζ

4
√

NPD

)
, if m = NM.

(14)

Proof: Follows from Proposition 2 and (13).
Remark 5: The special case of the path loss exponent

αB = 4 is of particular interest because it is a common value
for urban outdoor cellular environment. Furthermore, αB = 4
gives a closed form expression for the PDF of the harvested
cellular energy, which simplifies the analysis and numerical
computations.

B. Queueing Theory Analysis
The DTMC in Fig. 2 represents a quasi birth death process

(QBD) with geometric (Geo) arrival and phase (PH) type
departure, denoted as Geo/Ph/1 QBD system [34]. That is, the
queue departure process (i.e., transmission success probability)
can be represented via two sub-stochastic matrices SN and
GN of size (NM + 1) × (NM + 1). Let us denote by WM

the M × (NM + 1) matrix and VNM the ((N − 1) M + 1) ×
((N − 1) M + 1) matrix defined as
WM

=


p0 . . . p(N−1)M . . . pNM−1 1 −

∑NM−1
m=0 pm

...
. . .

. . .
...

...

0 . . . p0 . . . p(N−1)M 1 −
∑(N−1)M

m=0 pm

 ,
(15)

VNM = pcI((N−1)M+1)×((N−1)M+1)

and VNM = (1 − pc) I((N−1)M+1)×((N−1)M+1), (16)

respectively. Then, the matrices SN and GN of size (NM + 1)×
(NM + 1) can be expressed as

SN =

[
WM

VNM 0((N−1)M+1)×M

]
, (17)

GN =

[
0M×(NM+1)

VNM 0((N−1)M+1)×M

]
. (18)

The matrix SN is an (NM+1)×(NM+1) sub-stochastic matrix
that models the energy harvesting/depletion process until one
successful packet departure. Transmission attempts take place
when the battery has at least M levels of energy. With each
transmission, the battery is depleted with M levels of energy.
The initialization vector for the PH type process is given by
the matrix GN . When the IoT device has an empty buffer, it
harvests energy up to full battery and waits for a packet arrival.
Hence, the energy harvesting matrix at level-0 is a stochastic
matrix given by the matrix S0,N of size (NM + 1) × (NM + 1)
is defined as

S0,N =



p0 p1 . . . pNM−1 1 −
∑NM−1

i=0 pi

0 p0 . . . pNM−2 1 −
∑NM−2

i=0 pi
...

. . .
. . .

...
...

0 . . . 0 p0 1 − p0
0 . . . . . . 0 1


. (19)

Utilizing the matrices described above, the transition matrix
of the Geo/PH/1 system shown in Fig. 2 is given by

P =


B C
A2 A1 A0

A2 A1 A0
. . .

. . .
. . .

 , (20)

where B = aS0,N and C = aS0,N are sub-stochastic matrices
that contain the transition probabilities within the idle state and
from the idle-to-level 1 (i.e., first packet arrival), respectively.
The sub-stochastic matrices A0 = aGN , A1 = aSN + aGN , and
A2 = aSN contain the joint buffer and battery states transitions
probabilities when going up one level, staying within the same
level, and going down one level, respectively.

Let x =
[
x0 x1 x2 . . .

]
, where xi =

[
xi,0 . . . xi,NM

]
denotes the probability of having i packets in the data buffer
and xi,m is the probability of having i packets and m energy
levels. The steady state vector x is obtained by solving

x = xP and x1 = 1, (21)

where 1 is an infinite column vector of ones. A unique solution
for the system of equations in (21) exists if the DTMC in Fig. 2
is stable. The stability conditions is characterized as follows:

Lemma 1: A data buffer of an IoT device is stable if
πN A2e > πN A0e, (22)

where πN is defined as
πN =

(
SN + GN − I + eeT

)−1
e, (23)

e is the column vector of ones of size (NM + 1), and I is the
identity matrix. Otherwise, the data buffer is unstable and the
packet delay is infinite.

Proof: According to [34], a Geo/PH/1 QBD system is
stable if πN A2e > πN A0e, where πN is solution to

πN = πN A and πNe = 1, (24)

where A = A0 + A1 + A2. Substituting for A0 = aSN , A1 =

aSN + aGN , and A2 = aGN and using [35, Lemma 1] to solve
(24), the lemma is proved.
The subsequent analysis depends on the output of the stability
condition in (22) as shown in the sequel.
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1) Stable system: If the condition in (22) is satisfied, the
solution for the DTMC in (21) is given as:

Theorem 3: The joint steady state probabilities for the
number of packets in the data buffer and energy levels in the
battery of a typical IoT device is given by

xi =


ax0S0,N (I − aGN − aSN − RaGN)−1

aGN
(
I − aS0,N

)−1 , if i = 0,
ax0S0,N (I − aGN − aSN − RaGN)−1 , if i = 1,
x1Ri−1, if i > 1,

(25)

satisfying x0e+ax0S0,N (I − aGN − aSN − RaGN)−1 (I − R)−1 e =

1, with with R is the minimum of the matrix quadratic equation
R = A0 + RA1 + R2 A2.

Proof: Following [34], x0 and x1 are the solutions to:(
x0 x1

)
=

(
x0 x1

) ( B C
A2 A1 + RA2

)
, (26)

where R is the minimal non-negative solution of the matrix
quadratic equation R = A0 + RA1 + R2 A2.

If the inequality in (22) is satisfied, the network is said to be
stable (i.e., packets are delivered in finite time) and R is known
to have a spectral radius less than one. Hence, following [34]
and solving (26), x0 is obtained as:
x0 = ax0S0,N (I − aGN − aSN − RaGN)−1 aGN

(
I − aS0,N

)−1 ,
(27)

with the normalization condition:
x0e + ax0S0,N (I − aGN − aSN − RaGN)−1 (I − R)−1 e = 1. x1
is deduced from (26) as

x1 = ax0S0,N (I − aGN − aSN − RaGN)−1 . (28)

For i ≥ 2, xi is given by xi = x1Ri−1.
Since S and G are not of rank one, the matrix R has no closed-
form expression and is obtained by solving Algorithm 1.

Algorithm 1: Computation of R
Data: A0, A1, A2, ε
Initialisation: k = 0, R(0) = 0 ;
while ‖R(k+1) − R(k)‖ ≥ ε do

Compute R(k+1) = A0 + R(k) A1 + R2
(k) A2 ;

Increment k;
end
return R ;

Let Φp =
[
Φp,0,Φp,1, . . . ,Φp,NM

]
where Φp,m is the

marginal probability of having m units of energy levels in the
battery for a non-empty data buffers. If the system is stable,
the battery level marginal distribution is characterized in the
following corollary:

Corollary 3: The marginal distribution of the phases with
nonempty data buffers is given by

Φp =
∑
i≥1

xi = x1 (I − R)−1 . (29)

Proof: Let Φ = [Φ0,Φ1, . . . ,ΦMN] where Φm be the
marginal probability of having m units of energy levels in
the battery. The marginal distribution of the phases is given
by Φ =

∑
i≥0 xi = x0 + x1

∑
i≥1 Ri−1 = x0 + x1 (I − R)−1. Since

Φ = x0 +Φp, we deduce (29).

Since an IoT device transmits when it has non-empty buffer
and more than M levels of energy in his battery, hence, the
activity probability d is

d =

NM∑
n=M

Φp,n. (30)

2) Unstable system: If the condition in (22) is not satisfied,
then the DTMC is unstable and Theorem 1 and Corollary 3
are no more applicable. This is because the departure rate
is less than the arrival rate [34], and hence, the data buffer
accumulates infinite number of packets and the probability
of having empty buffer is nullified. Although unstable buffers
are never empty, an IoT device does not transmit unless it
has full battery. Hence, only the marginal phase distribution
for the battery is considered. This fact translates into setting
x0 = 0, which leads to Φp =

(
SN + GN − I + eeT

)−1
e. The

transmission probability for unstable system is also given by
(30).

C. Iterative Solution

As mentioned earlier, there is an interdependence between
the microscopic device behavior and the macroscopic mutual
interaction between IoT devices. Particularly, the aggregate
interference seen by the typical IoT device is function of the
activity of other IoT devices. Hence, the transmission success
probability in (2) requires the probability that an IoT device is
active, given by (30). Meanwhile, the queueing theory analysis
for computing the activity probability in (30) requires the
transmission success probability as shown in (15) and (16).
Such interdependence is solved via the iterative solution in
Algorithm 2, which converges to a unique solution by virtue
of fixed point theorem [36, Appendix B].

Algorithm 2: Computation of pc (θ)
Data: M, λB, λD, θ, a, ε
Compute pm from Corollary 1;
Initialisation: k = 0, x0 and Φp s.t. x0e +Φpe = 1;
while ‖Φ(k+1)

p −Φ
(k)
p ‖ ≥ ε do

Compute pc (θ) as in (2) in Theorem 1;
Construct SN and GN ;
Check the stability condition in Lemma 1;
if Stable then

Compute R using Algorithm 1;
Solve x0 and x1 from Theorem 3;
Compute Φp = x1 (I − R)−1;

else
Set x0 = 0 and Φp =

(
SN + GN − I + eeT

)−1
e;

end
Increment k;

end
return x0, Φp and pc (θ);

D. Performance Metrics

After solving the iterative solution, we study some key
performance indicators of IoT networks. For stable networks,
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we can characterize the average queue length E [QL] and the
average queueing delay E

[
Wq

]
, where QL is the instantaneous

queue length and Wq is the queue delay for a randomly
selected packet. The average queue length is given by

E [QL] =

∞∑
i=2

(i − 1)P [QL = i] =

∞∑
i=2

(i − 1)
M∑

m=0

xi,m

=

∞∑
i=2

(i − 1) xie = x1R (I − R)−2 e. (31)

Similarly, the average number of packets handled by an IoT
device including the one in service is given by

E [X] =

∞∑
i=1

ixie = x1

∞∑
i=1

iRi−1e = x1 (I − R)−2 e. (32)

Applying the Little’s law for stable queues, the average waiting
time is the ratio between the average number of packets in the
system over the packet arrival rate a

E

[
Wq

]
=
E [X]

a
=

x1 (I − R)−2 e
a

. (33)

The temporal (i.e., across different packets) distribution of
the delay can be obtained as

P

[
Wq = 0

]
= x0e, and P

[
Wq = j

]
=

j∑
k=1

xk B(k)
j e, (34)

where B(k)
j represents the probability of having k packets in

the queue and being serviced in j times

B(k)
j =


S j−1GN , if k = 1,
SB(k)

j−1 + GN B(k−1)
j−1 , if 1 < k < j,

Gk
N , if k = j,

(35)

with 1 ≤ k ≤ j.

IV. Numerical Results

In this section, we first validate the proposed spatiotemporal
mathematical framework against Monte Carlo simulations.
Then, we discuss the self-sustainability of the depicted IoT
network. Unless otherwise stated, the network parameters are
selected as follows: the transmit power of all BSs is PB = 1
W, the power control parameter is ρD = −20 dBm, the IoT
receiver separation distance is r0 = 2 meters, the path loss
exponents are αB = 4 and αD = 3, the conversion efficiency
is ζ = 0.6, and the number of battery levels is M = 4. The
number of Monte Carlo simulations is 5000.

A. Validation of Analytical Expressions

The Monte Carlo simulations are performed over a network
area of 100 × 100 m2 with a wrapped around boundaries.
Two independent realizations of a PPP and a PBP, with
intensities λB = 10−2 BSs/m2 and λD = 5 10−2 IoTs/m2,
are used respectively for the cellular and IoT networks. The
realizations of the PPP and PBP are kept fixed, while fading
and devices/BSs activities change over time. Each Monte Carlo
simulation run is considered as a time slot where independent
channel gains are instantiated, packets are generated, energy
is harvested by some IoT devices and packets are transmitted
by other IoT devices (i.e., those with non-empty buffers and

full batteries). The time evolves and the transmission success
probabilities and steady state statistics are traced until steady
state, where the statistics are collected. This process is repeated
several times with different realizations of the PPP and PBP
for the sake of spatial averaging.

In Fig. 3(a), we show the harvesting probability mass
function pm, with 0 ≤ m ≤ MN, for b = 0.1, M = 4,
N = 4, and Nc = 5. The analytic expressions and Monte
Carlo simulations are both plotted. The agreement between
the analytic expressions and the Monte Carlo simulations in
Fig. 3(a) validates our analysis for the harvesting probability.

In Figs. 3(b), 3(c), 3(d), we plot the analytical expression
(i.e., Algorithm 2) and Monte Carlo simulations for the packet
transmission success probability pc(θ) versus the detection
threshold θ in dB for b = 0.1, M = 8, N = 1, and Nc = 1.
In Fig. 3(b), the traffic arrival probability a is either a = 0.1
or a = 0.2, with b = 1. In Fig. 3(c), the EH model is either
linear (ζ = 0.6) or the nonlinear sigmoidal model (ae = 1500,
be = 0.0022, Me = 24mW) [31], with a = b = 0.1. In Fig.
3(d), the receivers are uniformly distributed in a disc of radius
Rc around the transmitters, where the PDF of the distance r0
is frd (r) = 2r

R2
c

with 0 ≤ r ≤ Rc, with a = b = 0.1 and Rc = 2
m. Unless specified in all Figs. 3(b), 3(c), 3(d), the EH model
is linear and the distance r0 is fixed.

First of all, the agreement between the analytic expressions
and the Monte Carlo simulations is verified in Figs. 3(b)
and 3(d) which validates our analysis. Moreover, as expected,
all figures 3(b), 3(c), 3(d) confirm that as the detection
threshold θ increases, the packet transmission success prob-
ability decreases. This leads to more packet accumulation in
the IoT devices’ buffers and longer activity per IoT device.
Consequently, the mutual interference between IoT devices
increases. These figures confirm the intuition that there is
a number of critical points at which the system becomes
unstable, which occurs when the departure probability is less
than the arrival rate. In Fig. 3(b), the critical thresholds for
a = 0.2 and a = 0.1 are θ = 5 dB and θ = 10 dB,
respectively. Indeed the critical threshold for a = 0.1 is larger
than that of a = 0.2, which is confirmed and quantified in the
figure. A network with a = 0.1 has less active devices than a
network with a = 0.2, and hence, a = 0.1 implies less mutual
interference and higher departure probability. The figure also
shows that for unstable network operation, the transmission
success probability becomes independent of a. That is, at
unstable network operation the probability for being idle is
zero and all devices are active irrespective of the actual value
of a.

B. Unsaturated and Saturated Buffer/Battery

In addition, Fig. 3(c) compares the four scenarios of
saturated/unsaturated data buffers and batteries. Fig. 3(c) com-
pares also the use of linear and nonlinear EH models. Fig.
3(d) exhibits the use of the random uniform distribution of
r0. In general, the figures 3(c), 3(d) show that the highest
transmission success probability is achieved when both the
buffer and battery are assumed to be unsaturated. That is, ig-
noring the randomness in the packets and/or energy generation
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Figure 3. Harvesting probability mass function pm and packet transmission success probability pc(θ) versus the detection threshold θ in dB with M = 8.

will lead to overestimated mutual interference and pessimistic
assessment for the transmission success probability. More
specifically, Fig. 3(c) shows that as long as the network is
stable, the curves with unsaturated buffers (i.e., red, blue and
purple) coincide. Same remark for Fig. 3(d) where red and blue
curves coincide. This is because energy harvesting occurs at
a faster rate than packet generation, and hence, the spectrum
access and mutual interference are dominated by the packet
generation process. That is why, in Fig. 3(c), the linear and
nonlinear models have no impact on the performance with
unsaturated buffer and stable network (red and blue curves
coincide).

However, when the network is unstable (i.e., there are
always packets in the buffers), the energy harvesting becomes
the dominant factor for spectrum access and mutual inter-
ference. Hence, the saturated battery assumption (i.e., purple
curve in Fig. 3(c), and blue curve in 3(d)) leads to pessimistic
assessment for the transmission success probability when
compared to the unsaturated battery scenario (i.e., blue and
red curves in Fig. 3(c), and red curve in 3(d)). In addition, the
linear model leads to higher transmission success probability
compared to the nonlinear model for unstable networks with
saturated buffers. Fig. 3(c) also shows that the saturated
buffer assumption (i.e., the light green, dark green and black

curves) are always underestimating the transmission success
probability when compared to the unsaturated buffers stable
regimes. The underestimation is more severe for saturated bat-
tery (i.e., black curve) as all devices always mutually interfere
together. Same observation applies to 3(d). Furthermore, there
is no notion of instability in the saturated buffer scenario.
In addition, assuming random distance distribution exhibits
higher transmission success probability when comparing Figs.
3(c), and 3(d), and this confirms that fixing the distance is
a pessimistic assessment of the network and helps only to
simplify the analysis and is not overestimating the network
performance. Last but not least, the unsaturated buffer curves
coincide with their corresponding saturated buffer curves when
the network is unstable, which shows that the unsaturated
buffer assumption intrinsically accounts for the case of high
traffic where all devices would always have packets in their
buffers. Hence, the unsaturated buffer and energy assumption
are the most general and practical assumptions which capture
the saturated scenarios as special cases.

C. Self-Sustainability Regions

In Figs. 4(a), 4(b), and 4(c), we show the self-sustainability
region versus the spatiotemporal IoT traffic density (a, λD) ,
with b = 0.1, Nc = 8, and θ = 10 dB. In Fig. 4(a), we
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(a) Different cellular network densities λB in BSs/km2,
with M = 8 and N = 4.

(b) Nonlinear vs linear EH model with λB = 104 BSs/km2,
and M = 8.

(c) Other sources of power consumption C, with λB = 104

BSs/km2, and M = 1 and N = 4.

Figure 4. Stability Pareto regions (a, λD) between the packet arrival probability a in packets/sec versus the IoT network density λD in IoTs/km2 with b = 0.1,
Nc = 8, and θ = 10 dB.

have different cellular BSs intensities λB in BSs/km2, with
M = 8, and N = 4. In Fig. 4(b), we consider either the
linear EH model (ζ = 0.6) or the nonlinear sigmoidal EH
model (ae = 1500, be = 0.0022, Me = 24mW) [31], with
λB = 104 BSs/km2, M = 8, and N = 1 or N = 4. In
Fig. 4(c), we have different values for the other sources of
power consumption (not only data transmission) (please refer
to footnote 7), with λB = 104 BSs/km2, M = 1, and N = 4.
The shaded regions in Figs. 4(a), 4(b), and 4(c) (as well as
the following figures) determine the pairs (a, λD) that lead to
stable network operation. That is, the harvesting rate is quick
enough and the mutual interference is tolerable to maintain
packet departure rates that are greater than the packet arrival
rates. Consequently, all generated packets get delivered to
the intended receivers in finite time. Operating beyond the
shaded regions means that the packet departure rates is less
than the packet arrival rate, which leads to infinite packet
accumulation in the IoT devices’ buffers and infinite average
delay. Instability can occur due to i) energy scarcity (i.e.,
slow harvesting rates), ii) overwhelming interference (i.e., low
transmission success probability), or iii) both reasons in i) and
ii).

It can be deduced from Fig. 4(a) that for low and medium
device densities (i.e., up to 104 device/km2), energy scarcity
is the prominent factor for instability. Hence, increasing the

BSs density extend the sustainability region, for this range of
device intensities, as it improves the harvesting rates to cope
with the higher traffic arrivals. This is confirmed in 4(b) for
λB = 104 BSs/km2 where varying the EH model (linear or
nonlinear) leads only to extend the sustainability region for
low and medium device densities. Also, increasing the power
consumed from other sources (not only data consumption)
reduces the sustainability region only for low and medium
device densities in Fig. 4(c). In contrast, at high devices
density (beyond 105 device/km2), the interference becomes the
dominant obstacle for stability, where several retransmissions
are required to successfully deliver each packet. Hence, in-
creasing the BS intensity as in Fig. 4(a), or changing the EH
model as in Fig. 4(b) does not extend the sustainability region
for higher IoT device intensity. Interestingly, Fig. 4(a) shows
that lower BS intensity can accommodate higher IoT devices
intensity (e.g., for a = 0.001). Such counterintuitive behavior
is because longer harvesting time defers IoT device transmis-
sions and suppresses the aggregate interference. Hence, energy
harvesting acts as a distributed spectrum access coordination
scheme, which improves transmission success probability and
extends the sustainability region for higher IoT device density.
This highlights the importance of distributed interference
management for self-sustainable massive IoT networks.

In Figs. 5(a) and 5(b), we plot the self-sustainability
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(a) Different cellular base stations activities with N = 4,
Nc = 8.

(b) Different number of transmitted packets N and number
of channels Nc, with b = 0.3.

Figure 5. Stability Pareto regions (a, λD) between the packet arrival probability a in packets/sec versus the IoT network density λD in IoTs/km2 with λB = 104

BSs/km2, θ = 10 dB, and M = 8.

region versus the spatiotemporal IoT traffic density (a, λD)
with M = 8, λB = 104 BSs/km2, and θ = 10 dB. In Fig. 5(a),
we have different cellular base stations activities b, with N = 4,
and Nc = 8. In Fig. 5(b), we have different battery capacities
(i.e., captured by N, the number of transmission attempts a
full battery can provide) and different number of channels
Nc, with b = 0.3. For low and medium device densities
(i.e., up to 104 device/km2), increasing the BSs activity b or
increasing the number N of transmission attempts a full battery
can make, extend the sustainability region by increasing the
harvesting rates in Figs. 5(a) and 5(b), respectively. As b is
greater than 0.5, no much improvement in the sustainability
region can be observed which shows the limitation due to
energy scarcity. For higher devices density, no improvement
can be observed out of increasing b or N since this region
is limited by the interference and the network congestion.
To extend the self-sustainability region to higher devices
density, it is required to have more channels. Increasing the
number of channels that the IoT devices can access diversifies
interference, enhances the departure probability, and hence,
enables denser IoT networks to be self-sustainable.

D. Key Performance Indicators

In Fig. 6, we plot the average queue length versus the
detection threshold θ in dB for M = 8, and λB = λD = −20dB
with different packet arrival probability a, different BS activ-
ities, different number of channels, and different number of
transmitted packets. The figure shows that the average queue
length increases as the detection threshold θ increases. It is
also shown that the average queue length decreases when
having lower data arrival rate a, more BSs activity b, more
access channels Nc, and more number of packets N to transmit.
The figure also quantifies the buffer size required for different
network parameters, which is crucial for the design of IoT
devices.

In Fig. 7, we show the average queueing delay versus the
detection threshold θ in dB for M = 8, and λB = λD =

−20dB with different packet arrival probability a, different
BS activities, different number of channels, and different

number of transmitted packets. The figure shows that the
average queueing delay increases as we increase the detection
threshold θ. Moreover, the average queueing delay decreases
as a decreases, b increases, Nc increases, and Np increases.
The figure also quantifies the queueing delay for different
network parameters, which is crucial for delay tolerant IoT
applications.

V. Conclusion

Using stochastic geometry and queueing theory, this pa-
per develops a spatiotemporal mathematical model for self-
sustainable IoT networks that recycles the RF-energy of down-
link cellular network. Particularly, a two-dimensional discrete
time Markov chain (DTMC) is used to track the time evolution
of the data buffer and the battery of each IoT device. The IoT
network is then modeled as a network of spatially interacting
DTMCs due to the mutual interference between IoT devices.
To this end, joint probabilities of the number of packets in
the buffers and the energy levels in the batteries are obtained.
The developed model is then used to characterize and quantify
the network self-sustainability and key performance indicators,
in terms of spatiotemporal IoT traffic intensity and cellular
network density. The results identify the scenarios where the
IoT network fails to be self-sustainable due to energy scarcity,
overwhelming interference, or both. The results quantify the
required buffer size and packet delay, which are crucial for the
design of IoT devices and time critical IoT applications.

Appendix A
Laplace Transform of Interfering IoT Devices

Due to the independence between the channels and the
moment generating function (MGF) of the exponential distri-
bution, the LT of the aggregate interference in the IoT network
is given by

LD (s)
(a)
= Ey j

 ∏
y j∈ΦD\y0

Eg j

[
exp

(
−sPDg j‖y j‖

−αD
)] (36)

(b)
= Ey j

 ∏
y j∈ΦD\y0

1
1 + sPD‖y j‖

−αD

 (37)
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Figure 6. Average queue length versus the detection threshold θ in dB for M = 8, and λB = λD = −20dB with different packet arrival probability a, different
BS activities, different number of channels, and different number of transmitted packets.

(c)
= exp

(
−2πdλD

∫ ∞

0

sPDr−αD

1 + sPDr−αD
rdr

)
(38)

(d)
= exp

(
−2πdλD (sPD)

2
αD

∫ ∞

0

u
1 + uαD

du
)

(39)

(e)
= exp

−2π2dλDP
2
αD
D

αD sin
(

2π
αD

) s
2
αD

 , (40)

where (a) is obtained due to the independence between the
channels, (b) is obtained using the moment generating function
(MGF) of the exponential distribution, (c) is obtained using
the probability generating function (PGFL) of ΦD\y0, (d) is
obtained by a change of variables u = r

(sPD)
1
αD

, and (e) is

obtained using [37, (3.241.2)].

Appendix B
Statistics of Received Power

To derive the CDF of PH , we first derive the LT of the
aggregate downlink power in a similar way as in Appendix A
as LC (s) = exp

(
−κ0s

2
αB

)
. Then, we invert LC (s) via applying

the Bromwich inversion theorem to show that the CDF of Pr

is given by

FPr (x) =
1

2iπ
lim

T→∞

∫ γ+iT

γ−iT

esx

s
exp

(
−κ0s

2
αB

)
ds

= 1 −
1

2πi

∫ ∞

0

e−ux

u

[
−e−κ0u

2
αB e

2iπ
αB

+ e−κ0u
2
αB e−

2iπ
αB

]
du

= 1 −
1
π

∫ ∞

0

e−ux

u
exp

(
−κ0u

2
αB cos

(
2π
αB

))
× sin

(
κ0u

2
αB sin

(
2π
αB

))
du

= 1 −
αB

2π

∫ ∞

0

e
−x

(
t
κ0

) αB
2

t
exp

(
−t cos

(
2π
αB

))
sin

(
t sin

(
2π
αB

))
dt.

(41)

For αB = 4, the CDF and PDF of PH are deduced using [37,
3.953.6].

References

[1] F. Benkhelifa, H. ElSawy, J. A. McCann, and M. Alouini, “Recycling
cellular downlink energy for overlay self-sustainable IoT networks,”
in IEEE Global Communications Conference (GLOBECOM’2018), De-
cember 2018, pp. 1–7.

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of Things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys Tutorials,
vol. 17, no. 4, pp. 2347–2376, Fourthquarter 2015.

[3] A. Bader, H. ElSawy, M. Gharbieh, M. S. Alouini, A. Adinoyi, and
F. Alshaalan, “First mile challenges for large-scale IoT,” IEEE Commu-
nications Magazine, vol. 55, no. 3, pp. 138–144, March 2017.

[4] A. Laya, C. Kalalas, F. Vazquez-Gallego, L. Alonso, and J. Alonso-
Zarate, “Goodbye, ALOHA!” IEEE Access, vol. 4, pp. 2029–2044, 2016.

[5] Y. P. E. Wang, X. Lin, A. Adhikary, A. Grovlen, Y. Sui, Y. Blankenship,
J. Bergman, and H. S. Razaghi, “A primer on 3GPP narrowband Internet
of Things,” IEEE Communications Magazine, vol. 55, no. 3, pp. 117–
123, March 2017.



13

-40 -30 -20 -10 0 10 20 30

0

0.5

1

1.5

2

2.5

(a) b = 0.1, Nc = 8, N = 4

-40 -30 -20 -10 0 10 20 30
10

-6

10
-5

10
-4

10
-3

10
-2

(b) a = 0.1, Nc = 8, N = 4

-40 -30 -20 -10 0 10 20 30

10
-3

10
-2

10
-1

10
0

(c) a = b = 0.1, N = 4

-40 -30 -20 -10 0 10 20 30
10

-6

10
-4

10
-2

10
0

10
2

(d) a = b = 0.1, Nc = 8

Figure 7. Average queue delay versus the detection threshold θ in dB for M = 8, and λB = λD = −20dB with different packet arrival probability a, different
BS activities, different number of channels, and different number of transmitted packets.

[6] R. S. Sinha, Y. Wei, and S.-H. Hwang, “A survey on LPWA technology:
LoRa and NB-IoT,” ICT Express, vol. 3, no. 1, pp. 14 – 21, March 2017.

[7] X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, “Wireless networks
with RF energy harvesting: A contemporary survey,” IEEE Communi-
cations Surveys Tutorials, vol. 17, no. 2, pp. 757–789, Secondquarter
2015.

[8] H. ElSawy, A. Sultan-Salem, M. S. Alouini, and M. Z. Win, “Modeling
and analysis of cellular networks using stochastic geometry: A tutorial,”
IEEE Communications Surveys Tutorials, vol. 19, no. 1, pp. 167–203,
Firstquarter 2017.

[9] N. Kouzayha, Z. Dawy, J. G. Andrews, and H. ElSawy, “Joint down-
link/uplink RF wake-up solution for IoT over cellular networks,” IEEE
Transactions on Wireless Communications, vol. 17, no. 3, pp. 1574–
1588, March 2018.

[10] Z. Qin, Y. Liu, G. Y. Li, and J. A. McCann, “Modelling and analysis of
low-power wide-area networks,” in IEEE International Conference on
Communications (ICC’2017), May 2017, pp. 1–7.

[11] M. A. Kishk and H. S. Dhillon, “Joint uplink and downlink coverage
analysis of cellular-based RF-powered IoT network,” IEEE Transactions
on Green Communications and Networking, vol. PP, no. 99, pp. 1–1,
2017.

[12] M. Gharbieh, H. ElSawy, A. Bader, and M. S. Alouini, “Spatiotemporal
stochastic modeling of IoT enabled cellular networks: Scalability and
stability analysis,” IEEE Transactions on Communications, vol. 65,
no. 8, pp. 3585–3600, August 2017.

[13] M. Gharbieh, H. ElSawy, H. Yang, A. Bader, and M. Alouini, “Spa-
tiotemporal model for uplink IoT traffic: Scheduling and random access
paradox,” IEEE Transactions on Wireless Communications, vol. 17,
no. 12, pp. 8357–8372, December 2018.

[14] N. Jiang, Y. Deng, X. Kang, and A. Nallanathan, “Random access
analysis for massive IoT networks under a new spatio-temporal model: A
stochastic geometry approach,” IEEE Transactions on Communications,
vol. 66, no. 11, pp. 5788–5803, November 2018.

[15] Y. Zhong, T. Q. S. Quek, and X. Ge, “Heterogeneous cellular networks

with spatio-temporal traffic: Delay analysis and scheduling,” IEEE
Journal on Selected Areas in Communications, vol. 35, no. 6, pp. 1373–
1386, June 2017.

[16] G. Chisci, H. ElSawy, A. Conti, M. Alouini, and M. Z. Win, “Latency
in downlink cellular networks with random scheduling,” in IEEE In-
ternational Conference on Communications (ICC’2019), May 2019, pp.
1–6.

[17] H. H. Yang, Y. Wang, and T. Q. S. Quek, “Delay analysis of random
scheduling and round robin in small cell networks,” IEEE Wireless
Communications Letters, vol. 7, no. 6, pp. 978–981, December 2018.

[18] G. Chisci, H. Elsawy, A. Conti, M. Alouini, and M. Z. Win, “Un-
coordinated massive wireless networks: Spatiotemporal models and
multiaccess strategies,” IEEE/ACM Transactions on Networking, vol. 27,
no. 3, pp. 918–931, June 2019.

[19] A. H. Sakr and E. Hossain, “Analysis of K-tier uplink cellular networks
with ambient RF energy harvesting,” IEEE J. Sel. Areas Commun.,
vol. 33, no. 10, pp. 2226–2238, October 2015.

[20] T. A. Khan, P. V. Orlik, K. J. Kim, R. W. Heath, and K. Sawa,
“A stochastic geometry analysis of large-scale cooperative wireless
networks powered by energy harvesting,” IEEE Transactions on Com-
munications, vol. 65, no. 8, pp. 3343–3358, August 2017.

[21] I. Flint, X. Lu, N. Privault, D. Niyato, and P. Wang, “Performance anal-
ysis of ambient RF energy harvesting: A stochastic geometry approach,”
in 2014 IEEE Global Communications Conference, December 2014, pp.
1448–1453.

[22] H. S. Dhillon, Y. Li, P. Nuggehalli, Z. Pi, and J. G. Andrews,
“Fundamentals of base station availability in cellular networks with
energy harvesting,” in 2013 IEEE Global Communications Conference
(GLOBECOM), December 2013, pp. 4110–4115.

[23] H. Inaltekin, M. Chiang, H. V. Poor, and S. B. Wicker, “On unbounded
path-loss models: effects of singularity on wireless network perfor-
mance,” IEEE Journal on Selected Areas in Communications, vol. 27,
no. 7, pp. 1078–1092, September 2009.

[24] H. Dhillon, R. Ganti, and J. Andrews, “Load-aware modeling and



14

analysis of heterogeneous cellular networks,” IEEE Trans. Wireless
Commun., vol. 12, no. 4, pp. 1666–1677, April 2013.

[25] M. Di Renzo and W. Lu, “Stochastic geometry modeling and perfor-
mance evaluation of MIMO cellular networks using the equivalent-
in-distribution (EiD)-based approach,” IEEE Trans. Commun., vol. 63,
no. 3, pp. 977–996, March 2015.

[26] K. Aly, H. ElSawy, and M. S. Alouini, “Modeling cellular networks
with full duplex D2D communication: A stochastic geometry approach,”
IEEE Trans. Commun., vol. 64, no. 10, pp. 4409–4424, October 2016.

[27] M. Haenggi, “The meta distribution of the SIR in Poisson bipolar and
cellular networks,” IEEE Transactions on Wireless Communications,
vol. 15, no. 4, pp. 2577–2589, April 2016.

[28] Z. Gong and M. Haenggi, “Interference and outage in mobile random
networks: Expectation, distribution, and correlation,” IEEE Transactions
on Mobile Computing, vol. 13, no. 2, pp. 337–349, February 2014.

[29] L. Xiao, P. Wang, D. Niyato, D. Kim, and Z. Han, “Wireless networks
with RF energy harvesting: A contemporary survey,” IEEE Communi-
cations Surveys Tutorials, vol. PP, no. 99, pp. 1–1, 2014.

[30] B. Clerckx, R. Zhang, R. Schober, D. W. K. Ng, D. I. Kim,
and H. V. Poor, “Fundamentals of wireless information and power
transfer: From RF energy harvester models to signal and system
designs,” CoRR, vol. abs/1803.07123, 2018. [Online]. Available:
http://arxiv.org/abs/1803.07123

[31] E. Boshkovska, D. W. K. Ng, N. Zlatanov, and R. Schober, “Practical
non-linear energy harvesting model and resource allocation for SWIPT
systems,” IEEE Communications Letters, vol. 19, no. 12, pp. 2082–2085,
December 2015.

[32] B. Clerckx, “Wireless information and power transfer: Nonlinearity,
waveform design, and rate-energy tradeoff,” IEEE Transactions on
Signal Processing, vol. 66, no. 4, pp. 847–862, February 2018.

[33] L. Shi, L. Zhao, and K. Liang, “Power allocation for wireless powered
MIMO transmissions with non-linear RF energy conversion models,”
China Communications, vol. 14, no. 2, pp. 57–64, February 2017.

[34] A. S. Alfa, Applied Discrete-Time Queues, 2nd ed. Springer Publishing
Company, Incorporated, 2015.

[35] I. Krikidis, T. Charalambous, and J. S. Thompson, “Buffer-aided relay
selection for cooperative diversity systems without delay constraints,”
IEEE Transactions on Wireless Communications, vol. 11, no. 5, pp.
1957–1967, May 2012.

[36] Y. Zhou and W. Zhuang, “Performance analysis of cooperative com-
munication in decentralized wireless networks with unsaturated traffic,”
IEEE Trans. Wireless Commun., vol. 15, no. 5, pp. 3518–3530, May
2016.

[37] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and
Products, 5th ed. San Diego, CA: Academic, 1994.


