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Abstract

In this thesis, I describe a range of scenarios, from viral propagation to stem cell dynamics, where techniques and

ideas from statistical physics provide a route to describe and quantify the observed dynamics. All the systems

considered here lie in the realm of out-of-equilibrium physics, where injection and dissipation of energy, matter

and/or momentum drive their spatio-temporal evolution.

This thesis is organised such that the topics are presented from mainly theoretical to mainly experimental.

In Chapter 2, I make use of field-theoretic methods to study a branching random walk. This is a paradigmatic

process in the study of viral propagation, however analytic results are very limited. Here I show how a field-

theoretic approach provides an a route to obtain exact results for the scaling of the volume explored by such a

process. In Chapter 3, I show how branching or self-replication can emerge in large scale ecological systems.

I show, numerically, how a spatial instability of the vegetation patches gives rise to their self-replication, and

discuss the implications for real ecosystems. In Chapter 4, I dive into the realm of cellular biology, where I

performed experimental, analytical and numerical work in order to understand the rich dynamics of the spatio-

temporal interactions of mouse embryonic stem cells and localized sources of protein signals, and discuss the

implications for multicellular organisation. In Chapter 5, I discuss my work on human Keratinocytes, where I

studied the interplay between the pulsatile activity of a specific pathway and di↵erentiation. I introduce a method

that allows the construction of a phase diagram from the stem cell state. Combined with numerical simulations,

this method allowed the visualisation of the temporal relation between the signals to show how transitions between

stem cell states occur.

Finally, in Chapter 6, I discuss the main findings of this thesis. I present the general and specific conclusions

and point out some key open problems on each sub-field studied.
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L-function L(r) (lines show the 95% confidence interval), respectively. This figure, for which I

hold the copyright, has been adapted from [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
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3.10 Linear correlation between the mean equivalent radius of the structures and the nearest-neighbor

distance for each of the eight regions analyzed. This figure, for which I hold the copyright, has

been adapted from [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.11 Remote observation of vegetation patches and rings in Zambia. Some representative rings are

circled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Representative images of cell-bead interactions. (a) Snapshot of the experimental observation

of single mESCs and beads. Arrowheads indicate beads in contact with cells, scale 20 µm. (b)

Simulation of a single cell of radius r0 = 1/15 (encircled black) performing a random walk with

step length ` = r0/5, on a periodic system of linear size L = 1. The area covered by the cell

up to time t = 500, A(t), is shown green. Dots correspond to beads randomly distributed in the

environment (black) and beads captured by a cell (blue). Total bead density ⇢b = 50. (c) Shows

two representative images, at times t = 1 hour (left) and t = 9 hours (right), of the interaction

of mESCs and Wnt-beads. Beads that come in contact with cells are encircled, while their net

translation between the two frames is depicted by dashed arrows (right). scale bar in (a) and (c) is

20 µm. This figure has been submitted to PRX as part of the manuscript [7] . . . . . . . . . . . . 77

4.2 Cell contacting beads. A mESC recruits two Wnt-beads (time t = 69, 119, 123, 222 min, runs

from left to right). These images are the raw input data as obtained from the microscope and to

be fed to the tracking algorithm. At t = 69 min a bead lies by the cell (red arrowhead), yet it only

comes in contact with the cell at t = 119 (second frame). At t = 119 min the cell extends, coming

in contact with a second bead at t = 123 min (third frame). This cannot be detected reliably by

the algorithm until much later, for instance, when the bead is on the cell body, t = 222 min (last

frame). The same di�culties arise when attempting to measure the potential release of beads. . . . 79

4.3 Instantaneous e↵ective potentials. (a) Snapshot of the experimental distribution of beads, and

(b) the instantaneous e↵ective potential (⌧ = 0) for Unc-beads, and (c) Wnt-beads, in the absence

of cells. (d) E↵ective potential for Wnt-beads, (e) iWnt-beads, and (f) Unc-beads in the presence

of mESCs, taken over three di↵erent time windows (time increases from left to right, as indicated).

The solid curve represents the mean across the repeats, while the shaded area represents the range

of the data. The reference line Ue↵(r, t) = 0 shows the e↵ective potential of a uniform bead

distribution. Indicated by (N), (H), and (•) are the points of maximum depletion, accumulation,

and the range, respectively (see main text). The vertical reference line indicates the mean cell

radius R, at each time point. This figure has been submitted to PRX as part of the manuscript [7] . 81
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4.4 Statistical properties of the interactions. (a) Coordination number c(r), Eq. (4.4), as a function

of time for the three bead types. Dashed lines indicate the time at which the c(t) start plateauing

for Wnt- and iWnt-beads. (b) boxplot of the e↵ective time beads stay in contact with cells, and

(c) linear relationship between the accumulation rates in (a) and the median contact time in (b). In

all panels green, red, and black corresponds to Wnt-, iWnt-, and Unc-beads, respectively. Error

bars in (a) and (c) show the 95% confidence intervals. The statistical di↵erence between the data

distributions in (b) were calculated via a Kolmogorov–Smirnov test, where **** indicates a p-

value<0.0001. This figure has been submitted to PRX as part of the manuscript [7] . . . . . . . . 84

4.5 Age- and delay-dependent e↵ective potentials. Experimental e↵ective potential as function of

time t and delay ⌧ (left), and (t, ⌧)-phase-diagram (right), for (a) Wnt-beads, (b) iWnt-beads, and

(c) unc-beads, in the presence of cells. Markers indicate attractive (circles) and repulsive (crosses)

regions in the phase diagrams, as measured by b⇤2 (Eq. (4.5), colorbar) for ⇤ = 2R, where R is the

cell radius. This figure has been submitted to PRX as part of the manuscript [7] . . . . . . . . . . 86

4.6 Numerical age- and delay-dependent interactions. (a) E↵ective potential as function of age

t and delay ⌧ obtained from numerical simulations of the model described at the beginning of

Sec. 4.6, indicating the mean (solid curve) and range (shaded) from 104 realisations, for step size

� = 0.004 and cell radius r0 = 0.02 (vertical line), the symbol (⇤) indicates the interaction range

re(t) =
p

A/pi. (b) The (t, ⌧)-phase-diagram for increasing values of step length �. Markers

indicate attractive (circles) and repulsive (crosses) regions in the phase diagrams, as measured by

b⇤2 (Eq. (4.5), colorbar) for ⇤ = 2R, where R is the cell radius. The symbol (I) indicates the

predicted o↵set delay, Eq. (4.9), the dashed line corresponds to the theoretical transition delay

⌧⇤, obtained from Eq. (4.11). The potential is e↵ectively repulsive below the line (longer delays)

and e↵ectively attractive above (shorter delays). The last panel shows the o↵set delay as function

of di↵usivity, D = �2/4, obtained from Eq. (4.9), the triangles indicate the delay marked on the

phase-diagrams. This figure has been submitted to PRX as part of the manuscript [7] . . . . . . . 90

4.7 E↵ective potentials with positive disregarding probability and release rate. E↵ective potential

as a function of age t and delay ⌧, as obtained from numerical simulations (Sec. 4.7). The mean

and range of 104 realisations are indicated by a solid curve and a shaded area, respectively, for

disregarding probability (a) � = 0.5 ( = 0), and (b) � = 0.9 ( = 0). For release probability (c)

 = 0.05 (� = 0), and (d)  = 0.9 (� = 0), and for refractory time ✓ = 0, and release to the cell edge

with probability (e)  = 0.01, and (f)  = 1.0. Simulations consider a single cell of radius r0 = 0.02

performing a random walk with step length � = 0.004, in a periodic system of linear size L = 1,

and bead density ⇢b = 103. This figure has been submitted to PRX as part of the manuscript [7]. . 92
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4.8 Phase diagrams for the model with disregarding probability, release rate, and recapturing.

(t, ⌧)-phase diagram of the model with (a) positive disregarding probability �, (b) positive release

probability , and (c) positive release probability  with refractory time ✓ = 0, for increasing values

(left to right). Simulations consider a single cell of radius r0 = 0.02 performing a random walk

with step length � = 0.004, in a periodic system of linear size L = 1, and bead density ⇢b = 103.

The dashed lines in (a) represent the predicted transition from attractive to repulsive according

to Eq. (4.11). Markers indicate attractive (circles) and repulsive (crosses) regions in the phase

diagrams, as measured by b⇤2 (Eq. (4.5), colorbar) for ⇤ = 2R, where R is the cell radius. In (c) the

release of beads occurs to the same direction they were encountered by the cell, e↵ectively pushing

beads away. This figure has been submitted to PRX as part of the manuscript [7] . . . . . . . . . 94

4.9 Configurational entropy as a function of time for (a) the experimental conditions, (b) the nu-

merical simulations of the model the model described at the beginning of Sec. 4.6 for di↵erent step

lengths �, (c) the model with positive disregarding probability �, Eq. (4.12), (d) the model with

positive release probability , Eq. (4.13), and (e) the model with positive release probability  and

refractory time ✓ = 0. The dashed line in (a) corresponds to the reference line sc = 0. The rate

of change of entropy density �(r, t), Eq. (4.17), is shown for (f) the experimental conditions, and

(g) the numerical simulations at � =  = 0. Simulations in (b)-(f) consider a single cell of radius

r0 = 0.02, in a periodic system of linear size L = 1, and bead density ⇢b = 103. The step length for

the simulations in (c), (d) and (f) is set to � = 0.004. In (e) the release of beads occurs to the same

direction they were encountered by the cell, e↵ectively pushing beads away. This figure has been

submitted to PRX as part of the manuscript [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.10 Phase diagram with positive refractory time ✓. Markers indicate attractive (circles) and repulsive

(crosses) regions in the phase diagrams, as measured by b⇤2 (Eq. (4.5), colorbar) for ⇤ = 2R, where

R is the cell radius, for simulations of the model (Sec. 4.7) with positive refractory time ✓ and

release to the cell edge with probability , as indicated. As mentioned in the main text, moderate

increases in the refractory time (see (a) and (b)) do not change the qualitative features of the phase

diagram. However, larger values of the refractory time, such as (c) ✓ = 240, or (d) ✓ ! 1, which

implies no re-interaction, do exhibit some noticeable fluctuations in the phase diagram, especially

for increasing time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 ERK activity and cell size. (a) Images of NHK colonies expressing EKAR-EVnls. Colours

indicate ERK activity. Scale bar 50 µm. (b) Box plots of single cell ERK activity as a function

of cell area. Mid-line corresponds to median; box to 25th and 75th percentiles; whiskers to lower

and higher 95 percetiles. Red crosses correspond to outliers. (n = 3581 cells). (c) Shows the

heat-map of ERK activity as a function of time for 52 cells in descending order of overall ERK

activity variance. Colours indicate ERK activity. (d) Representative time-series of ERK activity in

cells indicated by asterisks in (c). This show pulsatile (*1-4), stable-low (*5), or stable-high (*6)

ERK activity profiles. This figure is part of the manuscript [8]. . . . . . . . . . . . . . . . . . . . 103
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5.2 Characterisation of ERK pulses. (a) Schematic of the ERK pulse detection and quantification

method. Pulses are detected as local peaks with prominence larger than 0.05 FRET/CFP value.

Pulse duration was determined as the width of pulse at half the prominence of each pulse. The

inter-pulse interval is characterised as the latency between consecutive pulses. (b) Shows the his-

togram of frequencies, indicating the mean frequency fmean and period Tmean. (c) Histograms of

pulse duration, indicating the mean value. (d) Shows the histogram for inter-pulse intervals. The

red curve corresponds to and exponential fit, with decay rate ⌧. (e) Validation of the quantifi-

cation methods with kinase-dead EKAR-EVnls biosensor (EKAREV-TA-nls), where FRET does

not occur. Left, proportion of pulsatile cells in keratinocytes expressing normal EKAR-EVnls or

EKAREV-TA-nls. Right, histogram of ERK pulse frequencies in pulsatile cells detected in ker-

atinocytes expressing EKAREV-TA-nls. Data obtained from NHKs on feeder layers in complete

FAD medium. This figure is part of the manuscript [8]. . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Codetection of ERK activity and Involucrin level. (a) Involucrin-mCherry reporter expression in

cells cultured under the indicated conditions. Scale bar 100 µm. (b) Representative time-series of

ERK activity (green) and Involucrin-mCherry expression (red), and images of the corresponding

cells at di↵erent time points indicated by the orange circles in each time-series. (e) Schematics

of the methodology for constructing the phase diagram of ERK activity. ERK moving variance,

and ERK and Involucrin moving mean levels are measured for the time series of each cell. By

Plotting the (Di,�2
i var)-map, a trajectory of the co-evolution of the two factors is obtained. The

phase diagram of ERK activity variance (d) and mean ERK activity (e) as a function of the mean

Involucrin level is shown (n = 3397 cells). Arrows indicate the average direction of transition

between compartments. Red colour indicates points of accumulation. This figure is part of the

manuscript [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4 Evolution of simulated cells. Stochastic simulations of simulated cells in the phase diagram,

showing the expected co-evolution of ERK activity variance and Involucrin mean level. The phase

diagram was constructed by considering (a) the whole population of human keratinocytes (3397

cells), cultured on feeder layers in complete FAD medium, (b) the subpopulation with overall

increase in mean Involucrin level (2175 cells), (c) and (d) the subpopulation with overall decrease

in mean Involucrin level (1219 cells). The initial condition for the simulations corresponded to

cells uniformly distributed on the phase diagram. As time passes (from left to right), the cells

transition according to the rates (represented by arrows), converging to certain regions of the phase

diagram (red). This figure is part of the manuscript [8]. . . . . . . . . . . . . . . . . . . . . . . . 111
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5.5 ERK activity and cell proliferation. (a) 2D histogram of ERK pulse frequency and mean activity

in the total cell population (left) and the cell subpopulation that underwent cell division during live

imaging (right). The cells expressing EKAR-EVnls were cultured for 7 days on feeder cells. Mean

and SD are shown by red dot and black lines, respectively. (b) Cell proliferation assay of single

cells with ERK pulses lower (left) or higher (right) than 1.5 pulse/h. Cells were initially imaged

at single cell state to measure their pulse levels, and then the same cells were observed after 48

hours. The number of cells at 48 h and the proliferation fractions. (c) Schematic representation of

modulations in ERK activation pulses during di↵erentiation. This figure is part of the manuscript [8].112

5.6 Molecular regulation of ERK activity. Histograms of (a) frequencies and (b) inter-pulse intervals

in cells treated with scrambled control siRNA (left) or �1-integrin-targeted siRNA (right). Black

dotted lines indicate the mean. (c) Frequency of ERK pulses for both treated cells, plot shows to

mean and ± SEM. (d) Shows the histograms of (left) frequencies and (right) interpulse intervals

of cells cultured with Ca2+-chelated medium. Black dotted lines indicate the mean. (e) Mean

Involucrin reporter expression as a function of time, indicating the mean ± SD. This figure is part

of the manuscript [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.7 Molecular regulation of Involucrin expression, (a) and (d) shows the ERK pulse frequency (left)

and mean (right) as a function of TPA and EGF dose, respectively. Data shows mean ± SD for

about 1000 cells for each condition. (b) and (e) the ERK pulse frequency (left) and mean (right)

as a function of time after treatment with TPA and EGF, repectively. Involucrin expression as a

function of time after (c) TPA and DMSO control, and (f) MEK inhibitor, EGF and DMSO control,

indicating the mean ± SD. This figure is part of the manuscript [8]. . . . . . . . . . . . . . . . . . 114

5.8 Regulation of mean and variance of ERK activity by DUSP. (a) and (b) show (left) mean and

(right) variance of ERK activity in NHKs treated with 1 µg/ml doxycyclin (green and purple) or

vehicle (black). The induction of (a) DUSP 6 and (b) DUSP10 was done by the doxycycline

treatment. Data correspond to the mean ± SEM (1220 doxycyclin-treated cells and 1261 vehicle-

treated cells for (a), 1224 doxycyclin-treated cells and 1005 vehicle-treated cells for (b)). (c)

and (d) show Involucrin expression as a function of time of keratinocytes treated with 1 µg/ml

doxycyclin (green or purple) or vehicle (black). DUSP 6 (c) or DUSP10 (d) was induced by

the doxycycline treatment. Histograms for involucring expression 18.5 hour after doxycycline-

induced (e) DUSP6 and (f) DUSP10 expression (green and purple, respectively) or vehicle (black)

treatment. (g) Shows a schematic representation of molecular regulation of ERK mean and pulse

level. This figure is part of the manuscript [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

B.1 Degree distribution of the preferential attachment networks used for the simulations presented

in Sec. 2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
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C.1 Zones considered for the analysis of vegetation patches, Coordinates: Zambia zone 1 [13�47023.9900S,

25�17011.1800E], Zambia zone 2 [13�51017.8800S, 25�22033.8600E], Zambia zone 3 [14�39016.4900S,

25�49054.8600E], Zambia zone 4 [14�40021.7200S, 25�49038.5600E], Mozambique zone 1 [18�41019.3200S,

35�30037.6200E], Mozambique zone 2 [18�40023.9600S, 35�33032.5800E], Mozambique zone 3 [18�41055.5200S,

35�38014.4500E], Mozambique zone 4 [18�49048.3100S, 35�36022.3700E]. The white boundaries en-

closing each structure corresponds to results of the automatic detection of objects. This figure, for

which I hold the copyright, has been published as part of [6]. . . . . . . . . . . . . . . . . . . . . 140

D.1 E↵ective rate with release. The parameter ↵(A, , t), given by Eq. (4.15), for di↵erent values of

the release rate . Here r0 = 0.02, and � = 0.004. . . . . . . . . . . . . . . . . . . . . . . . . . . 147

D.2 Experimental measurement of the e↵ective potential. Measurement of the distance from the

position of every cell at time t, to the position of every beads at time t+⌧ (top) and the corresponding

density of distances (bottom) for (a) the experimental positions of cells and beads, and (b) the

experimental positions of cells and uniformly distributed (numerically drawn) beads. Scale bars

25 µm. (c) Radial distribution function measured as the ratio of the densities in (a) and (b). (d)

E↵ective potential calculated as the negative logarithm of the radial distribution function in (c).

Both ĝ and Ue↵ are dimensionless. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

D.3 Experimental e↵ective potential, as defined in Eq. (4.3), as function of age t and delay ⌧ for Wnt-

beads as mESCs interact with them. The solid curve corresponds to the overall e↵ective potential

obtained from pooling the data from three repeats, while the green shaded area corresponds to the

range of the measurements from the three independent repeats. Total cell number ⇠ 103, total bead

number ⇠ 104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

D.4 Experimental e↵ective potential, as defined in Eq. (4.3), as function of age t and delay ⌧ for

iWnt-beads as mESCs interact with them. The solid curve corresponds to the overall e↵ective

potential obtained from pooling the data from three repeats, while the red shaded area corresponds

to the range of the measurements from the three independent repeats. Total cell number ⇠ 103,

total bead number ⇠ 104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

D.5 Experimental e↵ective potential, as defined in Eq. (4.3), as function of age t and delay ⌧ for

uncoated-beads as mESCs interact with them. The solid curve corresponds to the overall e↵ective

potential obtained from pooling the data from three repeats, while the black shaded area corre-

sponds to the range of the measurements from the three independent repeats. Total cell number

⇠ 103, total bead number ⇠ 104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

D.6 Canonical Wnt/�-Catenin pathway. (a) Shows the unbound Wnt coreceptors LRP5/6 and Friz-

zled [9, 10], this allows the destruction complex to act on �-catenin, tagging it for degradation

(non-activated canonical pathway) [11]. (b) Shows the activated canonical pathway, where by the

action of Wnt, the destruction complex is disabled [12], allowing �-catenin to fulfil its transcription

role in the nucleus [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
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2.1 Scaling of visited sites in time. Scaling in time, hap
i (t) ⇠ t↵p , of the p-th moment of the number of
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3.1 E↵ect of the competition range in the critical values of the parameters. Each rows show, for the

indicated competition range (first column) the critical values of aridity µc1 (top) and µc2 (bottom),

biomass density bc1 (top) and bc2 (bottom) found by solving Eqs. (3.17) and (3.5), and pattern

wavelengths �c1 = 2⇡/kc (top) and �c2 = 2⇡/kc (bottom) (Eq. (3.15)). Lc and �c are measured in

units of distance, bc in units of density, and µc in units of inverse time, accounting for the drain of

resources from the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

C.1 Information for analyzed regions. Mean annual rainfall, and mean temperature for the periods

1901-2006 and 2006-2016 (Obtained from CRU TS3 [14]) are shown. . . . . . . . . . . . . . . . 141
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Chapter 1

Introduction

Statistical mechanics is the branch of Physics that deals with systems composed of large numbers of constitutive

particles. In general, a microscopic description at the individual particle level of a many-body system is imprac-

tical as number of degrees of freedom—say, of positions and momenta—and corresponding number of equations,

explodes with the number of particles. For this reason, methods from statistics and probability theory provide a

route to bypass such di�culties, by extracting properties of the systems of interest at the population level.

Depending on the energetic properties of the systems of interest, they can be classified into two main classes:

(1) equilibrium and (2) non-equilibrium systems. The first corresponds to the standard class of systems in thermo-

dynamic (mechanical and thermal) equilibrium, where there is no external forcing and the systems maintain, on

average, a stationary state. Here, there is no in-flux or out-flux of particles, energy and/or momentum.

A system can be driven away from equilibrium by injection of energy, particles and/or momentum. This corre-

sponds to case (2) above. These systems can split into two groups: close-to-equilibrium and far-from-equilibrium.

Systems close to equilibrium are systems whose deviation from equilibrium is small, such that linear response

theory is valid and the relaxation back to equilibrium can be analytically studied. These type of systems are also

the object of study in non-equilibrium thermodynamics, which attempts to make a connection between equilibrium

state variables and properties of matter (slightly) out-of-equilibrium.

Far-from-equilibrium systems are driven away from equilibrium, in many cases beyond the linear response

regime, where non linear interactions dominate the dynamics, and a rich diversity of spatio-temporal phenomena

take place. Non-linear physics and chaos lie at the heart of far-from equilibrium physics. Despite the fact that

most natural phenomena lie far from equilibrium, the theoretical understanding is limited, as very few systems are

analytically tractable, and universal laws are rare. Living matter is the perfect example of far-from-equilibrium

matter, where nutrients serve as the injection of energy and matter required by cell to reproduce, move, and evolve.

At this point it is important to distinguish between two types of matter, passive and active. A passive sys-

tem corresponds to collection of atoms, molecules or colloids where any injection of energy occurs through the

boundaries of the system by exchanging energy, matter and/or momentum with some heat bath. Active systems

are composed of active matter, which can transform chemical or other types of energy into kinetic energy. This

phenomena, referred to as self-propulsion, can be observed in bacteria, sperm, cells and artificial self-propelling
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particles, such as Janus particles. An active system is then a system where the injection of energy occurs at the

individual particle level. For the sake of this thesis any type of particle that can autonomously self-propel, and/or

self-replicate, and/or change shape will be referred to as active.

It turns out that addressing any of the usual questions of statistical mechanics, such as the distribution of

states in a non-equilibrium system is extremely challenging from a theoretical perspective. In many situations, the

question itself is hard to formulate, as not even a free energy can be defined for the system, these are referred to as

non-variational systems.

Biological and in particular cellular systems are becoming the new laboratory for performing non-equilibrium

statistical physics experiments. With the advent of new technologies and microscopy techniques, biologists are able

to extract evermore detailed data on the cellular behaviour, both in-vitro and in-vivo. Scientists have now access

to detailed information on the sub-processes involved in the decision making of cells during development, wound

healing, and deregulation during disease. The ability to compare models and simulations with real biological data

allows the use of the predictive power of physics to push the field of biology forwards. At the same time, the

open questions in biology have inspired physicist to come of with new theoretical frameworks to understand the

properties of living systems. This is an idealised view on how collaboration between physics and biology can push

both field forwards, simultaneously. However, in most cases the situation is di↵erent, what are relevant questions

for one field will not necessarily be relevant in aother. In this case, there must be a compromise of one of the parties

for the sake of science. When problems are approached with an open mind, it is certain that new questions will

arise that are of common interest, and can provide inspiration for the further development of science. Part of the

work in this thesis supports this idea, where the focus was not on developing a theoretical framework to understand

a biological process, but to develop the tools to understand the biological data in the first place. This sets the stage

for further theoretical work, which can then be built from the knowledge obtained from the experimental work.

The work presented in this thesis lies in the interface between biology, physics and applied mathematics, and

between theory and experiments. The general objective of this thesis is to develop novel approaches to describe

and quantify the spatio-temporal dynamics of active and living matter. These approaches can help us find answers

to relevant questions in both mathematics and biology with the use of already existing or new tools.

I start o↵ by describing the mathematical properties of the volume explored by a generic spatial branching

process, the branching random walk. This is a classical model in theory of stochastic processes, however is has

applications in biology and active systems. I later describe how branching might emerge in real ecosystems,

where the importance of volume exclusion and supercitical behaviour becomes evident. I then use the ideas from

the volume explored by a random walker to quantify the e↵ective spatio temporal interactions of stem cells and

biochemical signals in vitro. These biochemical signals control the state of stem cells. Inspired by statistical

mechanics, I then construct a phase diagram of skin stem cells, which allow me to study the temporal evolution of

the cell state, from stem to di↵erentiated cell.

Altogether the methods developed here provide a toolbox for the study of generic temporal and spatio-temporal

processes in active and living systems. Some of these techniques rely heavily on theory, while other focus on data

analysis and simulations. A good understanding of the experimental data is a steppingstone for later building a
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comprehensive theoretical model that is truly connected with the real system under study.

1.1 Objectives

In this thesis I make use of techniques and ideas from statistical mechanics in order to accomplish the following

objectives:

• To describe and characterise, with the use of tools from equilibrium and non-equilibrium statistical mechan-

ics, phenomena relevant to biological and ecological systems.

• To extend the current knowledge of equilibrium physics to active systems, such as self-replicating (branch-

ing) matter and self-organised spatial and temporal processes.

• To develop new methodologies for extracting relevant physical and biological observables from experimental

data.

1.2 Structure of the thesis

The results of this thesis are presented in Chapters 2-5.

• In Chapter 2 field-theoretic methods are used to study statistical properties of a critical branching random

walk. In this process, active particles randomly explore the environment, and are subject to self-replication

and extinction.

• In Chapter 3 a simple theoretical model is introduced to describe interaction between vegetation. This non-

linear model has localised solutions, which can become unstable and self-replicate to repopulate landscapes.

• In Chapter 4 experimental work is presented to understand the interactions between individual embryonic

stem cells and localised sources of signal. A suitable spatio-temporal correlation function is introduces to

show that cell behave as force-field generators.

• In Chapter 5 the relation between a specific molecular pathway and the cell commitment to di↵erentiation

is studied in human skin stem cells. Data analysis tools are developed, which allow the construction of

a cell state phase diagram, from which information on the causal relation between these processes can be

extracted.

Each chapter start with its own introduction, where the theoretical and experimental background and tools are

presented. Then the main results for the chapter are presented. Each chapter ends with a discussion of the main

findings.

The general discussion and conclusion are presented in Chapter 6, where open questions and future projects

are also discussed.
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Chapter 2

Field-theoretic approach to the branching

random walk

The results presented in this chapter are under review for publication in Scientific Reports as part of a manuscript

entitled Volume explored by a branching random walk on general graphs, co-authored by Saoirse Amarteifio,

Rosalba Garcia-Millan, Benjamin Walter, Nanxin Wei and Gunnar Pruessner. Some parts of this chapter are

quoted verbatim from the published manuscript [2].

I contributed to all analytic calculations, ran the numerical simulations and performed the data analysis. I

prepared all figures, and wrote the manuscript. The numerical algorithms were written by Saoirse Amarteifio,

Rosalba Garcia-Millan, and Benjamin Walter in discussion with all authors.

2.1 Summary

A branching processes is a zero-dimensional stochastic model which describes the evolution of particles that can

either branch, a birth event by which a particle self-replicates, or decay, a death event by which a particle becomes

extinct [21]. A branching particles can be imagined as a bacteria in a medium with a small amount of antibiotics,

such that it can divide or die as it randomly explores the environment. This prototypical birth-death process has

been extensively used to model diverse social and physical phenomena, from the extinction of family names to

fission cascades in nuclear reactions [21]. However, most of the natural phenomena of interest, including nuclear

processes, viral epidemics in animal populations or social networks require, for a better description, a spatial

embedding of this process. Such embedding referred to as a branching random walk (BRW) can be constructed

by allowing particles undergoing a branching processes to perform a random walk on a lattice. Despite it being

one of the simplest models for spatial propagation of disease, amongst many other applications, the statistical

properties of the volume explored by the BRW have until now remained unknown, with exact results limited to a

one dimensional regular lattice [22].

In this chapter the Doi-Peliti formalism [23, 24] is used to cast the branching random walk in terms of a field
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theory. The field theory is then used to calculate the scaling of the volume explored by the BRW. It is shown

how these results, initially obtained for regular lattices, can be naturally extended to more general graphs, such as

fractals, trees and scale-free networks. With this information, the branching random walk is then used to extract

information about real social and metabolic networks.

2.2 Introduction

Over the years a number of models to describe viral propagation have been proposed. E↵ective (non-spatial) mod-

els such as the simplest Susceptible-Infectious (SI) and Susceptible-Infectious-Susceptible (SIS) or Susceptible-

Infectious-Recovered (SIR) distinguish between two or three populations, respectively [25]. The SI model con-

siders a species of susceptible individual (S), which becomes infectious (I) at a given rate. In the SIS model,

infected individuals can go back to the susceptible (s) state. Like viral infections such as the common cold [25],

this model allows for a steady state where a fixed fraction of the population remains infected, while the rest remains

susceptible. The SIR model introduces a third population, namely a recovered (R) population to which infectious

individuals can transition. Recovered individuals are e↵ectively immune, thus the state where all individuals are

immune acts as an absorbing state. In the steady state of the SIR model, all individuals end in the recovered state,

this resembles the e↵ect of childhood illnesses such as measles or rubella. There are many variations of these

models, which incorporate more species, multiple sub-groups and ageing [26].

With the advances of imaging and tracking technologies in the case of biology, and the access to detailed data

sets of social and communications networks, the importance of the substrate on viral propagation processes became

evident [27, 28]. Modern biological and theoretical models of disease propagation incorporate spatial interaction

by allowing pathogens to multiply at a host cell and be passed to one of the neighbouring cells, at random. It

has been argued that this direct cell-cell transmission is an e�cient viral propagation mechanisms in tissues [29].

branching random walkers are also allowed to decay, which amount the the recovery or death (depending on the

interpretation) of individuals. The individuals, being cells, animals, or communication devices, are represented

by single sites of a lattice. At every lattice site, a virus can either multiply (branch, self-replicate) or be degraded

by action of the immune system (become extinct, decay). The total number of individuals a↵ected therefore

corresponds to the number of distinct sites visited by a BRW, as also argued by Dumonteil et al. [30] for the case

of viral propagation in animal populations on two dimensions. In the continuum space limit, the volume explored

by the BRW is sometimes referred to as the Branching Wiener Sausage [31, 32].

Accounting for space in viral processes is a key step to describe viral propagation in real systems [33]. The

first to introduce a spatial process with birth were Fisher [34] to study the propagation of advantageous genes,

and Kolmogorov, Petrovsky and Piskunov [35] in the study of the general problem of di↵usion with increase of

particles. Both of these seminal papers proposed a continuum limit for the two species process described by the

chemical reaction

X + Y ! 2X, (2.1)

which occurs with rate of unity. Here both particle species can di↵use. The equation describing the evolution of
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the proportion h(x, t) of particles of type X in the system is the well known F-KPP equation

@h
@t

(x, t) =
@2h
@x2 (x, t) + h(x, t) � h2(x, t). (2.2)

Eq. (2.1) describes the branching of particles of type X. This branching is limited by the presence (or absence) of

partiles of type Y . Hence the quadratic saturation appearing in Eq. (2.2), which also ensures that the maximum

value of the fraction h(x, t) is unity. The fact that the F-KPP is a deterministic model, implies that fluctuations are

neglected. Thus regimes where fluctuations dominate the dynamics cannot be described by these types of models.

One of the earliest attempts to include space into stochastic epidemic models and compare with epidemiologic

data was by the statistician Murice Bartlett [36, 37]. He constructed a stochastic model that accounted for person

to person transmission in the propagation of measles. The model considered infected individual that could infect

a nearest neighbour at a given rate. Infected individuals were removed from the lattice a given rate. New suscep-

tible individuals were introduced at a certain rate, while there was also spontaneous infection of susceptible sites.

Bartlett was able to perform numerical simulations on lattices of up to 6 ⇥ 6 sites (the computational limit at the

time), and studied the seasonality of measles outbreak in cities of England. This model served as motivation for

the study of further spatial epidemic models. In the mid 70’s J. Radcli↵e [38] considered the so-called branching

Brownian motion (BBM), first introduced by Ikeda, Nagasawa and Watanabe in the late 1970’s [39], as an approxi-

mation to Bartlett’s model, and studied its convergence. Similarly to the system described by Eq. (2.1), the simpler

BBM describes the evolution of the single species process, without extinction

X ! 2X, (2.3)

where particles of species X di↵use in space. In one dimension, progress was made in the study of range of

the BBM, in particular, a duality was found between the range of the BBM and the F-KPP equation [40]. The

branching random walk (BRW) considered in this chapter is an extension of the BBM in the sense that particles

are also allowed to decay. In recent years, exact calculations of the range of a 1-dimensional BRW were found

by Dumonteil et al. [30]. It has been argued that the BRW provides a good approximation for the propagation of

disease in animal epidemics in two dimensions [30], where the area explored maounts to the total population of

infected individuals. In this paper, the authors suggest that studying epidemics in humans, and human networks

becomes more complicated, because of long range interactions due to air travel, among others.

In this chapter, the BRW is not only studied in lattices of arbitrary dimensions, but it is also shown how the

approach followed here can deal with long range communications and human networks such as the ones discussed

in [30].

As described above, the BRW consists of a system where random walkers produce descendants or decay at rates

given. Descendants are random walkers indistinguishable from the parent one, thus they themselves can undergo

branching and extinction, while preforming the random walk. The BRW is a spatial extension of a Galton-Watson-

type process [41], a non-spatial stochastic process describing the birth/death dynamics of entities. In the context

of epidemic models, each lattice site corresponds to a susceptible individual, however in this case susceptible
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individuals do not get spontaneously infected, disease propagates along nearest-neighbours represented by the

random walkers. Distinct sites visited account for the total number of individuals that were ever a↵ected by the

disease.

The average number of descendants produced as a result of branching and extinction, controls a transition

between a subcritical and a supercritical phase [21]. In the subcritical regime the average o↵spring number is

lower than one, thus on average the number of particles decays exponentially with time, and the disease ultimately

infects only a finite number of sites. In contrast, in the supercritical regime the average o↵spring number is greater

than one, thus the average number of particles in the system grows exponentially, and the virus eventually engulfs

almost all available space [21, 30]. When the average o↵spring number is exactly one, the process is said to be

in a critical regime. At criticality, none of the processes, branching or extinction, dominate over the other, thus

random fluctuations control the dynamics. The expected fraction of distinct sites visited or the size of the epidemic

outbreak can be seen as the order parameter of the process.

The characterisation of the statistical properties of distinct sites visited by a BRW is a long-standing problem

of branching processes and random walk theory [42, 30, 22]. Exact results have been obtained for one-dimensional

systems by Ramola et al. [22]. They found that the in the critical regime, where the branching and death rates are

equal, that the distribution p(a) of number of sites visited a scales like

p(a) ⇠ a�3 (2.4)

for large span a, and scales linearly, i.e. p(a) ⇠ a, for small span. Studying the volume explored by a BRW in one

dimension is simplified by the property that, starting from a single infected site, every site between the leftmost

and the rightmost reached sites must have been already visited by an active random walker. However, this method

is not directly applicable for higher dimensional systems. In two dimensions Dumonteil et al. [30], by providing

some symmetry arguments, derived the properties of the area and perimeter of the convex hull of the cluster of

visited sites, and related it to the spreading of animal epidemics. They found that, in two dimensions, the area

explored, as measured by the convex hull, grows logarithmically in time [30]

hai (t) ⇠ log(t), (2.5)

and its probability distribution scales like

p(a) ⇠ a�2. (2.6)

In three dimensions and below, some results have been obtained for a related system, the so-called tree-indexed

random walk by Le Gall et al. [43, 44]. However, this system conditions the process to a given o↵spring number,

thus cannot be directly related to the BRW studied in this chapter.

In the next section an alternative route to calculate the scaling properties of the volume explored by a branching

random walk is presented. A reaction-di↵usion process is introduced, where active (branching) random walkers

leave behind immobile tracer particles [31], like the breadcrumbs left behind by Hänsel and Gretel [45], c.f.

Figure 2.1a. As every site can carry at most one tracer, their total number becomes a counter of the number
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(a)

(b) t1 t3

t2

Figure 2.1: Tracing the path. (a) The active walkers, Hänsel and Gretel, leave a trace of breadcrumbs along their
way to mark the path they have taken. Birds slowly remove the breadcrumbs, as if they were subject to decay
(regularisation, see main text). (b) Time evolution of branching random walkers (red) and the cloud of visited sites
on a 3d regular lattice at times t1 ⇠ 102, t2 ⇠ 103, and t3 ⇠ 104. Scale bars are equal for all time points. This figure

has been published in Sci. Rep. as part of the manuscript [2].

of distinct sites visited, the size of the outbreak. A snapshot of the process in three dimensions can be seen

in Fig. 2.1b, which shows the cloud (grey) of visited sites and the branching random walkers (red) on a three

dimensional lattice. The master equation of this reaction-di↵usion process is then cast into a statistical field theory

using the ladder operators introduced by M. Doi [23] and L. Peliti [24] (described in Sec. A). This formalism

provides a systematic way for including noise fluctuations and correlations in the calculations of the observables,

allowing the study of regimes that would otherwise be ignored. Field theoretic renormalisation in dimensions

d = 4 � " then allows the derivation of the scaling of the number of distinct sites visited, and the power-law decay

of the distribution in arbitrary integer dimensions. Furthermore, it is shown that the results obtained for regular

lattices can be extended to general graphs. These findings are supported with numerically simulations in regular

lattices, fractals, and artificial and real complex networks.

2.3 Branching random walk

In this section, a mathematical description for the epidemic process is introduced in terms of a reaction-di↵usion

system. Reactions, such as birth and death take place locally on-site, while di↵usion emerges from the o↵-site
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hopping of particles from one site to another. Here, a population of active random walkers that hop from their

current location x on a graph to any adjacent site y with rate H. Additionally, active walkers are subject to two

concurrent Poisson processes, namely extinction with rate e and binary branching with rate s. There is no volume

exclusion between active walkers, thus during a binary branching event, a single walker at locations x produces a

second identical particle at the same location x, which is indistinguishable from the parent particle. It is branching

that renders the particles active, as they inject particles to the system spontaneously and at the particle level. This

very process distinguishes the BRW from a standard Brownian motion, where there is a fixed number of particles

in the system.

The BRW is a bosonic process, and can be written in chemical reaction language as

A
s

�����! 2AH (2.7)

A
e

�����! ; (2.8)

where the squiggly arrow represents di↵usion of particles of species A.

As the observable of interest is the number of distinct sites visited, an immobile tracer particle species B is

introduced. Tracer particles are deposited by active walkers with rate � at every lattice site they visit, thereby

leaving a trail of tracers behind, similar to the breadcrumbs left by Hänsel and Gretel [45], Fig. 2.1a.

Contrary to the bosonic nature of active walkers, the constraint that at most a single tracer can reside at any

given lattice site is imposed. This carrying capacity for tracers implies that the total number of tracers at a given

time corresponds exactly to the number of distinct sites visited by the BRW, in the limit of � going to infinity.

Furthermore, a carrying capacity of unity means that the spawning of a tracer is suppressed in the presence of

another tracer. As it is shown later, this steric e↵ect generates a series of nonlinear interactions in the field-theory,

complicating the calculations significatively. Yet, only with this restriction in place is the number of tracers a

measure of the number of distinct sites visited by the walkers. Additionally, for reasons that will become clearer

in the field-theoretic formulation, tracer particles B are allowed to become extinct with rate ✏0. In principle, this

would a↵ect the measurement of the number of distinct sites visited, however, the limit ✏0 ! 0 is taken before any

observables are calculated. The reactions for tracer particles B can then be expressed as

A
�

������! A + B (2.9)

B
✏0

������! ; (2.10)

As mentioned above, the deposition rate � has to diverge in order to mark every single site visited by the walkers.

However, it turns out that this limit is irrelevant as far as the asymptotic features of this process at large system

sizes and long times are concerned [31].

As states earlier, this process can be though as an epidemic spreading on a lattice. In this setup, branching
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random walkers account for the disease multiplying in a host site and spreading between neighbouring sites. Non-

visited lattice sites correspond to susceptible individuals, while visited sites count the number of individuals that

have been infected at least once. In the BRW considered here there is no volume exclusion of active walkers, this

means that a given site can contain an arbitrary amount of active (infectious) agents, simultaneously. In biological

tissues, this can account, for example, for the multiplication of viruses within a cell, which then are transmitted

from cell-to-cell. In this context, the total number of sites visited is a natural observable to quantify the range of

the viral propagation.

2.3.1 Master equation for the branching random walk

A master equation can be written for the joint probability P({n}, {m}; t) to find the lattice in a certain configuration

{n} and {m} of occupation numbers nx and mx for active walkers and tracers, respectively, at time t

d
dt
P({n}, {m}; t) = Ṗs + Ṗe + Ṗ✏0 + ṖH + Ṗ�, (2.11)

where the terms Ṗ• = Ṗ•({n}, {m}; t) on the right-hand side indicate the contributions from branching s, extinc-

tion of active walkers e and tracer particles ✏0, hopping H and deposition �, respectively. The contribution from

branching of active walkers corresponds to

Ṗs({n}, {m}; t) = s
X

x

⇣
(nx � 1)P({. . . , nx � 1, . . .}, {m}; t) � nxP({n}, {m}; t)

⌘
, (2.12)

where the sum
P

x runs through all lattice sites x, and nx corresponds to the number of active particles at site x.

The first term on the right-hand-side (RHS) amounts to the probability of increasing the particle number, though

branching with rate s, at the lattice site x from nx � 1 to nx, thus contributing positively to the change in probability

Ṗ. The second term on the RHS corresponds to the probability of increasing the particle number at a given site

from nx to nx + 1, thus contributing negatively to the change in probability Ṗ. In the same way, the contributions

to the evolution of the joint probability P from extinction of active walkers amount to

Ṗe({n}, {m}; t) = e
X

x

⇣
(nx + 1)P({. . . , nx + 1, . . .}, {m}; t) � nxP({n}, {m}; t)

⌘
, (2.13)

where e is the extinction rate of walkers. It should be noted that the master equation for the o↵-lattice binary

branching process corresponds to the sum of both Eq. (2.12) and Eq. (2.13), where the summation over lattice sites

can be dropped [46].

The contributions to Eq. (2.11) from the spawning of immobile tracer particles by active walkers must take

into account the finite carrying capacity m̄0 of each lattice site, which here is set to unity. To account for a finite

carrying capacity an e↵ective deposition rate is introduced that decays linearly with the number of tracer particles

already present at the site of interest, this may be written as

�e↵ = �
m̄0 � mx

m̄0
. (2.14)
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To study the number of distinct sites visited m̄0 is set to 1. With this constraint in place, each site visited is marked

with a tracer particle at most once, thus their total number accounts to the number of sites visited by the BRW.

With these considerations, the contributions to the master equation from deposition of tracer particles read

Ṗ�({n}, {m}; t) = �
X

x

⇣
(1 � (mx � 1))nxP({n}, {. . . ,mx � 1, . . .}; t) � (1 � mx)nxP({n}, {m}; t)

⌘
, (2.15)

where mx corresponds to the number of immobile tracer particles at site x. Analogously to Eq. (2.13), the contri-

bution from extinction of tracer particles reads

Ṗ✏0 ({n}, {m}; t) = ✏0
X

x

⇣
(mx + 1)P({n}, {. . . ,mx + 1, . . .}; t) � mxP({n}, {m}; t)

⌘
. (2.16)

The terms Eq. (2.12), (2.13), (2.15) and (2.16) correspond to the reaction terms of the BRW reaction-di↵usion

process, which act locally at every given sites. To account for di↵usion we consider that every active walker can

hop, with equal rate H, from its current lattice site x, to any of the q = 2d nearest-neighbour sites y of x (denoted

by y.nn.x in the sum), where d corresponds to the dimension of the lattice. With this in place, we can write the

contribution to the master equation from hopping as

ṖH({n}, {m}; t) =
H
q

X

x

X

y.nn.x

⇣
(ny + 1)P({. . . , nx � 1, . . . , ny + 1, . . .}, {m}; t) � nxP({n}, {m}; t)

⌘
. (2.17)

The sum of all contributions described above provides the master equation of the BRW with deposition of immobile

tracers. It is noteworthy that the model described by Eq. (2.11) is valid in general graphs, where the topological

properties of the graph can be incorporated by introducing a suitable adjacency matrix on the hopping process.

The Doi-Peliti formalism can be now used to cast the master equation Eq. (2.11) into a statistical field theory, as

described in the next section.

2.3.2 Field theory of the BRW

The steps one must follow to cast the master equation of a reaction-di↵usion process in terms of a Doi-Peliti field

theory are the following:

1. Construct the master equation for the reaction-di↵usion process of interest. In principle, reactions must be

local in time and space. However, there are extensions of the formalism for more general scenarios.

2. The master equation is turn into Schrödinger type equation using the ladder operators introduced by M. Doi

[23] and L. Peliti [24].

3. The action A[a†, a] in terms of ladder operators, is written in terms of time-continuous fields, by associ-

ating to each creation operator a† a corresponding creation field �†, and to each annihilation operator a an

annihilation field �.

4. It is useful, in some systems, to introduce a Doi-shifted creation fields �̃ = �† � 1. This can simplify the
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action, and the subsequent calculation of observables.

5. Once the Doi-shifted field-theoretic action has been obtained, observables can be calculated though pertur-

bative approaches.

Master equation to ladder operators

To cast the master equation for the BRW, Eq. (2.11), in terms of operators, the ladder operators a†, b†, which define

the creators, and a and b the annihilators for particle species A and B, respectively, are introduced. Following the

step (1) to (3) described above (details in appendix A) the actionA for the BRW, in terms of the ladder operators,

may be written as

A =s
X

x

⇣
a†

2
(x)a(x) � a†(x)a(x)

⌘

+e
X

x

⇣
a(x) � a†(x)a(x)

⌘

+�
X

x

⇣
(b† � 1)a†a � (b† � 1)b†ba†a

⌘

+✏0
X

x

⇣
b(x) � b†(x)b(x)

⌘

�
H
2q

X

x

X

y.nn.x

⇣
a†(y) � a†(x)

⌘
(a(y) � a(x)). (2.18)

It now becomes clear that the Doi-Shift can simplify some of the terms in the action.

2.3.3 Field theory and distinct sites visited

The Doi-shift [47] is performed by introducing the shifted creation operators ã = a† � 1 and b̃ = b† � 1. In the

case of the BRW is useful to go to the continuum limit �x ! 0, where �x is the lattice spacing, and
P

x !
R

dx.

In the continuum limit the Doi-shifted operators are mapped into corresponding creation fields ã ! �̃(x, t) and

b̃ !  ̃(x, t), and annihilation fields a ! �(x, t) and b !  (x, t). The Doi-shifted field-theoretic action may be

written in two parts

ADS = A0 +ANL, (2.19)

where, the bilinearA0 and nonlinearANL parts are given by

A0 =

Z
dd xdt

"
��̃

d�
dt
+ D�̃r2� � r�̃� �  ̃

d 
dt
� ✏0 ̃ + ⌧ ̃�

#

|                                                        {z                                                        }
L0(�, ,�̃, ̃)

(2.20)

ANL =

Z
dd xdt

h
s�̃2� + � ̃�̃� � � ̃ � � ⇠ ̃2 �̃� �  ̃ �̃� � � ̃2 �

i

|                                                                  {z                                                                  }
LNL(�, ,�̃, ̃)

, (2.21)

where d represents the spatial dimension of the process, and the Laplacian terms is generated when taking the

continuum limit in space of the hopping term Eq. (2.18). The integrands L0 and LNL correspond to the bilinear
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and non-linear part of the Liouvillian L = L0 + LNL. The space and time integrated Liouvillian produces the

field-theoretic actionA =
R

dd xdtL, whose exponential eA enters into the path integral formulation. The di↵usion

constant is D = (H/q)�x2, and H / �x�2 when the limit �x! 0 is taken, in order to maintain finite di↵usivity.

The control parameter of the process corresponds to the net extinction rate r = e � s. As described in Sec. 2.2,

when r = 0 the expected o↵spring number is one i.e, the system is in the critical regime. For r < 0, the system is in

the supercritical regime, where the number of particles in the system on average increases, while r > 0 corresponds

to the subcritical regime, were the number of walker on average decays with time. Hereafter, the focus is put on

the critical case r = 0, where fluctuations dominate the dynamics, and the behaviour becomes unpredictable and

highly volatile.

Through field-theoretic renormalisation in dimensions d = 4 � " the exact scaling behaviour of the number

of distinct sites visited by the walkers can be determined. In the field theory, all large scale phenomena will

be controlled by r ! 0+, which corresponds to the onset of epidemics, the limit studied here. The large scale

limit is usually referred to as the infrared, as in Fourier space, this limit is obtained by looking a short (infrared)

wave-vectors, i.e. the limit k! 0.

The Liouvillian constructed above is the object that allows the exact calculation of the scaling exponents of the

p-th moment of the volume explored by a branching random walk hap
i (t, L), in time t, and the linear system size

L. In terms of operators, these observables corresponds to powers of the total number of tracer particles at time t,

summed over all lattice sites, given that the system is initialised with a single active walker at position x0 at time

t = 0. The first moment, is then obtained by integrating
D
a(x, t)a†(x0, 0)

E
over all space, which in field-theoretic

formulation reads

hai (t, L) =
Z

dd x
D
 (x, t)�†(x0, 0)

E
(2.22)

=

Z
dd x

D
 (x, t)�̃(x0, 0)

E
, (2.23)

where we have used the fact that h�i = 0. The moments of the number of sites are dominated by integrals of the

form

hap
i (t, L) ⇠

Z
dd xp . . .dd x1

D
 (xp, t) . . . (x1, t)�̃(x0, 0)

E
, (2.24)

or equivalently, by evaluating the Fourier transform at spatial momentum k = 0. These are functions of the

couplings introduced above, but to leading order not of the walker’s initial position x0. Here, the brakets h•i

correspond to the path integral

D
 (xp, t) . . . (x1, t)�̃(x0, 0)

E
=

Z
D⇧

�
 (xp, t) . . . (x1, t)�̃(x0, 0)

�
eA, (2.25)

which measures the p-point correlation function of tracers at (xi, t), i = 1, 2, . . . , p in response to the creation of a

walker at (x0, t = 0). Here, the integration measure isD⇧ = D�D�̃D D ̃ .
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2.3.4 Propagators, couplings and observables

As stated earlier, the aim is to calculate the scaling of the moments of the number of distinct sites visited by the

critical BRW at long time and large system size limits.

In order to render the Laplacian term in Eq. (2.19) local, the action is rewritten in Fourier space, where the mo-

mentum k is the conjugate of position x and the frequency ! is the conjugate of time t (as defined in appendix B.4).

Then the bilinear part of the Liouvillian reads

L0 = �ı̊! ˆ̃��̂ + Dk2 ˆ̃��̂ + r ˆ̃��̂ � ı̊! ˆ̃  ̂ + ✏0 ˆ̃  ̂ + ⌧ ˆ̃ �̂, (2.26)

where •̂ indicate the Fourier-transformed fields. From Eq. (2.26) we can read directly the propagators for active

walkers
D
�̂(k,!) ˆ̃�(k0,!0)

E
0
=
�̄(k + k0)�̄(! + !0)
�ı̊! + Dk2 + r

= , (2.27)

where �̄(k+k0) = (2⇡)d�(k+k0) denotes a scaled d-dimensional Dirac-� function, and correspondingly for �̄(!+!0).

Diagrammatically, the propagator is shown as a straight line, where time is to be read from right to left. For the

tracers the propagator corresponds to

D
 ̂(k,!) ˆ̃ (k0,!0)

E
0
=
�̄(k + k0)�̄(! + !0)

�ı̊! + ✏0
= , (2.28)

diagrammatically shown as a wavy line, also to be read from right to left. Both propagators carry a positive mass,

r = e� s in Eq. (2.27) and ✏0 in Eq. (2.28). The mass of tracer particles ✏0 in Eq. (2.28) regularises the propagators

of the immobile particles in the field theory, guaranteeing causality as the inverse Fourier transform will generate

a Heaviside-✓ function in time. This is pictorially represented by the birds that eat the breadcrumbs left behind by

Hänsel and Gretel’s to trace their path (Fig. 2.1a). The limit ✏0 ! 0 is taken before any observable is evaluated.

Finally, from Eq. (2.19) the transmutation vertex reads

D
 ̂(k,!) ˆ̃�(k0,!0)

E
0
= ⌧

�̄(k + k0)�̄(! + !0)
(�ı̊! + ✏0)(�ı̊! + Dk2 + r)

=
⌧

(2.29)

and signals the appearance of a tracer particle (wavy) in response to the presence of a walker (straight), as time is

to be read from right to left.

The non-linear part of the Liouvillian, LNL, contributes with six interaction vertices, which diagrammatically

read

s �
(2.30)

�⇠ �
(2.31)

�� ��
. (2.32)
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Finally, the observables of the form of Eq. (2.25) have the diagrammatic structure

p .... . (2.33)

Their scaling in time and finite size can be extracted from the scaling of the vertex generating function, which is

the standard object of field-theoretic renormalisation. In the next section all possible infrared-relevant interactions

are described.

The transmutation rate ⌧, corresponding to � on the lattice, and the branching rate s of the active particles (s on

the lattice), and di↵usion with constant D are the three processes that are expected to govern all infrared behaviour

in all dimensions and are therefore assumed to be dimensionless. As it is shown in the following section, these

two choices determine the engineering dimension [48] of all other couplings, resulting in ⇠,  and � being infrared

irrelevant. Together with �, these four couplings are due to the suppression of the spawning of tracers when a site

is occupied already. At the upper critical dimension, dc = 4, the coupling � is marginally relevant, being infrared

irrelevant above and relevant below.

2.4 Field-theoretic renormalisation

In the following, the field-theoretical procedure to obtain the scaling of the number of distinct sites visited by the

BRW is presented.

2.4.1 Relevant interactions

As discussed in the previous section, the deposition of tracer particles introduces a series of non-linear interaction,

which are represented diagrammatically in Eq. (2.30). However, by dimensional analysis arguments it can be

shown that beyond dimensions d = 4 all such non-linearities become irrelevant, i.e. correlations vanish at long

time and large system size. For this reason dc = d = 4 is usually referred to as the upper critical dimension of the

process. To put this in context, for a non branching random walk, correlations vanish above d = 2, thus it is the

branching process that pushes the critical dimension up.

2.4.2 Dimensional analysis of the couplings

To compute the upper critical dimension of the process described by the Liouvillian L = L0 +L1, Eqs. (2.20) and

(2.21), and to extract the relevant interactions, i.e the couplings that remain relevant in every spatial dimension, the

engineering dimensions (here, represented by [·]) of every coupling in the action are computed. It is expected that

the long range physics in time and space is governed by three processes: di↵usion with constant D, branching with

rate s, and transmutation with rate ⌧. Introducing three independent dimensions, namely A, B and C, and imposing

[⌧] = A, [s] = B, and [D] = C, (2.34)
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with [x] = L, [t] = T, and [@t] = [Dr2] it follows that T = CL2 is not an independent dimension. As the action,

A =
R

dd xdtL, itself must be dimensionless, i.e. [A] = 1, we obtain [r] = T�1 = CL�2 and

h
�̃
i
= B�1CL�2,

⇥
�
⇤
= BC�1L2�d,

h
 ̃
i
= A�1B�1C2T�2,

⇥
 
⇤
= ABC�2L4�d (2.35)

for the fields in real time and space, such that [�̃�] = [ ̃ ] = L�d. The engineering dimensions of the couplings

follow:

[�] = B�1C2Ld�4 [�] = ABC�1L2 [�] = ALd (2.36a)

[] = CLd�2 [⇠] = ABC�1Ld+2. (2.36b)

Setting A = B = C = 1, the critical dimension dc = 4 is found, above which all of these interactions become

irrelevant. At the critical dimension d = dc = 4 the couplings �, �, , and ⇠ remain irrelevant, while � becomes

marginal. To regularise the ultraviolet, short scales, the renormalisation is performed in dimensions d = 4 � ✏ < 4.

This regularisation allows the evaluation of loop integrals that would, in d = 4, be logarithmically divergent.

To summarize, from the dimensional it is obtained that together with the propagators, the transmutation ⌧ and

the interaction vertices s of branching and �� of suppression of spawning represent all relevant couplings at the

critical dimension dc = 4.

Performing field theoretic renormalisation in dimensions d = 4� ✏ (as detailed in Sec. B.1.1) the scaling of the

number of distinct sites visited by the BRW can be obtained. These results are presented in the following section.

2.5 Scaling of the number of sites visited

Following the field-theoretic approach it is obtained that in the thermodynamic limit at long times t, the expected

number of distinct sites visited or the volume explored, hai (t, L), scales like t(d�2)/2 in dimensions d < 4. In

dimensions d < 2 this volume remains finite in large t. The scaling of the pth moment of the number of distinct

sites visited follows,

hap
i (t, L) / t(pd�2)/2 for Dt ⌧ L2 (2.37a)

hap
i (t, L) / L(pd�2) for Dt � L2 (2.37b)

in d < 4 provided that pd � 2 > 0. The gap-exponent [49] of
D
ap+1

E
/ hap
i for the scaling in L, which can be

thought of as the e↵ective dimension of the cluster of visited sites, is therefore d in dimensions less than dc = 4.

To support these results, numerical simulations of the BRW were performed on regular lattices (details in

Sec. B.6). For dimensions d = 1, 2, and 3, a perfect agreement is found as shown in Figs. 2.2a, 2.2b, and 2.2c,

where, after an initial transient, the moments scale according to Eq. (2.37) in time and system size. The comparison

between the analytic scalings, Eq. (2.37), and the power-law fittings obtained from the numerics are shown in
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Figure 2.2: Distinct sites visited by the BRW on regular lattices. Scaling of the moments of the numbers of
distinct sites visited in time (left) and system size (right) for (a) 1d, (a) 2d, (c) 3d, and (d) 5d regular lattices. Solid
black lines represent the theoretical exponents given by Eq. (2.37) for d < 4, and Eq. (2.38) for d > 4. Simulations
parameters: H = 0.1, s = e = 0.45, ✏0 = 0, and � ! 1. This figure has been published in Sci. Rep. as part of the

manuscript [2].
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exponent d=1 d=2 d=3 d=5
num theo num theo num theo num theo

↵1 0.47(2) 1/2 1.0(2) 1
↵2 0.98(3) 1 2.0(1) 2 2.9(3) 3
↵3 0.48(4) 1/2 2.0(1) 2 3.5(1) 7/2 4.8(4) 5
↵4 1.0(1) 1 2.9(1) 3 5.0(2) 5 6.7(7) 7
↵5 1.5(1) 3/2 3.9(1) 4 6.4(2) 13/2 9(1) 9
gap 0.5(1) 1/2 1.0(1) 1 1.5(2) 3/2 2.0(5) 2

Table 2.1: Scaling of visited sites in time. Scaling in time, hap
i (t) ⇠ t↵p , of the p-th moment of the number of

distinct sites visited for regular lattices of integer dimension, d, as indicated. The columns marked num shows the
numerical results, the columns marked theo show theoretical results according to Eqs. (2.37a). The row marked
mean gap show the average gap-exponent,

⇣
↵5 � ↵plow

⌘
/(5 � plow), for the corresponding lattice, where plow is the

lowest moment displaying algebraic divergence.

Tabs. 2.3 and 2.2.

The process is free beyond dc = 4 dimensions, where the probability of any walker or any of its ancestors or

descendants ever to return to a previously visited site drops below unity, and the scaling becomes independent of

the dimension,

hap
i (t, L) / t2p�1 for Dt ⌧ L2 (2.38a)

hap
i (t, L) / L4p�2 for Dt � L2 (2.38b)

with logarithmic corrections in d = dc = 4. The system size gap-exponent,in dimensions greater than dc = 4 is

thus 4, as confirmed by numerical observations in dimension d = 5 (see Fig. 2.2d and Tab. 2.4).

As correlations become irrelevant (in d > 4), this is usually referred to as mean-field behaviour. The set of sites

visited may thus be regarded as a four-dimensional object, projected into the d-dimensional lattice considered.

Intuitively, these results show that in dimensions d  4 a BRW will explore the environment in a compact way,

without leaving holes in the cloud of visited sites. E↵ectively infecting all sites in a neighbourhood. This is

a feature of the branching dynamics that allows the process to e�ciently cover lattices of dimensions d = 4.

However, in higher dimensions, branching random walkers can get e↵ectively lost in the lattice, due to the large

number of dimensions. Here di↵erent o↵spring of the BRW might explore space without ever retracing their path,

or even without ever meeting another sibling. This means that in d > 4 the cloud of visited sites is not necessarily

compact, and might have a more "dendritic" appearance. Furthermore, the results presented in Fig. 2.2 show that

higher dimensional lattices (d > 2) promote a scaling of the mean (p = 1) that grows indefinitely in time, up to

finite size e↵ects. This is also true for higher moments, where, for example, the variance, related to the second

moment (p = 2), scales faster in higher dimension of the lattice, up to dimensions d = 4, indicating that a viral

process becomes more volatile in higher dimensional systems.

Focusing on dimensions below dc = 4, the distribution of the number of distinct sites visited, a, follows a

power law,

P(a) = Aa�(1+2/d)
G(a/ac) (2.39)
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exponent d=1 d=2 d=3 d=5
num theo num theo num theo num theo

�1 0.97(4) 1 1.9(2)* 2
�2 2.1(2) 2 3.9(1)* 4 5.7(5)* 6
�3 0.96(4) 1 4.2(3) 4 6.8(2)* 7 10(1) 10
�4 1.93(7) 2 6.1(3) 6 9.8(3)* 10 14(2) 14
�5 2.93(8) 3 8.1(4) 8 12.7(4)* 13 17(3) 18

gap 0.9(1) 1 2.0(3) 2 2.9(2) 3 4(1) 4
fit range [255, 4095] [15, 127] [7, 127] [7, 31]

Table 2.2: Scaling of visited sites by a BRW as function of the system size. Scaling, hap
i (t) ⇠ L�p , of the

p-th moment of the number of distinct sites visited as function of the system size L, for regular lattices of inte-
ger dimension d as indicated. The columns marked num show the numerical results, the columns marked theo
show theoretical results according to Eq. (2.37b). The row marked mean gap shows the average gap-exponent,⇣
�5 � �plow

⌘
/(5 � plow), for the corresponding lattice, where plow is the lowest moment displaying algebraic diver-

gence. *Goodness of fit < 0.05.

with metric factor A and cuto↵ ac ⇠ (Dt)d/2 for Dt ⌧ L2 and ac ⇠ Ld otherwise. This results (see Fig. 2.3a) shows

how increasing the dimensionality of the lattice promotes the appearance of larger events, evidencing the relevance

of dimension when, for example, attempting to extend in vitro (plated, 2D) to in vivo (bulk tissue, 3D) conditions in

biological systems and material science. The fact that in a 3D tissue the coordination number is higher compared

to the 2D case, implies that a virus has the means to spread faster, and there is a higher risk for the virus to extend

to a larger fraction of the tissue in the 3D case.

100 101 102 103 104
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10-5

100
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-2 -5/3

-3/2
1 dimension
2 dimensions
3 dimensions
5 dimensions

Figure 2.3: Probability distribution of the number of visited sites for regular lattices of dimensions d =
1, 2, 3 and 5. The solid black lines represent the predicted scaling given by Eq. (2.39). Simulations parameters:
H = 0.1, s = e = 0.45, ✏0 = 0, and � ! 1. This figure has been published in Sci. Rep. as part of the manuscript

[2].

In dimensions d � dc = 4 the resulting scaling of the distribution is that of Eq. (2.39) at d = 4, where the

probability distribution decays the slowest, with exponent a�3/2. To numerically construct the distribution P(a)

of sites visited, the total number of distinct sites visited by the process was recorded for 106 realisations of the

process. The numerical results coincide with our theoretical predictions, as shown in Fig. 2.3a.

The exponents found above for d = 1 are in agreement with the exact solution by Ramola et al. [22], Eq. (2.4),
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Figure 2.4: Probability distribution of the number of visited sites for Sierpinski carpet, random tree, and a pref-
erential attachment (scale-free) networks. The solid black lines represent the predicted scaling given by Eq. (2.39).
Simulations parameters: H = 0.1, s = e = 0.45, ✏0 = 0, and � ! 1. This figure has been published in Sci. Rep.

as part of the manuscript [2].

where P(a) decays as a�3. In two dimensions the power-law tail of the number of distinct sites visited decays as

a�2, which coincides with the decay of the 2d convex hull area distribution [30], Eq. (2.6).

2.6 Extension to general graphs

In the field theoretic approach followed to find the scaling in Sec. 2.5 the spatial dimension of the lattice enters

only in as far as its spectral dimension is concerned, which characterises the density of eigenvalues of the Laplace

operator on the graph considered. The results presented earlier extend naturally to all translational invariant lattices

and graphs, by replacing the dimension d of the lattice in Eqs. (2.37), (2.38) and (2.39) by the spectral dimension

ds of the graph, as detailed in Sec. B.5.

This holds true, more generally, as long as the lattice Laplacian itself does not undergo renormalisation, i.e. in

the absence of an anomalous dimension [50]. In the study of networks the number of nodes N, is a more natural

measure of the size of the network than the linear size L. Using L ⇠ N1/ds we can write the scaling of the BRW in

time and number of nodes as

hap
i (t,N) / t(pds�2)/2 for Dt ⌧ N2/ds (2.40a)

hap
i (t,N) / N(p�2/ds) for Dt � N2/ds . (2.40b)

In this expression the gap-exponent for the scaling in number of nodes always unity, independent of the network.

This extension to graphs allowed the prediction of the behavior of the BRW spreading in both artificial graphs rel-

evant for social and biological sciences, and complex systems in general [51, 52, 28, 53], as well as real networks.

To illustrate this and validate these results, the BRW was studied on both a Sierpinski carpet (SC) (Fig. 2.5a, meth-

ods Sec. B.6), and a random tree network (RTs) (Fig. 2.6a and methods Sec. B.6). Both of these graphs are widely

applied in the context of porous media [54] and percolation [55], and have known spectral dimension: ds ⇡ 1.86
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Figure 2.5: Scaling on general graphs on the Sierpinski carpet. (a) Shows representative states, with the full
Sierpinski carpet shown on inset, indicating walkers (red), visited sites (grey) and non-visited sites (black). (b)
Shows the scaling of moments of the number of distinct sites visited as a function of time, and (c) linear system
size. The solid black lines represent the predicted scaling from Eq. (2.37). Simulation parameters: H = 0.1,

s = e = 0.45, ✏0 = 0, and � ! 1. This figure has been published in Sci. Rep. as part of the manuscript [2].

for the SC [56], and ds = 4/3 for RTs [57]. Considering Eq. (2.37) with d = ds, for the SC, and (2.40) for the RT

accurate predictions for the spreading dynamics were obtained, as confirmed by numerical simulations, Figs. 2.5

and 2.6a. These theoretical predictions extend also to the distribution of visited sites (see Fig. 2.4a), by setting

d = ds in (2.39).

Furthermore, because of their relevance, the spreading of the BRW was studied on a class of scale free networks

[58]. Since their introduction, scale free graphs have been observed to describe a plethora of natural phenomena,

including the World-Wide-Web [59], transportation [60], and metabolic networks [61], to name but a few. Here, a

preferential attachment scheme was considered [58] (Fig. 2.6b, see methods Sec. B.6) to construct networks with

power-law degree distribution (Fig. B.1). The existence of a finite spectral gap in these networks, which indicates

slow decay of return times of a random walker [62, 63], suggests that the BRW process is bound to exhibit mean-

field behaviour, i.e. ds � 4. This is confirmed by numerical simulations, where the probability distribution of

visited sites (Fig. 2.4a) was found to have a power-law decay with exponent �1.52(2) ⇡ �3/2, and the scaling

in time and system size (Fig. 2.6b and Tab. 2.1) follow mean-field behaviour as predicted by (2.40) for ds = 4.

In practical terms, this means that a viral process in well connected networks, such as the World-Wide-Web, are
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Figure 2.6: Scaling on general graphs on (a) random tree and, (b) preferential attachment networks. The top row
shows representative states, indicating walkers (red), visited sites (grey) and non-visited sites (black). The bottom
row shows the scaling of moments of the number of distinct sites visited as a function of time, and number of
nodes. The solid black lines represent the predicted scaling from Eqs. (2.40). Simulation parameters: H = 0.1,

s = e = 0.45, ✏0 = 0, and � ! 1. This figure has been published in Sci. Rep. as part of the manuscript [2].

highly volatile. There, the risk is high that, for example, from a ensemble of viruses and malware, at some of them

will infect a large proportion of the network.

The spectral dimension gives information on the behaviour of dynamical processes on graphs. Hence, the BRW

can be used to characterise real-world networks through the power-law decay of the distribution of visited sites.

For example, the BRW exhibits near mean field-behaviour on a subset of the Facebook network, which has been

characterised as scale-free [3]. As a result, the BRW evidences a large e↵ective (spectral) dimension, ds = 3.9(1),

indicating a fast spreading of the viral process on this network.

It should be emphasized that the spectral dimension is sensitive to changes in network topology and connec-

tivity. To exemplify this two publicly available datasets for the yeast protein interaction network were considered.

Even though both network describe subsets of the same biochemical network, namely the complete yeast protein
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exponent S.C. R.T. P.A.
num theo num theo num theo

↵1 1.0(1) 1
↵2 0.81(5) 0.86 0.35(7) 1/3 2.8(2) 3
↵3 1.71(7) 1.79 0.9(1) 1 4.8(4) 5
↵4 2.62(10) 2.72 1.6(2) 5/3 6.6(5) 7
↵5 3.54(14) 3.66 2.2(4) 7/3 8.5(9) 9
gap 0.91(9) 0.93 0.6(2) 2/3 1.9(4) 2

Table 2.3: Scaling of visited sites in time. Scaling in time, hap
i (t) ⇠ t↵p , of the p-th moment of the number of

distinct sites visited for the Sierpinski carpet (S.C., ds ⇡ 1.86), the random tree (R.T., ds = 4/3), and preferential
attachment (P.A., ds > 4) networks. The columns marked num shows the numerical results, the columns marked
theo show theoretical results according to Eqs. (2.37a) with d replaced by the spectral dimension ds. The row
marked mean gap show the average gap-exponent,

⇣
↵5 � ↵plow

⌘
/(5� plow), for the corresponding graph, where plow

is the lowest moment displaying algebraic divergence.

exponent S.C. R.T. P.A.
num theo num theo num theo

�1 0.49(1) 1/2
�2 1.9(1) 1.72 0.58(6) 1/2 1.49(1) 3/2
�3 3.8(2) 3.59 1.6(1) 3/2 2.49(2) 5/2
�4 5.7(3) 5.45 2.6(2) 5/2 3.49(2) 7/2
�5 7.5(4) 7.31 3.7(2) 7/2 4.49(2) 9/2

gap 1.9(3) 1.86 1.0(1) 1 1.00(2) 1
fit range [9, 243] [26

� 1, 212
� 1] [214

� 1, 219
� 1]

Table 2.4: Scaling of visited sites by a BRW as function of the system size. Scaling, hap
i (t) ⇠ L�p , of the p-th

moment of the number of distinct sites visited as function of the system size L, for the Sierpinski carpet (S.C.,
ds ⇡ 1.86), the random tree (R.T., ds = 4/3), and preferential attachment (P.A., ds > 4) networks. The columns
marked num show the numerical results, the columns marked theo show theoretical results according to Eq. (2.37b)
for the S.C. (with d replaced by the spectral dimension ds), and according to Eq. (2.40) for random tree (R.T.) and
preferential attachment (P.A.). The row marked mean gap shows the average gap-exponent,

⇣
�5 � �plow

⌘
/(5� plow),

for the corresponding graph, where plow is the lowest moment displaying algebraic divergence. *Goodness of fit <
0.05.

interactome, the spectral dimensions in both cases were found to be significantly di↵erent, ds = 3.0(1) for the

network with N = 1870 nodes [4], and ds = 3.8(1) the for the larger network of N = 2559 nodes [5], leading

to di↵erences in properties of the spreading process among the two. The discrepancy points to di↵erences in the

connectivities of both networks and shows the importance of having access to the complete network in order to

provide a reliable analysis of their properties, which may have biological implications [64, 65].

2.7 Generalisation to k o↵spring

The results presented above for the binary branching process, where walkers branch into exactly two new walkers,

apply equally to more general branching processes, where the number of o↵spring in each birth event is given by

a distribution. This can be seen, for example, in real-world scenarios where a single infected individual or device

infects a whole neighbourhood around them, or in the case of signal propagation in protein networks, where the

activation of one node (or chemical reaction) can activate a whole fraction of its neighboring nodes.
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Figure 2.7: Probability distribution of number of distinct sites visited P(a), for the Facebook network (L =
63730 nodes) [3], and yeast protein interaction networks with L = 1870 [4], and L = 2559 nodes [5]. According to
Eq. (2.39) the power-law decay of P(a) is a�(1+2/ds) provided ds  4 suggesting a spectral dimension ds ⇠ 3.83(6)
for the large subset of the yeast protein network, ds = 2.97(5) for the small subset, and ds = 3.85(6) for the

Facebook network. This figure has been published in Sci. Rep. as part of the manuscript [2].

Considering the case where the o↵spring number is a random number, it is shown here that this process lies

in the same universality class as binary branching [66, 67]. Instead of two distinct processes for branching into

two active walkers (with rate s above) and getting extinguished (with rate e above), the latter can be considered as

branching into k = 0 walkers and the former generalised to branching into any number k of walkers. Each of these

processes may occur with rate �k, which can always be written as �k = �pk with pk the normalised probability for

branching into k walkers and � the rate with which any such processes take place.

The two contributions Ps, Eq. (2.12), and Pe, Eq. (2.13), are thus subsumed and generalised by

Ṗc({n}, {m}; t) = �
1X

k=0

X

x
pk

⇣
(nx � k + 1)P({. . . , nx � k + 1, . . .}, {m}; t) � nxP({n}, {m}; t)

⌘
, (2.41)

which allows for p1, but the process of branching into a single particle has no bearing on the master equation.

In the field theory, the mass of the propagator for active walkers becomes [46]

r = ��
1X

k=0

pk(k � 1) = �(1 � k̄), (2.42)

where k̄ =
P
1

k=0 pkk is the average o↵spring number, which again, defines a subcritical (r > 0), a critical (r = 0),

and a supercritical (r < 0) regime.

In the case of generalised branching, the non-linear part of the action contains contributions of the form �̃k�

for all k � 2 as soon as there is any k � 2 with pk > 0 [46]. However, terms with k > 2 turn out to be infrared

irrelevant as their couplings have dimension Bk�1C2�kL2(k�2). The field theoretic results above for binary branching

therefore govern also branching processes with generalised o↵spring distribution.
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2.8 Discussion and outlook

In this chapter, it has been shown how field theoretic methods provide a versatile and powerful method to study

reaction di↵usion processes, and to extract otherwise inaccessible observables of interest.

With the use of field-theoretic renormalisation, the scaling properties of the number of distinct sites visited by

a branching random walk where obtained, which are relevant for a wide range of problems. This process can be

interpreted as the simplest model for spatial viral propagation, where lattice sites correspond to susceptible individ-

uals and active branching walker model model the viral spreading. For this reason, the results presented here are of

particular importance for the study of viral propagation in 3d tissues and high dimensional networks, such as the

internet. In this context, Eq. (2.37) describes the rapid propagation of the average number of infected individuals

hai ⇠ td/2�1 in dimensions d > 2. At the same time, the fat-tailed distribution of visited sites, Eq. (2.39), (exponent

�1 � 2/ds) results in the high variability of the viral spread at the onset of an epidemic. This onset, corresponds to

the critical value of parameters (s = e), where a viral process transition from a controlled (subcritical) disease, to

a large scale (supercritical) epidemic.

The fact that the BRW does not consider volume exclusion for the infection (active particles), means that an

infected individual (site) can carry an arbitrary number of active particles at a given time. Moreover, infected

(visited) sites are not removed from the system, as they would on a standard SIR model, and are not di↵erent, as

far as the active particles are concerned, from non-visited sites. This mean that an infected individual can be re-

infected (revisited) not only an arbitrary number of times but also arbitrarily fast. This is di↵erent, for example from

an SIS model, where infected individuals would become susceptible again at a given rate, preventing immediate re-

infection. With these di↵erences in mind, the BRW can be though as a simplified description of viral transmission,

multiplication and deletion in a population of hosts. As discussed in previous sections, in a cellular tissue, a virus

might multiply in a host cell, and be transmitted to a neighbouring one by direct cell-to-cell contact. This process,

in principle, does not prevent the virus from returning to the original host, and does not limit the number of viral

units within each host. In this context the number of sites visited, corresponds exactly to the number of cells ever

a↵ected by the virus, and the results presented here provide theoretical bounds for the spreading speed, fluctuations,

and higher moments.

The field theoretic approach followed in this chapter provides a quantitative measure to explore and determine

the spectral dimension of artificial and real networks. This is useful when the spectral dimension is greater or

equal to 2, where the traditional approach of exploring graphs, based on simple random walks [68, 63], fails to

extract their spectral properties. The predicted relation between dimensionality of the graph and the propagation

dynamics can contribute to the design of more robust and reliable information and chemical networks, as variations

in a networks topology directly a↵ects the spreading properties. In summary these results shed new light on the

properties of spatial branching processes on general graphs, and their applicability in the study of real complex

networks, and provide observables of broad interest for the characterisation of real world lattices, tissues, and

networks.

In the next chapter, branching is studied in a two dimensional system. In that case a mean field approach is

followed, as the dynamics of interest is not dominated by the fluctuations. A F-KPP-type equation is introduced to
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model the super-critical branching of particle-like solutions.
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Chapter 3

Branching in ecology: the case of patch

self-replication

The results presented in this chapter have been published in a Special Issue of Ecological Indicators as part of

a manuscript entitled Extended patchy ecosystems may increase their total biomass through self-replication in

collaboration with Mustapha Tlidi, Marcel G.Clerc and Daniel Esca↵.

I contributed to all analytic calculations, performed the numerical simulations and data analysis. I prepared all

figures presented here, and wrote the manuscript together with M. Tlidi, with input from all coauthors.

3.1 Summary

The branching random walk studied in Chapter 2 corresponds to the simplest spatial extension of a branching

process, where volume exclusion is absent. Thus active particles do not interact. Branching phenomena like the

one discribed earlier can originate, in real systems, from a variety of self-organising processes. At the nano-scale

molecular cooperation can give rise to replication of polynucleotides [69]. At the microscopic, cellular, level

molecular pathways activate an intricate machinery that can initiate mitosis, the process by which living cells self-

replicate. At a much larger scale, such as vegetated landscapes, it has been proposed that non-local interactions

between individual plants can lead to spatial self-organisation and patterning of real landscapes [70]. For many

of these processes, volume exclusion plays a role in shaping the spatial distribution of particles or patterning. In

this chapter it is shown that non-local interactions allow for the formation of localised vegetation patched, which

correspond to dense clusters of trees, shrubs or grass. Building up on previous work (Bordeu et al. [16]), it

is shown that the circular shape of vegetation patches may become unstable, deforming, subsequently splitting

into two new, indistinguishable patches. These patches naturally repel each other, as if they where subject to

volume exclusion. This growth mechanism, is often referred to as self-replication. The self-replication process can

continue until the whole system is covered by patches of vegetation. It is also shown how the reverse process, by

which a homogeneous vegetation cover destabilises, can lead to the formation of a patched landscape. By relating
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the parameters of the theoretical model with the resource availability or aridity, a connection can be made with

desertification and the dynamics of real ecosystems. With the support of satellite images, it is argued that the

organisation of real ecosystems is indeed a consequence of self-organisation, and that self-replication might be a

real phenomena at large scales.

3.2 Introduction

In 1952 Alan Turing first proposed the ideas of reaction-di↵usion systems and pattern formation [71], and what was

later termed Turing instability, by which a homogeneous solution of a dynamical system can lose its stability via a

finite wavelength perturbation, giving rise to a spatially extended self-organised pattern. Since then, our knowledge

on the theoretical origins of pattern formation and selection have increase considerably [72]. Pattern formation

mechanisms have been proposed to control the formation of animal skin prints [73], the spatial organisation of

sand dunes [74], and the organisation of large scale ecosystems [70], to name but a few.

y

x

(a)

(c) (d)

(b)

Figure 3.1: Two dimensional extended patterns and localised structures. (a) Shows a stable homogeneous
solution, and (b) the pattern state resulting from a Turing instability of the homogeneous state in (a). (c) and (d)
show a localised solution and a bound state, respectively. Colours indicate the amplitude of the field from low

(blue) to high (red).

The Turing mechanism explains the formation of system-wide (extended) patterns, where the whole system

transitions from an homogeneous state (Fig. 3.1a) to a pattern solution (Fig. 3.1b). Localised structures (LSs), on

the other hand, correspond to solutions that usually appear as circular bumps or dips with respect to the homoge-
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(a) (b)

100 m 100 m

Figure 3.2: Satellite images of vegetation patches in (a) the Mufumbwe District in the North-Western Province
of Zambia [13�46039.8300S, 25�16039.5900E], and (b) the Fombeni, Mozambique [18�41002.1700S, 35�31055.9500E].
The images were obtained using Google Earth Pro. The blue arrows indicate overlapping patches, possibly under-

going self-replications. This figure, for which I hold the copyright, has been adapted from [6].

neous state that supports them (Fig. 3.1c). There is a large zoo of localised structures, including structures with

broken azimuthal symmetry (Bordeu and Clerc [18]) and structures that support permanent dynamics [75]. LSs

are particle-like solutions, they interact, and can form bound states (see Fig. 3.1d).

In this chapter, a pattern forming model is introduced to describe the interaction and propagation of vegetation

in scarce environments. In the context of vegetation, bare terrain (with zero total biomass) and the uniformly

vegetated states (maximal biomass) correspond to two homogeneous solutions of the system. Localised structures

represent patches of vegetation if they are supported by the bare state, or gaps if they appear as holes on the

vegetated state. Spontaneous transitions between uniform vegetation and fragmented ecosystem, where bare terrain

coexists with vegetation, has been widely observed in real ecosystems around the globe, examples are tiger bush

[76], fairy circles [77] and labyrinthine patterns ([78] and Bordeu [20]).This transition may occur due to changes

in the ecosystem, such as nutrient limitation, water deprivation or changes in the interaction between vegetation.

It is widely accepted that facilitative and competitive interactions between individual plants, together with a seed

dispersal mechanism provide su�cient conditions for the formation of large scale vegetation patches and extended

patterns [76, 79, 80, 81, 77, 82]. In real ecosystems, the spatial properties of the observed structures depend on

climate, seasonality, nutrient availability, terrain anisotropy, or anthropogenic and animal influence [83, 84, 85,

86]. Quantitative studies based on field observations have been made on the Sahelian gapped patterns formed

by Combretum micranthum (trees) [87, 88, 89], patches of vegetation in arid high altitude environments in the

tropical alpine ecosystems of the Andes formed by Festuca orthophylla (Bordeu et al. [16]), and for grasses and

Pycnophyllum cushions in Bolivia [90].

It has been recently shown, in a simplified model for vegetation dynamics, that localised patches can be desta-

bilized by changes in aridity, where circular LSs elongate, leading either to the formation of labyrinthine patterns

(Bordeu [20]) or to self-replication (Bordeu et al. [16]). The self-replication mechanism allows a single localised

structure to transition into an extended, hexagonal, periodic pattern of vegetation. During this transition the total

biomass in the system increases monotonically as newly formed patches contribute to the re-population of the

territory accessible to vegetation. From a theoretical point of view, self-replication is a well known patterning

phenomenon in chemical reactions [91, 92, 93, 94], it has also been reported for models in nonlinear optics [95]
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and vegetation dynamics [96, 16].

Here a general integro-di↵erential model is considered, where non-local interactions are taken explicitly into

account. The non-localities arise from the facilitating mechanisms, i.e. promoters of vegetation growth, compe-

tition mechanisms, which limit vegetation growth, and dispersion e↵ects. This model corresponds to a variant of

the theory of vegetation patterning established by R. Lefever [76], which focuses on the relationship between the

structure of individual plants and the facilitation-competition interactions existing within plant communities.

Through numerical simulations it is shown how self-replication provides a mechanism for scarce resource

ecosystems, populated with localised patches of vegetation, to transition to higher biomass states, ending in hexag-

onal patterns of vegetation patches. Moreover, it is shown that this kind of patterns may be obtained through the

decay of a homogeneous vegetated landscape towards a less populated fragmented state, where hydric stress in-

duces the contraction of vegetated areas. Depending on the levels of aridity, the ecosystems may decay to di↵erent

types of patterned states, or even collapse to the bare, desert state.

The characteristics of both self-replication (forward) and fragmentation (backwards) processes, are studied

analytically and numerically. It is shown that, depending on the levels of aridity, localised patches can be more or

less stable than the periodic pattern, a phenomenon previously studied in simpler local models [97]. In an attempt

to relate the theoretical observations presented here with real observations, satellite images from Zambia and

Mozambique are considered. These landscapes exhibit large vegetation patches, each in the range of 10�50 meters

in diameter (see Fig. 3.2). Statistical analysis of the satellite images is then preformed to shows that the patch sizes

correlates with the inter-patch distances, which together with the existence of a characteristic wavelength in the

system supports the hypothesis that the vegetation self-organises into the observed configurations. This opens the

possibility that patch self-replication is e↵ectively taking place in these ecosystems.

This chapter is organized as follows: in Sec. 3.3 the theoretical model is introduced. In Sec. 3.4 the results

are presented, which include the linear stability analysis of the model, numerical analysis of the self replication

process, the analysis of real spatial patterns. The discussion and outlook are left for Sec. 3.5.

3.3 The model

Modeling vegetation dynamic is a challenging and complex problem. The approach considered depends on the

level of description one wants to achieve, the di↵erent approaches can be classified into three categories [98]. The

first class considers the modeling of vegetation as front dynamics with non-local interactions. The second class

considers the local coupling of above-ground vegetation with underground and/or above-ground water transport in

the form of a coupled reaction-di↵usion system. The third class corresponds to a stochastic approach, where the

main ingredient are the environmental fluctuations that trigger the patterning of the vegetation landscape.

In this chapter, the focus is on the relationship between the above-ground facilitation mechanisms and the below

ground (root-driven) competitive interaction of vegetation clusters. For this reason, the first approach is adopted,

where the order parameter is the vegetation density and the single-plant level, and a there is no requirement of

additional state variables [98]. The model considered is a variant of the theory of vegetation patterns established

by R. Lefever et al [76] in the late nineties. The spatio-temporal dynamics of vegetation is described in continuous
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space and time, facilitative and non-local competitive plant-to-plant interactions are introduced through exponential

interaction kernels [76, 77, 89, 98]. The model described a single vegetation species, and assumes a flat landscape

with isotropic and homogeneous environmental conditions. Further, it assumes that all plants are mature, i.e.

age classes are neglected. This approximation can be justified by the fact that individual plants grow on much

faster time scale compared to the time scale of the formation of regular vegetation pattern, thus plant maturation is

considered instantaneous.

The order parameter of the system corresponds to the vegetation biomass density b = b(r, t), which is a function

of the position r and time t. The evolution of the biomass density b is given by [77, 89]

@b
@t
= b[1 � b]Mf (r, t) � µbMc(B(r, t))

|                                    {z                                    }
G(b,B)

+Dr2b, (3.1)

where the phenomenological parameter µ measures the biomass loss/gain ratio as measured for a single, isolated

plant, which can be viewed as an indirect measure of resource scarcity or stress that limits net biomass produc-

tion. In what follows µ is referred to as the aridity parameter. The two terms of the function G(b, B) in Eq. (3.1)

account for the plant-to-plant facilitation and competition feedback, respectively. They describe the spatial ex-

tension of feedback e↵ects in terms of the characteristic ranges Lf and Lc over which facilitative and competitive

interactions operate. The facilitative interactions take place on the level of the aerial plant structure (crown), they

involve sheltering, litter, water funneling or any other e↵ect that contributes to the biomass natural growth [99].

On resource-limited environments, plants compete for their survival, in face of climate change and increasing

drought periods, plants must adapt their root structures to overcome resource scarcity [100, 87]. Through their

root structures (rhizosphere), each individual plant tends to deprive its neighbors of vital resources, such as water

or nutrients, opposing the facilitation mechanisms and impeding vegetation growth. Field measurements of roots

lateral spread indicate that they may extend up to an order of magnitude further than the aerial structure (crown)

[87, 88, 89, 90]. Some observations suggest and exponential decay with distance of the competitive interactions

[88]. The di↵usion term in Eq. (3.1) describes the spatial propagation of vegetation via seed dispersion with dif-

fusion constant D, which measures the strength of dispersive processes. The competitive plant-to-plant interaction

are assumed to be of the form Mc = exp(�cB(r, t)), where the non-locality is accounted by the term

B(r, t) =
✓ 1

Nd

Z
e�|r

0
|/Lc b(|r + r0|, t) dr0

◆
, (3.2)

where, �c is the strength of the competitive interaction, and Lc is the characteristic range of the competition,

usually equated to the radius of the rhizosphere. The normalisation constant Nd depends on the dimension d, in

two dimensions it corresponds to N2 = 2⇡L2
c . To simplify the problem, the facilitation is considered to be the local

process

Mf (r, t) = exp(� f b), (3.3)

where � f is the strength of the facilitative interaction. This assumption is justified by the fact that in real ecosys-

tems, the rhizosphere, which accounts for competitive interactions, can extends more than an order of magnitude
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beyond the facilitative interaction range.

In what follows, the linear stability analysis of Eq. (3.1) is presented, and the existence of localised solutions

is discussed.

3.4 Results

3.4.1 Stability analysis of the integro-di↵erential model

In the absence of non-local interactions, i.e. �c = � f = 0, which implies Mc = Mf = 1 Eq. (3.1) becomes

@b
@t

(r, t) = b(r, t)
⇥
µ̄ � b(r, t)

⇤
+ Dr2b(r, t), (3.4)

where µ̄ = 1 � µ. The local Eq. (3.4) correspond to a Fisher-KPP equation [34, 35], which describes a transcritical

bifurcation. The homogeneous solution b = 0 is stable and b = µ̄ unstable for µ̄ < 0, for values of µ̄ above the

critical point µ̄ = 0 the stability shifts, b = 0 becomes unstable and b = µ̄ stable. Due to the physical nature of

vegetation, negative values of b, which describe the biomass density are unphysical. This equation describes the

front propagation of a stable state over an unstable state, yet does not exhibit stable spatial patterns.

For positive values of �c and � f , the stationary homogeneous states of Eq. (3.1) correspond to the solutions of

0 = b [1 � b] exp(� f b) � µb exp(�cb), (3.5)

where the competition term acquires the simple form Mc = exp(�cb). The solutions of Eq. (3.5) correspond to the

bare state b0 = b = 0, and the uniform vegetation covers b = bs, given by the solutions of

µ = (1 � bs) exp(⇤bs), (3.6)

where the feedback di↵erence ⇤ = � f � �c indicates if the community is cooperative (⇤ > 1) or anti-cooperative

(⇤ < 1). The bare state b0 represents a territory devoid of vegetation, which is stable for µ > 1, while bs, solutions

of Eq. (3.6), correspond to uniform vegetation covers that can be either monostable for ⇤ < 1 or bistable for ⇤ > 1

(see Figure 3.3). In the monostable regime (⇤ < 1) the biomass density decreases monotonously with increasing

aridity µ and vanishes at µ = 1. In the bistable regime (⇤ > 1) the uniform plant distributions exists up to the

tipping point

bl = (⇤ � 1)/⇤ and µl = exp (⇤ � 1)/⇤, (3.7)

obtained by setting dµ
dbs
|bl = 0 in Eq. (3.6).

The spatial stability of the stationary homogeneous states bs
1 is studied by introducing a small amplitude

1Here bs corresponds to the only solution of Eq. (3.6) in the monostable case (⇤ < 1), and the upper branch for the bistable regime (⇤ > 1).
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Figure 3.3: Stability diagrams for Eq. (3.1). (a) Shows the stability of the homogeneous states b0 and bs, as a
function of the aridity parameter µ, with respect to homogeneous and inhomogeneous perturbations. Stable states
are indicated by solid line, and unstable ones are represented by dotted lines. The Turing-unstable regime is shown
in green, where the limits are given by Eq. (3.18). (b) Shows the marginal stability curve of the biomass b with
respect to the perturbation wavenumber k. The green shaded area corresponds to the domain of instability delimited
by the zeros of Eq. (3.12). Parameter are � f = 2, �c = 1, Lc = 4, and D = 1. This figure, for which I hold the

copyright, has been adapted from [6].

(" ⌧ 1) finite-wavelength perturbation away from bs,

b(r, t) = bs + "e�(k)t+ı̊k·r + c.c.|              {z              }
�

(3.8)

The deviation from bs is expressed in terms of normal modes exp (ı̊k · r) as function of the wavevector k. The

perturbation is considered along the x-axis, k · r = kx, without loss of generality. The stability of the perturbation

is then obtained by finding the regions where the perturbation decays exponentially in time, i.e �(k) is negative and

the state is linearly stable, or the perturbation grows exponentially, where �(k) is positive and the state is linearly

unstable.

Introducing Eq. (3.8) in Eq. (3.1) and linearising around the homogeneous stationary state bs,

�(k)� = G(bs, bs) +
@G
@b

�����
b=B=bs

(b � bs) +
@G
@B

�����
b=B=bs

(B � bs) � Dk2� (3.9)

=) �(k) =
h
� f (1 � bs) � 1 � �c(1 � bs)Id

i
bse� f bs � Dk2 (3.10)

where G(bs, bs) = 0 and Eq. (3.6) was used to remove the µ dependence from the second equation. The integral Id

is dimension-dependent

Id =
1

Nd

Z
e�|r

0
|/Lc+ı̊k·(r0+r)dr0 = eı̊k·x

(1 + (kLc)2)(1+d)/2 (3.11)

and represents the non-local contributions of the perturbation �. Finally, the dispersion relation for �(k) for the

two-dimensional system reads

�(k) =
2
66664� f (1 � bs) � 1 �

�c(1 � bs)
�
1 + (kLc)2�3/2

3
77775 bse� f bs � Dk2. (3.12)
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The critical points associated with the Turing instability are obtained from imposing the conditions

@�

@k

�����
bs=bc, k=kc

= 0 (3.13)

�(kc) = 0, (3.14)

simultaneously. These two conditions provide the thresholds bc and the most unstable wavenumber kc associated

with the Turing instability. The critical wavenumber at the onset of the instability, obtained from Eq. (3.13), is2

kc =
1
Lc

2
6666664

 
3�cbc(1 � bc)e� f bc L2

c

2D

! 2
5

� 1

3
7777775

1
2

. (3.15)

As a function of the aridity parameters µ, Eq. (3.15) reads

kc =
1
Lc

2
6666664

 
3µ�cbce�cbc L2

c

2D

! 2
5

� 1

3
7777775

1
2

, (3.16)

The characteristic wavelength of the Turing pattern is given by � = 2⇡/kc. This, together with Eq. (3.16), implies

that the wavelength of the system and size of the patches scale inversely with the aridity µ. The value of the critical

state bc is obtained from Eq. (3.14)

[� f (1 � bs) � 1]bse� f bs �

⇣
�c(1 � bs)bse� f bs

⌘ 2
5

 
D
L2

c

! 3
5
0
BBBBBB@

 
2
3

! 3
5

+

 
3
2

! 2
5
1
CCCCCCA +

D
L2

c
= 0. (3.17)

This equation can be solved numerically, with the values obtained for the density bc the values for the critical

aridity for which the Turing instability exists can be obtained from Eq. (3.6). In the critical regime (⇤ = 1), with

� f = 2, �c = 1 , Lc = 4 and difussivity D = 1, Eq. (3.17) has two finite-wavelength solutions

(µc1, bc1) = (0.921, 0.353) (3.18)

(µc2, bc2) = (0.997, 0.070), (3.19)

with critical wavenumbers kc1 = 0.318 and kc2 = 0.127, respectively.

The results of the linear stability analysis are summarized in Fig. 3.3. As the aridity level µ increases, the

vegetation evolves toward extinction. For 0 < ⇤  1, the biomass decreases monotonously. The bare state density

b0 is reached at the switching point µ = 1, where the uniformly vegetated state is destabilized through the Turing

instability [71, 101]. In the range µc1 < µ < µc2, the uniform biomass state is linearly unstable and the uniform

cover may destabilise into a pattern state. In real ecosystems, extremely arid ecosystems do not support vegetation

(desert state), while nutrient-rich environments can support a uniform vegetation cover (forest, jungle or grassland

state). The Turing instability occurs when the aridity is decreased a desert state decreases, such that a perturbation,

2As a function of the dimension d Eq. (3.15) reads kc =
1
Lc

2
6666664

 
(d+1)�cbc(1�bc)e� f bc L2

c
2D

! 2
d+3
� 1
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.
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i.e. the deposition of a seed in the terrain, grows. In this way that the desert state is lost. Moreover, the Turing

instability occurs in a region where the homogeneous cover is not stable either, as there is not enough nutrients or

water to support it. This competition between growth of vegetation and competition for nutrients that leads to the

spatial patterning observed in nature.

When increasing the stress or aridity, the wavelength of the corresponding pattern increases (see Eq. (3.16)),

simultaneously the morphology of the vegetation pattern changes. In general, as the aridity parameter is increased,

the pattern transitions from spots of low biomass density, which form hexagonal patterns, to periodic stripes al-

ternating regions of high and low biomass density, to spots of high biomass density forming hexagonal patterns

[102, 103]. This behavior has also been observed in mathematical models that include water transport by under-

ground di↵usion and/or above ground run-o↵ [81, 104, 105, 78].

Lc µc bc �c

3.5 0.942
0.994

0.308
0.106

20.0
36.7

4.5 0.907
0.999

0.379
0.0505

20/1
61.7

5.5 0.888
0.9995

0.411
0.0305

21.3
88.4

6.5 0.877
0.9998

0.430
0.021

22.7
117.5

Table 3.1: E↵ect of the competition range in the critical values of the parameters. Each rows show, for the
indicated competition range (first column) the critical values of aridity µc1 (top) and µc2 (bottom), biomass density
bc1 (top) and bc2 (bottom) found by solving Eqs. (3.17) and (3.5), and pattern wavelengths �c1 = 2⇡/kc (top) and
�c2 = 2⇡/kc (bottom) (Eq. (3.15)). Lc and �c are measured in units of distance, bc in units of density, and µc in
units of inverse time, accounting for the drain of resources from the system.

Table 3.1 shows how di↵erent interaction ranges a↵ect the range of parameters where patterns emerge, delim-

ited by µc1 and µc2, as shown in Figure 3.3. Given an interaction range, which in real ecosystems depends on the

vegetation species and in the properties of the soil. In hard terrain with low infiltration roots tend to be superficial

and extend horizontally [88]. Vegetation with longer competitive range have a larger unstable region (see Tab. 3.1,

second column). As it is argued later, the relation between the competitive interaction and the pattern wavelength

provides means to compare the model with real observations.

3.4.2 Localised vegetation patches

As mentioned earlier, periodic states and localised patches emerge as a self-organised response by the system to

changes in the parameters. Aridity is of particular interest as it can be directly related to field measurements and

changes in the soil or environmental conditions.An increase in aridity, lowering of hydric resources or other stress

factors may cause a contraction of savannas and woodlands in a process called fragmentation, which may lead to

desertification. This triggers the formation of vegetation patterns and patches. Theoretically, the necessary and

su�cient condition for the formation of localised patches is the coexistence between a homogeneous state and a

periodic pattern. This implies the existence of a hysteresis loop, inside of which there is a pinning range of the

aridity parameter where localised gaps or patches are stable [106, 107, 77]. This comes from the fact that a portion
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t1 t2 t3 t4

t5 t6 t7 t8

Figure 3.4: Evolution of a self-replicating vegetation patch, for a sequence of time points t1 < t2 < ... < t8.
Obtained through direct simulation of Eq. (3.1), for a system of size 128 ⇥ 128-points, and parameters: µ = 1.02,

� f = 2, �c = 1, Lc = 4.5, D = 1.This figure, for which I hold the copyright, has been published in [6].

of the pattern state can be connected to the homogeneous state by stationary fronts, getting pinned, forming a

localised pattern. Similar pinning behavior occurs in many spatially extended systems where a homogeneous

steady state coexists with a spatially periodic state [108, 109, 110, 111]. It was first reported by Y. Pomeau [108]

for front solutions in hydrodynamics, and has since then also been applied to vegetation patterns [97]. localised

structures and localised patterns are a well documented phenomenon, concerning almost all fields of natural science

including chemistry, biology, ecology, physics, fluid mechanics, and optics [112, 113, 70].

The stability analysis of Eq. (3.1) shows that for some range of the aridity parameter, there is coexistence

between homogeneous and pattern states. This implies the existence of stable localised vegetation patches in that

parameter range. These stable circular localised structures are supported by one of the homogeneous steady state,

b0 = 0 (bare state) or bs (homogeneously vegetated). In the context of vegetation dynamics, localised structures

that emerge from the unpopulated state b0 = 0, correspond to circular patches of vegetation that are surrounded by

bare terrain.

3.4.3 Self-replication: from a localised vegetation patch to an extended pattern

When the aridity is tuned beyond the regime of stability of the localised vegetation patches they may be a↵ected

by a modulational instability, where the patch elongates, increases in size to finally split through the decay of the

central "bridge", into two new, identical patches. This dynamic process, which resembles cellular mitosis, occurs

repeatedly to each of the new patches allowing a single initial patch to end up covering the whole system, as can

be observed in numerical simulations (Fig. 3.4). In the long time limit, the system relaxes to a periodic hexagonal

pattern of vegetation patches. This is the same phenomenon recently described in a related model for vegetation

dynamics (Bordeu et al. [16]). However, in that case the authors considered a simplified model with only local

interactions.

Here it is hypothesised that if present in real vegetation, self-replication may allow the total biomass of the

ecosystem to increase even when the aridity is too high for the existence of a stable homogeneous cover of veg-

etation. Fig. 3.5 shows the increase of the total biomass on the transition from a single patch to four patches
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Figure 3.5: Evolution of the total biomass during the transition from a single vegetation patch to four patches
through self replication. Points obtained through direct simulation of Eq. (3.1), for a system of size 128 ⇥ 128-
points, and parameters: µ = 1.02, Lc = 4.50, � f = 2, �c = 1, D = 1.Representative images of the localised
structures are shown at the di↵erent stages. The total biomass is normalized with respect to the biomass of a
mature patch. Thus, during maturation a single spot reaches a normalized biomass of 1, to replicate into two
patches to reach a total of almost 2. After a second replication (four patches) the system reaches a normalized

biomass of 3. This figure, for which I hold the copyright, has been adapted from [6].

through self replication, measured in units of a single mature localised patch. It should also be pointed out that

in this model, Eq. (3.1), self-replication occurs only in regions with available terrain. This means patches on the

periphery of the patch cluster are much more likely to self-replicate than patches lying in the bulk (see Fig. 3.4).

For this reason, the growth rate of the total number of patches is proportional to the perimeter of the patch cluster,

thus grow linearly with time in the limit of large cluster size3.

As mentioned earlier, self-replication occurs through the destabilisation of a localised structure, where there

is an exponential growth of a modulational perturbation of the localised structure. The growth rate �0 of the

perturbation gives information on the time scales of self-replication and can be extracted from direct numerical

simulations of Eq. (3.1). For a fixed competition range Lc in Eq. (3.1), there is a range of aridity µ for which an

initial localised structure destabilizes and undergoes self-replication (see Fig. 3.6). As expected, the growth rate

�0 is faster for lower levels of aridity µ. For a fixed value of the aridity parameter µ, a longer competition range

Lc leads to a faster destabilisation of the localised patch, as can be seen in Fig. 3.6. This shows that the non-

local competition between vegetation not only has the intuitive e↵ect of decreasing the growth of neighbouring

vegetation, yet also contributes to a faster destabilisation of localised patches, accelerating the self-replication

process.

Moreover, for values of the aridity parameter µ below the self-replicating region (above the top dashed line in

3This is related to growth of the perimeter of the area explored by a branching process, as described in Chapter 2, in the super-critical regime
[22].
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Figure 3.6: Growth rate �0 of the unstable mode corresponding to an elongation of the vegetation patch,
leading to self-replication, for competition range (⇥) Lc = 4.50, (⇤) Lc = 4.25, and (•) Lc = 4.00, as a function
of the aridity parameter µ. Outside the limits indicated by black dashed lines, localised patches may remain
stable (bottom), or destabilize through a ring instability (top). Points were obtained through direct simulation of
Eq. (3.1), for a system of size 128⇥ 128-points, and parameters: � f = 2, �c = 1, D = 1. Lines correspond to linear
interpolation between the numerical data points for visualisation purposes only. This figure, for which I hold the

copyright, has been adapted from [6].

Fig. 3.6) there is a di↵erent route to self-replication, where the patch su↵ers from a ring instability. The dynamics

of the ring instability is as follows: the unstable localised patch growing radially, after reaching a critical size the

central portion of the structure decays, forming a doughnut-like shape. This is also unstable, and is followed by

the decay of two opposite sides of the doughnut, the structure ends up dividing into two new localised patches.

However, this instability is observed solely on isolated patches. Once the single initial patch has divided once

through the ring instability further self-replicating events take place through the usual mitotic-like divisions.

In real ecosystems vegetation patches are rarely isolated. Interactions between patches may play an important

role in shaping the large scale properties of their spatial distribution. To assess the e↵ect of such interactions, large

scale simulations containing hundreds of uniformly distributed patches were performed. The main objective of

this was to assess the role of the self-replicating process in the patterning of the system, where a characteristic

wavelength emerges in the system. For this, a system of 512 ⇥ 512-points was considered. The initial condition

was constructed through a spatial Poisson point process with rate 0.001, this generates on the order of 600 points

randomly distributed in the two-dimensional plane considered. Each of these points was then considered as the

center of a localised patch of 3-points radius, this can cause the merging of two patches, the resulting initial state

can be seen in Fig. 3.7a. The random field constructed was then used as the initial condition for simulating (3.1), for

a parameter region inside the self-replication windows (see Fig. 3.6, for Lc = 4.50). The transient state in Fig. 3.7c
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Figure 3.7: Large scale simulations, (a,b)-shows initial initial condition generated from a Poisson point process
with structures of 3-point radius, and its corresponding Fourier transform, respectively. (c,d)-Shows the evolved
state after 1000 iterations (dt = 0.1, dx = 2.0), and the corresponding Fourier transform, respectively. Parameter:
µ = 1.02, Lc = 4.5, � f = 2, �c = 1, and D = 1. This figure, for which I hold the copyright, has been adapted from

[6].

shows that the clumps quickly break up into distinct patches, while smaller patches grow in size, commencing the

self-replication process.

To assess the level of patterning of the initial and transient systems, the spatial Fourier transforms and cor-

responding power spectrum was computed. For the initial state (Fig. 3.7b), the power spectrum (apart from the

central peak) exhibits a characteristic wavelength of the order of the size of the localised structures (� = 3 A.U),

due to the approximately mono-dispersed sizes of the computer generated structures.
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Figure 3.8: Fragmentation of the homogeneous cover. (a) Shows the initial condition, where the system is in a
completely vegetated state for µ = 0.85. (b) The homogeneous state decays to a labyrinthine pattern by an increase
in aridity to mu = 0.95. (c) Shows the evolution of the system in the self replicating region (mu = 1.02). (d)
Shows the evolution of the system in the stable localised patches region (mu = 1.04). (e) Shows the corresponding
temporal evolution of the total biomass (normalized by the biomass of a the single patch), diamonds show the
transition from µ = 0.85 to µ = 0.95, triangles show the transition to µ = 1.04, while down-triangles show the
transition to µ = 1.02. Simulation parameters: Lc = 4.5, � f = 2, �c = 1, and D = 1. This figure, for which I hold

the copyright, has been adapted from [6].

On the other hand, when analyzing the transient state (t = 100, see Fig. 3.7d), a characteristic wavelength

much larger than the size of the structures (� = 14 points) is observed. This wavelength emerges as a result of

the self-organizing nature of the system (as described by Eq. (3.15)), where clusters split and the localised patched

interact to rapidly arrive to a characteristic spatial distribution. There are regions in the parameter space where

clumps can elongate without splitting and form labyrinthine patterns, which correspond to finger-like structures

that coexist with circular patches in a spatially disordered pattern, this was as also observed by Bordeu [20] on a

related model.
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Figure 3.9: Remote measurements of vegetation patches in Zambia. (a) Shows the satellite image obtained
from Google Earth Pro. (b) Shows the circular average of the 2d Fourier transform of the detected patches. (c) &
(d) Show the histograms for the equivalent radii and the nearest-neighbor distances between patches, respectively.
(e) & (f) Show the radial distribution function g(r) and Ripley’s L-function L(r) (lines show the 95% confidence

interval), respectively. This figure, for which I hold the copyright, has been adapted from [6].

3.4.4 Fragmentation: From homogeneous vegetation to patchy landscapes

In the previous section, it was shown that through self-replication a single or multiple localised patches may

increase the total biomass of a system, leading ultimately to an extended hexagonal pattern state. However, this is

not the only route by which a system can reach such patchy state. A second route is shown in Fig. 3.8, whereby an

homogeneously vegetated state (Fig. 3.8a, µ = 0.85) is destabilized by an increase in aridity towards a labyrinthine

pattern (Fig. 3.8b, µ = 0.95). Further increasing aridity drives the system towards two qualitatively distinct states,

one is reached when the aridity µ is increased to the region where localised patches are unstable and su↵er from

self-replication (Fig. 3.8c, µ = 1.02), there the labyrinthine pattern breaks down into multiple localised patches that

cover the system, generating a patterned state. The second, qualitatively di↵erent, state is reached when the aridity

is increased to the parameter region where localised patches are stable (from µ = 0.95 to µ = 1.04, Fig. 3.8d), there

the system reaches state consisting of a low number of isolated patches distributed in a disordered manner.

It is important to note that a direct transition from the stable homogeneous vegetation region (µ = 0.85) directly

into any of the patchy regions (µ = 1.02 or 1.04) generates an overall decay of the homogeneous state to the bare

state. Thus, an intermediate level of aridity is necessary for allowing the destabilization of the homogeneous cover

into a non-periodic patch pattern.
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3.4.5 Field observations through remote-sensing

The self-organisation hypothesis for vegetation dynamics and ecosystem patterning has solid theoretical grounds

[76, 104, 70]. However, processes such as ecosystem fragmentation or patch self-replication may, in principle,

take decades, this limits the data availability for the comparison between theoretical and numerical observations.

Here, satellite images are used in order to close the gap between the analytic and numeric results presented and

the dynamics of real ecosystems. Geographic locations were selected for which vegetation patches were clearly

visible, so that their spatial distribution could be studied. Eight distinct regions where selected, four located in the

Fombeni region, Mozambique, and other four in the Mufumbwe District, North-Western Province of Zambia (see

Fig. C.1), where the vegetation is dominated by medium size trees Brachystegia spiciformis. The observed patches

appear to be composed of groups of trees forming compact clusters (see Fig. 3.9a). Each patch can cover an area

of thousands of square-meters, with an e↵ective radius of tens of meters, as can be observed in Figs. 3.2 and 3.9a.

The typical radius of the patches varies from region to region, ranging from 7 to 36 meters. Most of the regions

show a marked characteristic size of the vegetation patches, and nearest-neighbor distance between them, as can

be seen in Figs. 3.9c and 3.9d, respectively. This suggests the existence of an underlying mechanism for the spatial

organisation of the patches.

To further study the properties of the spatial organization of the patches, both the Ripley’s L-function and

radial distribution function where measured. The radial distribution function g(r) = N(r)/Nr(r) measures the ratio

between the number of patches N(r) that lie within rings of radius r and width dr centred on a patch given, and

the expected number Nr(r) from a random distribution of patches. Values of g(r) < 1 (g(r) > 1) indicate clustering

(dispersion) of patches at a given scale. The L-function corresponds to the cumulative g(r), thus measures the level

of clustering or dispersion up to a given scale. In all regions analysed, both g(r) and L(r) (Figs. 3.9e and 3.9f) show

strong clustering at short scales, of the order of two to three patches, and dispersion for longer scales. The di↵erent

scales observed is further supported by the spatial Fourier transform of the patches detected (see Fig. 3.9b), which

shows two apparent characteristic scales, one of the order of 100 m and a larger one on the order of 350 m.

To study if there was a relationship between the size of the patches and the distance between them, as predicted

by Eq. (3.1), the mean equivalent radius was plotted against the mean nearest-neighbour-distance (NND) between

structures for each of the regions considered (see Fig. 3.10). A strong correlation was observed between the two

quantities, indicating that there might be an underlying mechanism controlling both the structures size and the

distance between them, with Zambia exhibiting the largest and more disperse structures. These observations are

consistent with the self-organisation hypothesis, where, as described theoretically by Eq. (3.16), there is an inverse

relation between the characteristic wavelength (and size of patches) and the level of aridity. Measurements of

the rainfall and temperature records of both regions (see Tab. C.1) showed that Mozambique is rainier, however

Zambia 3�C colder on average. The way in which these two environmental measures, together with properties of

the soil, can be related to the theoretical aridity µ remains unclear.

Field measurements of vegetation similar to the one observed in the regions of Zambia and Mozambique

studied here [114] have found that the typical competition distances (here Lc) are in the order of 9 meters, and are

an order of magnitude larger than above ground canopy. However the space between vegetated pattern can extend
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distance for each of the eight regions analyzed. This figure, for which I hold the copyright, has been adapted from

[6].

for up to 50 meters. These values are consistent with the theoretical measurements of the model used here (see

Tab. 3.1) where it was observed that the characteristic wavelength �c of the patterns ranges from five up to more

than ten times the characteristic distance of the competitive interactions Lc.

3.5 Discussion and outlook

In this chapter, it has been shown that self-replication, a phenomenon previously observed in local model of

vegetation dynamics (Bordeu et al. [16]), is also present when non-local competitive interactions are considered.

Self-replication occurs when a localised patch destabilised and split into two new patches. An unstable patch

may undergo multiple self-replication events, to finally cover the whole space available with a regular hexagonal

pattern, causing an increase in the total biomass in the system, over time. The use of the non-local model, as

compared to the local non-linear model used in earlier work [16], allowed the analysis of the e↵ect of the non-local

interaction range in the destabilisation of localised patches. It was shown that the rate of growth of the instability

leading to self-replication depends not only on the level of aridity considered, but also on the range of the non-

local interactions. A longer characteristic range for the competitive interactions lead to a faster destabilisation of

the vegetation patches. Furthermore, it was found that self-replication may occur trough a ring instability, where

the patch grows radially followed by the decay of the central region. Ring structures are also observed in real

landscapes (see Fig. 3.11) in transition regions from patchy to gaped terrains.
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Figure 3.11: Remote observation of vegetation patches and rings in Zambia. Some representative rings are
circled.

The study of the reverse process, by which a homogeneous cover decays into a patchy state revealed that the

self-replication regime may be an important intermediate stage in the decay of homogeneous covers of vegetation.

This provides enough time for the system to destabilise into a dense patchy state instead of decaying to the barren

state altogether. Alternatively, a decrease of the aridity beyond the self-replication regime leads to a more abrupt

decay in biomass, resulting in a low number of sparsely distributed patches. It is hypothesized that these processes

are occurring in the observed landscapes of Mozambique and Zambia.

Through the analysis of satellite images, evidence was found to support the self-organization hypothesis. This

includes (i) the existence of well defined circular vegetation patched, with a characteristic size and NND, (ii) the

relation between the equivalent radius and NND, which is compatible with the theoretical predictions, where a

single wavelength controls both the size of the structures and the pattern wavelength and has an inverse relation

with aridity, (iii) the existence of ring structures, (iv) large scale observations of the transition from homogeneous

vegetation to patchy landscaped gaped vegetation. Despite the limited amount of data, which prevents an evaluation

of the underlying processes involved in the organisation of the observed landscapes at the plant level, the results

presented here strongly suggest a self-organisation origin for the observed landscapes. More data, especially

field measurements, long time-lapse imaging and controlled experiments are necessary to confirm any claim on

the nature of the observed patterns. Nevertheless, the measurements presented in this chapter are a first step to

understand the distribution of the observed patterns. The state of some of the observed patches suggest that self-

replication might be an ongoing process, for example in the "dividing" patches showed in Fig. 3.2.

Similar models to the one presented in this chapter, Eq. (3.1), has been previously confronted quantitatively to

experimental measurement for two type of plants (Festuka orthophylla [90] and Combretum micranthum [87, 88,

89]. However, the knowledge of the below-ground structures of the type of vegetation of Zambia and Mozambique

is rather limited. From the current literature only rooting depth data and a quantitative index of the vertical distri-
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bution of roots are available, which are irrelevant for the models considered here. Moreover, the full lateral roots

extension has not yet been measured. For this reasons parameter extraction and quantitative comparisons between

theoretical results and field observations are unfeasible with the currently available data.

In the model, the parameters, such as aridity and interaction ranges are homogeneous in space and time. In

real ecosystems, variations in the terrain, due to the presence or absence of rivers, valleys, mountains and animals,

render the e↵ective aridity, space dependant. Time-dependent cycles, such ad day and night, seasonality, and

extreme weather events might also influence the patterning observed. Moreover, the life cycle of vegetation, which

are not considered in the model, imply an increase in the competitive range over time, as the rhizosphere matures

and enlarges. Future work will focus on addressing these space and time dependent features to study how they

a↵ects the stability and pattern selection in the system. Special emphasis will be on obtaining real data to compare

the theoretical results with real observation. An additional line of study, will focus on the interaction between

multiple species. In real ecosystems di↵erent species can compete for nutrient and space, however they might as

well have symbiotic relations whereby two species benefit each other, increasing their survability. It is expected,

from a neutral dynamics perspective, that a species with an advantage will quickly dominate over others. However,

it is yet unclear what the e↵ect of di↵erent interaction ranges and di↵erent sensitivities to aridity will be on the

stationary state of the system.
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Chapter 4

E↵ective potentials in cell-signal

interactions

The results presented in this chapter are under review for publication in Physical Review X as part of a manuscript

entitled E↵ective potentials in cell-protein signal interactions, co-authored by Clare Garcin, Shukry J Habib and

Gunnar Pruessner. Large parts of this chapter are quoted verbatim from a manuscript submitted to Phys. Rev. X

[7].

I performed and optimized experiments together with Clare Garcin. I developed the methods for data analysis

and theoretical model together with Gunnar Pruessner. I carried out analytic calculations and numerical simula-

tions. Shukry Habib designed the experiments in discussion with CG, IB and GP. I wrote the manuscript. All

authors discussed and interpreted the data, and commented on the manuscript.

4.1 Summary

Cell signaling is essential for cell fate determination and tissue patterning. Cells can dynamically explore their

environment and probe for instructive signals. As signalling molecules are presented to the receiving cell, they

are recruited and recognised by its membrane as to elicit a response to organise multicellular tissues. Cell-signal

interactions depend on multiple factors, such as the biochemical properties of the signals and the cell dynamics.

The accumulation and transport of signalling proteins by cells can generate a redistribution of the signals in the

environment, resulting in an emergent organisation of the signals’ spatial distribution. The detailed study of these

processes at the single cell level lies at the foundation of understanding multicellular organisation. In this chapter,

a simplified experimental setup is used, where single mouse embryonic stem cells (mESCs) can interact with

immobilized protein signals, in vitro. This system was developed to mimic in vivo situations where the protein

signal is presented asymmetrically to the stem cell.

A two species age-dependent correlation function is introduced to describe the spatio-temporal dynamics of

cell-signal interactions, which take place as active cells explore an inanimate environment that holds protein-coated
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micrometer-sized beads. Through the analysis of mESC data and numerical simulations it is shown that cells act

as e↵ective force-field generators, perturbing and organising their environment. This organisation, captured in the

form of an ageing e↵ective potential, is an emergent property of the population of single cells interacting with

randomly distributed localized signals. Although e↵ective potentials are extensively used in the modeling of active

particles, little is know of their biological applications. In this chapter, experimental evidence is given of ageing

e↵ective potentials in a single cell system, their origin is determined, and the implications for the organisation

of cellular systems is discussed. In this context, ageing is a consequence of the active nature of cells, which

accumulate and transport signals, thereby re-arranging their environment and influencing the observed e↵ective

interactions. By constructing the phase-diagram for the e↵ective potential a previously unobserved transition from

a zone of net attraction to a zone of net repulsion is found. This transition is related to the e↵ective cell-protein

signal interaction, which can be dominated by a capturing, disregarding or release mechanism, generating di↵erent

cell-signal interaction profiles. Furthermore, it is shown how these dynamic interactions relate to the organisation

of the protein-coated beads by cells. The ageing interactions give rise to temporal changes in the configurational

entropy of the system. This production of entropy, a fingerprint of out-of-equilibrium systems, is then cast in terms

of the e↵ective potential, to show that self-renewal signals contribute to a rapid organisation of the environment by

embryonic stem cells.

4.2 Introduction

Pluripotent stem cells are the building blocks of multicellular organisms. Pluripotency refers to the ability to

specialise or di↵erentiate into any of the three germ layers, endoderm, ectoderm and mesoderm [115]. The fate

of a pluripotent stem cell is determined by multiple factors. In particular, external factors, such as chemical and

mechanical [116] signals can regulate the precise outcome of the di↵erentiation process. Concentration gradients of

morphogens are thought to be one of the mechanisms responsible for controlling generic developmental processes

and tissue patterning [117, 118, 119]. The producing cells can secrete signaling ligands into the extracellular

matrix, which may di↵use to receiving cells or be actively recruited by them via membrane extensions projecting

into the extracellular matrix. The producing cells can secrete signaling ligands into the extracellular matrix. These

may either di↵use to receiving cells or be actively recruited by them via thin membrane extensions projecting into

the extracellular matrix. In some cases, signalling molecules are tethered to the cell membrane, preventing them

from di↵using [120, 121, 122]. Biochemical signals are then transmitted by direct cell to cell contact, which might

provide a faster and more controllable mechanism for signal propagation in tissues [117, 120, 122]. Cells recruit,

accumulate and transport these protein-signals by thin cell projections and movement, thereby organising their

environment. In the remainder of this chapter the term "signal" is used synonymously to "protein-signal".

The ways in which the mesoscopic organisation of cells and thus signals emerges from the microscopic cell-

signal interactions is still unclear. Understanding the spatio-temporal properties and scales involved in cell-signal

interactions at the single cell level are the basis to understand the organisation of cells at the tissue level.

Studying specific stem cell-signal interactions in vivo is challenging due to the inherent complexity of mul-

ticellular tissues, where a myriad of signals are being generated and received by cells simultaneously. There,
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Figure 4.1: Representative images of cell-bead interactions. (a) Snapshot of the experimental observation of
single mESCs and beads. Arrowheads indicate beads in contact with cells, scale 20 µm. (b) Simulation of a single
cell of radius r0 = 1/15 (encircled black) performing a random walk with step length ` = r0/5, on a periodic
system of linear size L = 1. The area covered by the cell up to time t = 500, A(t), is shown green. Dots correspond
to beads randomly distributed in the environment (black) and beads captured by a cell (blue). Total bead density
⇢b = 50. (c) Shows two representative images, at times t = 1 hour (left) and t = 9 hours (right), of the interaction of
mESCs and Wnt-beads. Beads that come in contact with cells are encircled, while their net translation between the
two frames is depicted by dashed arrows (right). scale bar in (a) and (c) is 20 µm. This figure has been submitted

to PRX as part of the manuscript [7]

pinpointing the exact role of each signal and analysing specific cell-signal interaction is impractical.

In recent years, there has been a wide interest in applying techniques from equilibrium and non-equilibrium

statistical mechanics to study cell organisation and tissue growth at multicellular level. Mean-field approaches

from fluids [123, 124], glasses [125], and nematic liquid crystals [126] have proven useful for modelling tissue

growth and ageing. Specifically, correlation lengths [127] and stationary cell-cell e↵ective potentials of interaction

[128] have been quantified. However, the dynamic interactions between cells and biochemical signals at single cell
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level are only partially understood.

In this chapter a previously reported experimental method is used by which Wnt3a protein is covalently im-

mobilised to the surface of micrometer-sized beads [129, 130]. These are inert, non-toxic beads, they have an iron

oxide nucleus encased in a thin polymer layer. This layer is coupled to Carboxylic Acid to which the ligand of

interest is bound. When mouse embryonic stem cells (mESCs) come into contact with these biochemically active,

signalling Wnt-beads, the beads provide a localised source of a self-renewal signal that can promote asymmetric

cell division, leading to the di↵erentiation of only one of the two daughter cells [131, 129]. A more detailed de-

scription of this canonical Wnt pathway is given in Sec. D.4. The Wnt protein coating can be chemically modified

by treatment with dithiothreitol (DTT) [130] to generate biochemically inactive, non-signalling iWnt-beads. It is

likely that both Wnt and iWnt have the capability of binding to a similar range of co-receptors on the cell membrane

[129, 132] (this hypothesis has not yet been tested experimentally). However, the inactivated iWnt protein has an

altered conformation preventing it from activating the pathways associated with asymmetric cell division and dif-

ferentiation. For this reason, di↵erences can be expected in the interaction of cells with Wnt-beads with that of

cells with iWnt-beads. Uncoated beads, Unc-beads, are used as control. These have no protein coating and would

otherwise stimulate the interaction between the bead and receptors on the cell membrane. The beads considered

are not engulfed into the cytoplasm and remain on the membrane surface for the duration of the experiments.

To quantify the interactions between single cells and localised signals (beads) a suitable correlation function is

introduced. This allows to show that cell-signal interactions give rise to, and can be quantified by, ageing e↵ective

potentials. These potentials capture cell-bead interactions from the level of the microscopic positioning of beads

up to the mesoscopic organisation of the environment. They characterise the interaction strength, range, and

reveal how cells position signals on the cell membrane, while also shedding light on the consequences of transport

of signals by cell movement. This method reveals di↵erences in the interaction of cells with di↵erent types of

bead coating (signalling, non-signalling, and uncoated), which a↵ect both the spatial and temporal scales of the

interactions. Numerical simulations of simplified models for the cell-bead system reveal di↵erent mechanisms in

the cell-signal interaction. Even more, these simulations allow the exploration of regimes where the transport of

beads by cells controls a smooth transition of the e↵ective potential from being e↵ectively attractive, promoting

the accumulation of beads, to e↵ectively repulsive profile, promoting a depletion of beads around the cells. This

behaviour turn out to be key in the recapitulation of experimental observations.

The ageing properties of the e↵ective cell signal interactions relate to the continuous and dynamic organisation

of the environment by cells (see Fig. 4.1c). This organisation is here quantified based on the relative position of

beads with respect to cells, by measuring the excess configurational entropy of the system. This quantifies the

driving of the system away from the uniform distribution of beads. In the absence of cells, beads remain static on

the bottom of the well, thus thermal contributions to the entropy can be neglected. Any spatio-temporal changes

in the configurational entropy of the system are then a result of the active driving of cells. This positive entropy

production is a hallmark of out-of-equilibrium systems [133]. In such systems, detailed balance does not hold,

implying a preferred direction in phase space for the system to evolve in.

Entropy production measures a ratio between the probabilities of observing forward transitions say, from state
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69 min 123 min119 min 222 min

Figure 4.2: Cell contacting beads. A mESC recruits two Wnt-beads (time t = 69, 119, 123, 222 min, runs from
left to right). These images are the raw input data as obtained from the microscope and to be fed to the tracking
algorithm. At t = 69 min a bead lies by the cell (red arrowhead), yet it only comes in contact with the cell at
t = 119 (second frame). At t = 119 min the cell extends, coming in contact with a second bead at t = 123 min
(third frame). This cannot be detected reliably by the algorithm until much later, for instance, when the bead is
on the cell body, t = 222 min (last frame). The same di�culties arise when attempting to measure the potential

release of beads.

A to state B, and backwards probabilities of observing the transitions from say, state B to state A [134]. Exper-

imental measurements of entropy production have been obtained in carefully prepared systems, where states are

well defined, and transition rates or time-dependent distribution functions can be extracted accurately. These in-

clude colloidal particle experiments [135], fluidised media [136], ideal gasses [137], and molecular motors [138].

However, little is known about entropy production of living matter at the cellular and tissue level and its relation

to the structural order of living systems. There, measuring the observable necessary for computing the entropy

production from experimental data is not trivial, as they are not finite states systems, thus the transition rates are

not well defined. Formal approaches for computing the entropy production of field theories for active matter have

been formulated [139], however their possible application to real data is not clear.

In this chapter it is shown how, by casting the entropy production of the cell-beads system solely in terms of

the ageing e↵ective potential, the temporal evolution of the configurational entropy of the bead spatial distribution

can be measure both experimentally and numerically. This entropy production rate is characterised as a function

of time, and as a function the properties of the signals, to show that relevant biochemical signals contribute to a

faster and more e�cient organisation of the environment. This might have relevant implications in the formation

of specialised micro-environments in vivo, such as the stem-cell niche [121].

The remainder of this chapter is organised as follows: in Section 4.3 the experimental set-up used for the

cell-signal interaction analysis is described. In Section 4.4 the age- and time-dependent e↵ective potential is

introduced, and in Section 4.5 the experimental measurements are presented. Numerical characterization of the

e↵ective potential, and its interpretation in the light of the experimental observations are shown in Secs. 4.6 and

4.7. In Section 4.8 the results on the entropy production based on experimental and numerical data are shown. The

discussion and outlook are left for Section 4.9.
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4.3 Experimental setup

To measure experimentally the spatio-temporal interactions between single cells and beads live imaging of mouse

embryonic stem cells (W4 cells [140]) was performed in the presence of Wnt-, iWnt- or Unc-beads (Dynabeads

M-270 Carboxylic acid) at one-minute time resolution for periods of twelve hours. About 2500 mESCs were

seeded together with ca. 20000 (0.3 µg) of either Wnt-, iWnt or Unc-beads on each of two wells of a black, glass-

bottomed, 96 well plate (Greiner), in serum and LIF containing media. On the bottom of the 136 mm2 well the

bead number density reaches ca. 150 beads/mm2. Also, the cell number density, which reaches ca. 20 cells/mm2

is such that cells are observed mostly in a single cell state for the duration of the experiment.

The time-lapse imaging at 1 minute resolution for 12 hours was performed using a Zeiss inverted Axio Imager

epifluorescence microscope, equipped with a CoolSNAP HQ2 CCD camera, at 10⇥ amplification. Cells were

allowed to settle at 37�C, 5% CO2 for 30 minutes prior to imaging. The area covered by a single position of the

microscope was 874.99⇥653.73 µm2 containing ca. 11 cells and ca. 84 beads (see Fig. 4.1). About 15 positions

were selected per well, and each experiment was repeated at least three times (biological repeats), for a total of

more than 1000 cells and more than 10000 beads for each condition. The experiments avoid imagining techniques

that might alter the behaviour of cells, such as additional genetic manipulation, molecular markers or phototoxicity.

The time-lapse images were analysed with a custom-built multi-particle tracking algorithm (based on MATLAB

R2018b), which extracts the trajectories of both cells and beads as function of time (see Sec. D.1.3 for details).

Because of the absence of membrane markers, features of a linear extent of less than 0.6 µm are not reliably

detected by the algorithm. It is therefore impossible to reliably and reproducibly determine when a bead (such as

the highlighted in Fig. 4.2) acquires of loses contact with the cell. However, the algorithm locates the cell body

and its centroid reliably, as required in the measurement of spatio-temporal correlations.

Preliminary observations indicate that in the absence of cells, beads distribute, up to e↵ects by excluded vol-

ume, uniformly at the bottom of the well. However, in the presence of cells, the spatial distribution of beads is

strongly a↵ected by cell-bead interactions, which appear to change in time, and depend on the bead coating. After

settling at the bottom of the well, cells move and interact with the surrounding beads. When contacting a bead,

the bead might get captured by binding to the cells’ membrane. Beads might also be released, unbinding from

the cell membrane and remaining at the bottom of the well. In the next section, a method is described for quan-

tifying cell-signal (bead) interaction and the emergence of spatial order in the bead distribution by measuring the

spatio-temporal correlations of the positions of beads due to the presence of cells.

4.4 Ageing e↵ective potential

The spatio-temporal structure of condensed matter has been extensively studied through the measurement of the

dynamic or van Hove correlation function [141]. Its Fourier transform in space and time, namely the dynamic

structure factor, can be measured directly in X-ray experiments [141]. For mesoscopic objects, such as cells and

beads, where positions of every particle can be precisely determined, the dynamic correlation functions can be

calculated in real space and time. In the cell-bead system, cell movement and interaction with their surroundings
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Figure 4.3: Instantaneous e↵ective potentials. (a) Snapshot of the experimental distribution of beads, and (b) the
instantaneous e↵ective potential (⌧ = 0) for Unc-beads, and (c) Wnt-beads, in the absence of cells. (d) E↵ective
potential for Wnt-beads, (e) iWnt-beads, and (f) Unc-beads in the presence of mESCs, taken over three di↵erent
time windows (time increases from left to right, as indicated). The solid curve represents the mean across the
repeats, while the shaded area represents the range of the data. The reference line Ue↵(r, t) = 0 shows the e↵ective
potential of a uniform bead distribution. Indicated by (N), (H), and (•) are the points of maximum depletion,
accumulation, and the range, respectively (see main text). The vertical reference line indicates the mean cell radius

R, at each time point. This figure has been submitted to PRX as part of the manuscript [7]

causes temporal changes in the correlations, known as ageing [142]. It occurs because the system is initialised in

a configuration that is not necessarily its steady state. Moreover, the non-equilibrium nature of living cells might

prevent the system from having an steady state configuration in the first place, thus exhibiting permanent dynamics.

The age-dependent properties of cell-bead interaction can be quantified by the correlations in the positions of

beads in relation to the positions of cells. To formalise this idea, a modified version of the van Hove correlation

function is introduced, namely a two-species age-dependent correlation function (ACF). Given a spatial arrange-

ment of N cells and M beads, at positions Ri and r j, respectively, the ACF, Ĝ(r, t, ⌧) is defined as function of the
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position, r, age or time, t, and delay, ⌧, as

Ĝ(r, t, ⌧) =
1
N

* NX

i=1

MX

j=1

�[r � r j(t + ⌧) + Ri(t)]
+
, (4.1)

where �(·) corresponds to the Dirac-delta function. This correlation function measures the density of beads at

position r at time t + ⌧, given that there was a cell at the origin at time t. The angular brackets h·i indicate the

ensemble average. The expression in Eq. (4.1) corresponds to a two-species version of the van hove correlations

function, where self-interactions are negligible, and there is an implicit dependence on time t, which is referred to

as ageing (see Sec. D.1.2 for details).

In the case of non-ageing systems, i.e. without dependence on absolute time t, Eq. (4.1) depends only on the

time-delay ⌧, so that time t can be set to zero. Hence, the ACF has a fixed value for a given delay ⌧, independent

of the moment t at which the measurement has been taken. As described above, and as will be demonstrated in

the next section, this is not the case for cell-bead interactions, which displays a temporal evolution due to active

cellular dynamics.

From the ACF, Eq. (4.1), the ageing pair-correlation function ĝ can be obtained from the relation

Ĝ(r, t, ⌧) = ⇢bĝ(r, t, ⌧), (4.2)

where ⇢b is the density of beads. For isotropic systems, such as the cell-bead system, the pair correlation function

depends only on the distance r = |r|. This is usually referred to as the radial distribution function (RDF) and is

the central observable in the theory of simple liquids [141]. The e↵ective potential of interactions between the two

species (cells and beads) is then defined here as

Ue↵(r, t, ⌧) = � ln[ĝ(r, t, ⌧)]. (4.3)

For systems in thermodynamic equilibrium, the e↵ective potential is stationary in time, whereas in the setup consid-

ered in this chapter the active nature of cells renders the potential age-dependent. An equilibrium liquid equipped

with the e↵ective potential determined by Eq. (4.3) will reproduce the RDF used in its definition, even when the

RDF is obtained in non-equilibrium. E↵ective potentials have been used before in the context of cellular sheets

[128], as they o↵er some intuition about the evolution of the system. However, similar to statistical potentials

[143, 144] the e↵ective potential contains no more information than the RDF it has been derived from, and the link

to quantities like the entropy (Sec. 4.8) is convenient, yet equally well expressed in terms of the RDF.

The interpretation of the e↵ective potential (4.3) in the cell-bead system, corresponds to that of other areas in

physics. In the present case, the e↵ective potential quantifies attraction (accumulation) and repulsion (depletion)

of beads by cells as a function of position r. When the e↵ective potential Ue↵(r, t, ⌧) is equal to zero for all values

of r, the system is (e↵ectively) non-interacting, i.e. beads are uniformly distributed irrespective of the locations

of cells, and there are no e↵ective forces that disturb their spatial distribution. Negative values of the potential,

Ue↵(r, t, ⌧) < 0, imply an accumulation of beads, caused by an e↵ective attraction of beads towards the given point
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of interest. In contrast, positive values of the e↵ective potential, Ue↵(r, t, ⌧) > 0, are a signature of bead depletion,

which can be caused by cells transporting beads away from that particular region in space.

When extracting the radial distribution function and e↵ective potential from the experimental data, the ob-

servables are averaged over the entire population of single cells in the experiment (ensemble average), which is

repeated for every experiment (details in Sec. D.1.4 and Fig. D.2).

4.5 Experimental observations

In the absence of cells, beads distribute uniformly at the bottom of the well (Fig. 4.3a), which can be quantified

by measuring the stationary e↵ective potential, Eq. (4.3), of beads around randomly selected points in the plane.

The measurements were performed 30 min after seeding the beads, allowing them to reach a stationary position

at the bottom of the well. This implies that the e↵ective potential is independent of both age and time-delay, i.e.

Ue↵(r, t, ⌧) = Ue↵(r). Thus, for this particular setup Ue↵(r) was computed at a single time point, and it is observed

that the e↵ective potential shows no significant deviations from the null-line, Ue↵(r) = 0 for all r, as expected for

a uniform, independently random distribution of beads (Fig. 4.3b). In this setting, bead-bead interactions occur

only through volume exclusion, which can be ignored in the low bead density conditions considered in these

experiments. As expected, the protein coated beads by themselves also show a uniform distribution and thus a

vanishing e↵ective potential (Fig. 4.3c).

In general, the emergence of a non-zero e↵ective potential is a consequence of the interaction between particles.

In the cell-bead system, interactions arise due to the presence of active mESCs, which act on the inanimate micron-

sized beads. Beads move only by the e↵ect of external forces, such as direct contact with cells, or by thermal

fluctuations when they are in suspension in the liquid medium. Regardless of the type of bead coating considered

(uncoated, Wnt or iWnt) cells are always able to interact with beads. However, the properties of such interactions

are greatly a↵ected by the coating, which is evident even to the naked eye. Both the number of cells in contact

with beads and the duration of the interaction was visibly higher in the case of coated beads compared to uncoated-

beads, throughout the 12 hours of imaging. As a first approach to quantify these observations, and to characterize

the strength and properties of cell-bead interactions the instantaneous e↵ective potential, Ue↵(r, t, ⌧ = 0) was

measured. It is considered that the e↵ective interactions are significant if the measured e↵ective potential deviates

from the null, Ue↵ = 0, by an amount greater than the range of the experimental measurements (shaded region in

Fig. 4.5).

When ⌧ = 0, r = 0 corresponds to the center of the cell, thus this observable gives information on the preferred

location of beads around the cell center. Measurements of the instantaneous e↵ective potentials in the case of

protein-coated beads show important di↵erences in the interaction between mESCs and Wnt-beads or iWnt-beads,

as seen in Figs. 4.3d and 4.3e, respectively. Although the qualitative features of the e↵ective potentials are similar

between both conditions, their quantitative features di↵er. The interaction range, that is, the radial distance from

the cell that is a↵ected by depletion or accumulation (Ue↵ , 0) quantifies the ability of cells to recruit beads from

the environment (indicated by (•) in Fig. 4.3), while the position of the minimum (maximum) of the e↵ective

potential indicates the most (least) probable position r of a bead that interacts with a cell, indicated by H (N).
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**** indicates a p-value<0.0001. This figure has been submitted to PRX as part of the manuscript [7]

The wider interaction range and deeper e↵ective potential in Fig. 4.3d, compared to that in Fig. 4.3e, indicates

a stronger interaction of cells with Wnt-beads than with iWnt-beads. When in contact with Wnt-beads, mESCs

appear to keep the beads closer to the center of the cell compared to cells in contact with iWnt-beads as seen when

comparing the location of the potential minima (H) in Figs. 4.3d and 4.3e. These observations suggest that when

in contact with a signal, cells might control the signal’s spatial location depending on the biochemical properties.

When cells are exposed to uncoated beads the interaction properties are drastically di↵erent compared to coated

(Wnt- or iWnt-) beads. Uncoated beads have no protein ligand bound to their surface, thus provide no biochemical

cue to the cells, acting merely as a physical entity in the environment. In this scenario the instantaneous e↵ective

potential remains close to zero for the duration of analysis (Fig. 4.3f and Fig. D.5). Interactions with uncoated

beads are weak throughout the duration of the experiment as observed by the weak e↵ective repulsion from the

cell centre (r = 0) at the initial stages and a shallow attraction at later time-points. The wide dispersion in the data

suggests that the interaction is quite volatile, possibly due to the lack of a proper biochemical coating preventing

e↵ective cell-beads bonds. This is in agreement with previous observations [145], which indicate that the presence

of surface ligands favours the creation of durable chemical bonds between cells and external elements, such as

artificial substrates, bioengineered matrices, and in the present case, micron-size beads.

In analogy to the theory of simple liquids, a time-dependent coordination number c(t) is measured to quantify

the ability of cells to capture and retain beads, [141],

c(t) = 2⇡⇢b

Z R

0
dr exp(�Ue↵(r, t, 0))r, (4.4)
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where exp(�Ue↵(r, t, 0)) = ĝ(r, t, 0), and R is the average radius of the cell The coordination number Eq. (4.4) is an

approximated measure of the average number of beads around a cell at a given time t (Fig. 4.4a). The slope of the

coordination number, indicated in Fig. 4.4a, defines an accumulation rate, which determines the overall e�ciency

with which cells contact and acquire beads once they start probing the environment. A high rate indicates a

deepening in the e↵ective potential, and an increase in bead accumulation, and the formation of new cell-bead

pairs.

The accumulation rates (Fig. 4.4a) show an e�cient recruitment of signalling Wnt-beads by mESCs, increasing

the strength of the e↵ective potential at a faster rate compared to iWnt-beads. Moreover, the coordination number

for iWnt-beads reaches a plateau around the 7 hour mark, while Wnt-beads recruitment continues for up to 9

hours. For uncoated bead the coordination number grows at a slow rate for the 12 hour period (Fig. 4.4a). These

observations suggest that cells are able to retain Wnt-beads for longer periods of time compared to iWnt- and

unc-beads, systematically increasing the overall number of cell-bead bonds in the system. This is confirmed by

measuring the time beads stay in contact with cells (Figs. 4.4b and 4.4c), where significant di↵erences between

the three types of beads are observed. Importantly, the retention time is an e↵ective quantity obtained from the

di↵erence between the first and last time point on which beads where considered in contact with a cell by the

tracking algorithm (for discussion see Sec. 4.3 and Fig. 4.2). The accumulation rates and retention times are

linearly correlated (Fig. 4.4c), as argued above, longer retention times imply more stable cell-bead bonds, in turn

increasing the overall accumulation of beads by cells. Here, durable and e�cient cell-bead contacts appears to

rely strongly on the bead coating but also on the biological relevance of the coating, with cells retaining Wnt-

over iWnt-bead for significantly longer periods. The observed dependence of the interaction strength on the bead

coating is in line with related studies, where surface modification of beads cause di↵erential uptake of beads by

cells [146, 147].

In summary, mESCs actively interact with their surroundings, contacting, attracting and repelling localised

signals. These interactions can be captured in the form of an e↵ective potential, a statistical observable that gives

information on the population-level organisation of the system. The instantaneous e↵ective potential Ue↵(r, t, ⌧ =

0) reveals the range, strength and e�ciency of interactions, yet it does not capture the e↵ects of cell motility,

which is a key feature of the cell dynamics. Beads are recruited and transported by direct contact with the cell

membrane, which in turn, occurs due to cell movement and changes in cell shape. In order to observe the e↵ect of

cell dynamics on the e↵ective potential, positive time-delay, ⌧ > 0, is considered in the following section.

4.5.1 Time-delayed measurements

The e↵ect of a time delay (⌧ > 0) on the measurement of the e↵ective potential is a reduction of the strength

of the attraction, as seen in Fig. 4.5. This flattening of the e↵ective potential is caused by cell motility. For a

given time-delay ⌧, the distribution of beads at time t + ⌧ is measured with respect to the positions of cells at time

t. Any displacement of the cell between t and t + ⌧ a↵ects the reference point from which the measurement of

the radial distribution function Eq. (4.2) and the e↵ective potential Eq. (4.3) are taken. For large values of ⌧, the

e↵ective potential can become flat for all values of r, resembling an e↵ectively non-interacting system (Fig. 4.5).
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Figure 4.5: Age- and delay-dependent e↵ective potentials. Experimental e↵ective potential as function of time
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as part of the manuscript [7]
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To characterise this and other changes of the e↵ective potential as a function of both age t and time-delay ⌧, a

phase-diagram in the (t, ⌧)-plane was constructed (see Fig. 4.5). Each point in the phase diagram if obtained by

integrating the Mayer f -function f (r, t, ⌧) = e�Ue↵(r,t,⌧)
� 1 [148, 141]

b⇤2 (t, ⌧) = �⇡
Z ⇤

0
dr f (r, t, ⌧). (4.5)

In equilbium systems and in the limit⇤! 1, Eq. (4.5) corresponds to the second virial coe�cient, which accounts

for the first order corrections to the pressure in low density systems. In the cell-bead case, the interest is on the

behaviour of the e↵ective potential around the cell, thus a finite upper cuto↵ ⇤ = 2R is considered, where R is

the cell radius. This particular value is chosen in order to capture the relevant features of the e↵ective potential at

short length scales. Negative values of b⇤2 (t, ⌧) indicate a deep, attractive e↵ective potential, while positive values

indicate e↵ective repulsion around the cell centre [141].

As expected, at fixed time t, the overall e↵ect of increasing the delay ⌧ is to reduce the e↵ect of attractive

interactions (see Figs. 4.5a and Fig. 4.5b, right column), as the e↵ective potential approaches the null line. On

the other hand, for a fixed delay ⌧, the overall e↵ect of ageing is to increase the strength of the e↵ective potential.

However, for Unc-beads (Fig. 4.5c) the phase diagram appears to transition from attractive at short time and delay,

to purely repulsive at longer time and delay. Here the phase diagram appears inverted with respect to that of coated

beads, suggesting that a di↵erent interaction mechanism might be taking place compared to Wnt- and iWnt-beads.

It was already pointed out that interactions are reduced in the case of Unc-beads (see Fig. 4.3), however this is not

enough to explain the inversion observed in the phase diagram, where the e↵ective potential appears to become

stronger, more repulsive with increasing time t or delay ⌧.

In the following section, a simple theoretical model for the cell-signal interactions is introduced to obtain a

comprehensive understanding of the interplay between the cell dynamics, age, time-delay and the e↵ective poten-

tial. Together with numerical simulations, this model allows the identification of the causes of the ageing of the

e↵ective potential. Moreover, it explains the di↵erences between the phase-diagrams, as seen in Fig. 4.5.

4.6 Theoretical and numerical analysis

The model of cell-bead interactions considers two species of particles in a continuous, finite, two-dimensional

space. Firstly, immobile point-particles, corresponding to beads, were distributed randomly on a unit square with

periodic boundary conditions (black particles in Fig. 4.1b), so that their number density was ⇢b = 1000. Secondly,

a mobile, single cell was placed at the origin of the unit square. This cell corresponds to an active mESC, modeled

as a di↵usive disk of radius r0 (black circle in Fig. 4.1b). At each time-step the cell moves a small fixed distance

� < r0 in a random direction on the torus, which amounts to a di↵usion constant D = �2/4 (see Sec. D.1.1 for

details). A bead is captured by a cell if it lies within the cell’s disk after a time step. Captured beads (blue particles

in Fig. 4.1b) are distributed inside the corresponding cell according to a normal distribution with standard deviation

� = r0/2, centred on the cell’s centre. The choice of distribution does not a↵ect the quantitative results presented

below, it does however modify the precise shape of the e↵ective potential. Initially, release of beads captured by
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cells is not allowed, such that bead capturing is an irreversible process, and is the only explicit interaction between

beads and cells.

In the model described above, the master equation for the probability P(n, t) that a cell has captured n beads up

to time t, may be written as

dP(n, t)
dt

= ⇢b
dA
dt

[P(n � 1, t) � P(n, t)], (4.6)

where ⇢b is the number density of beads, and A = A(D, r0, t) corresponds to the area covered by the di↵usive disc,

representing the cell, of radius r0 and di↵usion constant D up to time t, sometimes referred to as the area of the

Wiener sausage [149, 150]. To first order the area explored by the cell grows like

A(D, r0, t) ⇡
4⇡Dt

log
✓
�Dt

r2
0

◆ (4.7)

in the long time limit, where t � r2
0/D. Here, � = 4 exp(�2C), and C ⇡ 0.577 is the Euler-Mascheroni constant

[149]. As the upper-critical dimension of a random walk is two, it may be assumed that ⇢b is constant in space and

time [151]. Under this assumption, Eq. (4.6) can be solved explicitly to find

P(n, t) =
[⇢bA(D, r0, t)]n

n!
e�⇢bA(D,r0,t). (4.8)

The expected number n(t) of beads captured by a cell as a function of time is then proportional to the area explored

by the cell up to time t, n(t) = ⇢bA (green area Fig. 4.1b). The excess number of beads within the cell radius

nex(t) = n(t) � ⇡r2
0⇢b determines the level of accumulation of beads, i.e. the depth of the attractive range of the

instantaneous e↵ective potential (Ue↵(r, t, ⌧ = 0) < 0). At the same time, the accumulation of beads by the cell

is proportional to the depletion of beads in the region surrounding it (see Fig. 4.6a, first row). Thus, the excess

number of beads nex(t) can be regarded as a proxy for strength of the attraction and repulsion parts of the e↵ective

potential. The irreversible nature of the capturing process implies the nex(t) is a monotonically increasing function,

thus the strength of the e↵ective potential is bound to increase with time.

The e↵ective radius of the area explored by a di↵usive cell, re(t) =
p

A(D, r0, t)/⇡, (indicated by ⇤ in Fig-

ure 4.6a) corresponds approximately to the interaction range of the e↵ective potential, as it indicates the extent to

which the environment is a↵ected by the action of a cell. The combined evolution of nex(t) and re(t) explains the

experimental observation for mESCs with Wnt- and iWnt-beads, where the e↵ective potentials get stronger and

longer-ranged with time, as consequence of capturing and transport of beads by cells.

Considering positive time-delay (⌧ > 0) in the measurements causes important changes of the e↵ective poten-

tial. For increasing values of ⌧, the accumulation region becomes shallower, projecting further than the radius of

the cell (Fig. 4.6a). This is a consequence of the displacement of the cell (and the captured beads) between time

t, at which the positions of cells are considered, and the time t + ⌧ at which the bead distribution is measured, in

order to compute the RDF, Eq. (4.2). The mean displacement `, of the cell between these two times, t and t + ⌧, is

related to the di↵usion constant by `(⌧) =
p

4D⌧.
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Interestingly, as the delay ⌧ is increased further the attractive range around r = 0 in the e↵ective potential

disappears, shifting to a purely repulsive potential (Fig. 4.6a for ⌧ > 0). This happens despite the attractive nature

of the capturing mechanism, the only explicit interaction in the model. To understand how and when this transition

occurs, it is necessary to look at the (t, ⌧)-phase-diagram for the numerical results with positive delay, ⌧ > 0.

4.6.1 E↵ective repulsion

As the only characteristic time-scale in the system is given by the di↵usive time-scale of cells, it is expected that

the transition between the two regimes, attractive and purely repulsive, is controlled by the di↵usivity D = �2/4,

introduced above. In numerical simulations of the model introduced at the beginning of this section, it is observed

that an increase in the step length results in a decrease of the o↵set delay ⌧o↵ at which a transition of the e↵ective

potential from attractive to repulsive occurs (indicated by I in Fig. 4.6b). The e↵ective repulsion is characterised

by the e↵ective potential being positive at the origin and decaying towards zero with increasing distance. The

o↵set delay ⌧o↵ is related to the time it takes for a cell to displace itself and the beads attached to it, by a distance

of the order of the cell size, i.e.

⌧o↵ ⇡
r2

0

D
, (4.9)

as shown in Fig. 4.6b (last panel), e↵ectively transporting all captured beads away from the point of reference con-

sidered for measuring the e↵ective potential from. This transport process manifests itself as an e↵ective repulsion.

This o↵set explains why in the experiments the purely repulsive potential is not observed. The values for the

di↵usion constant of the cells in the experiments varies slightly between conditions, with a value of D ⇡ 0.21

µ2/min for cells in the presence of uncoated- and Wnt- beads, and D ⇡ 0.23 µ2/min for cells in the presence of

iWnt-beads (see Sec. D.1.1 for details). Using the average radius of the mESCs, rsc ⇠ 10 µm, an estimate for the

expected o↵set delay ⌧o↵ in the experiments can be obtained from Eq. (4.9). Which is ⌧o↵ = 470 min for Wnt-

beads, and ⌧o↵ = 430 min for iWnt-beads. These predictions for the onset of the transition of the e↵ective potential

turning repulsive, are compatible with the experimental observations. For the earliest experimental time-window

(t = 61 min), the smallest delays for which the accumulation region around r = 0 crosses the reference Ue↵ = 0

towards positive values are ⌧ = ⌧o↵ ⇠ 420 min for Wnt-beads (Fig. D.3, first column), and ⌧ = ⌧o↵ ⇠ 360 min for

iWnt-beads (Fig. D.3, first column).

Regimes that are inaccessible in the experimental setup can be studied numerically. For t ⇠ 0, once the o↵set

delay has been exceeded, i.e. ⌧ > ⌧o↵, the potential transitions to e↵ective repulsion (dashed lines, Fig. 4.6b). For

later times t > 0, the transition occurs after longer delays, taking place when the displacement `(t) =
p

4Dt of the

cell between times t and t + ⌧, is of the order of the e↵ective radius
p

A/⇡ of the area A(D, r0, t + ⌧) explored by

the cell until time t + ⌧,

4⇡D⌧ = A(D, r0, t + ⌧). (4.10)

The transition occurs therefore at

⌧⇤ =
exp

⇣
1 + t

⌧⇤

⌘

⇣
1 + t

⌧⇤

⌘
r2

0

�D
(4.11)

89



t=11 t=511 t=1011 t=1511

τ=
0

τ=
20
0

τ=
40
0

τ=
60
0

t=2011

U
ef
f (r
,t,
τ)

r

(a)

(b)

0 2 4 6
10 -5

0

100

200

300

400

δδ

δ

-4
-2
0
2

-4
-2
0
2

-4
-2
0
2

0 0.1 0.2
-4
-2
0
2

0 0.1 0.2 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2

-2

-1

0

1

-5

-3

-1

1

-9

-4

1
b 2

Λ

b 2
Λ

b 2
Λ

Figure 4.6: Numerical age- and delay-dependent interactions. (a) E↵ective potential as function of age t and
delay ⌧ obtained from numerical simulations of the model described at the beginning of Sec. 4.6, indicating the
mean (solid curve) and range (shaded) from 104 realisations, for step size � = 0.004 and cell radius r0 = 0.02
(vertical line), the symbol (⇤) indicates the interaction range re(t) =

p
A/pi. (b) The (t, ⌧)-phase-diagram for

increasing values of step length �. Markers indicate attractive (circles) and repulsive (crosses) regions in the phase
diagrams, as measured by b⇤2 (Eq. (4.5), colorbar) for ⇤ = 2R, where R is the cell radius. The symbol (I) indicates
the predicted o↵set delay, Eq. (4.9), the dashed line corresponds to the theoretical transition delay ⌧⇤, obtained
from Eq. (4.11). The potential is e↵ectively repulsive below the line (longer delays) and e↵ectively attractive
above (shorter delays). The last panel shows the o↵set delay as function of di↵usivity, D = �2/4, obtained from
Eq. (4.9), the triangles indicate the delay marked on the phase-diagrams. This figure has been submitted to PRX

as part of the manuscript [7]

using Eq. (4.7) valid for t � r2
0/D. At larger delays the apparent displacement of beads away from the e↵ective

origin exceeds the e↵ective range of interaction,
p

A/⇡, so that the potential appears to be repulsive. Solving

numerically the transcendental Eq. (4.11) for ⌧⇤ produces the dashed transition lines shown in Fig. 4.6b. Below
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this line (longer delays), the potential appears to be typically repulsive, above this line (shorter delays) typically

attractive.

The delayed e↵ective potential serves as a tool to quantify the transport of signals (beads) by cells. In numerical

simulations, motility is the only mechanism available to cells to encounter beads. However, in the experimental

conditions it was observed that mESCs constantly change their shape, as they elongate and increase their interaction

range without net displacement. Moreover, mESCs do not necessarily capture every single bead they encounter,

disregarding some of the beads they come in contact with. Furthermore, beads can spontaneously detach from the

cell membrane. In the next section, the e↵ect on the e↵ective potential of both of these mechanisms is studied

independently, by incorporating an disregarding probability and a Poissonian release of beads to the model. Two

possible release scenarios are considered, one in which beads are recruited by the cell and subsequently release

in a random direction, and a second one, where cells can repeatedly interact with beads. Thus e↵ectively pushing

them away by releasing them in the same direction they were encountered.

4.7 Disregarding and releasing beads

The e↵ect of mESCs disregarding a fraction of beads encountered can be incorporated into the master equation

(4.6) by introducing a disregarding probability �. The density of beads that a cell can interact with is then e↵ec-

tively reduced to ⇢e↵ = (1 � �)⇢b, with � 2 [0, 1]. This represents the a�nity of the cell-signal interactions. The

master equation in this case reads

dP�(n, t)
dt

= ⇢e↵
dA
dt

[P�(n � 1, t) � P�(n, t)]. (4.12)

As � approaches unity, an increasingly large proportion of beads is disregarded, thus increasing the mean free path

of the cell. By introducing rescaled time t0 = (1 � �)t and cell radius r00 =
p

1 � �r0 in Eq. (4.12), where A is

given by Eq. (4.7), the form of Eq. (4.6) is recovered. This shows that larger values of � imply a slower evolution

of the e↵ective potential (see Fig. 4.7). However, its qualitative properties, such as the potential overall shape, and

the existence of the transition between attractive and repulsive regimes are not a↵ected by the introduction of the

disregarding probability (see Figure 4.8a). Disregarding beads could be responsible for the di↵erences observed

in the properties of the e↵ective potentials between Wnt-beads (Fig. 4.5a) iWnt-beads (Fig. 4.5b). As described

above, the e↵ective potentials and phase-diagrams evolve in qualitative similar manner, but with the dynamics sped

up for the signalling Wnt-beads. This suggests that cells have a lower a�nity for non-signalling iWnt-beads. Thus,

cells are less likely to recruit iWnt beads.

As suggested by the measurements of the total time beads stay in contact with cells (Fig. 4.4c), cell-bead bonds

are reversible, so that beads occasionally detach from the cell membrane getting released to the environment. To

account for this process a Poissonian release rate ⌫ 2 [0,1) is introduced. In the numerics, a time step �t = 1

is considered. Hence, on every iteration, the probability  that an attached bead will be released by the cell is

given by  = 1 � e�⌫. Released beads are considered to simply decouple from the movement of the cell, and their

position is held fixed during further evolution of the process, so that the cell disregards released beads without ever
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Figure 4.7: E↵ective potentials with positive disregarding probability and release rate. E↵ective potential as
a function of age t and delay ⌧, as obtained from numerical simulations (Sec. 4.7). The mean and range of 104

realisations are indicated by a solid curve and a shaded area, respectively, for disregarding probability (a) � = 0.5
( = 0), and (b) � = 0.9 ( = 0). For release probability (c)  = 0.05 (� = 0), and (d)  = 0.9 (� = 0), and
for refractory time ✓ = 0, and release to the cell edge with probability (e)  = 0.01, and (f)  = 1.0. Simulations
consider a single cell of radius r0 = 0.02 performing a random walk with step length � = 0.004, in a periodic
system of linear size L = 1, and bead density ⇢b = 103. This figure has been submitted to PRX as part of the

manuscript [7].

recapturing them. A di↵using cell will therefore leave a trail of released beads along its path. An advantage of this

type of implementation for the release mechanism is that lends itself to a description in terms of a master equation.

Given the probability P(n, t) of observing n beads in contact with a cell at time t, the rate of decay of that state into

a state with n � 1 beads is nP(n, t). Taking this into account, the master equation for the probability P(n, t) reads

dP(n, t)
dt

= ⇢b
dA(t)

dt
[P(n � 1, t) � P(n, t)] (4.13)

+[(n + 1)P(n + 1, t) � nP(n, t)].

This master equation can be solved via a generating function approach (see Sec. D.1.5 for details) to find the
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explicit solution

P(n, t) =
↵n(A, ; t)

n!
e�↵(A,;t), (4.14)

where ↵(A, ; t) is a function of the area A = A(D, r0, t) explored, Eq. (4.7), the release rate  and time t,

↵(A, , t) = ⇢b

"
A(t) � e�t

Z t
ds A(s)es

#
. (4.15)

Given the structure of the solution, Eq. (4.14), ↵ is in fact the expected number of beads attached to a cell, hni =

↵(A, , t). For  = 0, Eq. (4.8) is recovered, where hni = ⇢bA(t). For  > 0, ↵ is a concave function (see Fig. D.1),

hence there is a time t = t⇤ for which the Poissonian release overcomes the capturing of beads by cell di↵usion.

Before t = t⇤ the average number of beads captured, n(t), and consequently the accumulation strength of the

e↵ective potential, increases with time. At t = t⇤, the parameter ↵(A, ; t⇤) vanishes and n(t) reaches its maximum

value. For t > t⇤ the number of beads decreases and e↵ective potential weakens, asymptotically recovering the

non-interacting behaviour Ue↵ = 0.

The impact of the release mechanism on the e↵ective potential (Fig. 4.7) and phase-diagram (Fig. 4.8b) be-

comes most evident at positive delay, ⌧ > 0. For increasing values of the release rate, the transition curve between

attractive and repulsive phases shifts towards shorts times t (Figure 4.8b). For large values of  the phase-diagram

is inverted compared to  = 0, as the attraction of the e↵ective potential decreases with age t, and increases with

delay ⌧, while the repulsive regime disappears.

Even though the phase diagram appear inverted in Fig. 4.8b for  = 0.1 when compared to  = 0.001, the

fact that this phase diagram exhibits purely attractive behaviour implies this is not the mechanism controlling the

interaction between mESCs and Unc-beads (Fig. 4.5c). A key observation of the experiments is that mESCs do

interact with Unc-beads, yet are unable to recruit them, as quantified by the e↵ective potential (Fig. 4.5c). In the

experiments, when a cell encounters Unc-beads, beads tend to remain on the cell periphery. As the cell moves, it

e↵ectively pushes beads in its direction of movement. As the upper-critical dimension of a random walk is two, the

pushing dynamics requires cells to interact repeatedly with every bead they encounter. To incorporate this into the

numerics, and to take into account possible memory e↵ects, a refractory time ✓ is introduced, which set a minimum

time needed by a cell to re-interact with a released bead. In the limiting case of ⌫ ! 1 (=1) and ✓ = 0, beads

are continuously pushed away by the cell. For finite values of ⌫ ( < 1), beads can be transported by the cell and

released at a later time point. The release in this pushing dynamics is implemented by placing the bead on the point

of the cell periphery, where it was first encountered. This accounts for experimental observation that the bead is

not transported on the cell membrane bulk, but near its boundary.

Interestingly, the phase diagram for the pushing mechanism (Figs. 4.8c) for ✓ = 0 (such that the cell can re-

interact with beads on every iteration) shows that with increasing release rates, the attractive region of the e↵ective

potential disappears. For  ⇡ 1 the phase diagram transitions from being repulsive for very short time and delay,

to purely repulsive for longer time and delay, a feature previously observed in the experiments of mESCs with

Unc-beads (Fig. 4.5c). In both the simulations and experiments the e↵ective interactions become stronger, more

repulsive with both age t and delay ⌧, in contrast to was was observed for coated beads (Figs. 4.5a and 4.5b).
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Figure 4.8: Phase diagrams for the model with disregarding probability, release rate, and recapturing. (t, ⌧)-
phase diagram of the model with (a) positive disregarding probability �, (b) positive release probability , and (c)
positive release probability  with refractory time ✓ = 0, for increasing values (left to right). Simulations consider a
single cell of radius r0 = 0.02 performing a random walk with step length � = 0.004, in a periodic system of linear
size L = 1, and bead density ⇢b = 103. The dashed lines in (a) represent the predicted transition from attractive to
repulsive according to Eq. (4.11). Markers indicate attractive (circles) and repulsive (crosses) regions in the phase
diagrams, as measured by b⇤2 (Eq. (4.5), colorbar) for ⇤ = 2R, where R is the cell radius. In (c) the release of beads
occurs to the same direction they were encountered by the cell, e↵ectively pushing beads away. This figure has

been submitted to PRX as part of the manuscript [7]

The results presented in this section, together with the e↵ective retention times (Fig. 4.4c), suggests that the

cell signal interactions are strongly a↵ected by particular disregarding and releasing mechanisms. The absence of

coating seems to impede the cells’ capacity for actively recruiting beads and thus organise their environment.

4.8 Entropy generation

The ability of cells to interact with and organise their environment is evidenced by the emergence of the e↵ective

potential of interaction. As observed experimentally, and demonstrated through numerical simulations, di↵erent

cell-signal interaction mechanisms can contribute to a higher or lower organisation in the spatial distribution of
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Figure 4.9: Configurational entropy as a function of time for (a) the experimental conditions, (b) the numerical
simulations of the model the model described at the beginning of Sec. 4.6 for di↵erent step lengths �, (c) the model
with positive disregarding probability �, Eq. (4.12), (d) the model with positive release probability , Eq. (4.13),
and (e) the model with positive release probability  and refractory time ✓ = 0. The dashed line in (a) corresponds to
the reference line sc = 0. The rate of change of entropy density �(r, t), Eq. (4.17), is shown for (f) the experimental
conditions, and (g) the numerical simulations at � =  = 0. Simulations in (b)-(f) consider a single cell of radius
r0 = 0.02, in a periodic system of linear size L = 1, and bead density ⇢b = 103. The step length for the simulations
in (c), (d) and (f) is set to � = 0.004. In (e) the release of beads occurs to the same direction they were encountered
by the cell, e↵ectively pushing beads away. This figure has been submitted to PRX as part of the manuscript [7]

beads.

Changes in the distribution of beads a↵ects the excess configurational entropy per cell sc, a quantitative measure

of the level of spatial order. In the experimental setup considered here, where the densities of both cells and beads
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are low, the configurational entropy per cell sc can be written perturbatively, to first order, in terms of the radial

distribution function [152],

sc = ⇡⇢c

Z
dr

h
ĝUe↵ + (ĝ � 1)

i
r, (4.16)

where Ue↵ = � ln(ĝ) and ⇢c is the cell density. The configurational entropy production therefore reads ṡc(t) =

⇡⇢c
R

dr�(r, t)r, with entropy production density

�(r, t) = ˙̂g(r, t, ⌧ = 0)Ue↵(r, t, ⌧ = 0). (4.17)

For a non-interacting homogeneous system, the radial distribution function ĝ is unity and the e↵ective potetial

Ue↵ vanishes, so that the entropy production ṡc vanishes identically. The configurational entropy decreases as

the system becomes more organised, decreasing the total entropy of the bead distribution. This entropy reduction

carries an energy cost, which is provided by the active cells that transport beads and keep the system out of

equilibrium.

As expected from the observation of attractive e↵ective potentials for Wnt- and iWnt-beads (Figs. 4.3d and

Fig. 4.3e), the dynamics of these systems tends to decrease the configurational entropy sc, lowering the total entropy

of the bead distribution. In both cases the entropy rate is roughly constant (Fig. 4.9a), with the configurational

entropy decreasing linearly in time. The entropy for Wnt-beads decreases at a rate almost twice that of non-

signalling iWnt-beads, suggesting that the biochemical signalling of Wnt-beads contributes to a faster organisation

of the system. The configurational entropy of Unc-beads on the other hand, shows no significant change in time.

It remains near the non-interacting reference sc = 0 for the 12 hour period of observation, demonstrating the lack

of recruitment and organisation of uncoated beads by stem cells.

As argued in the previous section, the behaviour of mESCs with Wnt-beads is well described by the simplest

model, described at the beginning of Sec. 4.6, for which a linear decrease of configurational entropy over time is

observed (Fig. 4.9b). The rate depends on the step length and thus the di↵usion constant of the cells. However,

the di↵usivity does not vary significantly between experiments and therefore does not su�ce to explain the higher

entropy rate observed when cells interact with Wnt-beads compared to non-signalling iWnt-beads. By introducing

the disregarding probability � (Fig. 4.9c), the experimental observations could be replicated, where for a fixed

di↵usion constant and positive probability � > 0 the entropy generation is reduced compared to � = 0, but remains

constant in time.

When taking into account the release of beads with probability  (Fig. 4.9d) the entropy reaches a minimum

when the mean number of beads captured is maximum (see Fig. D.1), whereafter the entropy generation becomes

slightly positive before levelling o↵, so that sc(t) reaches a plateau close to 0, asymptotically. When considering

the pushing mechanism describe at the end of the previous section, the entropy also reaches a plateau (Fig. 4.9e).

There, high release probability  imply the maintenance of lower level of entropy. This behaviour is also observed

in the case of Unc-beads (see Fig. 4.9a), where the entropy remains constant and no signs of a minimum are

observed. The observations for Unc-beads could also be the result of a combined e↵ect of both disregarding
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and releasing mechanisms. However only in the cases where a positive release probability  is considered the

configurational entropy will remain constant over time, otherwise it will decrease linearly in time.

The entropy production density �(r, t) shows that, in the case of signalling Wnt-beads (Fig. 4.9e, left panel), the

largest contribution to negative entropy generation occurs around r = 0, close to the cell centre. This is consistent

with numerical simulations (Fig. 4.9f), where, in addition, �(r, t) remains approximately constant over time t. The

density � is significantly reduced for non-signalling iWnt beads and essentially vanishes for Unc-beads (Fig. 4.9e).

This is expected, as the temporal changes in their e↵ective potentials are greatly reduced compared to Wnt-beads

(Figs. D.3-D.5).

4.9 Discussion and outlook

In this chapter a simplified experimental setup was used, in which single active cells interact with signals that are

immobilized on the surface of micron-sized beads. Time-lapse imaging at high spatio-temporal resolution was

performed to follow the dynamics of single cells interacting will homogeneously distributed beads. By introduc-

ing the age- and time-dependent e↵ective potential the spatio-temporal dynamics of cell-signal interactions were

characterised as an ageing system of two interacting species of particles.

E↵ective potentials have been extensively used in the stochastic and hydrodynamic modeling of active matter

[123, 124]. However, until now these had only been measured experimentally in stationary, confluent cell sheets

[128]. The results presented in this chapter are the first measurement of ageing e↵ective interaction potentials at

the single cell level. They encapsulate information not only of the instantaneous stem cell-ligand interactions, but

also of their spatial and temporal evolution, bridging across scales. They specify the location, strength and duration

of these interaction on the cell membrane. Furthermore, it was shown that the ageing e↵ective potential provides

a previously unexplored route for extracting the change in configurational entropy of a living system. This allows

the direct measurement of the organisation of the environment by cells.

Through the comparison of experimental observations for mESCs with numerical simulations it was shown

how short and large-scale organisation of beads, as measured by the e↵ective potential and configurational en-

tropy, emerge from the microscopic single cell-signal interaction. Analytics and numerical simulations allowed

the distinction between three di↵erent mechanisms for cell-bead interaction. In the case of signalling Wnt-beads,

the interactions are dominated by a capturing dynamics, where cells encounter and retain beads in a seemingly

irreversible manner, e�ciently transporting signals. In the case of non-signalling iWnt-beads, the reduction in the

interactions was associated with a reduced a�nity of cell-bead interactions, as if cells were disregarding a frac-

tion of beads in their environment. Finally, the interactions between cells and Unc-beads were found to be very

short-lived, with their lack of recruitment being crucial for reproducing the experimental phase diagrams. For this,

in the simulations cells were allowed to re-interact with beads. This, combined with a high release rate, results in

an e↵ective pushing dynamics, where cells displace beads as they di↵use. It turns out that the properties of the

e↵ective potential obtained for ✓ = 0 are not a↵ected by moderate increases in the refractory time (see Fig. 4.10),

which implies that the results presented here are robust to possible memory e↵ects.

Even though it is known that a suitable biochemical coating is necessary for the formation of durable cell-
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Figure 4.10: Phase diagram with positive refractory time ✓. Markers indicate attractive (circles) and repulsive
(crosses) regions in the phase diagrams, as measured by b⇤2 (Eq. (4.5), colorbar) for ⇤ = 2R, where R is the cell
radius, for simulations of the model (Sec. 4.7) with positive refractory time ✓ and release to the cell edge with
probability , as indicated. As mentioned in the main text, moderate increases in the refractory time (see (a) and
(b)) do not change the qualitative features of the phase diagram. However, larger values of the refractory time,
such as (c) ✓ = 240, or (d) ✓ ! 1, which implies no re-interaction, do exhibit some noticeable fluctuations in the

phase diagram, especially for increasing time.

bead bonds [146, 147], here it was shown that the signalling nature of the coating plays a more complex role in

these interactions. This ranges from the recruiting e�ciency to the location of the signal on the cell membrane.

In the particular setup considered here, mESCs show a higher a�nity for signalling (Wnt3a-coated) Wnt-beads

compared to the non-signalling iWnt-beads. Wnt-beads promote more e↵ective interactions and organisation by

cells, over time, as seen in Fig. 4.1c. Future research is needed to pinpoint the molecular mechanisms behind the

di↵erent cell-signal interactions and to explain the observed selectivity. Furthermore, it would be of great interest

to determine if this selectivity to particular signals is unique to embryonic stem cells or applies to other cell types.

Numerical simulations allowed the exploration of experimentally inaccessible regimes, which provide deeper

insight into the properties of the ageing e↵ective potential and the properties of cell-signal interactions. The

existence of the previously unobserved repulsive region in the phase-diagram of the e↵ective potential (such as
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Fig. 4.6a) was attributed to the e�cient transport of signals by cells. Further, the transition of the potential,

from attractive to repulsive, was shown to be directly related to an e�cient transport of signals by the cells.

Its timing is controlled by the di↵usive properties of cells together with the microscopic (capture, disregard and

release) mechanisms of cell-signal interactions. It is expected that in experimental setups considering, for example

migratory phenotypes, such as cancer or mesenchymal stem cells, the repulsive phase will be observed even when

cell signal interactions are dominated by a capturing mechanism. This might have relevant implications on the

dynamics and invasive capabilities of these cell types.

By casting the configurational entropy of the system in terms of the e↵ective potential, the e�ciency with

which cells influence and organise their environment could be quantified, as a function of time, and also as a

function of the properties of the beads’ coating and thus of the signals. It was observed that relevant biochemical

signals contribute to a faster organisation of the environment (Figs. 4.9a and 4.9e). Despite the similarities between

the temporal evolution of the coordination number c(t) (Fig. 4.4a) and the configurational entropy sc (Fig. 4.9a),

the nature of both observables is di↵erent. The former is a measure only of the net accumulation of beads in a

specific range of the e↵ective potential, while the latter incorporates the whole spatial information of the e↵ective

potential, taking into account the structure and organisation of the bead distribution. The lack of organisation of

uncoated beads explains why even when observing an increase in the coordination number for uncoated beads

(Figure 4.4a), no significant decrease in the configuration entropy is observed over time (Fig. 4.9a). Moreover,

in the case of both Wnt- and iWnt-beads, it is observed that the coordination number c(t) reaches a plateau at

the 7 and 10 hour mark, respectively. However, in both cases, the configurational entropy maintains a constant

rate for the whole duration of the analysis. The fact that the entropy continues to decrease despite no further

bead accumulation, indicates that cells are actively positioning the beads they contact at preferred locations on

the cell membrane. These preferred locations correspond to the minima of the e↵ective potentials of interaction.

Although the biological implications of this observation remains open for future work, it may be hypothesized

that the beads’ location might be controlled by Wnt-receptors and downstream e↵ectors, and the dynamics of the

cellular membrane.

In the work presented in this chapter, experimental measurements of the motility of cells were performed,

which were used to interpret the e↵ective potential observations. It is worth noting that the di↵usion constant

measured for the cells (⇠0.2 µm2/min) is very low, allowing cells to travel an average distance of the order of a

cell diameter in the course of 12 hours. Together with the low density of beads, which implies an average distance

between beads of the order of 100 µm, one might have though that cells would not be able to interact with more

than one bead in their surroundings. However, the experimental observations (see Fig. 4.1) show that long range

cell-bead interactions occur though thin membrane projections that recruit beads e�ciently. The model presented

here, despite not considering this membrane features, does account for them though an increased di↵usivity. Future

work shall focus on understanding the properties of both types of interactions, one based on changes of body shape

and the other one on net displacement.

Other parameters present in the model, such as the release rate and disregarding probability could not be

measured directly. This is because the cells’ boundaries could not be detected accurately due to the lack of a
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membrane marker, which were not used to avoid external influence on the cell behaviour (see Fig. 4.2). It is

important to remember that Wnt does not di↵use away from the beads [130], thus the interactions, recruitment,

release or disregard, rely completely on direct cell bead contact. Distinguishing between disregarding and release

would then require high spatial resolution to detect precisely when a cell comes and remains in contact with a bead

versus coming very close but not touching the cell. As mentioned earlier, future work shall focus on the molecular

interactions at the cell membrane level to determine the origin of the di↵erent interaction mechanisms.

An advantage of the e↵ective potential approach is that it does not rely on the precise detection of cell bound-

aries but rather on the, much easier to determine, location of the cell center. The methods presented in this chapter

are applicable to a large number of systems. This includes, but is not limited to other types of stem cells and

protein signals both in 2D and 3D environment, such as bio-engineered sca↵olds or in vivo conditions. This could

provide clues to better understand the formation of specialised micro-environments in multicelullar tissues, such

as the stem cell niche, which rely on the precise spatial organisation and localization of cells and signals.

In this and the previous chapters, the focus has been on the study of spatio-temporal dynamics. These ranged

from the study of the spatial BRW and the spatial patterning of vegetation, to the interaction of embryonic stem

cells with spatially dispersed ligands. In the next chapter, the focus is solely on temporal dynamics. Going deeper

into the molecular machinery of stem cells, it is shown how ideas from statistical mechanic and dynamical systems

can be used to decipher the intricate process of stem cell fate decision making.
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Chapter 5

Pulsatile ERK activity and its role on stem

cell fate

The results presented in this chapter are part of a manuscript entitled Pulse kinetics of ERK MAPK controls epi-

dermal stem cell states, co-authored by Toru Hiratsuka, Gunnar Pruessner and Fiona M Watt. Some parts of this

chapter are quoted verbatim from the manuscript [8].

I developed the detection and analysis methods of ERK pulses, including the construction of phase diagrams

and simulations, and interpreted the results. I wrote the manuscript together with Toru Hiratsuka, who performed

all experiments. Of the figures presented in this chapter, I prepared Figs. 5.2, 5.3c-5.3e, 5.4 and 5.6a-5.6d, while

Toru Hiratsuka provided me with Figs. 5.1, 5.3a and 5.3b, 5.5, 5.6e, 5.7 and 5.8.

5.1 Summary

In the previous chapter, it was discussed how embryonic stem cells probe their environment for instructive signals.

Cell signalling can activate pathways that promote di↵erentiation, changes in behaviour, cell division or death.

The ways in which the downstream e↵ectors of these pathways interact with each other at the molecular scale

are, in many cases, only partially understood. In this chapter, primary neonatal human keratinocytes (NHKs,

strain km) are used to study the Extracellular signal-Regulated Kinase (ERK) pathway, which behaves as an on/o↵

switch and is known to control cell proliferation. ERK is involved in the control of a variety of cellular processes

including cell proliferation, migration and di↵erentiation. It is known that this pathway exhibits pulses of activity,

a behaviour common of multiple signal transduction pathways. However, until now the relation between ERK

activity pulses and stem cell fate had not been studied. By using molecular sensors it was possible to track, in real

time, the activity or ERK together with the level of di↵erentiation of NHKs, as measured by Involucrin expression.

A method was developed to study the co-evolution of these two signals, ERK and Involucrin, which allows the

construction of a stem cell state phase diagram. With this, di↵erent stem cell states can be distinguished, which

are characterised by their mean levels and pusatile activity. Here, it is shown that the transition between states is
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mediated by pulsatile ERK activity. It is shown that ERK mean level and pulses are independently regulated by

DUSP10 and DUSP6, respectively. These are two components of the unstable autoregulatory protein phosphatase

network that controls the transition between the stem and di↵erentiated cell states. The results presented in this

chapter show that pulsatile ERK state mediates the transitions between epidermal stem cell state.

5.2 Introduction

The stem cells state is an unstable state of the cell. If left isolated from external stimuli a stem cell will eventually

decay into a state where its pluripotency may be partially or totally lost. As mentioned in the previous chapter,

this process can be controlled by external biochemical or mechanical cues. At the beginning of the di↵erentiation

process, stem cells go though a stage of commitment, where the internal biochemistry of cells changes though the

activation or deactivation of molecular pathways [153, 154]. These changes determine the ultimate state of the

cell, commonly referred to cell fate.

The interactions between signalling pathways often leads to rich temporal dynamics of their activity and protein

expression. Hysteresis loops, cycles, intermittent behaviour, and oscillatory dynamics [155] have all been observed

in the activity of pathways inside the living cell [156, 157]. In this chapter, the focus is on the pulsatile behaviour of

a specific molecular pathway, ERK, and its relation to the cell state and role in cell commitment and di↵erentiation.

Pulsating signal activity di↵ers from oscillations in that pulses are localised in time, i.e. are not necessarily regular.

Pulses are common to several cellular signal transduction pathways [158, 159] and are present in diverse cell types,

from microbes to mammalian cells [158]. It is argued that the properties of the pulses, such as frequency, amplitude

and duration encodes information [159] that can, for example promote the (de)activation of target genes.

As argued in [160, 161], common steady state experiments where observables are averaged over populations

of cells can mask the existence of activity pulses or oscillations, for this reason it is imperative to look at the time

evolution of pathways at the single cell level, where the role of pulses in the cellular response to external or internal

stimuli can be assessed. Following this single cell approach, Lahav et al. [160] found that pulsatile activation of

the tumor suppressor p53 occurs in response to increasing radiation-induced DNA damage. Moreover, they found

that the amplitude and duration of the pulses is independent on the level of DNA damage, while the frequency of

pulses decreases with the radiation dose.

Pulsatile behaviour has also been observed in ERK activity. ERK is a downstream target of multiple signals,

including integrins (proteins related to cell adhesion) and epidermal growth factor (EGF, related to cell prolif-

eration) [162]. Thus, ERK is involved in the control of diverse aspects of the cellular behaviour including cell

proliferation, migration and di↵erentiation [162]. ERK activity is regulated by phosphorylation (activation) and

de-phosphorylation (de-activation) via upstream kinase activators and phosphatases [162, 163]. Through live imag-

ing approaches, the spatio-temporal dynamics of ERK has been observed in a variety of cell types (in-vitro) and

organisms (in-vivo) [161, 164, 165, 166, 167]. This includes the observations of temporal pulses, but also the spa-

tial propagation of two dimensional activity fronts or bursts in cellular tissues. In murine (mouse) epidermis, the

outer cover of the skin, ERK pulses and burst have been studied in steady state and during wound healing [165].

The epidermis is a layered structure, stem cells reside in the basal layer (deepest layer), these either self-renew or
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Figure 5.1: ERK activity and cell size. (a) Images of NHK colonies expressing EKAR-EVnls. Colours indicate
ERK activity. Scale bar 50 µm. (b) Box plots of single cell ERK activity as a function of cell area. Mid-line
corresponds to median; box to 25th and 75th percentiles; whiskers to lower and higher 95 percetiles. Red crosses
correspond to outliers. (n = 3581 cells). (c) Shows the heat-map of ERK activity as a function of time for 52
cells in descending order of overall ERK activity variance. Colours indicate ERK activity. (d) Representative
time-series of ERK activity in cells indicated by asterisks in (c). This show pulsatile (*1-4), stable-low (*5), or

stable-high (*6) ERK activity profiles. This figure is part of the manuscript [8].

produce committed cells that move upward into the suprabasal layers as they undergo terminal di↵erentiation.

ERK is required for epidermal stem cell development and maintenance. It has been observed that deregulation

of ERK signalling leads to skin abnormalities and proliferation-related disease, such as psoriasis, chronic skin

inflammation and cancer in mouse and humans [168, 169, 170, 171, 172, 173]. A variety of data analysis and

modeling approaches have contributed to the better understanding on the interaction between ERK and other

pathways. The Abstract Boolean Network (ABS) [174] approach considers a binary gene expression network of

the cell, where each gene is considered "on" ("o↵") if the level of expression is above (below) the mean expression

among all genes [154]. Following this approach Mishra et al. [154] showed that an autoregulatory network of

phosphatases is activated in epidermal cells in response to an extrinsic di↵erentiation signal. This network acts

as a switch between two stable cell states, the stem and di↵erentiated states. The simultaneous knockdown of

a series of phosphatases (including DUSP6) lead to an upregulation of ERK activity, an increase clonal growth

and maintainance of the stem cell commitment. This suggests that DUSP6 contributes to cell commitment. On

the other hand, DUSP10 knockdown reduced clonal growth of keratonocytes, increasing commitment, suggesting
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that DUSP10 antagonises stem cell commitment. As argued earlier, these studied have the drawback of being

coarse grained, where detailed features of ERK activity, such as pulses, are averaged out. Thus, the details of the

interaction between ERK activity, phosphatases and cell commitment and di↵erentiation remain until now only

partially understood.

It has been recently observed in immortalized human mammary epithelial cells, that ERK activity fluctuates in

a frequency-modulated manner [161], exhibiting regular pulses of short duration. Aoki et al. [164] found that in

normal rat kidney epithelial cells, ERK activity pulses behave like stochastic events with an exponential distribution

of waiting times, also referred to as inter-pulse intervals. They observed that pulses can occur spontaneously or

propagate from cell to cell. Their results further support the observation that ERK activity is frequency-modulated1

to regulate cellular processes, which in this case corresponds to cell proliferation. As mentioned earlier, Hiratsuka

et al. [165] found bursts, waves and pulses of ERK activity both in healthy and wounded mouse skin tissues, where

they observed striking di↵erences in the patterns of ERK activation between the two conditions.

It is clear now that at the population level ERK activity pulses play an important role in stem cell maintenance,

proliferation, wound healing and development. However, the relation between specific single cell ERK activity

patterns and cell fate is still unclear. In this chapter it is shown that mammalian (human and mouse) skin stem cell

fate is mediated by ERK pulses. Commitment to di↵erentiation can be triggered by changes in ERK mean and

pulse levels. Furthermore, it is show that these two features of ERK activity, mean and pulses, are independently

regulated by phosphatases DUSP6 and DUSP10, respectively. These seem to act synergistically to induce and

maintain cell commitment and di↵erentiation.

This chapter is organised as follows: in Sec. 5.3 the experimental setup is described. The results are presented

in Sec. 5.4, where the relation between ERK activity patterns and di↵erentiation is studied experimentally. The

discussion and outlook are left for Sec. 5.5.

5.3 In-vitro experiments

Live imaging of individual primary human neonatal keratinocytes (HNKs) was performed. ERK activity was

monitored via lentiviral expression of a nuclear-tagged FRET2 biosensor for ERK, EKAR-EVnls [175]3. This

biosensor allows the measurement of active ERK and inactive ERK, which are detected as FRET (YFP) or CFP

signals, respectively. The ERK activity was then quantified as the ratio FRET/CFP of active over inactive signal.

NHKs were transduced with the EKAR-EVnls reporter under feeder-free conditions and then plated on J2-3T3

feeder cells in order to monitor clonal growth and di↵erentiation [176].

To asses the level of di↵erentiation of cells a fluorescent reporter of Involucrin was developed for this study

by Toru Hiratsuka. Involucrin is a gene that is upregulated in the suprabasal (more di↵erentiated) epidermal

1As pulses are exponentially distributed in this case, it would be more accurate to call it a rate-modulation instead of a frequency-modulation.
2FRET refers to Föster resonance energy transfer. These biosensors have two fluorophores, a donor and an acceptor. By external excitation,

usually by a source of light, the donor fluorophore can excited, which produced fluorescence of a given wavelength that can be measured. If the
acceptor fluorophore is at a su�ciently small distance from the donor, there is electron transfer between them, allowing both second fluorophore
to be excited, this is usually referred as FRET. Thus, allowing the measurement of a second wavelength di↵erent from the donors one.

3Here, the two fluorophores are YFP (yellow, Venus) for donor and CFP (Cyan, Turquoise) for receptor. When active ERK meets the
biosensor EKAREV-NLS in the nucleus, the sensor is phosphorylated and FRET takes place.

104



(a) (b)Pulse peaks

Duration
Inter-pulse interval

Prominence

0.7

0.9

0 1 4

ER
K

 a
ct

iv
ity

 
(F

R
ET

/C
FP

)

Time (hr)
Pulse criteria: prominence > 0.05 Frequency (pulses ∙hr-1)

fmean  = 0.76 pulses ∙hr-1

Tmean  = 1.86 hrBaseline

1.0

0.8

2 3

C
el

l c
ou

nt

Inter-pulse interval (hr)

τ = 1.52 pulses ∙hr-1

(c)

Pulse duration (hr)

Wmean = 0.25 hr

Pu
ls

e 
co

un
t

0 1 2
Frequency (pulses ∙hr-1)

0

50

100

150

200

250
fmean  = 0.003 pulses ∙hr-1 
Tmean  = 17.4 hr

C
el

l c
ou

nt

Kinase-
dead

Normal

Pe
rc

en
ta

ge
 o

f c
el

ls

Pulsating
Non-pulsating

(e)(d)

3

0 1 2 3 4
0

100

200

300

400

0 5 10
0

1000

2000

3000

In
te

rv
al

 c
ou

nt

0 1 2 3
0

500

1000

1500

0

20

40

60

80

100

Figure 5.2: Characterisation of ERK pulses. (a) Schematic of the ERK pulse detection and quantification
method. Pulses are detected as local peaks with prominence larger than 0.05 FRET/CFP value. Pulse duration
was determined as the width of pulse at half the prominence of each pulse. The inter-pulse interval is characterised
as the latency between consecutive pulses. (b) Shows the histogram of frequencies, indicating the mean frequency
fmean and period Tmean. (c) Histograms of pulse duration, indicating the mean value. (d) Shows the histogram
for inter-pulse intervals. The red curve corresponds to and exponential fit, with decay rate ⌧. (e) Validation of the
quantification methods with kinase-dead EKAR-EVnls biosensor (EKAREV-TA-nls), where FRET does not occur.
Left, proportion of pulsatile cells in keratinocytes expressing normal EKAR-EVnls or EKAREV-TA-nls. Right,
histogram of ERK pulse frequencies in pulsatile cells detected in keratinocytes expressing EKAREV-TA-nls. Data

obtained from NHKs on feeder layers in complete FAD medium. This figure is part of the manuscript [8].

layers. A previously characterized Involucrin promoter and intron sequence [177] were used to drive mCherry

(red) expression. The reporter was characterised and optimised, and showed a good response to di↵erentiation

stimuli.

5.4 Results

5.4.1 ERK activity and cell size in human epidermal cells

Preliminary measurement of ERK activity (FRET/CFP) in HNK colonies (Fig. 5.1a), revealed that the mean level

of ERK activity was lowered in larger keratinocytes (Fig. 5.1b). Keratinocytes are known to enlarge as they undergo

terminal di↵erentiation [178], thus this result suggested that ERK activity is related to di↵erentiation in this cell

type. It is worth noting that there is a wide spread of mean ERK activity in smaller cells (Fig. 5.1b), which is

significantly reduced as cells enlarge. This further suggests a connection between the precise regulation of ERK

levels during di↵erentiation.
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Monitoring of the temporal behaviour of ERK activity in individual cells revealed important di↵erences from

cell to cell on their patterns of ERK activity (see Fig. 5.1c). Signals can be classified according to their mean level

and fluctuations, later on it is argued that the level of fluctuations of the activity has a direct relation to its pulsatile

behaviour. Some distinctive activity patterns can be seen in Fig. 5.1d, with some cells (1-4) exhibiting high mean-

high fluctuations (high-high), other cells (*5) presenting a low mean-low fluctuation (stable-low) or high mean-low

fluctuation (stable-high). All signals have quick, small amplitude (noise) fluctuation around the mean (Fig. 5.1d).

However some signals present larger deviations of long duration, which are interpreted as pulses of activity. This

is consistent with previous observations of ERK activity pulses in human epidermal stem cells [179].

ERK pulse detection

To quantify the pulsatile behaviour of ERK activity a peak detection method was used (MATLAB R2018b,

findpeaks function). With this method peak-candidates correspond to local maxima in the activity signal (see

Fig. 5.2a), this are then screened according to prominence4, where peaks corresponded to maxima with a promi-

nence larger than the threshold of 0.05 (see Fig. 5.2a)5. From the peaks detected, properties such as width (dura-

tion), time of occurrence, inter-pulse intervals and frequency, measured as the total number of pulses divided by

the total length of the signal, were extracted. In normal NHKs the frequency of pulses ranged from almost zero to

approximately 3.5 pulse/hr, with an average of 0.76 pulse/hr amongst the cell population (Fig. 5.2b). The average

duration of pulses was 0.25 h, which is consistent with that previously reported in immortalized epithelial cells

[161, 164] Fig. 5.2c. The histogram of waiting times between pulses or inter-pulse interval (Fig. 5.2d) was well

fitted by an exponential decay curve (exp(�⌧t)), with a rate ⌧ = 1.52 pulses/h. This supports the hypothesis that

ERK pulses are stochastic rather than precisely timed events [179].

The possibility that pulses were an imaging artifact or that the peak detection was capturing noise fluctuations

as pulses was ruled out by making use of a kinase-dead control, here phosphorilation of the biosensor (EKAREV-

TA-nls) by ERK does not take place, thus FRET/CFP levels do not change. In this setup the pulse detection

algorithm shows an approximately 90% reduction on cells with at least one pulse and a vast decrease in pulse

frequency (Figs. 5.2e), confirming the e↵ectiveness of the method to detect activity pulses.

5.4.2 Co-detection of ERK activity and di↵erentiation

A comprehensive understanding of the relation between ERK activity patterns and di↵erentiation in human ker-

atinocytes, as suggested by the preliminary observations (Fig. 5.1), is obtained by studying the ERK activity and In-

volucrin, simultaneously. Involucrin expression in human epidermal stem cells can be observed in red in Fig. 5.3a,

were di↵erentiation was induced by changing medium from KSFM (low Ca2+ serum-free medium) [180] to high

Ca2+ media (1.6 mM) or serum.

ERK pulses appeared to be downregulated at a time point which coincident with the onset of Involucrin ex-

4The prominence is the distance from the tip of the peak to the base line. The base line was determined by extending the largest horizontal
line, below the corresponding peak, that did not cross the signal nor contains a peak higher than the corresponding one, as shown in Fig. 5.2a.

5Di↵erent values of the threshold where tested, this value was selected as is maximised the detection of what were interpreted as true peak,
by eye inspection.
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Figure 5.3: Codetection of ERK activity and Involucrin level. (a) Involucrin-mCherry reporter expression in
cells cultured under the indicated conditions. Scale bar 100 µm. (b) Representative time-series of ERK activity
(green) and Involucrin-mCherry expression (red), and images of the corresponding cells at di↵erent time points
indicated by the orange circles in each time-series. (e) Schematics of the methodology for constructing the phase
diagram of ERK activity. ERK moving variance, and ERK and Involucrin moving mean levels are measured for
the time series of each cell. By Plotting the (Di,�2

i var)-map, a trajectory of the co-evolution of the two factors
is obtained. The phase diagram of ERK activity variance (d) and mean ERK activity (e) as a function of the
mean Involucrin level is shown (n = 3397 cells). Arrows indicate the average direction of transition between

compartments. Red colour indicates points of accumulation. This figure is part of the manuscript [8].

pression, example of which can be seen in Fig. 5.3b. Cells that maintained stable-high or stable-low ERK activity

profiles, appeared to maintained either a low or high Involucrin expression, respectively.

In the following a method to obtain an integrative view of the temporal dynamics of ERK activity and Involucrin

expression, is described.
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5.4.3 Construction of the phase diagram of NHKs

Moving variance as a measure of ERK pulse level in a time window

In order to study the change in ERK activity pulses over time in individual cells, overlapping moving time windows

of 50 minutes were analysed (see left panel in Fig. 5.3c)6. Each time window was small enough for the mean

ERK activity, within the window, to be considered fixed, but long enough to accommodate an ERK activity pulse

(typical pulse 0.25 h). For each window the variance or mean of ERK activity was computed (see centre panel in

Fig. 5.3c). The variance is a measure of dispersion of the measurements in the window, and quantifies the extent

of the deviations of the signal from its mean value. These deviations can occur due to pulses, or noise fluctuations

(which are short lived and of much smaller amplitude than pulses). The variance captures both the amplitude and

number of pulses in the time window, giving a quantitative measure of the pulsing level of ERK activity in the time

window. The minimum value for the variance is zero, which corresponds to a signal without pulses or fluctuations;

larger values of the variance indicate a higher level of pulsation. This method allows a continuous assessment of the

pulse level over time. Other methods, such as peak detection and pulse count, amount to a discrete measurement

of pulses, which does not lend itself naturally to a continuous quantitative analysis of the temporal evolution of

ERK activity pulses.

Phase diagram

The values of variance of ERK activity and mean Involucrin level, obtained from the procedure described in

Sec. 5.4.3, were plotted for every time window, providing a trajectory in the plane spanned by ERK activity

variance and mean Involucrin level (see right panel in Fig. 5.3c). This was repeated for each of the 3238 cells

considered. The ERK activity variance vs Involucrin mean level plane containing the 3238 overlapping trajectories

was then divided into n ⇥ m regular blocks. The trajectories that lay within each block were then averaged to

obtain a mean direction for each block. This procedure resulted in the phase diagram of ERK activity variance

vs mean Involucrin level (see Fig. 5.3d). Every block in the phase diagram corresponds to a pair of ERK activity

variance-Involucrin mean level values, while the arrow in the block indicates the mean direction to which these

values changed in time. The same procedure can be followed to construct other phase diagrams, such as mean

ERK activity vs mean Involucrin level (see Fig. 5.3e).

Phase diagram normalization and transition probabilities

Arrows in each (i, j) block of the phase diagram was decomposed into its xi and y j components, with i 2 [1, n]

and j 2 [1,m]. The xi components were rescaled by the maximum value of the Involucrin mean level, i.e. x0i =

xi/max(x), while the y components were rescaled by the maximum value of the ERK activity variance, i.e. y0i =

yi/max(y). This rescaling amounted to normalising both axes of the phase diagram to the range [0, 1], and allowed

the comparison between the x0i and y0i components of the arrows. The transition probabilities between neighbouring

blocks corresponded to rxi = |x0i |/(|x
0

i | + |y
0

i |) and ry j = |y0j|/(|x
0

j| + |y
0

j|), where |·| indicates the absolute value. Here,

6Only time series of more than 90 minutes were analysed.
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rx j accounts for the probability of transitioning to the neighbouring block of Involucrin mean level, while, ry j

corresponds to the probability of transitioning to the neighbouring block of ERK activity variance. The signs

of x0i and y0j indicate the direction of the transition, a minus (plus) sign signifies a transition towards decreasing

(increasing) values of Involucrin and ERK activity variance, respectively. The probabilities are normalised, such

that rx j + ry j = 1 for every pair (i, j).

This procedure allows to turns an ensemble of independent time series for ERK and Involucrin into a single

phase diagram that shows the co-evolution of either ERK activity mean or variance versus the mean Involucrin

level.

Simulations of the phase space dynamics

The division of the phase space into blocks and the definition of transition probabilities between them (as obtained

in Sec. 5.4.3) amounts to turning the continuous phase space of ERK activity and Involucrin into a discrete finite

state Markov process. This allow the simulation of the evolution of hypothetical cell states though the phase space

of ERK activity variance (or mean) and Involucrin mean level. The stochastic simulations were performed as

follows:

1. An initial distribution of N cell states was considered. They were uniformly distributed on the phase space.

Their position on the phase diagram corresponded to their initial values of ERK activity variance and In-

volucrin mean level. Thus, the evolution of each of the N cell state was interpreted as the evolution of the

internal state of a given cell.

2. On every iteration of the algorithm one of the N cells was selected at random.

3. The selected cell was allowed to move to one of the four nearest neighbouring blocks according to the

transition probabilities, rxi and ry j, computed from the experimental phase diagram.

These simulations allows the observation of the relation between ERK activity (variance or mean) and Involucrin

mean level over time, visualise the paths cell states take, and detect accumulation regions that can be interpreted

as stable cell states.

5.4.4 Observations from the phase diagram

The flow in phase diagrams (Fig. 5.3d) suggests that human epidermal stem cells downregulate ERK activity pulses

on the onset of di↵erentiation. In contrast, it is observed that the mean ERK activity gradually converged towards

an intermediate value, as the level of Involucrin increased (Fig. 5.3e). This di↵erential behavior suggests that ERK

pulses, as measured by the moving variance, and mean levels are subject to distinct regulatory mechanisms, and that

the downregulation in ERK pulsatile behaviour is more closely related to stem cell commitment to di↵erentiation.

Simulations of the evolution of stem cell state on the phase diagrams were performed to study how hypothetical

cells would flow through the ERK-Involucrin phase diagram, selected time frames of the evolution is shown in

Fig. 5.4. The initial condition for the simulations considered 10 cells on each phase diagram compartment (see

109



left panels in Fig. 5.4), this homogeneous distribution of cell states relate the realistic scenario where there is an

heterogeneous population of cell sates. Di↵erent initial conditions do not a↵ect the observations described here.

Simulations on the phase diagram constructed from the whole population of cells (Fig. 5.4a) show that human

epidermal stem cells downregulate ERK pulse levels prior to induction of Involucrin expression. This is evidenced

by the decrease in variance for cells with low Involucrin level, which afterwards converge to high Involucrin "fixed

point" (box in Fig. 5.4a). This behaviour is more evident when performing the analysis only on cells with an overall

increase in Involucrin, as seen in Fig. 5.4b. Preliminary observations show that there might be cycles in the high

ERK variance-low Involucrin and low ERK variance-low Involucrin, this could be populations that remain in the

stem cell state, arguably by regulating their ERK activity. A di↵erent interpretation, is that the transition from stem

to di↵erentiated cells is a step-wise process, where the cell state transits between metastable state before reaching

terminal di↵erentiation.

5.4.5 Pulsing state, stemness maintenance and proliferative capacity

When considering the phase diagram contructed from the subset of cells with overall decrease in Involucrin, sim-

ulations showed that some cell transition from high to low Involucrin by increasing ERK variance (Fig. 5.4c).

However, it is not clear that an increase in ERK variance is necessary for this transition to take place. Is is inter-

esting to see that, for the phase diagram of cells with decreasing Involucrin, cells converge to a state of stable-high

ERK (high mean, low variance), as seen in the last panels of Figs. 5.4c and 5.4d. This indicates that cells that

remain or converge to the stem state are characterised by a stable-high ERK actvity. Moreover, the observations

of decrease Involucrin suggests that pulsatile ERK activity does not irreversibly commit epidermal stem cells to

undergo terminal di↵erentiation, but may mediate the transition between cell states.

It is known that keratinocytes are proliferative, as opposed to non-proliferative, terminally di↵erentiated skin

cells. Measurement of ERK mean and variance in dividing and non-dividing cells (Fig. 5.5a) shows that mitotic

cells had a slightly higher pulse frequency (114 cells, 1.39 pulse/h) and mean level compared to non-dividing cells

(1124 cells, 1.27 pulse/h).

The cells were then grouped according to their pulse frequency to compare the degree of proliferation of the

cell with ERK pulse frequency higher or lower than 1.5 pulse/h. Individual cells where followed for 48 h, the ERK

frequency was measured only during the first 6 h of observation. The selected were revisited at 48 h to asses the

cell number. Of the cells with low ERK pulse frequency (< 1.5 pulse/h) 72% did not proliferate, remained as single

cells for the 48 h period (Fig. 5.4b), compared to 41% in cells with high ERK pulse frequency (> 1.5 pulse/h). Of

the cells that divided, 71% did it once in the low frequency group compared to a 49% in the high frequency group,

where 30% of initially singe cells increased to 4 cells at 48 h (Fig. 5.4b). Thus cells with an initially more pulsatile

ERK profile are more likely to divide than cells with a low frequency or stable ERK profile.

Combined with the observations from the phase diagrams (Figs. 5.3 and 5.4) it is inferred that cells remain

in undi↵erentiated state by maintaining a stable-high ERK activity (Figs. 5.4c and 5.4d), pulsatile ERK activity

appears to be metastable state showing increase cell proliferation (Figs. 5.5a and 5.5b). This pulsatile state then

decays during commitment, leading to di↵erentiation (Fig. 5.4a), as pictorially described in Fig. 5.5c.
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Figure 5.4: Evolution of simulated cells. Stochastic simulations of simulated cells in the phase diagram, showing
the expected co-evolution of ERK activity variance and Involucrin mean level. The phase diagram was constructed
by considering (a) the whole population of human keratinocytes (3397 cells), cultured on feeder layers in complete
FAD medium, (b) the subpopulation with overall increase in mean Involucrin level (2175 cells), (c) and (d) the
subpopulation with overall decrease in mean Involucrin level (1219 cells). The initial condition for the simulations
corresponded to cells uniformly distributed on the phase diagram. As time passes (from left to right), the cells
transition according to the rates (represented by arrows), converging to certain regions of the phase diagram (red).

This figure is part of the manuscript [8].

In the following, the dose- and time-dependent interplay between di↵erentiation and ERK activity pulses is

studied by stimulating the cells with a variety of di↵erentiation cues. The study of pulsatile behaviour of a pop-
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Figure 5.5: ERK activity and cell proliferation. (a) 2D histogram of ERK pulse frequency and mean activity in
the total cell population (left) and the cell subpopulation that underwent cell division during live imaging (right).
The cells expressing EKAR-EVnls were cultured for 7 days on feeder cells. Mean and SD are shown by red dot
and black lines, respectively. (b) Cell proliferation assay of single cells with ERK pulses lower (left) or higher
(right) than 1.5 pulse/h. Cells were initially imaged at single cell state to measure their pulse levels, and then the
same cells were observed after 48 hours. The number of cells at 48 h and the proliferation fractions. (c) Schematic
representation of modulations in ERK activation pulses during di↵erentiation. This figure is part of the manuscript

[8].

ulation of cells, at a given time point, is not possible through the pulse detection method described earlier, as the

measurement of frequency considers the whole temporal signal.

5.4.6 Instantaneous variance as a measure of population-level ERK pulses

To quantify the level of ERK activity pulses of the population of cells at a given time point, the variance of ERK

activity (FRET/CFP) was measured at that time point among all cells (instantaneous variance). An increase in the

instantaneous variance indicates a higher variability of ERK activity in the population at a specific time point.

Pulses behave as stochastic events, as suggested by the exponential distribution of interpulse intervals (Figs. 5.2d

and 5.6). Then, as long as the mean ERK activity does not change significantly between conditions the use of the

instantaneous variance as a measure of the level of ERK activity pulses of a population at a specific time point is

justified. In the following, when the instantaneous variance remains unchanged between conditions it is said that

the level of ERK activity pulses are the same for both populations, regardless of changes in the mean level.
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Figure 5.6: Molecular regulation of ERK activity. Histograms of (a) frequencies and (b) inter-pulse intervals
in cells treated with scrambled control siRNA (left) or �1-integrin-targeted siRNA (right). Black dotted lines
indicate the mean. (c) Frequency of ERK pulses for both treated cells, plot shows to mean and ± SEM. (d) Shows
the histograms of (left) frequencies and (right) interpulse intervals of cells cultured with Ca2+-chelated medium.
Black dotted lines indicate the mean. (e) Mean Involucrin reporter expression as a function of time, indicating the

mean ± SD. This figure is part of the manuscript [8].

5.4.7 ERK pulse modulation by terminal di↵erentiation stimuli

Inhibition of cell-substrate interactions by reduction of integrin-mediated adhesion is known to trigger exit from

the stem cell compartment via a reduction in ERK signaling [181]. To test the e↵ect of integrins in ERK pulses

Human keratinocytes were transduced with an siRNA targeting �1-integrin or a scrambled siRNA control. It was

observed that a reduction in �1-integrin expression increased the frequency of ERK pulses (Fig. 5.5a) from 1.54

pulse/hr in si-�1 integrin treated cells compared to 0.89 pulse/hr in the scrambled siRNA treated cells (Fig. 5.6c),

implying a reduction in the interpulse intervals (Fig. 5.6b). In contrast to the e↵ect of inhibiting integrin-mediated

adhesion, reducing the cell-cell junctions by Ca2+ depletion, thus blocking formation of adherens junctions and

desmosomes, had little to no e↵ect on ERK pulse frequency (see Figs. 5.6d). Consistent with this, Involucrin

expression was not a↵ected by the inhibition of intercellular adhesion (Fig. 5.6e) [182]. These results indicate

that modulation of cell-substrate interactions plays a more significant role compared to (Ca2+-mediated) cell-cell

interactions.

Direct stimulation of Involucrin expression by phorbol ester (TPA) [183] is also known to increase overall ERK

activity [184]. Keratinocytes had a dose-dependent increase in ERK pulse frequency increase after stimulation with

TPA (Fig. 5.7a), while mean ERK levels peaked at 10 ng/ml. TPA transiently induced ERK pulses (as measured by

the instantaneous variance), which decreased drastically after the peak at 9 h, to stabilise at about 15 h (Fig. 5.7b).

The onset of Involucrin upregulation (Fig. 5.7c) coincided with this pulse downregulation. On the other hand,
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Figure 5.7: Molecular regulation of Involucrin expression, (a) and (d) shows the ERK pulse frequency (left) and
mean (right) as a function of TPA and EGF dose, respectively. Data shows mean ± SD for about 1000 cells for
each condition. (b) and (e) the ERK pulse frequency (left) and mean (right) as a function of time after treatment
with TPA and EGF, repectively. Involucrin expression as a function of time after (c) TPA and DMSO control, and
(f) MEK inhibitor, EGF and DMSO control, indicating the mean ± SD. This figure is part of the manuscript [8].

EGF7 stimulation showed a dose-dependent decrease (Fig. 5.7d. Similarly to TPA, EGF transiently increased ERK

pulse frequency (Fig. 5.7e), with a peak at 11 h, followed by a sharp decrease in pulse frequency. Again, the

onset of Involucrin upregulation (Fig. 5.7f) coincided with the decrease in ERK pulse frequency. The response of

keratinocytes to TPA or EGF treatment is a clear indicator of the tight relation between di↵erentiation and ERK

pulse regulation.

All three di↵erentiation stimuli considered here—reduced integrin-mediated adhesion, TPA and EGF—triggered

an increase ERK pulses prior to their ERK, where the transition coincides with the onset of di↵erentiation, as

measured by Involucrin upregulation. It should be noted that it appears like ERK activity pulses do not lead to

immediate di↵erentiation, as in the case where cells show a pulsatile ERF profile yet proliferate.

5.4.8 Regulation of ERK activity by protein phosphatases

One likely mechanism for the control of mean ERK activity and pulses frequency is via negative feedback reg-

ulation by protein phosphatases [185]. Here the e↵ect of two key members of the protein phosphatase network,

DUSP6 and DUSP10, is studied. These phosphatases act as a commitment switch in human epidermal stem cells

[154]. To investigate their e↵ects on ERK activity, DUSP overexpression was induced by doxycycline. Analysis

though live imaging showed that DUSP6 reduced ERK pulses without changing mean ERK activity (Fig. 5.8a),

while DUSP10 downregulated mean ERK levels without changing ERK pulses (Fig. 5.8b). This indicates that

mean ERK levels and ERK pulses are independently regulated by di↵erent members of the phosphatase network.

DUSP6 overexpression had no e↵ect on Involucrin expression over time compared to the control (Fig. 5.8c).

On the other hand, DUSP10 overexpression strongly stimulated Involucrin expression (Fig. 5.8d). Moreover, the

histogram of Involucrin expression of cell a↵ected by DUSP6 and DUSP10 show that DUSP6 induction increases
7Related to cell proliferation [162].
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Figure 5.8: Regulation of mean and variance of ERK activity by DUSP. (a) and (b) show (left) mean and (right)
variance of ERK activity in NHKs treated with 1 µg/ml doxycyclin (green and purple) or vehicle (black). The
induction of (a) DUSP 6 and (b) DUSP10 was done by the doxycycline treatment. Data correspond to the mean
± SEM (1220 doxycyclin-treated cells and 1261 vehicle-treated cells for (a), 1224 doxycyclin-treated cells and
1005 vehicle-treated cells for (b)). (c) and (d) show Involucrin expression as a function of time of keratinocytes
treated with 1 µg/ml doxycyclin (green or purple) or vehicle (black). DUSP 6 (c) or DUSP10 (d) was induced by
the doxycycline treatment. Histograms for involucring expression 18.5 hour after doxycycline-induced (e) DUSP6
and (f) DUSP10 expression (green and purple, respectively) or vehicle (black) treatment. (g) Shows a schematic

representation of molecular regulation of ERK mean and pulse level. This figure is part of the manuscript [8].

the proportion of cells with low Involucrin expression (Fig. 5.8e). In contrast, DUSP10 expression increased

the proportion of cells with high Involucrin expression (Fig. 5.8f), compared to the control. One possibility is

that DUSP6-mediated ERK pulse downregulation promotes the initiation of di↵erentiation, whereas DUSP10-

mediated downregulation of mean ERK activity promotes and stabilizes post-commitment di↵erentiation. This is

consistent with the finding that DUSP6 is transiently upregulated on commitment, while DUSP10 upregulation

during suspension-induced di↵erentiation is more sustained [154]. Altogether, these observations suggest that

DUSP6 and DUSP10 regulate ERK pulse levels and ERK mean levels, respectively, and act synergistically to

induce di↵erentiation.
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5.5 Discussion and outlook

Stem cells are the building block of high level organisms. The balance between the number of stem cells and

di↵erentiated cells is key for the long term maintenance of healthy tissues. Keratinocytes play this role in skin,

thus understanding the mechanisms for their transition between stem cell and di↵erentiated states is key for under-

standing developmental processes and adult tissue maintenance, and could contribute to the development of new

treatments for growth related diseases.

In this chapter is was shown that the ERK pathway might provide a reliable mechanism for the control of

cell commitment. Previous studies have shown that ERK plays a key role in exit of embryonic stem cells from

the so-called stem cell compartment and in lineage specification [153, 186]. The role of ERK signaling in cell

fate regulation has been extensively studied in multiple cell types [162]. One key feature of ERK is its pulsatile

behaviour, which have been reported in multiple cell types in relation to cell proliferation and tissue morphogenesis

[161, 164, 167]. However, the role of ERK pulses in stem cell commitment and di↵erentiation was to large extent

unknown. With the use of ideas from statistical physics and dynamical systems it was possible to construct a phase

diagram for the Keratinocyte state, which allowed the visualisation of the co-evolution of ERK activity and cell

di↵erentiation. These observations served as motivation to the more in-depth study of the molecular mechanisms

behind the control of ERK activity and its relation to cell commitment and fate determination.

The results presented in this chapter show that epidermal cells present a large variety of temporal patterns

of ERK activity, which can be classified according to their mean and pulse levels. Consistent with previous

observations [179], the waiting time between pulses was exponentially distributed in all conditions, suggesting that

the underlying mechanism for ERK pulses triggering is a Poisson process. Pulses were consistently downregulated

on commitment to di↵erentiation, whether spontaneous or induced by external stimuli. ERK pulse levels were

regulated independently of mean ERK levels, and thus cells had variable temporal ERK activity patterns, such as

stable-high, pulsatile, and stable-low profiles. These results demonstrates that ERK pulses play significant roles in

stem cell fate regulation and raises the possibility that pulse-mediated changes in cell fate are conserved in multiple

tissues and organisms. A schematics of the Keratinocytes state landscape, as deduced from the results presented

in this chapter, is shown in Fig. 5.8g, where the cell state is regulated not only by DUSP but also by integrins,

EGF and TPA. The independent regulation of ERK pulse and mean levels by DUSP6 and DUSP10 indicates that

DUSP6 and DUSP10 operate as independent feedback loops to achieve di↵erent ERK activity profiles and di↵erent

cellular outcomes. Further investigation will be required to understand how ERK activity pulses are initiated and

what downstream targets they induce. Fluctuations of signaling pathways are increasingly recognized as key

determinants for tissue development [158]. Multifaceted features of those fluctuations, such as phase, frequency,

and amplitude, provide potentially di↵erent outputs in terms of cell fate. It will now be of significant interest to

explore the generality of ERK pulses in di↵erent cells and tissues.

Future work will focus on the theoretical understanding of the mechanisms by which ERK interacts with

Involucrin. Some progress has been made in the mathematical modeling or ERK activity [164]. However, the con-

nection between ERK (up-stream) and Involucrin (down-stream), from a dynamical systems perspective, remain

unkown.
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Chapter 6

Conclusions

In the past century Biology has gone from being uncharted territory to probably the most popular and researched

branch of science. Even though sciences are still classified into the three classic branches—physics, chemistry

and biology—the notion of independence between branches is not clear anymore, especially in biology. Nowadays

biological research involves, in most of the cases, the collaboration between scientists from the other two branches.

Chemists develop reagents, and purification techniques for biologists, while physicists and mathematicians bring

to the table methods from statistics, inference, modelling and theoretical approaches, which provide descriptive

and predictive power.

Initial theoretical approaches were mostly speculative, mainly due to the lack of detailed experimental data,

which was the case for example of Turing and his ideas of morphogenesis [71]. In many cases, biological systems

were used more as a motivation rather than as the subject of study. Thus, limiting the real predictive power of

the models considered. In the past decades new experimental techniques and visualization tools, together with

greater computational power and storage capabilities have allowed the observation and recording of ecological and

biological processes at high spatial and temporal resolution. These measurements range from the observation of

in-vitro microorganisms and cellular tissues to in-vivo recording of embryogenesis and lineage tracing. These ob-

servations have been complemented by immunofluorescence techniques and genetic manipulation, which allow the

study of perturbations on the biochemical network of the cell and to observe the dynamics of molecular processes

occurring inside the cell. This allows the study of specific molecular pathways during the di↵erent stages of the

cell and tissues.

Starting from a mainly theoretical question in Ch. 2 and moving into a purely experimental work in Ch. 5

this thesis has, hopefully, convinced the reader that physical and mathematical thinking can both contribute to and

benefit from attempting to solve fundamental and applied questions in biology and far-from-equilibrium systems.

In some cases like Ch. 2 the notion of biology and viral spreading is used as a motivation for the study of the

volume explored by a branching random walk. In others, like Ch. 4 is the biological setup that motivates the study

of e↵ective interaction between embryonic stem cells and protein signals. These approaches produce results with

di↵erent levels of abstraction, one contributing to the theoretical understanding of a general class of branching

processes, while the other providing insight into the biological nature of cellular processes.
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Using tools from non-equilibrium statistical mechanics it was shown in Ch. 2 that relevant observables of the

propagation of spatial branching processes can be obtained on regular lattices and networks. This problem lies on

the most theoretical side of the spectrum, however due to the relation of the BRW with the propagation of viral

processes in animal populations, tissues, and communication chemical networks, these results are of interest for a

broad range of scientists. Overall, the results presented here are an important step forward in the understanding of

viral propagation in general systems.

Spatial branching processes are ubiquitous in nature. In Ch. 3, the properties of a specific type of spatial

branching is studied in the propagation of vegetation in real ecosystems. This process was studied from a theo-

retical and numerical perspective to describe real observations. A nonlinear model for population dynamics was

introduced, which incorporated a nonlocal Kernel for the competitive interactions between plants. It was shown in

Ch. 3 that the facilitative and competitive interactions in vegetation give rise to self-replication, whereby localised

patches—particle-like solutions of the dynamical system—split to create two identical patches. This process, re-

sembling cellular mitosis, provides a spreading mechanism for vegetation in scarce conditions. Di↵erently from

the BRW described in Ch. 2, self replication in this model for vegetation is supercritical, and volume exclusion

between vegetation patches contribute to the patterning of landscapes. Satellite images were used in an attempt to

close the gap between the theoretical predictions and real observations. This analysis suggests that self replication

might be indeed taking place in locations where vegetation patches dominate the landscape, however further on-

site investigation are necessary. It is worth noting that even though the model presented in Ch. 3 was motivated by

the interactions observed in vegetation, there is no reason to think that the same class of models could not apply

for the modeling, for example, of neuron interaction dynamics or cellular tissues and cancer propagation, where

nonlocal interactions might also play a key role.

Spatial interactions play an important role in all physical scales. In Ch. 4, the focus shifts from the macro-scale

interactions studied in Ch. 3 (on the order of kilometres) to the mesoscopic spatio-temporal interactions taking

place at the single cell level (on the order of microns). Cellular processes also occur at much faster time scales,

while the life cycle of a tree is in the scale of decades, the life cycle of a cell is in the order of days. In Ch. 4

experiments with embryonic stem cells were combined with theoretical and numerical methods to understand the

spatio-temporal interactions of cells and localized sources of protein signals. Inspired by theory of simple liquids,

it was shown that cell-signal interactions may be interpreted as e↵ective potentials that emerge at the population

level. These e↵ective potentials allow the connection of small and large scales, while also shedding light on the

temporal evolution of the system of single cell-signal interactions. Furthermore, the work presented in Ch. 4 shows

how simple theoretical methods can be used to understand and predict the non-equilibrium evolution of cellular

systems.

In Ch. 5 the focus shift to even smaller length and faster time scales. There, the objective was to connect the

temporal behaviour of two specific molecular pathways in skin stem cells and establish a causal relation between

them. This was achieved by incorporating single cell and population level measurement and data analysis methods

inspired from statistical mechanics. Through the construction of a phase diagram for the cell state a connection

was established between the pulsatile behaviour of the ERK pathway activity and the expression of Involucrin, a
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di↵erentiation marker. The flow in this phase diagram amounted to the temporal co-evolution of both quantities,

observations that then motivated new experiments to understand their molecular origins. This work is the perfect

example of a synergistic collaboration between physicists and biologists, where the combination of approaches

contributed to the development of new experiments and tools to explore fundamental problems in biology. Now

that there is a fair understanding of the biological and biochemical interactions of ERK and Involucrin, future work

shall focus on modeling and theoretical understanding of the underlying dynamical system.

Lying in the interface between biology, physics and applied mathematics, and between theory and experiments,

this thesis describes novel approaches to calculate, model and quantify the spatial and temporal dynamics of active

and living matter. These approaches can contribute to find the answers to relevant questions in both mathematics an

biology. By making use of techniques and ideas from statistical mechanics the following objectives of this thesis

have been fulfilled:

• With the use of tools from equilibrium and non-equilibrium statistical mechanics, phenomena relevant to

biological and ecological systems were described and characterised, Chapters 2-5.

• The current knowledge of equilibrium physics was extended to active systems, such as self-replicating

(branching) matter and self-organised spatial and temporal processes, Chapters 4 and 5.

• New methodologies were developed for extracting relevant physical and biological observables from exper-

imental data, Chapters 4 and 5.

Findings by chapter

Each chapter of this thesis contributed to the development of a particular field, while also opening avenues for

future research. A list of findings and open problems for each chapter are presented below.

Chapter 2

Findings

• In this chapter, the first analytic results, about the long time, large system size behaviour of a branching

random walk in arbitrary dimensions were presented, these results were supported by numerical simulations.

• A direct relationship between the dimensionality of the substrate and the rate of propagation of the viral

process was found.

• The results obtained for regular lattices were extended to general graphs and applied to the spreading dy-

namics in simulated and real complex networks.

• These results provide a theoretical framework to model and characterise real-world spreading processes, in

particular disease and information propagation.

• All together, these results presents a major step forward in the theoretical and practical understanding of

spatial branching phenomena in general environments.
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Future work

• To study the limitations of the extension of the results from regular lattices to general graphs. When does it

break down and why?

• To study how is the scaling in time and system size a↵ected when considering variations of the BRW, for

instance by the inclusion of volume exclusion, self-avoiding walkers or vicious random walks.

• To study further the formulation of the field theory of the BRW, and how di↵erent dimensional considerations

can lead to other di↵erent field theories.

Chapter 3

Findings

• In this chapter a non-local model for vegetation dynamics and its stability analysis was presented.

• Self replication of vegetation patches was found numerically, where two routes were discussed, a mitotic-like

division and a ring-like instability.

• The phenomena described analytically and numerically where compared against real ecosystems images,

which provided evidence supporting the existence of self-organisation and patch replication.

Future work

• Some models of vegetation incorporate seasonality though periodic fluctuations of aridity, it would be inter-

esting to study how this might a↵ect the self-replication mechanism.

• Related to the previous point is the study of short extreme droughts of floods in the vegetation dynamics.

This type of extreme events are now more likely with climate change.

• It would be interesting to apply the class of interaction-redistribution model described here on other systems,

such as cellular tissues, where it is know that molecular promoters (facilitation) and repressors (competition)

can act at long distances, contributing to the spatial organisation of tissues.

Chapter 4

Findings

• A suitable age and time dependent correlation function was introduced to study stem cell-protein signal

interaction.

• This work demonstrates experimentally the emergence of e↵ective potentials for the interaction between

single stem cells and protein signals.

• A simple theoretical model combined with numerical simulations allow the distinction between di↵erent

interaction mechanisms.
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• Cells are found to be selective, showing a strong interaction with biologically relevant signals. This has an

important e↵ect on the spatial organisation of the system.

• The methods presented in this chapter provide a route to connect the microscopic cell-signal interactions to

the mesoscopic organisation of the environment.

Future work

• It would be interesting to carry out measurements of e↵ective potentials in systems with migratory phenotype

to see the e↵ect on the e↵ective potentials.

• Preliminary observations show that the proportion of cells in contact with one, two, three... beads as a

function of time can be well described by a (non spatial) Markov process. It would be interesting to study

why and when this "mean field" approach fails.

Chapter 5

Findings

• The results in this chapter show, for the first time, a connection between the pulsatile behaviour of a molec-

ular pathway (ERK) is directly connected to stem cell commitment and di↵erentiation (Involucrin).

• A method for the construction and visualization of the cell states was developed. The cell state phase diagram

allows the observation of the temporal relation between ERK and Involucrin.

Future work

• Future work will focus on building a theoretical model for the interactions between ERK pulses and Involu-

crin. This is a major challenge as Involucrin is far downstream compared to ERK activation.

• Once a model for the temporal relation between ERK and Involucrin is achieved it will be interesting to look

at the spatial propagation of ERK pulses, and their relation to proliferation and di↵erentiation, simultane-

ously.

• Future work will also focus on tracing ERK activity and Involucrin of individual cells during several cycles

of cell divisions.

121



122



Appendix A

Field-theory of reaction-di↵usion

processes

In the following, a field-theoretic formalism to study non-equilibrium reaction-di↵usion systems is introduced.

This formalism, proposed initially by M. Doi [23] and extended later by L. Peliti [24], provides a route to cast

reaction-di↵usion systems in a field-theoretic language through the use of creation and annihilation operators for

the discrete particles in the system, and the subsequent formulation in path integral form and derivation of a field

theoretic action. Once the action has been obtained, one can make use of the well known machinery of perturbative

renormalization in order to compute observables of interest.

A.1 The master equation

The first step is to construct the master equation for the (Markovian) reaction-di↵usion process of interest on

a d-dimensional lattice. Reactions between discrete particles occur locally, while di↵usion consider hopping of

particle between nearest-neighbour sites. For two species A and B, the instantaneous state of the system can be

characterised by the sets {nx} and {mx} of occupation numbers nx and mx, respectively, for each site x of the lattice

given. Here two particle species have been considered, however the extension to more species is straightforward

as every additional particle species is accompanied by an additional set {·} of occupation numbers.

Given the independence of these sets of occupation numbers, a master equation can be written for the joint

probability as P({nx}, {mx}; t) to find the particles of species A and B in a certain configuration of occupation

numbers {nx} and {mx} at time t, respectively. The master equation reads

d
dt
P =MP (A.1)

where P is the vector of states of the system, and the transition matrixM contains the transition rates between the

states.

The temporal evolution of a reaction-di↵usion process as described by the master equation (A.1) can be char-
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acterized through the use of a Fock state representation [23]. This representation, borrowed from the second-

quantisation formalism for quantum many-body systems, requires the introduction of Fock or number states |n,mi,

which allows us to write the process in term of ladder operators. The mixed state for a two species system is

defined as

|�(t)i =
X

{nx}

X

{mx}

P({nx}, {mx}; t)a†n1 (x)a†m2 (x) |0, 0i , (A.2)

where |0, 0i corresponds to the vacuum state. The ladder operators a†1(x) and a†2(x) define the creators, and a1(x)

and a2(x) the annihilators for species A and B, respectively, and satisfy

a†1(x) |nxi = |nx + 1i (A.3)

a1(x) |nxi = nx |nx � 1i (A.4)

and

hnx| a†1(x) = hnx � 1| (A.5)

hnx| a1(x) = (nx + 1) hnx + 1| , (A.6)

and correspondingly for a2 and mx, together with the commutation relations

[ai(x), a†j (x
0)] = �i, j�(x � x0) (A.7)

[ai(x), b j(x)] = [a†i (x), a†j (x)] = 0. (A.8)

It is important to note that the creation and annihilation operators act on specific lattice site, denoted by x. Thus,

the action of hitting a lattice site with a creation (annihilation) operator is to increment (reduce) the number of

particles of the corresponding type on the lattice site considered. As it is shown latter, di↵usion of particles can

be e↵ectively interpreted as the annihilation of a particle a a given site followed by the creation of a new, yet

indistinguishable from the original, particle of the same species in one of the neighbouring sites.

By writing Eq. (A.1) in terms of the number states (Eq. (A.2)) one obtains an imaginary time Schrödinger

equation

d
dt
|�(t)i = A |�(t)i , (A.9)

whereA = A(ai, a†i ) corresponds to the action of the process written in terms of creation and annihilation operators

in normal order, i.e. creation operators on the left of annihilation operators. There are at least two key di↵erence

between the interpretation of the classical Eq. (A.9) and the quantum mechanical Schrödinger equation. First, in

general the dynamics of the reaction-di↵usion systems is out-of-equilibrium, where detailed balance is broken, thus

the actionA in Eq. (A.9) need not be Hermitian. Secondly, in the quantum mechanic interpretation of Eq. (A.9) the

state of a system is function of the probability amplitudes, in the classical scenario of reaction-di↵usion systems
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considered here, the state of the system is a linear function of the probabilities [187].

A.2 Path integral formulation

As proposed by L. Peliti [24], Eq. (A.9) can be formulated as a path integral, to them make use of perturbative

techniques to evaluate observables of interest. In the following, a brief derivation of the formalism is presented.

Formally, Eq. (A.9) has a solution of the form

|�(t)i = exp(At) |�(0)i , (A.10)

where the initial state of the system |�(0)i corresponds to a particular configuration. This state is constructed by

acting on the vacuum state with the corresponding set of creation operators, denoted by I. Thus, |�(0)i = I |0i.

From Eq. (A.10) any observable O can be written int terms of operators

hOi (t) = h•| O exp(At) |�(0)i (A.11)

= h•| O exp(At)I |0i , (A.12)

where the so called abyss [188] has been introduced

h•| =
X

{n0x}

⌦
{n0x}

��� , (A.13)

which reduces any ket to unity, i.e.
⌦
•|{n0x}

↵
= 1. With Eq. (A.11) the expected particle number at position y with

O = a†(y)a(y), can be, for example, calculated as

h•| a†(y)a(y) |�(t)i =
X

{n0x}

P({nx}; t)ny
⌦
•|{n0x}

↵
= ny. (A.14)

The solution Eq. (A.10) corresponds to the Shrödinger picture, where the time-dependence is contained in the

evolution operator

exp(At) = 1 +At +
(At)2

2!
+ · · · =

1X

n=0

(At)n

n!
, (A.15)

which has been written in its (arguably convergent) power series form. However, this formal description does not

lend itself for the explicit calculation of observables. For this, the exponential exp(At) can be manipulated in order

to rewrite it as a path integral. This procedure later reduces to replacing the operators by fields, a† by �† and a

by � in the action. To proceed, time t is discretised into small intervals �t [187], a procedure referred to as time

slicing [188], then

exp(At) = lim
�t!0

(1 + �tA)t/�t (A.16)

= lim
�t!0

(1 + �tA)(1 + �tA) . . . (1 + �tA)|                                       {z                                       }
t
�t terms

. (A.17)
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Making use of the identity

1t =

Z
d�d� †

⇡
e��

†(t)�(t)e�(t)a†
|0i h0| e�

†(t)a, (A.18)

where the eigenfunctions

|�i = e�a†
|0i and h�| = h0| e�

†a (A.19)

of the annihilation a, and creator a† operators were used. This is eigenfunctions satisfy

a |�i = � |�i and h�| a† = h�| �†. (A.20)

Inserting the identity Eq. (A.18), with suitable times, around every term of Eq. (A.16)

exp(At) = lim
�t!0

1t+�t(1 + �tA)1t(1 + �tA)1t��t . . . 1�t(1 + �tA)10. (A.21)

As described in [188], any pair of brackets in Eq. (A.21) contains a term of the form

⌅(t + �t, t) = h0| exp(�†(t + �t)a)(1 + �tA) exp(��†�(t)) exp(�(t)a†) |0i . (A.22)

Using the power series representation of the exponential terms and Eqs. (A.5) lead to

⌅(t + �t, t) = exp(��†�(t))
1X

n,m=0

�†(t + �t)n�(t)m

m!
hn| (1 + �tA) |mi . (A.23)

As long as the actionA is a normal ordered polynomial in a† and a, such that the action can be written asA = a†kal

for k, l 2 N, or as a sum of terms thereof, the following holds

hn| (1 + �tA) |mi = hn| 1 |mi + hn| A |mi�t (A.24)

= �n,m + hn| a†kal
|mi�t (A.25)

= �n,m +
m!

(m � l)!
�n�k�m�l�t, (A.26)

where the last terms is valid for n � k and m � l, and 0 otherwise. Inserting this result in Eq. (A.23) one obtains

⌅(t + �t, t) = exp(��†�(t))
1X

n,m=0

�†(t + �t)n�(t)m

m!
hn| a†kal

|mi (A.27)

= exp(��†�(t))
1X

n,m=0

�†(t + �t)n�(t)m

m!

 
�n,m +

m!
(m � l)!

�n�k�m�l�t
!

(A.28)

= exp
h
(�†(t + �t) � �†(t))�(t)

ih
1 + �t�†(t + �t)���(t)

i
. (A.29)

Interestingly, any notion of operators and their commutation properties has disappeared from the expression for
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⌅, this is a consequence of the normal ordering of the operators in the action [188]. Considering Eq. (A.29),

Eq. (A.21) may be written as

exp(At) = lim
�t!0

Z
D⇧e��

†(t+�t)�(t+�t)e�(t+�t)a†
|0i

t/�tY

i=0

e(�†((i+1)�t)��†(i�t))�(i�t)

· (1 + �t�†((i + 1)�t)��(i�t)�) h0| e�
†(0)a, (A.30)

where the integration measure isD⇧ = (2⇡ı̊)t/�t Qt/�t
i d� †(i�t)d� (i�t). Rewriting the products in Eq. (A.30)

exp(At) = lim
�t!0

Z
D⇧e��

†(t+�t)�(t+�t)e�(t+�t)a†
|0i e

Pt/�t
i=0 (�†((i+1)�t)��†(i�t))�(i�t)

· e
Pt/�t

i=0 �
†((i+1)�t)��(i�t)�

h0| e�
†(0)a. (A.31)

With this expression for exp(At) it is now possible to calculate observables using field-theoretic techniques.

A.3 Observables

As discussed previously, the average of observables can be calculated through Eq. (A.11). In general, observables

can be written, in normal ordering, as O = a†ka`. However, when acting on the abyss Eq. (A.13) the creation

operators in the observable are consumed by the abyss, thus the observable simplifies to O = a`. In the same way,

the initialisation operator can be written as I = a†ras, which when acting on the vacuum state reduces to I = a†r.

With this considerations, and making use of Eq. (A.31), Eq. (A.11) can be written as

hOi (t) = h·| O exp(At)I |0i (A.32)

= lim
�t!0

Z
D⇧�`(t + �t) exp

h
(1 � �†(t + �t))�(t + �t) (A.33)

+

t/�tX

i=0

[�†((i + 1)�t) � �†(i�t)]�(i�t) + �t�†�((i + 1)�t)��(i�t)
i
�†r(0). (A.34)

In the limit �t ! 0 the sum in the exponential turns into an integral in time, at the same time, the term �†((i +

1)�t) � �†(i�t) turns into a time derivative. Hence,

hOi (t) =
Z
D⇧�`(t) exp

"
(1 � �†(t))�(t) +

Z t

0
dt 0

 
d�†

dt0
�(t0) + �†�(t0)��(t0)

!#
�†r(0). (A.35)

It is now convenient at this point to perform the Doi-shift of the creation fields [188]

�̃(t) = �†(t) � 1, (A.36)
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which allows for the simplification of some of the terms, and eases some of the calculations of the observables.

The observable Eq. (A.35) with the Doi-shifted fields reads

hOi (t) =
Z
D⇧�`(t) exp

"
��̃(t)�(t) +

Z t

0
dt 0

 
d�̃
dt0

�(t0) + (�̃ + 1)�(t0)��(t0)
!#

(�̃(0) + 1)r. (A.37)

Integrating the first term in the integral with respect to time by parts

Z t

0
dt 0

d�†

dt0
�(t0) = �̃(t)�(t) � �̃(0)�(0) �

Z t

0
dt 0�̃(t0)

d�(t0)
dt0
, (A.38)

Eq. (A.37) the reads

hOi (t) =
Z
D⇧�`(t) exp

"
��̃(0)�(0) +

Z t

0
dt 0

 
�̃(t0)

d�(t0)
dt0

+ (�̃ + 1)�(t0)��(t0)
!#

(�̃(0) + 1)r. (A.39)

As it turns out, the �̃(0)�(0) terms can be dropped out [188], and the lower bound of the integral in time can be

extended to negative infinity, which permits the use of Fourier transforms. Finally, the expectation of the observable

O = a`(t), with initialisation operator I = a†r(t0) can be written as

hOi (t) =
Z
D⇧�`(t) exp ()(�̃(t0) + 1)r, (A.40)

where the field theoretic action

A =

Z
1

�1

dt 0
 
��̃(t0)

d�
dt0
+ ��(t0)(�̃(t0) + 1)�

!
. (A.41)

was introduced. In this section, it was shown how though the Doi-Peliti formalism a master equation for a reaction

di↵usion process can be cast in a field-theoretic language.
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Appendix B

Field theory of the BRW

B.1 Relevant interactions for the BRW

Whether a particular interaction is allowed by the basic process described by the action (2.19) is a matter of some

topological constraints, which are discussed in the first part of this section. Whether it is infrared-relevant is deter-

mined by its engineering dimension, which is discussed in the second part of this section. Combining topological

and engineering constraints will then produce a finite number of interaction vertices to consider. Constraints that

avoid certain, otherwise relevant vertices from being generated are preserved under renormalisation.

The general proper vertex

�
h m n

p q
i
=

p

....

m ....

q...
.

n....

(B.1)

where time is to be read from right to left, are the one-particle irreducible graphs of the amputated correlation

function

G
h m n

p q
i ⇣

r,D, ⌧, s,�, �, , �, ⇠; {k1, . . . ,km+n+p+q;!1, . . . ,!m+n+p+q}
⌘
= (B.2)
*
�(k1,!1) . . . �(km,!m)|                       {z                       }

m terms

 . . . | {z }
p terms

�̃ . . . �̃|{z}
n terms

 ̃ . . .  ̃| {z }
q terms

+
.

(B.3)

The bare couplings are the tree-level contributions to the proper vertices:

⌧ = �
h 0 1

1 0
i
+ h.o.t. s = �

h 2 1
0 0

i
� = �

h 0 1
1 1

i
+ h.o.t. (B.4a)

� = �
h 1 1

1 0
i
+ h.o.t. � = �

h 0 1
2 1

i
+ h.o.t.  = �

h 1 1
1 1

i
+ h.o.t. ⇠ = �

h 1 1
2 1

i
+ h.o.t. (B.4b)
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Denoting, where applicable, terms of higher order in non-linear couplings by h.o.t.. Every proper vertex has a

number of topological constraints, since any such term needs to arise from the perturbative expansion of the action

as a one-particle irreducible (connected, amputated) diagram made from the bare vertices available in the theory.

By inspection, the following constraints are found, which will then be used to determine all relevant, possible

couplings below: Firstly, all non-linear vertices in the field theory (all diagrams except the propagator of the tracer

particles) have at least one straight leg coming in, n � 1. Secondly, all vertices have at least as many wavy legs

coming out, as come in, p � q. Thirdly, there are at least as many outgoing legs (wavy or straight), as there are

incoming straight legs, m + p � n.

The engineering dimension of the general proper vertex can be determined from the considerations at the begin-

ning of Section 2.4.2, using the fact that each proper vertex may be seen as an e↵ective coupling, which, after inte-

gration over real time and space, gives rise to a dimensionless contribution to the action, LdT[�
h m n

p q
i
�̃m ̃p�n q] = 1,

so that

[�
h m n

p q
i
] = Ld(n+q�1)+2(m�n+2p�2q�1)Ap�qBm�n+p�qCn�m�2p+2q+1. (B.5)

Demanding that (e↵ective) transmutation ⌧, branching s and di↵usion D remain relevant at any scale, the inde-

pendent dimensions A, B and C, respectively, are set to unity A = B = C = 1. The (marginally) infrared-relevant

couplings are those whose engineering dimension (in L) is non-positive. At the upper critical dimension d = dc = 4,

the inequality d(n + q � 1) + 2(m � n + 2p � 2q � 1)  0 gives

m + n + 2p  3. (B.6)

The field theory needs to include all vertices �
h m n

p q
i

with (non-negative) integers m, n, p and q that fulfill Eq. (B.6)

together with the topological constraints n � 1, p � q and m+ p � n discussed earlier. To find them, two cases can

be destinguished for Eq. (B.6):

• p = 0
p�q
=) q = 0, then m + n  3. Under the topological constraint m + p � n there are only two viable

solutions: m = n = 1, or m = 2 and n = 1, that correspond to

and
s
, (B.7)

the bare propagator for active walkers, and branching of active walkers, respectively.

• p = 1 =) m + n  1. Only the propagator of the immobile particles allows for n = 0. Otherwise, n � 1

requires m = 0. The constraint p � q leaves only q = 0 and q = 1. As a result, there are three viable

combinations: Firstly, m = n = 0 and q = 1, secondly, m = q = 0 and n = 1, thirdly, m = 0 and n = q = 1,

which correspond to

,
⌧

and
��

, (B.8)

the bare propagator of immobile tracer particles, the transmutation vertex and hindrance of spawning, re-

spectively.
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Together with the propagators, the vertices in (B.7) and (B.8) represent all (marginally) relevant couplings at

d = dc = 4, consisting of the (bilinear) transmutation, ⌧, and the interaction vertices s of branching and �� of

suppression of spawning.

In the following section the field theoretic renormalisation is carried out in dimensions d = 4 � " to derive the

scaling of the number of distinct sites visited by the BRW.

B.1.1 Renormalisation of the couplings

As far as the observables Eq. (2.33) are concerned, the only couplings to consider are ⌧ and �. Both are renor-

malised by the same set of loops

⌧R b=
⌧R
= ⌧ + + + + . . . + . . . (B.9)

and

��R b=
��R

= �� + + + + . . . + . . . (B.10)

where the renormalised coupling (•) is indicated by the subindex R. All diagrams in ⌧R and ��R are amputated

(note the short legs). Of all the contributions to the renormalisation of ⌧ and � the non-crossing diagrams, such

as the first three in Eqs. (B.9) and (B.10), are easily calculated (see appendix B.3 for details). All of these non-

crossing diagrams can then be summed over by virtue of field-theoretic renormalisation. The last diagram, and

further crossing diagrams, in both Eq. (B.9) and Eq. (B.10), on the other hand, require further explicit calculation

and subsequent summation. However, the Ward identity [48]

@⌧R

@⌧
=
�R

�
, (B.11)

which arises from the the symmetry of the action under the shift  !  + ⌃, ⌃ being a constant. This implies that

all exponents can be determined without calculating any of the diagrams explicitly. To see this, a dimensionless

coupling g = �sUµ�✏D�2�(✏/2) is introduced, with suitable numerical factorU and arbitrary inverse length scale

µ. Both couplings therefore renormalise identically,

⌧R = ⌧Z(g) and �R = �Z(g) (B.12)

with Z(g) governing the renormalisation of both � and ⌧. To one loop and with suitable U, the Z-factor becomes

Z(g) = 1 � g, see Eqs. (B.9) and (B.10), and Sec. B.3. However, there is no need to determine the precise

dependence of Z on g as far as scaling is concerned. It su�ces to know that the renormalised, dimensionless

gR = �RsUµ�✏D�2�(✏/2) (B.13)

= Z�sUµ�✏D�2�(✏/2) (B.14)
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has �-function

�g =
dgR

d ln µ
= �✏gR + gR

d ln Z
d ln µ

(B.15)

in d < 4, which implies d ln Z/d ln µ = ✏ at the root �g(g = g⇤) = 0, irrespective of U and therefore irrespective

of the presence or absence of the crossing diagrams. It follows that Z ⇠ µ✏ in d  4 and therefore the e↵ective

transmutation rate is ⌧e↵ ⇠ ⌧Z ⇠ µ✏ . In the limit of t ! 1, for systems of linear size L, the characteristic scale is

µ ⇠ L�1 and thus ⌧e↵ ⇠ L�✏ . With open boundary conditions, the random walkers visit ⇠ L2 sites during the course

of their lifetimes, leaving behind ⇠ ⌧e↵L2
⇠ L2�✏ immobile tracer particles in dimensions greater than 2, so that

hai (t, L) ⇠ Ld�2. This average is bounded from below by a constant, as at least one site is always visited, so that

hai (t, L) approaches a constant below 2 dimensions. As for the time-dependence, the characteristic inverse scale

µ is proportional to t�1/2 because the dynamical exponent z = 2 in µ ⇠ t�1/z remains unchanged. It follows that

hai (t, L) ⇠ t(d�2)/2.

B.2 Calculating scaling of higher-order correlation functions

The scaling of higher-order correlation functions is derived, within the field theory, from the solution of the

Callan–Symanzik equation [48] for the general proper vertex Eq. (B.1), from which the scaling of the moments

of the total number of distinct sites visited follow, Eq. (2.37). From dimensional analysis (Sec. 2.4.2), and by

introducing a bare scale µ0, related to µ by µ = µ0`, the general proper vertex, Eq. (B.1), then satisfies

�
h m n

p q
i
(r,D, ⌧, s,�, �, , �, ⇠; {k;!}) = `�d(n+q�1)�2(m�n+2p�2q�1)+(p�q)�⌧�

h m n
p q

i  r
`2 ,D, ⌧, s,�, �, , �, ⇠;

nk
`

;
!

`2

o!
,

(B.16)

asymptotically in small ` and provided that r is close enough to the critical point, rc = 0. For the transmutation

vertex, where p = n = 1 and q = m = 0,

�
h 0 1

1 0
i
(r,D, ⌧, s,�, �, , �, ⇠; {k;!}) = `�⌧�

h 0 1
1 0

i  r
`2 ,D, ⌧, s,�, �, , �, ⇠;

nk
`

;
!

`2

o!
, (B.17)

is found, with �⌧ = " = 4 � d. Generally, for observables of the form Eq. (2.33), where n = 1 and q = m = 0

�


0 1
p 0

�

(r,D, ⌧, s,�, �, , �, ⇠; {k;!}) = `4(1�p)+p�⌧�


0 1
p 0

�  
r
`2 ,D, ⌧, s,�, �, , �, ⇠;

nk
`

;
!

`2

o!
. (B.18)

The scaling of the first moment of the number of distinct sites visited, ha(t)i, as function of time, t, can be obtained

by analysing the scaling of

ha(t)i =
Z

ddx
D
 (x, t)�̃(x0, 0)

E
(B.19)

b=
Z

d̄!d̄!0e�ı̊!t
�����
k=0

(B.20)

=

Z
d̄!e�ı̊!t 1

�ı̊! + ✏0
�

h 0 1
1 0

i 1
�ı̊! + r

. (B.21)
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Note that the diagram shown here corresponds to the full (not amputated) correlation. According to Eq. (B.21),

�
h 0 1

1 0
i

scales like

�
h 0 1

1 0
i
(L�2,D, ⌧, s,�, �, , �, ⇠; {k;!}) = L��⌧�

h 0 1
1 0

i ⇣
1,D, ⌧, s,�, �, , �, ⇠;

n
kL;!L2

o⌘
, (B.22)

if we identify r ⇠ L�2 and ` ⇠ L�1, which means that the e↵ective transmutation rate scales like L�" in large linear

system size L, as �⌧ = " = 4 � d. In long time t, the integral over ! in Eq. (B.21) has the e↵ect of evaluating

�
h 0 1

1 0
i

1
ı̊!+r at ! = 0, because

lim
t!1

lim
✏0!0

Z
1

�1

exp�ı̊!t
1

�ı̊! + ✏0
f (!) = f (0) (B.23)

provided f (!) has no pole at 0.

It follows that

lim
t!1
ha(t)i / L2�✏ . (B.24)

For higher moments, on the basis of Eq. (B.18),

lim
t!1
hap(t)i / L2Lpd�4�


0 1
p 0

�

(1,D, ⌧, s,�, �, , �, ⇠; {0, 0}). (B.25)

We thus recover the finite-size scaling results Eqs. (2.37b) and (2.38b) of Section 2.5 for the p-th moment of the

volume explored by a branching random walk

lim
t!1
hap(t)i /

8>>>>><
>>>>>:

Ldp�2 if " > 0

L4p�2 if " < 0
(B.26)

where " > 0 and " < 0 separate regions below and above the upper critical dimension, dc = 4, respectively. The

dimensionality of the embedding space enters only below the upper critical dimension. Above the upper critical

dimension, fluctuations and interactions become asymptotically irrelevant and the process can be considered as

free.

The above analysis is easily extended to scaling in time, using t / µ�z with z = 2 as the relevant scale, thereby

reproducing Eqs. (2.37a) and (2.38a).

B.3 Loop integrals

The non-crossing diagrams, such as the first three in Eqs. (B.9) and (B.10), are calculated through the integral

I⌧ =
s��

⌧

=

Z
d̄dkd̄!

⌧

�ı̊! + ✏0
1

!2 + (Dk2 + r)2 = ⌧
1
2

r�"/2

(4⇡D)d/2 �("/2) , (B.27)
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and (essentially identical)

I�� =
s��

��

=

Z
d̄dkd̄!

��

�ı̊! + ✏0
1

!2 + (Dk2 + r)2 = ��
1
2

r�"/2

(4⇡D)d/2 �("/2) , (B.28)

where the lower part of the loop carries the coupling ⌧ in case of contributing to ⌧ or the coupling �� and an

incoming wavy leg in case of contributing to �. The integration measure isd̄dkd̄! =ddkd! /(2⇡)d+1.

B.4 Definition of Fourier transform

Throughout this thesis, the Fourier transform F [ f (x, t)] of a function f (x, t) in space x and time t is denoted as

f̂ (k,!), where the spatial momentum k is the conjugate of the position x, and the frequency ! is the conjugate of

time t. The direct Fourier transform is defined as

f (k,!) =
Z

exp ı̊!t � ı̊k · x f (x, t)ddxdt, (B.29)

so that the inverse Fourier transform is

f (x, t) =
Z

exp�ı̊!t + ı̊k · x f (k,!)d̄dkd̄!, (B.30)

where d̄dk = (1/2⇡)ddk, d̄! = (1/2⇡)d!, and d is the spatial dimension.

B.5 Extension to general graphs

In this section, further details about the extension of the results to general graphs are provided. The loops integrated

over in Eqs. (B.27) and (B.28) are in fact integrals over the spectrum of the Laplacian accounting for the di↵usion

on the graph considered. Generalising to arbitrary graphs, the Laplacian is to be replaced by a lattice-Laplacian and

the integral in Eqs. (B.27) and (B.28) by a suitable sum or, equivalently, an integral with suitable spectral density.

In fact, the d-dimensional integral in Eqs. (B.27) and (B.28) can be seen as an integral over all distinct eigenvalues

k2 of the Laplacian entering with weight w(k)dk = S dkd�1dk with S d = 2⇡d/2/�(d/2). On regular lattices, their

Hausdor↵ dimension d coincides with the spectral dimension ds characterising, in particular, the small k asymptote

of w(k) ⇠ kds�1. Replacing
R

ddk by
R

dk w(k) suggests that the results derived above remain valid by replacing

d by ds, in order to recover the scaling of the various observables in arbitrary graphs with spectral dimension ds.

The replacement d ! ds hinges crucially on the fact that ds characterises the scaling of the spectral density of the

Laplacian. If this operator itself renormalises, then a di↵erent spectral density may be needed. In other words, ds

may not be the correct dimension if the Laplacian renormalises, i.e. if the anomalous dimension does not vanish,

⌘ , 0 [50]. This argument relies on the assumption that vertices such as Eq. (B.1) preserve momentum, that is

integrals of the form

In(k1,k2, . . . ,kn) =
Z

dd x uk1 (x)uk2 (x) . . . ukn (x) (B.31)
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over eigenfunctions uk(x) of the Laplacian with eigenvalue k · k vanish for o↵-diagonal terms, i.e. whenever

k1 + k2 + . . . + kn , 0. This condition can be further relaxed by demanding merely that o↵-diagonal terms are

sub-leading as observed in the presence of boundaries [189, 31].

Considering only graphs which are translationally invariant such that the indices jm of the q neighbours m =

1, . . . , q of any node i can be determined by adding the same set of translational lattice vectors, d1, . . . ,dq, such

that jm = i + dm, it is easy to show that the Laplacian has exponential eigenfunctions and any of their products are

an eigenfunction as well, so that In(k1,k2, . . . ,kn) = I2(k1,k2 + . . . + kn), which vanishes by orthogonality for any

k1 + k2 + . . . + kn , 0, i.e. the assumption of momentum conservation mentioned above is fulfilled.

B.6 Numerics for the scaling of moments

The scaling of the moments hap
i (t, L) for p = 1, 2, 3, . . . , 5, as function of time t in the limit L ! 1, and as

function of the system size L in the limit t ! 1 were obtained from numerical Monte Carlo simulations and fitted

against a power-law

f (x) = AxB (B.32)

and a power-law with corrections of the form

g(x) = AxB +CxB�1/2. (B.33)

The fitting parameter B in Eqs. (B.32) and (B.33) provides the estimates of the exponents that characterise the

scaling of the moments in time t and sistem size L (or N, see main text), by fitting the numerical estimates against

f (x) and g(x), with x replaced by t and L, respectively. At large times the moments display plateauing due to finite

size e↵ects.

For the scaling in system size L, the data was fitted for the latest time point available against Eq. (B.32) and

used the estimates of A and B as the initial values for a fit against Eq. (B.33), which gave the final estimates of the

finite size scaling exponents.

For the scaling in time t, the data was fitted for the largest system, of size L = Lmax. The fitting range in t

for each moment was determined systematically as follows. To remove the time-point a↵ected by the finite size

e↵ects, the upper bound of the fitting range was defined as the time tup for which the lowest moment displaying

algebraic divergence (p = plow) reached a value of half the maximum value in the plateau, i.e. haplowi (tup, Lmax) =

max
t

(haplowi (t, Lmax)) /2. For the preferential attachment network the plateau was observed to occur at an earlier

time point than tup, probably due to the high connectivity of the networks, so the upper bound was set to tup
pa =

(1/5) max(
D
ak

E
), in this case.

To find the lower bound tlow of the fitting range in t both equations, (B.32) and (B.33), were fitted to the data

for Lmax. Defining f̂[t⇤,tup](t) and � f̂
[t⇤,tup](t) as the values and errors, respectively, of fitting Eq. (B.32) to the data in

the range t 2 [t⇤, tup], and ĝ[t⇤,tup](t) and �ĝ
[t⇤,tup](t) as the values and errors, respectively, of fitting Eq. (B.33) to the

same data set and range. Further, N[t⇤,tup] is defined as the number of data points within the fitting interval [t⇤, tup].
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The lower bound for the time range tlow is the earliest time at which both fitting models (B.32) and (B.33) agree

within errors, that is

tlow = min
n
t⇤ :

��� f̂[t⇤,tup](t⇤) � ĝ[t⇤,tup](t⇤)
��� 

p
N[t⇤,tup] max

⇣
� f

[t⇤,tup](t
⇤),�g

[t⇤,tup](t
⇤)
⌘ o
. (B.34)

Where correlations between estimates of moments were accounted for by rescaling the error by the square root

of the number of data points in the fitting range, N[t⇤,tup]. The exponents characterising the time depenence of the

moments are determined by fitting the data in the range [t⇤, tup] against Eq. (B.33).

The fitting of the power laws, Eqs. (B.32) and (B.33), was done by means of the Levenberg-Marquardt al-

gorithm [190]. The numerical results for the asymptotic scaling, in time hap
i (t) ⇠ t↵p and in system size

hap
i (t) ⇠ L�p , are presented in table 2.3 and 2.3, provided these observables display an algebraic divergence.

Numerical implementation

In the numerical implementation, an active particle is allowed to di↵use by hopping from the site it resides on

to a nearest neighbouring site with rate H, branch with rate s by placing an identical o↵spring at the present site

or become extinct with rate e. Each distinct site visited is recorded, equivalent to taking the limit � ! 1 in the

theory. The instantaneous number a(t, L) of distinct sites visited up until any time t is therefore the number of sites

recorded. Parameters were chosen such that H + s + e = 1, H was set to 0.1, and e = s = 0.45. If M walkers are

present in the system at a given time point the waiting time for the next event (hopping, branching or extinction)

is determined by � ln(1 � u)/M where u is a uniformly distributed random variable in the interval [0, 1). For every

lattice size 106
� 109 realisations of the process were performed.

Regular, integer-dimensional lattices

The regular lattices studied here are hypercubic d-dimensional lattices, characterised by their linear size L = 2m
�1,

m � 4, which is chosen to be odd so that it contains a well-defined centre site, on which the single active walker

is initially placed. To study finite size scaling, absorbing boundary conditions were applied. However, it was

observed that the boundary conditions have no e↵ect in the scalings (data not shown). The numerical results were

fitted to a power-law as described in Sec. B.6, to obtain the values in Tabs. 2.3 and 2.2.

Sierpinski carpet

The Sierpinski carpets were constructed from two dimensional lattices of linear dimension 3m, m � 2. The lattice

was divided into 32 equal sub-squares each of size 3m�1, the central square was removed, leaving 32
�1 sub-squares.

The procedure is iterated over the remaining sub-squares. The spectral dimension of the Sierpinski carpet has been

estimated to be ds = 1.86 [56, 191]. A random point around the central hole of the fractal was used as the initial

location of the walker in every realisation.

136



Random trees

The critical random tree networks [192] were constructed as a critical Galton-Watson process, where every node

has either 0, 1, or 2 descendants, such that the mean degree of the network is 2. Networks were generated with

26
�212 nodes. These graphs have no closed loops. The spectral dimension of the random tree ensemble is ds = 4/3

[57]. For every realisation of the process, a new random tree was generated, and a node was selected at random as

the starting location of the initial walker.

Preferential-attachment network

A preferential attachment (PA) network is a class of scale-free networks, characterised by a power-law degree

distribution. The Barabási–Albert model of preferential attachment [58] was used. It was initialized with a single

node to generate networks with 212
� 219 nodes. The networks have power-law degree distribution with exponent

�2.9 and mean degree hki = 6.3 (Fig. B.1). For every realisation of the process, a new network was constructed,

and a node was selected at random as the starting location of the initial walker.

B.6.1 Degree distribution of the PA network

101 102

10-6

10-4

10-2

-2.9

Figure B.1: Degree distribution of the preferential attachment networks used for the simulations presented in
Sec. 2.6

137



138



Appendix C

Self-replication of vegetation patches

C.1 Data analysis

Through the use of satellite images obtained from Google Earth, regions in Zambia and Mozambique were located

in which vegetation patches dominate the landscape.

C.1.1 Patch detection

In order to detect the vegetation and extract properties of interest a simple segmentation algorithm was implemented

in Matlab (R2016b). The boundaries of every detected patch were used to extract the patch geometrical features,

such as area, perimeter, equivalent diameter, and centroid positions, which were then used in the spatial analysis.

C.1.2 Equivalent radius and nearest-neighbor distance

The equivalent radius of each structure req was calculated as

req =

r
As

⇡
(C.1)

where As corresponds to the area of the structure. The nearest neighbor distances was obtained by finding the

minimum distance between every patch and every other patch.

C.1.3 Discrete Fourier transform

The discrete Fourier transform Û of a binary image U(i, j) of size m-by-n was computed numerically is MATLAB

as

Û(i + 1, j + 1) =
m�1X

j=0

Z n�1

k=0
U(i + 1, j + 1) exp(�2⇡(i/n + j/m)) (C.2)

Where (i, j) are the indices of the image pixels. Usually Û is referred to as the spectrum of U. Peaks in the spectrum

indicate dominant wavelengths or typical sizes of the patches detected in the satellite images (see [193, 194]).
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C.2 Satellite images

Figure C.1: Zones considered for the analysis of vegetation patches, Coordinates: Zambia zone
1 [13�47023.9900S, 25�17011.1800E], Zambia zone 2 [13�51017.8800S, 25�22033.8600E], Zambia zone 3
[14�39016.4900S, 25�49054.8600E], Zambia zone 4 [14�40021.7200S, 25�49038.5600E], Mozambique zone 1
[18�41019.3200S, 35�30037.6200E], Mozambique zone 2 [18�40023.9600S, 35�33032.5800E], Mozambique zone 3
[18�41055.5200S, 35�38014.4500E], Mozambique zone 4 [18�49048.3100S, 35�36022.3700E]. The white boundaries
enclosing each structure corresponds to results of the automatic detection of objects. This figure, for which I hold

the copyright, has been published as part of [6].
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Location Rainfall
mm/year

Mean temp.
1901-2006

Mean temp.
2006-2016

Zambia zone 1 903 21.99� 22.72�
Zambia zone 2 903 21.99� 22.72�
Zambia zone 3 903 21.99� 22.72�
Zambia zone 4 903 21.99� 22.72�

Mozambique zone 1 1348 24.89� 25.49�
Mozambique zone 2 1348 24.89� 25.49�
Mozambique zone 3 1348 24.89� 25.49�
Mozambique zone 4 1348 24.89� 25.49�

Table C.1: Information for analyzed regions. Mean annual rainfall, and mean temperature for the periods 1901-
2006 and 2006-2016 (Obtained from CRU TS3 [14]) are shown.
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Appendix D

E↵ective potentials in cell-signal

interactions

D.1 Methods

D.1.1 Cell di↵usion

In the simulations, at each time step cells move a fixed step length, `, in a random direction on the two-dimensional

plane. In the continuum limit, the two-dimensional di↵usion equation for the probability, p(r, t), of finding a cell

at position r, at time t, is given by

@t p(r, t) = Dr2 p(r, t), (D.1)

where D is the di↵usion constant, and r2 is the two-dimensional Laplacian. The Green function of Eq. (D.1) on

the infinite plane R2 is given by

p(r, t) = 1
4⇡Dt

exp
 
�
|r|2

4Dt

!
, (D.2)

from which the expected mean square displacement of a cell can be calculated,

D
|r(t)|2 | =

E Z
|r|2 p(r, t) = 4Dt. (D.3)

On the other hand, the mean square displacement of a cell performing t steps of fixed length ` in random directions

is given by
D
|r(t)|2 | =

E
�2t (D.4)

Comparing Eqs. (D.3) and (D.4) the di↵usion constant for simulated cells can be written as

D =
�2

4
. (D.5)
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It follows that Eq. (D.1) with a di↵usion constant given by Eq. (D.5) is the asymptotically Gaussian distribution of

the simulated cells’ positions in the limit of large times t.

Experimental di↵usion coe�cient

From the experimental trajectories of single cells, the di↵usion constant D was calculated as

D(�t) =

D
r2

E

4�t
, (D.6)

where �t is the averaging time-window considered for computing the mean-square displacement. Given the tra-

jectory, ri(t), of the ith cell, measured with temporal resolution � (one minute in the experimental data presented

in Ch. 4) at times t = 0, �, 2�, ...,T , the mean-square displacement, as a function of �t, a multiple of �, for the cell

ensemble can be calculated as

D
r2

E
=

1
N(T � �t)/�

NX

i=0

(T��t)/�X

n=0

||ri(n� + �t) � ri(n�)||2, (D.7)

where N is the total number of cells in the experiment [195].

D.1.2 van Hove correlation function

Given a collection of K particles of a given species, with positions ri(t), the van Hove dynamic correlation function

reads

G(r, ⌧) =
1
K

* KX

i=1

�[r � r j(⌧) + ri(0)]
+

(D.8)

which measures the average density of particles at position r at time ⌧, given that there was a particle at the origin

at time 0 [141]. The brakets h·i indicate the ensemble average. The van Hove correlation function can be naturally

split into two terms

G(r, ⌧) = Gs(r, ⌧) +Gd(r, ⌧) (D.9)

where, Gs and Gd are the self and distinct terms, respectively. The self part

Gs(r, ⌧) =
1
K

*Z
dr0

KX

i= j=1

�[r0 + r � r j(⌧)]�[r0 � ri(0)]
+

(D.10)

describes the contributions to the correlations from measuring the same particle at both time points, zero, and ⌧.

The distinct part reads

Gd(r, ⌧) =
1
K

*Z
dr0

KX

i=1
j,i

�[r0 + r � r j(⌧)]�[r0 � ri(0)]
+
, (D.11)

which measures the contributions to the correlations from distinct particles ( j , i).
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Extension to two species: cells and bead

To extend the van Hove correlation function to account for a second species, consider that of the K particles, N

correspond to cells, and M to beads, such that K = N + M. Thus,

Ĝ(r, t, ⌧) =
1
N

* NX

i=1

MX

j=1

�[r � r j(t + ⌧) + Ri(t)]
+

(D.12)

is defined, where Ri and r j correspond to the positions of cells and beads, respectively. This correlation function,

as previously defined in Eq. (4.1), considers only distinct particles of di↵erent species. As a result, it possesses no

self part. As discussed in Ch. 4, aging is introduced by allowing an explicit dependence on time t of the positions

of cells and beads.

D.1.3 Multiple particle tracking

To extract the positional information of cells and beads from the bright-field time-lapse images over time, a cus-

tom multi-particle tracking algorithm was implemented implemented (MATLAB R2018b, The MathWorks, Inc.,

Natick, Massachusetts, United States). This allowed the high-throughput analysis of the interaction of thousands

of cells and beads at one minute resolution, and the calculation of the e↵ective potential of interaction, Eq. (4.3).

Cells were identified using a Sobel [196] edge-detection algorithm (sobel method in MATLAB’s edge function)

and screened according to size to exclude small size objects, e.g. beads and debris, and large objects, e.g. cell

doublets and clusters. Beads appear as nearly perfectly black objects, and were detected by applying a Laplacian-

of-Gaussian filter (logmethod in MATLAB’s edge function), and an intensity threshold to identify lower intensity

(dark) objects. The detected candidate objects were screened according to eccentricity and size. Frame-to-frame

nearest neighbour association was then performed to construct the trajectories of cells and beads. Each trajectory

was stored with the corresponding object properties: boundary, area, major and minor axis lengths, and eccentric-

ity.

D.1.4 Experimental e↵ective potential

The age-dependent radial distribution function ĝ(r, t, ⌧) and e↵ective potential, Eq. (4.3), were computed by making

use of the position of the cells and beads obtained from the tracking algorithm (methods Sec. D.1.3) as follows: (i)

the distances from the position of each cell at time t, to the position of every beads at time t+⌧ were measured, and

the density of distances as a function of r was computed by pooling the data obtained for all cell-bead distances,

from every repeat (see Fig. D.2a). (ii) A null model, corresponding to the non-interacting system, was constructed

by considering a uniform, independently random distribution of beads, and constructing the corresponding density

profile, as done in (i), based on the positions of cells obtained experimentally (see Fig. D.2b). The uniform

distribution of beads was constructed numerically, and has the advantage of taking into account the finite size of

the field of view, nevertheless these finite size e↵ects are noticeable only for large values of r. (iii) The radial

distribution function (RDF) ĝ(r, t, ⌧) (Fig. D.2c) was obtained by computing the ratio between the experimental
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densities obtained in (i) and the reference densities in (ii). (iv) Finally, the e↵ective potential of interaction was

obtained by taking the negative natural logarithm of the RDF, Ue↵ = � ln ĝ(r, t, ⌧) (see schematic Fig. D.2c).

Points of interest in the e↵ective potential

Three points of interest were defined in the e↵ective potentials, (i) The maximum accumulation point (MAP),

defined as the minimum of the e↵ective potential, where its spatial derivative vanishes, i.e. dUe↵/dr = 0. This

point marks the most probable location of the beads along a radial line starting at r = 0. This point is indicated

by the symbol H in Fig. 4.3. (ii) The maximum depletion point (MDP), defined as the maximum of the potential

where dUe↵/dr = 0. It marks the least probable location of beads along the radial coordinate, and is indicated by

the symbol N in Fig. 4.3. (iii) The range of interaction, is determined based on the MAP and MDP and is defined as

the maximum of P1 and P2, where P1 is the first point beyond the MDP where Ue↵(r, t) = 0, and P2 is the second

point after the MAP where Ue↵(r, t) = 0. This point measures the e↵ective distance up to which cells deplete the

environment of beads. The range is indicated by (•) in Fig. 4.3.

D.1.5 Solution to the model with release

The master equation of the probability P(n, t) to find n beads in contact with a cell at time t, as beads can be

released by the cell at constant rate , is given by Eq. (4.13). To solve it, a generating function is introduced

�(z, t) =

1X

n=0

znP(n, t), (D.13)

with normalization

�(1, t) =
1X

n=0

P(n, t) = 1. (D.14)

Using Eq. (D.13), Eq. (4.13) produces a first order, linear partial di↵erential equation for �(z, t),

1
1 � z

@�(z, t)
@t

� 
@�(z, t)
@z

= �⇢b
dA(t)

dt
�(z, t), (D.15)

which can be solved by the method of characteristics [197]. Introducing

⌘ = ⌘(z, t; ), (D.16)

demanding that � = w(⌘(z, t; ), t) with a hitherto unknown function w of two variables. Eq. (D.15) can be now

written in terms of w,
@w
@t
+
@w
@⌘

 
@⌘

@t
� (1 � z)

@⌘

@z

!
+ (1 � z)⇢bȦ(t)w = 0. (D.17)

Demanding
@⌘

@t
� (1 � z)

@⌘

@z
= 0. (D.18)
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implies

⌘(z, t; ) = log(1 � z) � t, (D.19)

and Eq. (D.17) reduces to
@w
@t
+ (1 � z)⇢bȦ(⇠)w = 0, (D.20)

which can be directly solved to produce

w(⌘, t) = C(⌘) exp
 
�

Z t
ds (1 � z)⇢bȦ(s)

!
. (D.21)

Noticing that 1 � z is given in terms of t by Eq. (D.19), then

w(⌘, t) = C(⌘) exp
 
�⇢be�⌘

Z t
ds esȦ(s)

!
(D.22)

= C(⌘) exp
 
�⇢be�⌘

"
A(t)et � 

Z t
ds A(s)es

#!
,

where an integration by part was performed to go from the first to the second line. Writing Eq. (D.22) in terms of

z and t, and imposing the normalisation Eq. (D.14), which implies C = 1, then

�(z, t) = exp
 
�⇢b(1 � z)

"
A(t) � e�t

Z t
ds A(s)es

#!
. (D.23)

Finally, the probability P(n, t) of finding n beads attached to a cell at time t correspond to the coe�cients of

nth order term in the Taylor expansion of Eq. (D.23) around z = 0. This produces

P(n, t) =
↵n(A, , t)

n!
e�↵(A,,t), (D.24)

where ↵(A, , t) = ⇢b
h
A(t) � e�t

R tds A(s)es
i

is the time-dependent rate, as shown in Ch. 4.
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Figure D.1: E↵ective rate with release. The parameter ↵(A, , t), given by Eq. (4.15), for di↵erent values of the
release rate . Here r0 = 0.02, and � = 0.004.
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D.2 Experimental measurement of the e↵ective potential

Experimental measurements:
distance of cells at t to beads at t+τ

Null model: uniform bead distribution
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Figure D.2: Experimental measurement of the e↵ective potential. Measurement of the distance from the po-
sition of every cell at time t, to the position of every beads at time t + ⌧ (top) and the corresponding density of
distances (bottom) for (a) the experimental positions of cells and beads, and (b) the experimental positions of cells
and uniformly distributed (numerically drawn) beads. Scale bars 25 µm. (c) Radial distribution function measured
as the ratio of the densities in (a) and (b). (d) E↵ective potential calculated as the negative logarithm of the radial

distribution function in (c). Both ĝ and Ue↵ are dimensionless.
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D.3 E↵ective potentials as a function of age and delay
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Figure D.3: Experimental e↵ective potential, as defined in Eq. (4.3), as function of age t and delay ⌧ for Wnt-
beads as mESCs interact with them. The solid curve corresponds to the overall e↵ective potential obtained from
pooling the data from three repeats, while the green shaded area corresponds to the range of the measurements

from the three independent repeats. Total cell number ⇠ 103, total bead number ⇠ 104.
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Figure D.4: Experimental e↵ective potential, as defined in Eq. (4.3), as function of age t and delay ⌧ for iWnt-
beads as mESCs interact with them. The solid curve corresponds to the overall e↵ective potential obtained from
pooling the data from three repeats, while the red shaded area corresponds to the range of the measurements from

the three independent repeats. Total cell number ⇠ 103, total bead number ⇠ 104.
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Figure D.5: Experimental e↵ective potential, as defined in Eq. (4.3), as function of age t and delay ⌧ for uncoated-
beads as mESCs interact with them. The solid curve corresponds to the overall e↵ective potential obtained from
pooling the data from three repeats, while the black shaded area corresponds to the range of the measurements

from the three independent repeats. Total cell number ⇠ 103, total bead number ⇠ 104.

D.4 Wnt canonical pathway

The Wnt family of proteins has important roles in stem cell fate decision making, and tissue development and

maintenance. Deregulation of Wnt-related pathways is associated with cancer and other growth-related patholo-

gies. Wnt3a, a member of the Wnt-family of proteins, plays a key role in cell-polarity and asymmetric cell division

via the activation of the Wnt/�-catenin canonical pathway.

The Wnt canonical pathway activation is mediated by cytoplasmic and nuclear �-catenin, a protein responsible

for activation of nuclear activation of Wnt target-genes, TCF and LEF. In the absence of environmental Wnt3a

(Fig. D.6a), the destruction complex [11], a molecular complex inside the cell, tags �-catenin for phosphorilation

(degradation) by the proteosome. This prevents �-catenin from being transported to the nucleus and initiating

transduction. In this scenario the Wnt/�-catenin canonical pathways is said to be inactive (Fig. D.6a). On the

other hand, when Wnt3a is present in the extacellular environment, it can bind to its transmembrane co-receptors

LRP5/6 and Frizzled (Fzd) [9, 10]. When this happens, the destruction complex is sequestered [12], preventing

it from acting on �-catenin. The cytoplasmic �-catenin can then be transported into the nucleus and activate the

TCF/LEF transcription factors [13], and promote di↵erentiation (see Fig. D.6b).
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Figure D.6: Canonical Wnt/�-Catenin pathway. (a) Shows the unbound Wnt coreceptors LRP5/6 and Frizzled [9,
10], this allows the destruction complex to act on �-catenin, tagging it for degradation (non-activated canonical
pathway) [11]. (b) Shows the activated canonical pathway, where by the action of Wnt, the destruction complex is

disabled [12], allowing �-catenin to fulfil its transcription role in the nucleus [13].
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