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Abstract 

Urban climates are driven by micro-meteorological processes associated with the complex urban 

form, materials, and land cover patterns. Given its close link to the surface energy balance, surface 

temperature observations are key to the improvement and evaluation of models. This work 

contributes to the application of ground-based thermography in urban settings as an observational 

method to further our understanding of urban climate processes. 

In this thesis, ground-based thermography observations are collected and interpreted in a unique way 

so that they are relatable to scales used by urban climate models and earth observation (EO) satellites. 

At two measurement sites (simplified outdoor scale model and complex central urban setting), 

variations in surface temperature are quantitatively linked to micro-scale features such as shadow 

patterns and material characteristics at unprecedented levels of detail. Previous studies with low level 

of detail have inferred these properties. The detected upwelling longwave radiation is corrected to 

surface temperature (Ts) using a novel, high-resolution three-dimensional (3D) radiative transfer 

(RT) approach. From multi-day observational evaluation, the atmospheric correction has 0.39 K 

mean absolute error. 

Ground-based observations are combined with a comprehensive 3D radiative transfer model, 

enabling detailed simulation of EO land surface temperature (Ts
EO). For a mainly clear-sky summer 

day, Ts
EO at night underestimates the unbiased “complete” surface temperature (Tc) by 0.5 – 1 K, is 

similar to Tc during morning and evening, and for other times varies significantly with view angle 

(up to 5.1 K). Generally, view angle variation is smaller than prior studies as they typically use 

simpler geometry and temperature descriptions, and lack vegetation. Here, the observational basis 

and high-resolution modelling in a real central urban setting serves as a benchmark for future 

improvements of simplified model parameterisations. 
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Chapter 1 Introduction 

1.1 Motivation 

Already more than half the global population live in cities and this is expected to increase to 68 % 

by 2050 (United Nations, 2018) along with increasingly urbanised areas. The structure, material and 

land cover of urban areas affect the local and regional climate (Oke, 1987; Roth, 2000) caused by 

changes to the surface energy balance (SEB) with implications for human comfort (Thorsson, 

Lindqvist and Lindqvist, 2004) and health (Barata et al., 2011). The most frequently studied 

climatological effect of urbanisation is the urban heat island of cities relative to more open rural 

surroundings which results from the urban-induced SEB changes (Oke, 1982).  

Assuming zero net horizontal advection of energy, the SEB for a three-dimensional (3D) urban 

volume can be written (Oke et al., 2017): 

𝑄∗ +𝑄𝐹 = 𝑄𝐻 + 𝑄𝐸 + 𝛥𝑄𝑆     [W m−2] Eqn. 1.1 

with Q* the net all-wave radiation, QF the anthropogenic heat flux, QH and QE the turbulent fluxes 

of sensible and latent heat and ΔQS the net uptake or release of stored energy. The QF term is 

associated with human activity in cities, with energy released by transport, buildings (e.g. industry, 

heating, air conditioning) and people’s metabolism (Chrysoulakis et al., 2018; Gabey, Grimmond 

and Capel-Timms, 2019). Often rural areas have more vegetation cover whereas cities have a large 

area of impervious materials such as concrete, asphalt, metal and glass. As a result, QE (or 

evaporation) is reduced, causing enhanced QH, air temperatures, boundary layer depth (Kotthaus and 

Grimmond, 2018), and dispersion of pollutants (Nadeau et al., 2009). The convoluted nature of the 

surfaces cast shadows and enhance radiative trapping, altering Q*. The large vertical extent of the 

surface, along with the low albedo and high heat capacity of materials enhances the ΔQS energy flux 

into the urban surface during the day which provides a source of heat that is released slowly at night 

(Meyn and Oke, 2009). 

Observations are fundamental to an improved understanding of urban SEB components (Grimmond, 

2006). They are critical for evaluating and improving urban land surface schemes that are used in 

meso- and global-scale models with increasing resolution (Grimmond et al., 2010). Accurate 

representation of urban processes in models is critical for forecasting high impact weather and future 

climates (i.e. hours to decades). Results inform a wide range of integrated urban climate services 

(Baklanov et al., 2018), including urban planning (Rosenzweig et al., 2018).  

There are many methods to observe urban climate processes. Ground-based sensors can measure 

variables such as air temperature and humidity. Historically, such observations were critical to the 

foundations of urban climate study (Howard, 1833). QH and QE can be measured using eddy 

covariance (Kotthaus and Grimmond, 2014) or scintillometry sensors (Ward, 2017), providing 
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valuable insights into the relation between surface characteristics and the exchanges of energy 

(Crawford et al., 2017). The storage term is challenging to directly observe (Offerle, Grimmond and 

Fortuniak, 2005). It can be determined as the residual of Eqn. 1.1 if all other terms are estimated. Q* 

consists of incoming (↓) and outgoing (↑) shortwave (ESW) and longwave (ELW) irradiances: 

𝑄∗ = (𝐸𝑆𝑊 ↓ − 𝐸𝑆𝑊 ↑) + (𝐸𝐿𝑊 ↓ − 𝐸𝐿𝑊 ↑). Eqn. 1.2 

Warmer urban profiles can increase ELW↓ (Oke and Fuggle, 1972; Suckling, 1981) whereas polluted 

air will decrease ESW↓ (Jacovides, Steven and Asimakopoulos, 2000). The albedo (ratio of ESW↑ to 

ESW↓) is dependent on materials and the 3D canopy structure. Urban heat island mitigation strategies 

have involved modifying surface properties of roofs (Costanzo, Evola and Marletta, 2016) and 

pavements (Santamouris, 2013). ELW↑ varies with the kinetic temperature of the urban surface (Ts, 

K) and the surface emissivity.  

Components of Q* can be measured with instruments sensitive to ultraviolet → visible → near 

infrared and midwave → longwave infrared (LWIR) regions of the electromagnetic spectrum, 

respectively. LWIR sensors can remotely (i.e. non-contact) determine Ts using Planck’s radiation 

law. Across entire cities, earth observation (EO) satellites can resolve Ts (Ts
EO) at local-scales (O(1 

km)). Ts
EO provides information on the surface urban heat island (e.g. Roth, Oke and Emery, 1989; 

Kandel, Melesse and Whitman, 2016), changes of land use (e.g. Dousset and Gourmelon, 2003; 

Weng and Lu, 2008) and SEB components of QH (e.g. Voogt and Grimmond, 2000; Xu, Wooster 

and Grimmond, 2008; Crawford et al., 2018) and ΔQs (e.g. Kato and Yamaguchi, 2007; Chrysoulakis 

et al., 2018). As Ts appears in the equations of three SEB fluxes (i.e. Q*, QH, ΔQS), it is frequently 

determined in urban land surface models, meaning Ts
EO is a valuable measurement for both model 

evaluation and data assimilation (e.g. Ghent et al., 2010; Li and Bou-Zeid, 2014). 

With large demand for quality Ts observations of cities, urban surfaces have received increasing 

attention by EO. While the atmosphere is often accounted for, there is no operational procedure for 

view angle corrections. The effect is often ignored (e.g. Peng et al., 2018), assumed to average out 

across multiple observations (Peng et al., 2012) or oblique view angles are rejected (e.g. 

Chrysoulakis et al., 2018). Simple correction procedures are required to determine effects of 

anisotropy based on view angle and solar position and more research is required to inform such 

simplified relations. At the micro-scale (O(1 – 100 m)) the urban area has a complex 3D “surface” 

canopy that can be challenging to define (Norman and Becker, 1995; Voogt and Oke, 2003). The 

urban morphology (i.e. form) created by the buildings, streets, vegetation, etc., has an uneven 

exposure to the sky, with differential solar irradiance and radiative cooling. The variability of 

materials and their thermal properties adds another layer of complexity resulting in a Ts that is highly 

variable over short distances (Hénon et al., 2012). Combined, these characteristics case directional 

variability or “effective thermal anisotropy” (Krayenhoff and Voogt, 2016) of longwave radiation 

leaving the surface towards the sky. This proves challenging when monitoring the urban surface 
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using remote sensing (RS) instruments that inherently have a directional and limited view of the 

complete surface (Voogt and Oke, 2003). For example, a satellite with a near-perpendicular angle 

(nadir) is biased to viewing the surface-leaving radiation towards this direction (Roth, Oke and 

Emery, 1989). In urban areas this is mainly from the roofs, ground (Hu and Wendel, 2019) and the 

top of vegetation (Dyce and Voogt, 2018). As the sensor view angle changes, so does the relative 

contribution of surface-leaving radiation from different surface components. Repeated measurements 

of the same area from different orbits and view angles can therefore account for different parts of the 

surface which confounds any time series analysis (Hu et al., 2016). With greater spatial and angular 

resolution, airborne observations (e.g. using helicopters) have estimated the magnitude of effective 

thermal anisotropy to be greater than 10 K (Lagouarde et al., 2004, 2010). This uncertainty is an 

order of magnitude greater than for many land surface temperature products over more homogeneous 

(e.g. grassland, desert) surfaces (Duan et al., 2019). However, studies of urban thermal anisotropy 

are so far limited to very short time periods with few repeat observations. 

Although ground-based sensing may only cover small spatial extents, high spatial and temporal 

resolutions permit investigation of the micro-scale processes that contribute to uncertainties in Ts
EO. 

Ts from ground-based platforms can use in-situ or RS observation techniques. In-situ probes are 

affixed to the surface (e.g. Offerle et al., 2007) whereas RS instruments can measure spatially 

resolved (e.g. thermal cameras) or integrated (e.g. pyrgeometer radiometers) surface-leaving 

radiation across larger areas. Unlike satellite-based RS with narrow and downward view angles, 

ground-based RS can concurrently sample the horizontal and vertical components of the urban 

surface. For pyrgeometers, the view angle can be large (near-hemispherical) with source areas 

typically assumed to represent ELW↑ at the local scale (Christen and Vogt, 2004). A LWIR camera 

has a narrower field of view (FOV) capable of resolving facet or sub-building scale surface 

components from the thermal imagery (thermography). A single ground-based LWIR camera has a 

relatively narrow FOV allowing the temporal variability of urban Ts to be explored for impervious 

(e.g. Christen, Meier and Scherer, 2012) and pervious (e.g. Meier and Scherer, 2012) urban surfaces, 

non-destructive assessment of building envelope energy losses (Balaras and Argiriou, 2002), and 

street-level pedestrian comfort (Lee et al., 2018). Concurrent and multi-directional sampling permits 

local-scale urban areas to be observed and linked to the satellite scale. Sampling of this type includes 

transect data from vehicle mounted radiometers combined with airborne imagery (Voogt and Oke, 

1997) and a single LWIR camera rotated on a mast (Adderley, Christen and Voogt, 2015). These 

have been used to assess urban surface temperature variability at local-scales and to determine view 

angle uncertainties of Ts
EO. 

The scale-dependence of urban surface temperature variations poses challenges to ground-truthing 

urban EO. If ground-based observations are confined to small (micro-scale) areas it can be difficult 

to make the link to the local-scale Ts
EO. It is therefore critical to understand the representation of 



Chapter 1  4 

ground-based observations across a satellite pixel observation (Duan et al., 2019). This can be 

achieved by determining which surface facets (e.g. walls, roofs, ground) are “seen” (i.e. sampled) by 

the ground-based sensor and the satellite, respectively. As thermography provides spatially resolved 

images, it is easier to determine visually which surfaces are sampled compared to a pyrgeometry’s 

spatially integrated ELW↑. Typically, prior ground-based thermography studies have used manual 

inspection of images to determine the different facets viewed by pixels (e.g. Christen, Meier and 

Scherer, 2012), or relate contrasting distributions of observed values to different surface 

characteristics (Voogt and Oke, 1997). These methods can be time consuming, qualitative, and have 

not been shown to reliably classify many complex micro-scale features associated with e.g. surface 

materials and vegetation. Having confidence in the surface observed otherwise involves sampling it 

from close proximity (e.g. Rotach et al., 2005; Pigeon et al., 2008) which reduces the spatial extent 

further. Although ground-based RS is promising, there is not an established method to reliably 

quantify what surfaces are “seen” at the micro-scale or to assess how representative these are of the 

local-scale view angle effects on Ts
EO. Previously idealised descriptions of “real-world” geometry 

(e.g. TUF-3D, Krayenhoff and Voogt, 2007; GUTA, Wang, Chen and Zhan, 2018) have been used 

for effective thermal anisotropy modelling involving combinations of observed and modelled Ts.. 

Furthermore, the evaluation of these models with real-world observations is very limited. Challenges 

have even been reported over relatively homogeneous terrain for ground-truthing EO land surface 

temperature, particularly during daytime with more micro-scale variation in temperatures across 

small changes in topography (e.g. Wan, 2014; Duan et al., 2019).  

To adequately study thermal conditions of the urban surface, the kinetic surface temperature Ts needs 

to be retrieved from the at-sensor radiance observed by the ground-based LWIR RS. Radiation 

detected by LWIR cameras includes both the emitted and reflected components from the target 

surface plus the contribution from the atmosphere between the surface and the instrument. By 

removing the atmosphere effect (atmospheric correction) and reflected radiation from non-BB 

surfaces (referred to here as the emissivity correction, following Adderley, Christen and Voogt, 

2015), only the radiation emitted by the surface remains and is related to Ts by Planck’s radiation 

law. Atmospheric corrections of LWIR RS (Sobrino, Coll and Caselles, 1991) have considered urban 

areas from airborne (Sugawara and Takamura, 2006) and ground-based (Meier et al., 2011) platforms 

but these do not include an emissivity correction. At the micro-scale, the complex nature of LW 

radiation exchanges within the urban canopy (Arnfield, 1982; Harman, Best and Belcher, 2004) 

combined with the spatial variability of surface emissivity (Kotthaus et al., 2014) determines the 

emissivity correction effect. A detailed emissivity correction therefore requires the process of 

radiation exchanges within the canopy to be resolved at a similar resolution as the observations. As 

this has not yet been achieved in previous studies using ground-based thermography, the observed 

surfaces have been assumed to be perfect emitters of radiation (black bodies) which leads to an 
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approximate uncertainty of 0.5 – 5.0 K (Meier et al., 2011) with generally unknown spatial and 

temporal variability. 

1.2 Objectives 

This research uses ground-based thermography in urban areas to explore the effective thermal 

anisotropy that gives rise to uncertainties in LWIR RS from EO satellites. As ground-based 

thermography in urban climate study is still rare, significant contributions of this work arise from 

advancing the observational technique.  

The objectives of this PhD are: 

1) To develop an automated and objective method to classify what is “seen” by each pixel in 

ground-based thermography observations in urban settings with any 3D geometry.  

2) To develop a methodology to correct both atmospheric and emissivity effects on observations at 

the spatial resolutions of ground-based thermal cameras (< 1 m) to enable realistic surface 

temperature retrieval. Improvements compared to prior studies in terms of reduced uncertainty 

are to be quantified through sensitivity analyses of the corrections. 

3) To analyse thermal camera observations, that are capable of viewing surfaces at very high 

resolution across small areas, at scales representative of satellite pixels. To develop techniques 

to facilitate crossing of scales from micro (thermal camera) to local (satellite pixel), that use both 

classified observations (objective 1) (to retain high spatial and temporal resolution information) 

and multiple cameras (to increase the observational source area). 

4) To assess the effective thermal anisotropy in urban areas using the upscaled observations and 

provide a new high level of detail benchmark. 

1.3 Thesis structure 

A framework to classify ground-based observations in urban areas is developed and tested using a 

hardware scale (1.5 m tall buildings) urban model (Chapter 2a). This simplified urban surface 

removes many “real world” complexities As the model has repeating geometry and material cf. “real” 

cities, two cameras positioned above the urban canopy can view all surface orientations. The simple 

scale model geometry allows for an uncertainty analysis of satellite thermal remote sensing to be 

performed via simulations of effective thermal anisotropy, here using broadband flux approximations 

and the Discrete Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry, Grau and 

Lauret, 2012).  

 
a Morrison W, Kotthaus S, Grimmond CSB, Inagaki A, Yin T, Gastellu-Etchegorry J-P, Kanda M, Merchant 

CJ (2018). A novel method to obtain three-dimensional urban surface temperature from ground-based 

thermography. Remote Sensing of Environment, 215(May), 268–283. 
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Building on Chapter 2, a novel correction framework is presented (Chapter 3b) to retrieve surface 

temperature from ground-based LWIR RS observations using DART with finite spectral bands (cf. 

broadband in Chapter 2) to account for spectral variation in atmospheric optical properties. The 

correction is applied to a network of seven LWIR cameras installed in a “real world” (cf. scale model, 

Chapter 2) central London (UK) site, which enable an evaluation of the correction framework and a 

detailed uncertainty analysis to be performed. The latter for the first time, uses a detailed multi-path 

and multi-camera atmospheric and emissivity correction. Chapter 3 demonstrates cameras mounted 

among buildings (cf. above buildings, Chapter 2). Prior to this, this had not been tested or 

demonstrated using DART. Additionally, new camera housing techniques (cf. Chapter 2) are 

developed to further improve calibration stability. 

Chapter 4c uses the classified and corrected central London observations from Chapter 3, with further 

developments in the parameterisation of observed brightness temperatures such as shadow histories 

first identified in Chapter 2, to explore the micro-scale surface temperature variability in 

unprecedented detail. These observations are extrapolated across a local-scale description of the 

surface geometry. Based on the upscaled surface temperature time series, effective thermal 

anisotropy is simulated using DART to evaluate the uncertainties in Ts
EO. 

Chapter 5 summarises the novel contributions, scientific conclusions and recommendations for future 

work. 

 
b Morrison W, Yin T, Lauret N, Guilleux J, Kotthaus S, Gastellu-Etchegorry J-P, Norford L, Grimmond CSB 

(2019). Atmospheric and emissivity correction for ground-based thermography using 3D radiative transfer 

modelling. Remote Sensing of Environment, In Press. 
c Morrison W, Kotthaus S, Grimmond CSB (2019). Urban satellite view uncertainty assessed with ground-

based thermography. In preparation. 
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Chapter 2 A novel method to obtain three-dimensional urban surface 

temperature from ground-based thermography 

Abstract 

Urban geometry and materials combine to create complex spatial, temporal and directional patterns 

of longwave infrared (LWIR) radiation. Effective anisotropy (or directional variability) of thermal 

radiance causes remote sensing (RS) derived urban surface temperatures to vary with RS view angles. 

Here a new and novel method to resolve effective thermal anisotropy processes from LWIR camera 

observations is demonstrated at the Comprehensive Outdoor Scale MOdel (COSMO) test site. Pixel-

level differences of brightness temperatures reach 18.4 K within one hour of a 24-h study period with 

median hourly changes up to 5.5 K (day, 07:00 – 08:00) and 1.8 K (night, 20:00 – 21:00). To 

understand this variability, the orientation and shadowing of surfaces is explored using the Discrete 

Anisotropic Radiative Transfer (DART) model and Blender three-dimensional (3D) rendering 

software. Observed pixels and the entire canopy surface are classified in terms of surface orientation 

and illumination. To assess the variability of exitant longwave radiation (𝑀𝐿𝑊) from the 3D COSMO 

surface (𝑀𝐿𝑊
3𝐷 ), the observations are prescribed based on class. The parameterisation is tested by 

simulating thermal images using a camera view model to determine camera perspectives of 𝑀𝐿𝑊
3𝐷  

fluxes. The mean brightness temperature differences per image (simulated and observed) are within 

0.65 K throughout a 24-h period. Pixel-level comparisons are possible with the high spatial resolution 

of 𝑀𝐿𝑊
3𝐷  and DART camera view simulations. At this spatial scale (< 0.10 m), shadow hysteresis, 

surface sky view factor and building edge effects are not completely resolved by 𝑀𝐿𝑊
3𝐷 . By simulating 

apparent brightness temperatures from multiple view directions, effective thermal anisotropy of 𝑀𝐿𝑊
3𝐷  

is shown to be up to 6.18 K across directions up to 60° off-nadir. The developed methods can be 

extended to resolve some of the identified sources of sub-facet variability in realistic urban settings. 

The extension of DART to the interpretation of ground-based RS is shown to be promising for the 

development of ground-based thermography campaigns. 

2.1 Introduction 

Urban surface temperature (𝑇𝑠) plays a significant role in the urban surface energy balance as it is 

central to longwave radiation (LW), turbulent sensible heat and storage heat fluxes. Remote sensing 

(RS) methods have the potential to provide 𝑇𝑠 at large spatial scales for understanding exchanges of 

sensible heat (e.g. Voogt and Grimmond, 2000; Xu, Wooster and Grimmond, 2008), the thermal 

comfort of city dwellers (Thorsson, Lindqvist and Lindqvist, 2004), and the urban surface heat island 

phenomenon (Roth, Oke and Emery, 1989; Kato and Yamaguchi, 2005; Huang et al., 2016). Two 

major challenges of urban thermal RS observations relate to the complex three-dimensional (3D) 

urban surface form and material heterogeneity, both causing large spatiotemporal variability of 𝑇𝑠 
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(Voogt and Oke, 2003). Spatiotemporal variability of 𝑇𝑠 is influenced by the relative orientation of 

surfaces to the sun during the day, and sky at night (Voogt and Oke, 2003). The diversity of thermal 

and radiative properties of surface materials causes additional variability (Voogt, 2008). What results 

is a directional variability, or an effective thermal anisotropy (Krayenhoff and Voogt, 2016), of 

broadband longwave radiation (𝑀𝐿𝑊, W m-2) from the urban canopy surface. The anisotropic 

behaviour of urban canopies is defined as “effective” to differentiate from thermal anisotropy 

exhibited by individual surface components (Voogt and Oke, 1998a). Effective thermal anisotropy 

clearly affects satellite measured radiance, which is indicative of satellite derived longwave radiation 

flux (𝑀𝐿𝑊
𝑅𝑆 ). As a result, the apparent 𝑇𝑠 can vary depending on view direction. 𝑀𝐿𝑊

𝑅𝑆  can be described 

by: 

𝑀𝐿𝑊
𝑅𝑆 = ∑𝑀𝐿𝑊,𝑖 𝑓𝑖

𝑛

𝑖

 Eqn. 2.1 

where 𝑀𝐿𝑊,𝑖 is the exitant broadband longwave radiation from a given canopy surface element 𝑖 that 

comprises fraction 𝑓 of the instrument field of view (FOV). Out of the total number of canopy surface 

elements 𝑛, 𝑀𝐿𝑊,𝑖 may differ to other canopy surface elements due to the highly variable radiative 

properties associated with its surface temperature, emissivity (ε) and contributions from longwave 

reflections. 𝑀𝐿𝑊
𝑅𝑆  is also sensitive to urban canopy geometry and to the specific view angle within 

each image swath. These factors combine to form a view angle specific 𝑓𝑖 which translates to a view 

angle specific value of 𝑀𝐿𝑊
𝑅𝑆 . For example, 𝑓𝑖 for roof and tree tops is generally overemphasised 

within 𝑀𝐿𝑊
𝑅𝑆  for urban areas (Roth, Oke and Emery, 1989). Corrections of effective thermal 

anisotropy are critical when retrieving high-quality 𝑇𝑠 products for urban environments at large 

spatial scales from satellite-derived 𝑀𝐿𝑊
𝑅𝑆 . 

The impact of effective thermal anisotropy on 𝑀𝐿𝑊
𝑅𝑆  has been studied using various observation and 

modelling techniques. Observations from airborne platforms (Voogt and Oke, 1998a; Lagouarde et 

al., 2004; Sugawara and Takamura, 2006) allow highly variable view angles at scales representative 

of satellite pixel resolutions (100 m – 1 km). However, cost and air traffic restrictions usually limit 

these to short-term research campaigns. As obtaining different view angles requires multiple flyovers 

(i.e. difficult to conduct simultaneously), sequential flyovers with one aircraft may temporally 

confound results. Thus, the directional variability of 𝑀𝐿𝑊
𝑅𝑆  at a micrometeorological timeframe (sub-

hourly) for energy exchange processes (Christen, Meier and Scherer, 2012) may be unresolved. 

Ground-based RS observations are interesting in that 𝑀𝐿𝑊 can be resolved at high temporal 

resolutions (e.g. Christen, Meier and Scherer, 2012) while resolving the individual facet (e.g. roof, 

wall) and sub-facet scale classes of 𝑀𝐿𝑊,𝑖 that constitute the structural and radiative characteristics 

of the urban canopy. For ground-based RS, a challenge is to sample enough facets representative of 

the complete 3D urban canopy at any one time. A single ground-based measurement provides a 
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highly directional sample at high spatial resolution. Several ground-based sensors are required to 

sample facets of all orientations, unless a single ground-based sensor is operated on a rotating 

(Adderley, Christen and Voogt, 2015) or mobile (e.g. Voogt and Oke, 1997) platform. As satellite-

based RS has a bias directional view of canopy surfaces, it is important to be able to understand the 

nature of this bias.  

Modelling can further help resolve the contribution of sub-facet scale variability of 𝑀𝐿𝑊 on effective 

thermal anisotropy. The nature of effective thermal anisotropy and 𝑀𝐿𝑊
𝑅𝑆  can be understood under 

constrained conditions at high temporal and spatial resolutions. Therefore, modelling is considered 

key to progress (Voogt and Oke, 2003; Voogt, 2008). Approaches typically involve a 

parameterisation of surface geometry, an energy balance model prescription of surface temperature 

and sensor view modelling of 𝑀𝐿𝑊
𝑅𝑆  to resolve 𝑀𝐿𝑊,𝑖 and 𝑓𝑖 (Eqn. 2.1) for a given surface-sensor 

viewing geometry. Surface temperatures can be prescribed from 2D (Kusaka et al., 2001; Sugawara 

and Takamura, 2006; Voogt, 2008), 2.5D infinite street canyon (Lagouarde et al., 2010) and 3D 

(Soux, Voogt and Oke, 2004; Krayenhoff and Voogt, 2007, 2016) energy balance simulations to 

estimate 𝑀𝐿𝑊,𝑖 (Eqn. 2.1) at facet (e.g. surface orientation, roof, ground) or sub-facet (e.g. insolation, 

material) scales.  

Few sensor-view modelling studies exist that prescribe 𝑀𝐿𝑊,𝑖 from observations at facet and sub-

facet scale, despite this complementing and constraining energy balance simulations. Classifying 

surfaces within ground-based RS source areas poses challenges because of the potentially diverse 

viewing geometries, complex 3D urban canopy structure, and low resolution of longwave infrared 

(LWIR) camera imagery. Previously, the spatial frequency distributions of 𝑀𝐿𝑊 determined by 

ground-based LWIR imagery were used to infer canopy surface classes (e.g. Voogt and Grimmond, 

2000) or surface classes were manually identified and extracted (e.g. Voogt, 2008). Manual 

approaches based on broadband thermal imagery are limited when the temperature contrast between 

facets is low (because of orientation or material properties). Information at multiple wavelengths can 

be valuable to improve classification. With maturing of sensor view modelling, it is becoming a 

powerful tool to objectively classify surface elements captured by RS imagery. Previous studies 

interpreting ground-based LWIR imagery have determined per-pixel path lengths for atmospheric 

correction of observations from on top of a high-rise building in Berlin (Meier et al., 2011). The 

SUM surface-sensor-sun model (Soux, Voogt and Oke, 2004) enables sensor view modelling of 

𝑀𝐿𝑊,𝑖 prescribed from observations, limited to urban surface geometry resolved as regular arrays of 

rectangular shaped buildings. Studies using SUM have prescribed temperatures intermittently (e.g. 

Voogt, 2008) from ground-based and airborne platforms observations. 3D rendering and editing 

software and a 3D vector model have facilitated the classification of ground-based LWIR imagery 

in a suburban area in Vancouver (Adderley, Christen and Voogt, 2015). As the camera views a subset 

of the total surface, classified temperature “textures” are gap-filled to enable extrapolation across the 
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3D vector model as a complete brightness temperature product for sensor view modelling of 

hemispherical radiometer measurements using a single LWIR camera on a rotating mast.  

In the current study, a flexible observational and modelling approach is developed to prescribe 𝑀𝐿𝑊 

from broadband longwave radiation fluxes derived from static ground-based LWIR camera 

observations. A 3D distribution of exitant broadband longwave radiation (𝑀𝐿𝑊
3𝐷 , W m-2) is constructed 

from observations. The approach involves a novel method to classify each camera image. Pixels 

within each image are associated with a specific surface class prior to observations being extrapolated 

to all urban canopy surface elements in 3D. A “model world” (MW) is used to process and interpret 

observations which enables “real world” (RW) surfaces to be related to each camera image by camera 

view modelling. It provides a robust and quantitative method to interpret observations. Surface class 

𝑖 is determined in 3D space [i.e. 𝑖(𝑋, 𝑌, 𝑍)] and is then accurately mapped to the 2D (𝑥, 𝑦) coordinates 

of a camera image plane (IP) [i.e. 𝑖(𝑥, 𝑦)].  

Unique here is the camera view modelling used to interpret observations, as surface classes are 

determined at high temporal and spatial resolution using surface geometry and shortwave (SW) 

radiative characteristics for each time step. This is designed to ensure all canopy surfaces are always 

accounted for when allocating observed temperatures across areas of the surface not directly 

observed (hereafter “extrapolated” over the 3D urban surface). A potential constraint of highly 

directional ground-based measurements is turned to an advantage by positioning two cameras at 

opposing view angles. This permits a combined observational source area representative of all 

surface classes that constitute the 3D urban surface. Extrapolated observations are compared with 

original camera imagery. This is done by projecting the extrapolated observations through the 

perspective of simulated cameras, with modelled perspectives matching those seen by the original 

camera imagery. This approach is unique in that the modelled perspectives are shown to reproduce 

the perspectives of the original imagery at pixel level and to a high degree of accuracy. Extrapolated 

observations have potential as a tool for further sensor view modelling to explore the impact of 

effective thermal anisotropy on directionally variable 𝑀𝐿𝑊
𝑅𝑆  products for any given surface-sensor 

configuration. 

The observational setup (Section 2.2.1, Section 2.2.2), the classification methods (Section 2.2.3, 

Section 2.2.4) and extrapolation (Section 2.3) of observations are introduced. Results (Section 2.4) 

include evaluation of proposed methods and demonstrate their benefits for application in urban RS. 

It is concluded (Section 2.5) that the detailed modelling approach provides a valuable tool for future 

studies in real city settings. 

2.2 Methods 

LWIR camera observations are interpreted and estimated as 𝑀𝐿𝑊
3𝐷  in a MW environment (Figure 2-1). 

Two LWIR cameras (Section 2.2.2) were installed on ground-based platforms above an urban test 
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site (treated here as the RW, Section 2.2.1) to capture spatial and temporal variability of 𝑀𝐿𝑊 that is 

representative of 𝑀𝐿𝑊
3𝐷 . The MW surface geometry (Section 2.2.3) and camera view (Section 2.2.4) 

components enable extrapolation of RW observations to 𝑀𝐿𝑊
3𝐷  (Section 2.3). 

 

Figure 2-1. Flow chart of procedures to estimate and evaluate exitant broadband longwave 

radiation prescribed across an urban canopy (MLW
3D) using ground-based longwave infrared 

(LWIR) imagery coupled with camera view and 3D modelling techniques. See list of symbols 

and acronyms for all other definitions. 

2.2.1 Real world site 

The COSMO site (Kanda et al., 2007) is an outdoor scale model of an urban canopy. It occupies an 

area of 100 m x 50 m (Figure 2-2) at the Nippon Institute of Technology, Saitama prefecture, Japan 

(southeast corner: 36° 1' 36.42" N, 139° 42' 18.45" E). The simple repeating geometry consists of 

1.5 m cubic concrete blocks (with 0.1 m thick walls) with an even 1.5 m spacing (Figure 2-2d). The 

long axis for the 32 x 16 blocks is oriented 49o west of true north (Figure 2-2a). For simplicity, the 

“building” walls are referred to hereafter by their nearest cardinal direction relative to COSMO long 

axis orientation: S (229°), E (139°), N (49°), and W (319°). Obviously, this deviation from the true 

cardinal directions impacts shading patterns and related surface warming effects. All surfaces are 

made of the same concrete, painted grey (albedo = 0.1, 𝜀7−13𝜇𝑚= 0.89; Kawai et al., 2007). Surface 
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weathering effects (Figure 2-2c) are likely to affect the radiative characteristics, but the apparently 

random patterns are too small a spatial scale to be accounted for in this study. 

 

Figure 2-2. COSMO test site and longwave infrared (LWIR) camera observational setup: (a) 

test site domain (plan view) with focus area (green box); (b) focus area with LWIR camera 

(Csouth, Cnorth) locations and approximate orientations (blue) and source areas (red) for camera 

field of view; (c) north-west facing oblique visible image taken near the Cnorth camera location 

and perspective (d) vertical cross section of building array (grey squares) showing instrument 

tower and camera geometry. 

2.2.2 Real world instrumentation 

Two Optris PI-160 LWIR cameras (Optris GmbH, 2018) were installed on an aluminium lattice 

tower at 6.8 m and 7.0 m above ground level (Figure 2-2d) at opposing azimuth angles with oblique 

views of ground, roof and all cardinal facing surfaces. Cameras are defined as (Cnorth, Csouth) based 

on their azimuthal view angle (Figure 2-2b, camera meta data in Appendix B). The horizontal and 

vertical pixel resolution of the cameras ranges from approximately 0.030 m x 0.043 m to 0.079 m x 

0.111 m. The small, lightweight industrial grade cameras use uncooled microbolometer technology, 
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with 25 μm x 25 μm bolometer elements arranged as a 160 x 120 focal plane array (FPA). With 

multiple cameras, multiple view angles and building facets (e.g. Figure 2-2b) can be sampled 

simultaneously in a static setup (cf., rotating one sensor, Adderley et al., 2015; or vehicle traverses, 

Voogt and Oke, 1997). The instrument outputs digital number values for each microbolometer pixel. 

These values relate to at-sensor broadband 7 – 13 μm radiance and are radiometrically calibrated by 

the manufacturer to brightness temperatures [𝑇 
  𝑚(𝑥, 𝑦)] using black-body reference measurements. 

The per-pixel broadband longwave radiation flux [𝑀𝐿𝑊
  𝑚(𝑥, 𝑦)] is related to 𝑇 

  𝑚(𝑥, 𝑦) by Stefan-

Boltzmann law: 

𝑀𝐿𝑊
  𝑚(𝑥, 𝑦) = 𝜎[𝑇 

  𝑚(𝑥, 𝑦)]4 Eqn. 2.2 

with 𝜎 the Stefan-Boltzmann constant (5.67 x 10-8 W m-2 K-4). The temperature resolution is 0.1 K 

and the manufacturer’s specified accuracy is 2 oC at ambient temperatures 23 ±5 oC (Optris GmbH, 

2018). Although images can be captured at 120 Hz, for this study images recorded every 60 s are 

used to reduce data overhead but capture temporal variability of 𝑀𝐿𝑊
  𝑚 caused by transient surface 

shadowing. The manufacturer specified camera horizontal and vertical FOV is 41° x 31°. 

Observations were taken between 2014/06/16 and 2014/09/26. In this paper, the focus is on a 

predominantly clear-sky day (2014/08/02). Both cameras were connected to the same field laptop for 

data acquisition via USB using the Optris PI connect software. 

Multiple internal processing steps need to be considered to achieve radiometrically calibrated 

measurements from LWIR cameras. Uncooled microbolometer calibration and measurement 

processes are reviewed by Budzier and Gerlach (2015). Here the quality control steps undertaken are 

presented. 

After a camera is sited, the FPA requires a “warm up” period to allow the current induced self-heating 

of the sensor elements to stabilise (Vollmer and Möllmann, 2017) prior to measurements. As 

laboratory testing found up to 2 h warm up period is required depending on target and camera body 

temperature conditions (cf. manufacturer’s recommended 10 mins), data prior to this are excluded. 

To correct for changes in the contribution of interior radiance incident on the FPA due to any change 

in the camera body temperature resulting from ambient air temperature variability, a shutter inside 

the camera with assumed black-body characteristics and of known temperature obscures the sensor 

before every measurement so that its emission is sampled. The cameras are fitted with aluminum 

covers (enclosure: 945 mm x 45 mm x 62 mm). These are designed to prevent lens exposure to 

precipitation and any rapid, directional heating of the sensor body due to direct sun exposure. 

2.2.3 Model world site 

To interpret 𝑀𝐿𝑊
  𝑚 for subsequent parameterisation and evaluation of 𝑀𝐿𝑊

3𝐷 , a MW is used. It has 

realistic surface-sensor geometry and processes contributing to variability in 𝑀𝐿𝑊 exitant across the 

RW (COSMO) site. For a given RW point at 3D coordinates (𝑋, 𝑌, 𝑍), the RW radiative processes 
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that determine 𝑀𝐿𝑊,𝑖 from all canopy surfaces [𝑀𝐿𝑊
3𝐷 (𝑋, 𝑌, 𝑍)] are approximated by assuming 

Lambertian facets, first order scattering, isotropic sky thermal radiance, invariance of emissivity 

across a broadband of thermal wavelengths and invariance of emissivity with facet kinematic 

temperature, viz: 

     𝑀𝐿𝑊
3𝐷 (𝑋, 𝑌, 𝑍) = 𝜎[𝑇 

3𝐷]
4
(𝑋, 𝑌, 𝑍) = [1 − ε(𝑋, 𝑌, 𝑍)] ⋅ 𝛹𝑠𝑘𝑦(𝑋, 𝑌, 𝑍) ⋅ 𝐸𝐿𝑊

↓  

                               + [1 − ε(𝑋, 𝑌, 𝑍)] ⋅ 𝛹  𝑛(𝑋, 𝑌, 𝑍) ⋅ 𝑀𝐿𝑊
  𝑛 

                               + 𝜀(𝑋, 𝑌, 𝑍) ⋅ 𝜎[𝑇 
3𝐷]

4
(𝑋, 𝑌, 𝑍) 

Eqn. 2.3 

where 𝛹𝑠𝑘𝑦 and 𝛹  𝑛 are sky and canopy view factors (Johnson and Watson, 1984) that influence 

the radiant flux incident on RW point (𝑋, 𝑌, 𝑍); 𝐸𝐿𝑊
↓  is broadband longwave irradiance from sky; 

𝑀𝐿𝑊
  𝑛 is broadband longwave radiation emitted from surrounding canopy elements; 𝑇 

3𝐷(𝑋, 𝑌, 𝑍) and 

𝑇𝑠
3𝐷(𝑋, 𝑌, 𝑍) are the surface brightness and kinematic temperatures for the given point; and ε(𝑋, 𝑌, 𝑍) 

the broadband surface emissivity for the given point. The COSMO test site (Figure 2-2) and 

observational period chosen enables Eqn. 2.3 to be simplified: 1) the homogeneous surface material 

allows ε(𝑋, 𝑌, 𝑍) to be treated as constant and isotropic, and 2) the high material emissivity reduces 

any variability in reflection contributions from 𝐸𝐿𝑊
↓  and 𝑀𝐿𝑊

  𝑛. 𝐸𝐿𝑊
↓  is assumed isotropic in Eqn. 2.3 

as a simplification due to clear-sky conditions for the study date. The remaining factors determining 

COSMO 𝑀𝐿𝑊
3𝐷 (𝑋, 𝑌, 𝑍) in Eqn. 2.3 (𝑇𝑠

3𝐷, 𝛹𝑠𝑘𝑦 and 𝛹  𝑛) are highly variable across the site. To 

parameterise the variability of 𝑀𝐿𝑊
3𝐷  in this paper, facets are classified by their orientation using 

Blender (Blender Foundation, 2016) and sub-facet insolation status (or shadow patterns) using the 

DART 3D radiative transfer model (Gastellu-Etchegorry, Grau and Lauret, 2012) (Figure 2-1). 

Combining Blender (version 2.78) and DART (version 5.6.6, build v935) allows the 3D distribution 

of specific surfaces classes [𝑖(𝑋, 𝑌, 𝑍)] to be determined across the site. 𝑖(𝑋, 𝑌, 𝑍) is prescribed with 

similarly classified observations to formulate 𝑀𝐿𝑊
3𝐷 . 

Two spatial reference systems defined in the MW by DART and Blender facilitate the creation of 

𝑖(𝑋, 𝑌, 𝑍): 

1) In both DART and Blender, the RW surface geometry is represented by a vector-based 

digital surface model (DSM) of triangles in a 3D mesh. This resolves surface geometry at a 

high level of detail (Gastellu-Etchegorry, 2008) which is not limited to simple geometry (e.g. 

Soux et al., 2004). A triangle face ( ) is the planar area between three vertices each with 

𝑋, 𝑌, 𝑍 coordinates (Figure 2-3) with attribute  𝑖 a determinable facet-scale surface class. 

2) In DART, the MW is discretised into voxels  𝑥 of uniform size in a 3D raster format (see 

Figure 2-3; Δ𝑋, Δ𝑌, Δ𝑍; Yin et al., 2015). Surface voxels contain surface elements of the 

DSM  𝑥𝑆 (Figure 2-3), whereas other voxels only contain atmosphere. Voxels enable 

radiative transfer processes to be calculated within DART at high (sub-facet scale; <  ) 

resolution. Surface voxels (Figure 2-3) are used to track radiation emitted and intercepted by 
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  (Gastellu-Etchegorry, 2008), meaning MW geometry is resolved by the DSM during 

simulation. The prescribed surface temperature ( 𝑥𝑇𝑠
𝑆 ) and sub-facet-scale surface class 

information [𝑖(𝑋, 𝑌, 𝑍)] are stored by surface voxels. Therefore, a surface voxel that occupies 

an area Δ𝑋, Δ𝑌, Δ𝑍 of the DSM stores surface class  𝑥𝑖
𝑆(Δ𝑋, Δ𝑌, Δ𝑍) and temperature 

 𝑥𝑇𝑠
𝑆 (Δ𝑋, Δ𝑌, Δ𝑍) data. Simulated sources of emitted radiation can be from any combination 

of sun, upper atmosphere,  𝑥𝑆 and atmosphere voxels. Here, sun angle and insolation are 

modelled by DART to determine  𝑥𝑖
𝑆(Δ𝑋, Δ𝑌, Δ𝑍) for sunlit [ 𝑥𝑠𝑢𝑛𝑙𝑖𝑡

𝑆 (Δ𝑋, Δ𝑌, Δ𝑍)] and 

shaded [ 𝑥𝑠ℎ 𝑑𝑒𝑑
𝑆 (Δ𝑋, Δ𝑌, Δ𝑍)] elements of the MW surface at a spatial resolution of 

Δ𝑋, Δ𝑌, Δ𝑍 = 0.04 m which is representative of the RW observation spatial resolution 

(Section 2.2.2). 

 

Figure 2-3. Surface representation and interaction in the “model world” (MW) is defined by 

triangle face (S) and voxel (Vx) elements, with camera view modelling to simulate camera 

image plane (IP). See table and text for symbol and acronym definitions and Figure 4-2 for 

further details. 

DART can simulate radiative transfer processes in the visible to LWIR regions of the electromagnetic 

spectrum (Yin, Lauret and Gastellu-Etchegorry, 2015) in the atmosphere and any urban or natural 

landscape. Individual rays are tracked along discrete directions within angular cones (Yin et al., 

2013). Landscape, or “bottom of atmosphere” (BOA), illumination is due to direct and diffuse sun 

radiation (𝐸𝑆𝑊
↓ ) and 𝐸𝐿𝑊

↓ . It is simulated as rays that flow from a horizontal BOA layer at the top of 

the landscape (Figure 2-3). The surface density of these illumination rays is 1/D2, with D the BOA 
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illumination grid resolution. To simulate RW camera images taken above the BOA layer (Figure 

2-3), rays that reach the BOA mesh layer are projected onto a simulated camera IP (Yin, Lauret and 

Gastellu-Etchegorry, 2015). A comprehensive description of DART including further functionality 

beyond the scope of this paper is provided by Gastellu-Etchegorry et al. (2015). DART camera image 

simulation specifics are detailed in Yin et al. (2015). 

2.2.3.1 Surface creation 

The DSM was created using Blender, based on the known site geometry (Section 2.2.1) and stored 

as a DART compatible “*.obj” wavefront data format. Here the metadata stored by this format for 

each triangle face includes facet orientation for the surface classification (Section 2.2.3.2). The DSM 

has the RW surface geometry (Figure 2-2) for the full site (𝑋 = 50 m, 𝑌 = 100 m, 𝑍 = 1.5 m), 

discretised into surface voxels using the MW definition of DSM – voxel interaction (Figure 2-3) at 

a resolution of Δ𝑋 = Δ𝑌 = Δ𝑍 = 0.04 m. The 𝑋 axis of the voxel array is aligned with the 𝑋 axis of 

the DSM (Figure 2-2). 

2.2.3.2 Surface classification 

The spatial and temporal class characteristics (orientation, surface insolation state) allow a dynamic 

high spatial resolution 3D classification of the MW surface as 𝑖(𝑋, 𝑌, 𝑍).  

DART stores local incident and intercepted radiation in two different ways. It stores the upward 

directional radiance per surface element of the landscape, for simulating RS measurements. Also, the 

landscape 3D radiative budget is stored: irradiance and exitance per voxel upper face; and the 

radiation that is intercepted, absorbed and emitted per voxel. Here, the DART simulated 3D radiative 

budget is used to determine the sunlit or shaded status of  𝑥𝑖
𝑆(𝑋, 𝑌, 𝑍) through time, where 𝑖 = sunlit 

or 𝑖 = shaded. The sunlit and shaded areas of the MW are resolved at the voxel size (Δ𝑋 = Δ𝑌 = Δ𝑍 

= 0.04 m, Section 2.2.3.1). Direct downwelling SW radiation (𝐸𝑆𝑊,𝑑𝑖𝑟
↓ ) is simulated with solar angles 

calculated using NOAA solar calculator equations (NOAA, 2016). Here, DART tracks BOA rays 

(mesh cell size D = 0.02 m) with radiant flux density 𝐸𝑆𝑊(𝛺, θ, 𝜙) (W m-2) along solid angle 𝛺 (sr) 

with direction (θ, 𝜙) until incident on a DSM triangle. Hence, each triangle intercepted 𝐸𝑆𝑊(𝛺, θ, 𝜙) 

is stored for the voxel that occupies the 3D space of the triangle (Figure 2-3) which across the entire 

scene produces a 3D array of voxels with values of intercepted irradiance (W m-2). If a surface voxel 

has stored no direct solar irradiance (i.e. cloud, night or building obstruction) then the voxel is 

classified as shaded ( 𝑥𝑖=𝑠ℎ 𝑑𝑒𝑑
𝑆 ), otherwise it is sunlit ( 𝑥𝑖=𝑠𝑢𝑛𝑙𝑖𝑡

𝑆 ). If RW geometry were more 

complex, the classes could be split into discrete or binned values of irradiance intercepted by a MW 

surface. 

The surface orientation attribute of each triangle face   (Section 2.2.3.1) is one of the four cardinal 

orientations relative to north (e.g. 𝑖 = east) or horizontal orientations (e.g. 𝑖 = roof). Blender is used 



Chapter 2  17 

to determine the smallest angular difference between a triangle normal and the normal of each 

orientation. Once classified, the DSM is used to determine the orientation of sunlit or shaded voxels. 

Any sunlit or shaded surface voxel intersected by  𝑖 is classified as a sunlit or shaded voxel with 

orientation class 𝑖 [e.g.  𝑥𝑖=𝑟𝑜𝑜𝑓,𝑠𝑢𝑛𝑙𝑖𝑡
𝑆 (𝑋, 𝑌, 𝑍)]. 

2.2.4 Model world instrumentation 

MW “instrumentation” is used to classify each pixel of a RW camera observation by camera view 

modelling and to perform camera view modelling of 𝑀𝐿𝑊
3𝐷  for a given RS view angle. Here, a MW 

“instrument” is defined as the simulation of a RW camera perspective using camera view modelling. 

The RW camera images are classified at pixel level as 𝑖(𝑥, 𝑦) using basic pinhole cameras as the 

MW instruments. A basic pinhole camera has a rectilinear projection, meaning any straight lines in 

the MW domain are always projected as straight lines in the pinhole camera IP. A comprehensive 

description of this technique can be found in Hartley and Zisserman (2004). An overview of the steps 

taken to map a MW domain surface element with coordinates (𝑋, 𝑌, 𝑍) onto an IP with pixel 

coordinates (𝑥, 𝑦) is presented in Figure 2-4. Common discrepancies between a theoretical and RW 

camera are highlighted, with methods given for the calibration of the low-resolution RW LWIR 

cameras to perform as a pinhole camera (Section 2.2.4.1). Methods used to apply the MW camera 

with the classified DSM (Section 2.2.4.3) are given along with uncertainties associated with the 

alignment error between RW and MW camera perspectives (Section 2.2.4.2). 

All cameras have extrinsic and intrinsic parameters that determine the (𝑋, 𝑌, 𝑍) → (𝑥, 𝑦) coordinate 

transformation (Figure 2-4). Extrinsic parameters of rotation (𝑅) and translation (𝑡) describe the rigid 

transformation of a 3D coordinate frame to a 3D camera reference frame (𝑋, 𝑌, 𝑍) → (𝑥 , 𝑦 , 𝑧 ) with new 

coordinate origin 𝑂  (Heikkila and Silven, 2002; Hartley and Zisserman, 2004). RW cameras with 

physically small, wide-angle lenses exhibit radial distortion, meaning image points are displaced radially 

in the IP. This type of projection is not comparable to that of an ideal pinhole camera. Here, the camera 

intrinsics and lens distortion parameters are defined together as the camera internal parameters, which 

must be estimated (Section 2.2.4.1). 
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Figure 2-4. Coordinate and transformation definitions for “model world” elements. (𝑋, 𝑌, 𝑍) 

→ (xc, yc, zc) is the rigid transformation from the three-dimensional coordinate frame with 

origin 𝑂, to the three-dimensional camera coordinate frame with origin 𝑂  using camera 

extrinsic parameters of rotation 𝑅 and translation 𝑡. (xc, yc, zc) → (𝑥, 𝑦) is the projective 

transformation from camera coordinate frame to two-dimensional camera image plane (IP) 

frame (yellow). 𝑅 represents a series of Euler angles β, φ and ω that define a sequence of 

rotations: first around the xc-axis (β), then around the yc-axis (φ’) that has already been rotated 

by β, and finally around the zc-axis (ω’’) that has already been twice rotated firstly by β and 

then φ’ (Heikkila and Silven, 2002). 𝑡 is a vector that describes the translation between the 

model world coordinate origin (𝑂) and camera coordinate origin (Oc). Intrinsic parameters of 

focal length 𝐹, pixel scale factor (Eqn. 2.4) and principle point offset are used for the final 

projection of 3D points onto the 2D camera IP as (xc, yc, zc) → (𝑥, 𝑦). These parameters are 

determined by physical camera features including pixel size and the relative position of the IP 

to 𝑂 . The point at which the principle axis (zc) intersects with the IP is the principle point 𝑃 

(Hartley and Zisserman, 2004). For a pinhole camera, 𝑃 intersects at the centre of the IP. For 

real world cameras, the principle point offset describes the offset between 𝑃 and the centre of 

the IP which may arise from imperfections in the lens-FPA assembly. This results in a 

misalignment of the lens with the FPA (Clarke, Wang and Fryer, 1998) and hence needs to be 

accounted for. 

2.2.4.1 Estimation of camera internal parameters 

To formulate a MW camera, extrinsic and internal parameters must be known or estimated. Extrinsic 

parameters of RW camera location and orientation are determined by on-site measurements. Internal 

parameters are required to match the RW image projection to a MW pinhole camera. A method is 

presented to experimentally estimate the internal parameters of a RW LWIR camera for correction 

of raw images to a rectilinear pinhole projection. The method requires known parameters of physical 
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FPA size (𝑑𝐹𝑃𝐴, mm) and image resolution (𝑛𝑝𝑥, pixels) which are obtained from instrument 

specifications.  

Camera internals are determined using a 0.5 m x 0.5 m polished steel plate (ε ≈ 0.02) populated by 

squares of masking tape (ε ≈ 0.95) to produce a planar calibration grid of 8 x 7 cells each 0.05 m x 

0.05 m (Appendix A). This configuration allows a grid cell corner to be identified as (𝑋𝑜, 𝑌𝑜, 𝑍𝑜) in 

camera (𝑥, 𝑦) coordinates (Figure 2-4). When placed outside on a clear or totally overcast day, the 

grid pattern can be observed in the LWIR due to the emissivity contrast between steel and masking 

tape. Images are taken until the grid has been captured by all parts of the LWIR camera IP at different 

rotations (~ 25 images per camera). Captured images are processed with the Matlab camera 

calibration toolbox (Bouguet, 2008) to map each grid cell corner, (𝑋𝑜, 𝑌𝑜, 𝑍𝑜) to (𝑥, 𝑦) coordinates. 

Estimated camera extrinsic and internal parameters are used to transform the image using the Matlab 

toolbox. Grid corner points are again detected in this transformed image and compared to points 

projected onto the IP by the estimated extrinsic and internal parameters. This is an iterative process 

that stops when the error between detected and projected points is minimised in the least squares 

sense. The internal parameters applied to achieve this “best fit” between detected and projected points 

are assigned as the camera internal parameters enabling it to be treated as a pinhole camera. 

The specified FOV (Section 2.2.2) decreases when images are transformed to pinhole projections 

(Table 2-1). The FOV is determined by obtaining the focal length (𝐹) from the calibrated pixel 

scaling factor (𝑠) and the known FPA size (𝑑) in the image 𝑥 or 𝑦 coordinate directions with known 

FPA resolution (𝑛𝑝𝑥) in the image 𝑥 or 𝑦 coordinate directions: 

𝐹 = 𝑠(𝑑𝐹𝑃𝐴 𝑛𝑝𝑥⁄ ) Eqn. 2.4 

which is related to the camera FOV (radians) in the image 𝑥 or 𝑦 coordinate direction by: 

𝐹𝑂 = 2arctan (
𝑑𝐹𝑃𝐴
2𝐹

) Eqn. 2.5 

The derived internal parameters are used to re-map each pixel from each RW image using the nearest 

neighbour technique. 

Table 2-1. Field of view of undistorted pinhole camera equivalent LWIR cameras used in the 

study. See text for methods. See Figure 2-2 for camera locations. 

Camera ID Undistorted FOV 

Horizontal (°) Vertical (°) 

𝐂𝐧𝐨𝐫𝐭𝐡 41.4 31.6 

𝐂𝐬𝐨𝐮𝐭𝐡 40.5 30.9 

2.2.4.2 Reprojection error 

Assuming internal parameters have been accurately accounted for (Section 2.2.4.1), any 

misalignment between RW and MW camera perspectives depends on the prescribed MW camera 

extrinsic parameters of (β, φ, ω) rotation (𝑅) and (𝑋, 𝑌, 𝑍) translation (𝑡) shown in Figure 2-4. These 
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parameters can be determined from RW measurements. An uncertainty in these measurements 

translates as an error in the MW camera perspective. A misalignment error based on estimates of 

uncertainty associated with on-site measurement of camera extrinsic parameters is calculated in root 

mean square error (RMSE) terms. Firstly, the extrinsic parameters for camera Csouth (Figure 2-2) 

measured on site are defined as “aligned” parameters. It is assumed that measurements of camera 

location (performed using a tape-measure) have an estimated measurement uncertainty of 0.1 m for 

each location axis. (β, φ) are estimated from azimuth and zenith angle measurements (θ, ϕ) taken 

using a compass and protractor, respectively. Cameras are installed with no intentional rotation 

around the camera axis (ω). Each rotation has an assumed uncertainty of 1o. To quantify the impact 

of this assumed 𝑅 and t measurement uncertainty, all possible permutations of these rotations and 

translations are determined at resolution of Δo = 0.5 (e.g. [β − 1o] → [β + 1o], Δo = 0.5) and Δm = 

0.05 (e.g. [𝑋 − 0.1 m] → [𝑋 + 0.1 m], Δm = 0.05). For each permutation, all roof vertices of the 

DSM (𝑋, 𝑌, 𝑍) are updated with new MW coordinates (𝑋′, 𝑌′, 𝑍′) by rotating and translating each 

DSM roof vertex around the camera origin 𝑂  (Figure 2-4) based on the permutation-specific (𝑅, 𝑡) 

values. The Euclidean distance 𝑑 between the original and updated vertices, where: 

𝑑 = √(𝑋′ − 𝑋)2 + (𝑌′ − 𝑌)2 + (𝑍′ − 𝑍)2 Eqn. 2.6 

is used to quantify the misalignment RMSE. Only roof vertices are analysed as occluded surfaces 

cannot be tracked from the camera perspective. With this degree of uncertainty, the maximum RMSE 

between all roof vertices within the camera FOV is 0.43 m. A final adjustment of simulated (𝑅, 𝑡) 

extrinsic parameters is needed as this error is significant. This is challenging given that (𝑅, 𝑡) combine 

to give a high number of degrees of freedom. Adjustment is done using the experimentally derived 

(𝑅, 𝑡) parameters applied to a Blender pinhole camera perspective of the DSM. A RW camera image 

corrected to pinhole camera projection (Section 2.2.4.1) is made semi-transparent and then draped 

over the Blender camera FOV. The camera is then moved interactively around the DSM allowing 

(𝑅, 𝑡) to be manually adjusted as a supervised final alignment. A new alignment uncertainty when 

extrinsic parameters are manually adjusted is assumed < 0.1o for each rotation and < 0.05 m for each 

location parameter (RMSE < 0.06 m). This method yields good alignment results when comparing 

the projected geometry for RW (Figure 2-5a, e) and MW (e.g. Figure 2-5b, c) imagery, which is 

further evaluated using high resolution digital camera imagery (Figure 2-6).



 

 

Figure 2-5. Observations, classification and extrapolation of results for Optris PI longwave infrared (LWIR) camera (a – d) Csouth and (e – h) Cnorth at COSMO 

test site (Figure 2-2, 2nd August 2014 10:00 local standard time). (a, e) “Real world” (RW) brightness temperature (Tb) images; (b, f) classification of per-

pixel surface orientation using Blender “model world” (MW) camera view of the digital surface model (DSM) containing surface orientation information. 

Surface information is coded as per-class RGB textures projected onto a Blender camera for per-pixel identification of surface orientation. RGB values in 

the image not associated with an RGB texture class see more than one class and are classified as mixed pixels (black); (c, g) classification of per-pixel surface 

shadowing derived by DART shortwave scattering simulation and camera view model shown as shortwave bidirectional reflectance factor (BRF; Schaepman-

Strub et al., 2006), dark pixels (BRF = 0) indicate no first order scattering from surface to camera; (d, h) simulated Tb thermographs: Tb observations 

extrapolated to a MW three-dimensional distribution based on surface classes (shown in b, c, f, g) reprojected onto a MW camera image plane simulated in 

DART, simulating RW camera observations (a, e). The hollow cubes have more material around block edges, and increased heat storage, potentially 

explaining warm edges in (a, e).
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2.2.4.3 Classification of camera images 

The classified MW surface (Section 2.2.3.2) is projected onto a MW camera IP to facilitate RW 

image classification. MW cameras are created using Blender and DART to simulate the RW camera 

per-pixel perspective of orientation (e.g. Figure 2-5b) and shadowing (e.g. Figure 2-5c) attributes, 

respectively. 

The 3D rendering capabilities of Blender are used to classify images by surface orientation. All 

triangle faces of the DSM within an orientation class 𝑖 ( 𝑖, Section 2.2.3.2) are assigned a colour with 

a specific RGB value. The DSM is then projected onto each MW camera IP to produce images with 

per-pixel RGB values related to each orientation class (Figure 2-5b, f) which enables per-pixel 

surface classification as 𝑖(𝑥, 𝑦). The instantaneous field of view (IFOV) of some pixels within these 

images contain more than one surface class. This effect translates as pixels without a RGB value 

associated with a single class. Pixels with this characteristic are classified as “mixed”. The radiometer 

boom within Csouth observations (Figure 2-5a) is manually masked. Mixed and masked pixels are 

not included as part of any surface class. 

Sunlit and shaded pixels for each RW image are classified using the 3D distribution of sunlit and 

shaded surfaces from the DART simulation of direct downwelling SW radiation (Section 2.2.3.2). 

DART camera view modelling enables the 3D distribution of sunlit and shaded surfaces to be 

projected onto the MW camera perspective (Figure 2-5c, g). First order scattering of 𝐸𝑆𝑊(𝛺, θ, 𝜙) 

from a surface is considered during the image classification, with DSM triangles being assigned as 

Lambertian reflectors in DART. Scattering from the surface occurs isotropically with exitance 𝑀𝑆𝑊
↑  

(W m-2): 

𝑀𝑆𝑊
↑ = ∫ 𝐸𝑆𝑊(𝛺, 𝜃, 𝜙) ⋅ 𝑐𝑜𝑠𝜃 ⋅ 𝑑𝛺

 

2𝜋

. Eqn. 2.7 

Due to first order scattering, any pixels of the DART MW camera with at-sensor radiance > 0 W m-

2 sr-1 originates from a sunlit voxel (𝑀𝑆𝑊
↑  > 0 W m-2) intersected by a sunlit portion of the DSM. The 

IFOV of pixel (𝑥, 𝑦) with at-sensor radiance > 0 W m-2 sr-1 is therefore classified as observing a sunlit 

surface (e.g. Figure 2-5b). Isolated pixels (i.e. no adjacent pixels of the same class) are reclassified 

as “mixed” as it is assumed there is insufficient spatial representation of the surface class from one 

pixel. The DART modelling of shadow distributions is evaluated in the RW using a Panasonic DMC-

TZ31 digital camera image taken during clear sky daytime conditions (Figure 2-6a). The digital 

camera is assumed to exhibit pinhole camera characteristics. Shadow distributions across the image 

are then classified using a DART MW camera using manufacturer derived internal camera 

parameters. The illuminated surface geometry and distribution of shadow patterns visible in the MW 

camera image (Figure 2-6b) agree with the digital camera image (Figure 2-6a). 
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Figure 2-6. Images of COSMO test site taken at 15:25 local standard time on 26th September 

2014 with approximate Cnorth perspective (Figure 2-2) from (a) a “real world” (RW) digital 

camera and (b) simulated by a “model world” (MW) camera in the shortwave using the 

Discrete Anisotropic Radiative Transfer (DART) model to compare the performance of DART 

when 1) simulating RW camera perspectives 2) resolving shadow patterns at high spatial 

resolution (0.04 m) across a canopy surface. Greyscale intensity (b) is used for qualitative 

indication of shaded (black) and sunlit (grey → white) surfaces. Comparison (c) shown as RW 

– MW greyscale intensity difference. 

2.3 Longwave radiation flux extrapolated to 3D distribution 

Data from classified images (Section 2.2.4.3) are used with the classified MW surface (Section 

2.2.3.2) to produce 𝑀𝐿𝑊
3𝐷  at high spatial resolution. Pixels classified as class 𝑖(𝑥, 𝑦) within each MW 

camera image are associated with observations from the RW LWIR camera to obtain classified RW 

𝑀𝐿𝑊
  𝑚(𝑥, 𝑦) in the form 𝑀𝐿𝑊,𝑖

  𝑚(𝑥, 𝑦). The mixed and masked pixels (Figure 2-5b, f) are not 

considered. All pixels for a given class from all cameras are aggregated to a mean value �̃�𝐿𝑊,𝑖
  𝑚. 

Voxels of class 𝑖 are assigned 𝑀𝐿𝑊,𝑖
  𝑚 to resolve per-voxel 𝑀𝐿𝑊, shown in Figure 2-7 as brightness 

temperatures. This product constitutes 𝑀𝐿𝑊
3𝐷  for a given time step. A voxel may be intersected by two 

or more triangles with faces of different class, which can occur at the corner of a building (Figure 

2-7). In this case, the mean of �̃�𝐿𝑊,𝑖
  𝑚 for all classes involved is calculated for these voxels. This 

causes the unique brightness temperature values at intersecting facets with different orientation and 

temperature (Figure 2-7). 

The view angle configuration of the RW cameras (Figure 2-2) and the nature of allocatable surface 

classes means the classes assigned in 3D space  𝑥𝑖
𝑆(𝛥𝑋, 𝛥𝑌, 𝛥𝑍) are always observed by a camera 

for any given time step. The spatial form of 𝑀𝐿𝑊
3𝐷  is inherently linked to the DSM (Figure 2-3) 

meaning the methodology is applicable to complex geometry and limited only by the voxel resolution 

and DSM level of detail. 
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Figure 2-7. Per-voxel brightness temperature (VxTb
S) extrapolated from observations for one 

time-step (2nd August 2014 10:00 local time, (same as Figure 2-5) for an arbitrary 8 m x 8 m 

subset of the “model world” (MW) domain visualized as a three-dimensional point cloud, with 

each point at the centroid of a voxel. VxTb
S(𝛥𝑋, 𝛥𝑌, 𝛥𝑍) resolved at 𝛥𝑋 = 𝛥𝑌 = 𝛥𝑍 = 0.04 m 

spatial resolution. 

2.4 Results and discussion 

The methodology is applied using observations referenced at local time for 2nd August 2014 (day of 

year 214). This is a mostly cloud-free day following an extended dry period of cloudy and part-

cloudy days. The short time period is chosen to ensure the high temporal resolution of observations 

is fully applied and resolved. 

2.4.1 Image classification 

The classification methodology enables quantitative identification of the surface types seen by each 

camera on a per-pixel level. Figure 2-8 summarises the fraction of pixels assigned to each class within 

each camera image constrained by the intrinsic viewing geometry of cameras and sun-surface 

geometry. Differences in the inter-camera pixel fractions assigned to each class can be explained by 

the location and orientation of each camera. Csouth views north and east facing walls and Cnorth 

views south and west facing walls. Both cameras view roof and ground. Cnorth views the higher 

fraction of ground and roof surfaces (53.80%, 10327 pixels) due to the lower camera zenith angle 

(Figure 2-2). Camera Csouth views a higher fraction of vertical surfaces (37.44%, 7190 pixels). 

Mixed pixels make up 29.12% (Csouth) and 20.11% (Cnorth) of the images. Mixed pixels are 

identified during image classification of surface geometry (e.g. Figure 2-5b) and if any classified 
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pixels are isolated (Section 2.2.4.3). Csouth imagery contains 528 (2.75%) masked radiometer boom 

pixels and more mixed pixels than Cnorth. This is explained by its higher zenith angle and therefore 

longer average path length. Surfaces further away from the camera are more likely to be mixed within 

each pixel IFOV. 

When a vertical surface first becomes insolated, the incident radiation is low as the angle of incidence 

is near parallel with the surface. In the MW, this is associated with a low density of DART 

illumination rays (Section 2.2.3.2) incident on these surfaces which introduces erroneous patterns in 

surface insolation status. Until the density of rays is sufficient across the MW surface, some pixels 

may be isolated from other pixels of the same insolation class. This explains the observed temporal 

variability in mixed pixels that coincides with walls coming into, and out of, shade. It could be 

corrected by increasing the surface density of illumination rays in the DART SW simulations 

(Section 2.2.3.2) at the expense of computation time. With the given MW resolution, the effect occurs 

twice for both cameras around 10:00 and 13:00. Each period has a ~10 min duration that increases 

mixed pixels across each image by up to 9% (Figure 2-8). Afternoon periods when all non-mixed 

pixels are intermittently classified as shaded are caused by short periods of overcast conditions based 

on direct incoming SW radiation (Figure 2-9a) measurements taken at the COSMO test site using a 

MS-56 Pyrheliometer (EKO Instruments). 

 

Figure 2-8. Fraction 𝑓 of all pixels in a camera image assigned to surface class 𝑖 for cameras 

Csouth and Cnorth for day of year 214 at local standard time. Resolution of classified images 

is 1 min. Short periods of daytime shadow due to overcast periods determined from [ESW,dir↓ 

(COSMO)] observations (Figure 2-9a). Mixed pixels (Section 2.2.4.3) contain more than one 

surface class around building edges or are isolated pixels for oblique sun angles. 
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2.4.2 Inter-camera comparison 

𝑀𝐿𝑊
  𝑚 agreement between instruments using manufacturer derived calibration coefficients (Section 

2.2.2) is evaluated using measurements taken during the study day. Given the camera fields of view 

did not overlap, contact thermocouples were installed to give reference measurements enabling 

comparison of the camera calibrations. Unfortunately, instrumentation issues resulted in complete 

data loss from the thermocouples. With the exception of variation in surface weathering effects (e.g. 

Figure 2-2c), roof facets have a highly uniform radiative environment across the whole COSMO test 

site and offer the best available comparison to evaluate camera agreement (Figure 2-9). Camera 

heights and zenith angles are similar (Section 2.2.1) with 19.86 % and 22.26 % of image pixels 

classified as roofs for Csouth and Cnorth, respectively (Figure 2-8). Results show a systematic 

difference (slope 1.07, intercept -22.01 K) between observations of the roof pixels by the two cameras 

(Figure 2-9). The camera calibration sensitivity to camera body temperature in an outdoor setting is 

likely the primary contributor to the instrument uncertainty seen with the setup at COSMO (2 K). 

This translates into systematic differences in the observations and a hysteresis effect (Figure 2-9). 

Potentially rapid and uneven changes in temperature across each camera body cannot be fully 

accounted for by the camera calibration routine (Section 2.2.2). Other contributing factors, which 

cannot be easily quantified at this observational scale using the classification approach adopted, 

include differences in roof emissivity from surface weathering effects and anisotropy in surface 

emissivity (Nakayoshi, Kanda and de Dear, 2015). To reduce the impact of any systematic sensor 

disagreement on the extrapolated 𝑀𝐿𝑊
3𝐷  product, Cnorth is corrected to Csouth by linear regression 

using observations of the roof pixels from each camera (Figure 2-9). This approach is considered 

reasonable within the scope of the study as inter- and intra-facet variability is retained, and sensor 

specific biases are minimised. 
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Figure 2-9. Inter-camera comparison of the mean broadband longwave radiation derived from 

roof pixels within the FOV of both cameras shown as (a) brightness temperatures (Tbroof
cam) 

for Csouth (black) and Cnorth (red) surfaces with observations at 1 min resolution. Direct 

incoming shortwave radiation ESW,dir
↓ (COSMO)] measured on site using MS-56 

Pyrheliometer (EKO Instruments) at 1 min resolution. Japan Meteorological Agency (JMA) 

air temperature measurements [Ta (JMA)] measured at Kumagaya AMeDAS (Automated 

Meteorological Data Acquisition System) station at 1 min resolution. (b) Relation between 

Tbroof
cam (Csouth) and Tbroof

cam (Cnorth) with linear regression slope (m) and intercept (b) 

coefficients, used to correct the observations used throughout all results. In this figure 

observations are shown uncorrected. 

2.4.3 Classified brightness temperature observations 

Variability of inter-class and intra-class observations is shown in Figure 2-10 on a per-pixel level for 

all cameras throughout the study date (mixed and masked pixels are excluded). As expected, the 

variability of the pre-classified pixels for all cameras (Figure 2-10a) is greatest during the daytime, 

with hourly differences between the 5th and 95th percentiles of pixel distributions reaching 18.4 K 

between 12:00 – 13:00. With increasing level of spatial detail in pixel classification accounting for 

insolation status (Figure 2-10b), orientation (Figure 2-10c) and both combined (Figure 2-10d), the 

inter-class ranges of 𝑇 
  𝑚 typically decrease. This suggests the class related differences are helpful 

in explaining some of the 𝑇 
  𝑚 variability. Brightness temperatures are most variable for the ground 

pixels (Figure 2-10c), with shaded or sunlit ground surface pixel distributions (Figure 2-10d) both 

being large throughout daytime. Hourly differences between 5th and 95th percentiles reach 15.0 K 

(12.2 K) for all shaded (sunlit) ground surface pixels between 12:00 – 13:00 (11:00 – 12:00). The 

shadowing history is associated with this variability, with a thermal hysteresis effect due to the 

thermal inertia of concrete. For example, between 14:00 – 15:00, the 25th percentile of sunlit pixels 

have similar values to the 75th percentile of shaded pixels. The greater sky view factor of roofs 

compared to all other facets influences inter-class variability, with median brightness temperature of 
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roof pixels up to 2 K lower than all other classes between 00:00 – 05:00 (sunrise 04:55). Similarly, 

daytime roof brightness temperatures are highest (median = 330.8 K, 13:00 – 14:00, Figure 2-10c) 

and for this time interval 15 K greater than north wall facet temperatures. Sunlit pixels are cooler 

than shaded at sunrise (Figure 2-10b) and highlights a potential caveat when only using sunlit and 

shaded representations of data. Inclusion of the surface orientation reveals that these are mainly roof 

pixels which, being cooler throughout the night, take time in the morning to heat to temperatures 

above those of the within-canopy surfaces.  

2.4.4 Extrapolated longwave radiation flux 

The parameterisation of 𝑀𝐿𝑊
3𝐷  is evaluated by modelling its upwelling LWIR radiation projected onto 

the IP of MW cameras. The per-pixel MW camera perspective is 𝑀𝐿𝑊
  𝑚( W, 𝑥, 𝑦) (i.e. Figure 2-5d, 

h). 𝑀𝐿𝑊
  𝑚(RW) is extrapolated to 𝑀𝐿𝑊

3𝐷  (Section 2.3) with per-pixel differences calculated 

[𝑀𝐿𝑊
  𝑚(RW, 𝑥, 𝑦) - 𝑀𝐿𝑊

  𝑚( W, 𝑥, 𝑦)] as an evaluation step. Figure 2-11 shows brightness 

temperature differences [i.e. 𝑇 
  𝑚(RW, 𝑥, 𝑦) - 𝑇 

  𝑚( W, 𝑥, 𝑦)] at six times during the case study 

day. Nighttime period per-pixel RW - MW brightness temperature differences never exceed ± 1 K 

(not shown) due to the low intra-class variability (Figure 2-10d). Daytime per-pixel RW - MW 

differences are evident and indicate some RW processes remain unresolved by 𝑀𝐿𝑊
3𝐷 . Areas within 

the imagery where 𝑇 
  𝑚( W) underestimates 𝑇 

  𝑚(RW) (red) or where 𝑇 
  𝑚( W) overestimates 

𝑇 
  𝑚(RW) (blue) include edges of building blocks, edges of shadows and locations across all ground 

surfaces. 𝑇 
  𝑚( W) typically underestimates 𝑇 

  𝑚(RW) for top-of-wall pixels. Absolute 

maximum differences between 𝑇 
  𝑚(RW) and 𝑇 

  𝑚( W) can reach 15 K for individual pixels 

within both Csouth and Cnorth imagery, with 1st and 99th percentiles -4.34 K and 4.97 K, respectively. 

There are artefacts in MW camera imagery around all roof edges that face away from the cameras 

(e.g. Figure 2-5d, h). These are caused by the resolution of 𝑀𝐿𝑊
3𝐷  and DART discretisation of LWIR 

surface exitance and explain some of the large absolute differences around roof edge pixels. The 

camera point spread function may impact how well the intersection between facets of contrasting 

temperatures are resolved but was not available from the manufacturer for further investigation. This 

effect coupled with any slight misalignment between RW and MW cameras (Section 2.2.4.2) may 

compound to explain high 𝑇 
  𝑚(RW) - 𝑇 

  𝑚( W) differences near facet edges.  

Surface energy exchange processes may further contribute to 𝑇 
  𝑚(RW) - 𝑇 

  𝑚( W) differences 

near facet edges. The building blocks are hollow causing different thermal admittance at their edges. 

Further, the edges of buildings may be exposed to higher wind speeds which modify heat transfer 

and therefore surface temperature. In addition, roof edges on the sunlit side of buildings have 

distinctly high observed brightness temperatures (e.g. Figure 2-5a, e) associated with the different 

sky view factors. Maximum brightness temperatures for mixed pixels at these building edges are up 

to 7.4 K (13.3 K) higher than the median of intersecting roof (wall) facets at 13:35. This may be  
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Figure 2-10. Intra-class variability of camera brightness temperatures (Tb
cam) on 2nd August 

2014. Each boxplot is all pixels assigned to a class (colour) from both cameras (images 1 min 

samples) during 1 h, with 5th and 95th percentiles (whiskers), interquartile range (box) and 

median (horizontal line) for pixels classified by: (a) all, (b) surface insolation status, (c) surface 

orientation, and (d) orientation and insolation status. 

explained by high solar irradiance (high sky view factor) and absorption of these areas throughout 

the day.  

Closer to the ground, wall view factors are larger and ground surface reflection captured by 

𝑇 
  𝑚(RW) is more important. Surfaces in these regions receive radiation from regions with cooler 
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surface temperatures that have been in shade for prolonged periods (e.g. Figure 2-11e), and from 

regions with warmer surface temperatures that have been sunlit for prolonged periods (e.g. Figure 

2-11i). The large distribution of brightness temperatures for observed ground pixels (Figure 2-10c, 

d) is not represented in 𝑀𝐿𝑊
3𝐷  which only contains information on mean values of 𝑀𝐿𝑊,𝑖

  𝑚 (Section 2.3). 

The errors associated with this assumption are seen in Figure 2-11 mainly for shaded ground pixels 

and ground pixels at the edges of buildings. A shadow hysteresis is evident at multiple time steps 

(e.g. Figure 2-11d centre block, Figure 2-11i front centre block) as brightness temperatures of 

surfaces coming out of (into) shade are overestimated (underestimated) by 𝑀𝐿𝑊
3𝐷 . 

 

Figure 2-11. Brightness temperature (Tb) differences between LWIR camera observations 

from “real world” (RW) [Tb
cam(RW)] and “model world” (MW) for six times (see labels on 

sub-plots) on 2nd August 2014, for camera (a – f) Csouth and (g – l) Cnorth. Tb
cam(MW) is simulated 

by DART camera view modelling using predetermined 3D distribution of longwave flux 

(MLW
3D). (a – f) Radiometer boom masked (grey) from results. Boxplot (inside legend) for all 

non-masked pixels within all timesteps throughout the day (15 min resolution) with 1st and 

99th percentiles (whiskers), interquartile range (box) and median (vertical line). 
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The extent to which these unresolved sub-facet processes influence the directional brightness 

temperature aggregated across each IP of 𝑇 
  𝑚( W) is subsequently investigated. The aggregated 

at-sensor brightness temperature (�̃� 
  𝑚) for 𝑇 

  𝑚(RW) and 𝑇 
  𝑚( W) view is determined at 15 

min resolution for the whole day (Figure 2-12). �̃� 
  𝑚 is the mean of all non-masked pixels in a 

camera IP. This analysis is similar to results demonstrated for existing sensor view modelling 

approaches (e.g. Soux, Voogt and Oke, 2004). In this paper, �̃� 
  𝑚(RW) - �̃� 

  𝑚( W) differences 

show a diurnal pattern (Figure 2-12). When 𝑀𝐿𝑊
3𝐷  is prescribed using insolation and orientation (solid 

lines, Figure 2-12), RW - MW differences reach ±0.65 K during daytime at 12:45 for Cnorth, and are 

within 0.40 K during nighttime. Prescribing 𝑀𝐿𝑊
3𝐷  based only on orientation (dashed lines, Figure 

2-12; shown as inter-class distributions at pixel level in Figure 2-10c) leads to good agreement at 

night when inter-class variability is small and shadows do not occur. During daytime, however, not 

accounting for shadow patterns means �̃� 
  𝑚( W) is up to 0.90 K warmer (cooler) than �̃� 

  𝑚(RW) 

for Csouth (Cnorth) at 12:45. 

 

Figure 2-12. Comparison of “real world” (RW) and “model world” (MW) aggregated at-sensor 

broadband longwave radiation observations (as brightness temperatures) for cameras Csouth 

(black) and Cnorth (red) 2nd August 2014 local standard time. MW observations simulated by 

DART camera view modelling using predetermined 3D distribution of longwave flux (MLW
3D) 

at the COSMO test site. MLW
3D prescribed using shadowing and orientation classes (solid lines) 

and orientation classes only (dashed lines). 
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2.4.5 Normalised effective anisotropy 

Apparent brightness temperatures viewed from the COSMO surface over multiple discrete directions 

(375 directions over the hemisphere) are simulated using DART and 𝑀𝐿𝑊
3𝐷 . The apparent brightness 

temperature for a direction is the parallel projection of 𝑀𝐿𝑊
3𝐷  onto a plane that is perpendicular to the 

view direction, aggregated to a single directional brightness temperature value. Here a 29.5 m x 29.5 

m sample of 𝑀𝐿𝑊
3𝐷  is analysed. The normalized effective anisotropy (Figure 2-13) is defined as the 

apparent brightness temperature from a nadir view minus the apparent brightness temperature at a 

given direction. Modelled values of normalised effective anisotropy range from -6.10 K (12:30) to 

3.41 K (08:00) on the case study day, with a maximum difference between any direction of 6.18 K 

(13:00) and 3.55 K for view zenith angles up to 30° off-nadir (10:00). For zenith angles < 10° (i.e. 

representative of Landsat swath) the normalised anisotropy is typically within ±0.5 K. Lowest 

directional brightness temperatures occur at high zenith angles and at azimuth angles near the sun 

position. This is in agreement with prior results (Voogt, 2008). Around midday and early afternoon 

(e.g. 12:00, 14:00), view angles with high zenith angles (𝜙 > 40o) near each cardinal azimuth angle 

underestimate nadir view brightness temperature by up to 6 K. This is likely caused by the cooler 

walls occluding the warm ground surfaces at these view angles. A “hot spot” around the sun angle is 

prominent during morning periods (08:00, 10:00) where brightness temperature differences between 

currently insolated facets and shaded facets is greatest. Inter-facet temperature differences are lower 

during afternoon, reducing the magnitude of any hot spot (14:00, 16:00). These examples highlight 

a critical application of the modelling approach presented to any thermal RS study in a real urban 

setting. 



Chapter 2  33 

 

Figure 2-13. Simulated brightness temperatures for 375 discrete directions using 

predetermined 3D distribution of longwave flux (MLW
3D) for the COSMO test site for 6 times 

on 2nd August 2014. Results normalized by the simulated brightness temperature at nadir (ϕ = 

0°, given in sub-headings) and shown with 1 K contours. Data and sun angle (yellow dot) are 

oriented with true north (𝜃 = 0°), with COSMO building orientation displayed (centre grey 

square, 06:00). 

2.5 Conclusions 

The exitant longwave radiation from a simplified urban surface (COSMO outdoor scale model) is 

studied based on ground-based LWIR camera observations with detailed radiative transfer and 

camera view modelling. Ground-based LWIR camera (𝑀𝐿𝑊
  𝑚) observations from the COSMO test 

site over 24 h illustrate spatial and temporal patterns in upwelling LWIR radiation.  

Hourly per-pixel camera brightness temperatures are low at night but vary more widely during the 

day (5th – 95th percentile differences reach 313.05 – 331.45 K between 12:00 – 13:00). As shadows 

cast by buildings and facet orientations likely explain most of this observed variability, these are 

often used to parameterise kinematic and radiometric temperature variability across the complete 

urban surface. Here, radiative transfer and camera view modelling is undertaken to identify the 

sunlit/shaded dynamics of camera pixels. The nature of inter-class and intra-class 𝑀𝐿𝑊
  𝑚 distributions 

derived from the modelling results suggest that manual digitization or frequency distribution analysis 

may be problematic, particularly during daytime when inter-class distributions frequently overlap. 

This effect is most prominent for distributions of sunlit and shaded ground pixels.  
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Despite the simple surface geometry of the study site, image classification by camera view modelling 

demands small margins of error for camera parameters such as image distortion (Section 2.2.4.1) and 

the physical positioning of cameras (Section 2.2.4.2) for the perspective of 𝑀𝐿𝑊
  𝑚 to be modelled 

accurately. This finding can be attributed to the short surface-sensor path lengths of the observational 

setup. Furthermore, sun-surface geometry and the timekeeping of observations must be known to a 

high degree of accuracy. Previous studies have not demonstrated direct comparison of observed and 

simulated results in such detail. 

Methods in this paper overcome sensor view modelling challenges by using the DART and Blender 

camera view models. A comparison between a captured and modelled high resolution digital camera 

image (Section 2.2.4.3) demonstrates the potential accuracy and resolution of the methods. 

Evaluating the ability of classified 𝑀𝐿𝑊
  𝑚 observations to explain the variability of broadband 

longwave radiation exitant across the COSMO canopy surface uses the 3D distribution of exitant 

LWIR radiation (𝑀𝐿𝑊
3𝐷 ). It is concluded that 𝑀𝐿𝑊

3𝐷  accurately resolves the surface geometry of the test 

site when the parameterisation is at high temporal (15 min) and spatial (0.04 m) resolution, where 

𝑀𝐿𝑊
3𝐷  is evaluated for a given time step by projecting prescribed values of exitant broadband longwave 

radiation onto simulated “model world” (MW) cameras with perspectives matching that of the “real 

world” (RW) 𝑀𝐿𝑊
  𝑚. Pixel level comparison between RW and MW camera imagery identifies areas 

where the prescribed 𝑀𝐿𝑊
3𝐷  does not resolve 𝑀𝐿𝑊

  𝑚 variability; viz, building edges, sky view factor 

variability of vertical surfaces, and ground areas with a distinct shadow hysteresis. By aggregating 

all pixels in each image to a single brightness temperature for each MW and RW camera, these 

features average out to RW – MW differences within 0.65 K throughout a 24 h period (1st – 99th per-

pixel differences of -4.34 – 4.97 K). Understanding unresolved sub-facet processes may be required 

for parameterisation of 𝑀𝐿𝑊
  𝑚 in more complex urban environments. Further classes of absolute 

irradiance values and sky view factor have potential to be applied using DART. 

𝑀𝐿𝑊
3𝐷  coupled with DART is shown to be useful for assessment of urban thermal anisotropy (Section 

2.4.5). Modelled anisotropy results for the study day show large differences between nadir and off-

nadir apparent brightness temperatures which in general is in good agreement with prior studies. 

Modelled anisotropy is simplified in that it does not consider irregular building geometry and 

materials found in real cities. The regularity of the COSMO geometry may introduce an 

overestimation of modelled anisotropy compared to real world cities (Krayenhoff and Voogt, 2016). 

It is concluded that shadow histories classes and further quantification of surface irradiance fluxes 

using DART radiative transfer functionality would be useful to address in future studies. Depending 

on the availability of spatial databases, building geometry and material properties can also be 

resolved at levels of detail representative of complex urban environments. Material properties may 

be challenging to obtain due to a general lack of urban materials spatial databases. If the surface form 
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is a predominant factor in effective thermal anisotropy, simplified assumptions of surface material 

may be sufficient when classifying 𝑀𝐿𝑊
  𝑚 and parameterising 𝑀𝐿𝑊

3𝐷  for complex urban environments.  

Applying the methods presented in this paper to real cities may require a different approach to sensor 

siting. The current study uses a mast as a sensor platform that is ~4 times the mean building height 

(Figure 2-2). This enables an observational source area that is representative of the domain and that 

resolves sub-facet processes. A similar source area could be achieved in urban areas with compact 

low-rise and open high-rise morphology, with cameras installed on top of the taller high-rise 

buildings. 

Overall, this work provides a significant improvement to interpreting ground-based RS observations. 

Applied to real city settings, this has the potential to provide essential improvements to evaluating 

errors associated with operationally retrieved urban surface temperatures from satellite RS platforms 

and the parameterisation of longwave radiation exchanges in urban surface schemes. 
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List of symbols and acronyms [units] 

β, φ, ω Euler angles describing a sequence of rotations within the (𝑥 , 𝑦 , 𝑧 ) coordinate frame 

BOA Bottom of atmosphere 

BRF Bidirectional reflectance factor 

C Non-specific camera 

COSMO COmprehensive urban Scale MOdel 

𝑑𝐹𝑃𝐴 Camera focal plane array size [mm] 

DART Discrete Anisotropic Radiative Transfer model (Gastellu-Etchegorry, Grau and Lauret, 2012)  

DSM Digital surface model 

ε Emissivity 

𝐸𝐿𝑊
↓  Broadband longwave radiation flux (irradiance) downward from sky [W m-2] 

𝐸𝑆𝑊
↓  Broadband shortwave radiation flux (irradiance) downward from sky [W m-2] 

𝐸𝑆𝑊,𝑑𝑖𝑟
↓  Broadband direct shortwave radiation flux (irradiance) downward from sky [W m-2] 

𝐹 Camera focal length [mm] 

𝑓 Fraction 

FOV Field of view 

FPA Focal plane array 

𝑖 Nonspecific surface class 

IFOV Instantaneous field of view 

IP Image plane 

𝜆 Wavelength [μm]  

LW Longwave 

LWIR Longwave infrared 

𝑀𝐿𝑊 Broadband longwave radiation flux (exitance) from a surface [W m-2] 

𝑀𝐿𝑊
3𝐷  

Broadband longwave radiation flux (exitance) from discrete points of an urban surface, resolved 

in 3D [W m-2] 

𝑀𝐿𝑊
  𝑚 Camera derived broadband longwave radiation flux (exitance) [W m-2] 

𝑀𝐿𝑊
  𝑛 Non-specific broadband longwave radiation flux (exitance) from urban canopy elements [W m-2] 

𝑀𝐿𝑊
↑  Broadband longwave radiation flux (exitance) upward from ground [W m-2] 

𝑀𝐿𝑊
𝑅𝑆  Nonspecific (e.g. satellite) remote sensing derived broadband longwave radiation flux (exitance) [W m-2] 

𝑀𝑆𝑊
↑  Broadband upwelling shortwave radiation flux (exitance) upward from ground [W m-2] 

𝑀𝑆𝑊 Shortwave radiant flux (exitance) from a MW surface element [W m-2] 

MW Model world 

𝑂 Origin of model world domain coordinate frame  

𝑂  Origin of camera intrinsic coordinate frame  

𝑃 Camera principle point 

ϕ Zenith angle 

𝛹sky Sky view factor 

𝛹can Canopy view factor 

R Camera rotation parameters 

RGB Red, green, blue 

RW Real world 

𝑠 Camera pixel scaling factor 

  Triangle face of vector model 

SW Shortwave 

t Camera translation parameters 

𝜏 Transmissivity 

𝑇  Brightness temperature [K] 

𝑇 
  𝑚 Camera derived brightness temperature [K] 

TOA Top of atmosphere 

𝑇𝑠 Thermodynamic surface temperature [K] 

𝑇𝑠
3𝐷 Thermodynamic surface temperature at discrete points of an urban surface, resolved in 3D [K] 

 𝑥 Voxel (a volume element) 

 𝑥𝑆 Voxel intersected by a digital surface model element (surface voxel) 

𝑋, 𝑌, 𝑍 Model world domain coordinate frame 

𝑥, 𝑦 Camera pixel coordinate frame 

𝑥 , 𝑦 , 𝑧  Camera intrinsic coordinate frame 

𝑧  Camera principle axis 
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Chapter 3 Atmospheric and emissivity corrections for ground-based 

thermography using 3D radiative transfer modelling 

Abstract 

Methods to retrieve urban surface temperature (Ts) from remote sensing observations with sub-

building scale resolution are developed using the Discrete Anisotropic Radiative Transfer (DART, 

Gastellu-Etchegorry, Grau and Lauret, 2012) model. Corrections account for the emission and 

absorption of radiation by air between the surface and instrument (atmospheric correction), and for 

the reflected radiation from non-black-body surfaces (emissivity correction) within a single 

modelling framework. The atmospheric correction can use horizontally and vertically variable 

distributions of atmosphere properties at high resolution (< 5 m). Here it is applied with vertically 

extrapolated weather observations and MODTRAN atmosphere profiles. The emissivity correction 

resolves the reflection of longwave infrared radiation (LWIR) as a series of scattering events at high 

spatial (< 1 m) and angular (ΔΩ ≈ 0.02 sr) resolution using a heterogeneous distribution of radiation 

leaving the urban surfaces. The method is applied to a novel network of seven ground-based cameras 

measuring LWIR radiation across a dense urban area (extent: 420 m x 420 m) where detailed three-

dimensional representation of the surface and vegetation geometry is used. The multiple cameras 

have large variations in: path lengths (5th and 95th percentile of all pixel path lengths are 41.3 m and 

220.1 m), view angles, brightness temperatures and observed surface geometry. Corrected brightness 

temperatures are up to 4.5 K warmer than the uncorrected. The detailed surface geometry is shown 

to accurately register the pixel path lengths even for complex urban features such as sloped roofs. 

Simultaneous 20-days (4110 timesteps) of “near” (~15 m) and “far” (~155 m) path length 

observations are used to evaluate the atmospheric correction method. The mean absolute error is 0.39 

K and the coefficient of determination is 0.998 between the “near” and corrected “far” data. The 

emissivity correction has clear diurnal variability, particularly when a cool and shaded surface (e.g. 

north facing) is irradiated by warmer (up to 17.0 K) surfaces (e.g. south facing). Uncertainty analysis 

of the emissivity correction for common dark building materials (ε = 0.89 → 0.97) translates to 

around 3 K (1.5 K) for roof (south facing) surfaces and during daytime is within 0.1 K for cooler 

north facing surfaces. Corrected observations assuming a homogeneous radiation distribution from 

surfaces (analogous to a sky view factor correction) differ from a heterogeneous distribution by up 

to 0.25 K. The proposed correction provides more accurate Ts observations with improved 

uncertainty estimates. Potential applications include ground-truthing air- or space-borne surface 

temperatures and evaluation of urban energy balance models. 
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3.1 Introduction 

Development of sustainable cities, informed by weather and climate models, requires a clear 

understanding of how urban areas modify the surface energy balance (SEB). A key variable in the 

SEB is the surface temperature (Ts, Porson et al., 2010), which is affected by surface morphology, 

material composition and human activities. Ts observations are hence valuable for the evaluation and 

improvement of urban SEB models (Grimmond et al., 2010). While longwave infrared (LWIR) 

remote sensing (RS) from space provides surface temperature observations for this purpose at 

increasing resolutions (Chrysoulakis et al., 2018), their biased view of the full 3D surface (Voogt 

and Oke, 2003) and low temporal resolution means the complex spatio-temporal variations of Ts 

related to components of the surface energy balance are not fully captured. Ground-based LWIR 

thermography, however, allows temporally continuous observations from individual facets (e.g. roof, 

wall) and sub-facets (e.g. material, shadowing) that make up the three dimensional (3D) urban form 

(Voogt and Oke, 1997; Chapter 2). These observations are crucial for understanding uncertainties of 

satellite derived Ts and have proven valuable as inputs to urban SEB models studies (e.g. Ghent et 

al., 2010) and for model evaluation (e.g. Krayenhoff and Voogt, 2007; Pigeon et al., 2008; Harshan 

et al., 2018). To derive Ts from RS, a range of corrections are required. A LWIR camera may record 

a radiometrically calibrated brightness temperature (Tb
cam) that differs from Ts because of radiation 

emitted or attenuated by the atmosphere between the surface and the sensor (atmospheric effects). 

Emissivity effects arise from LWIR radiation reflected at the observed surface if it is not a perfect 

emitter of black-body (BB) radiation. For ground-based LWIR RS in urban areas, there are unique 

challenges associated with these corrections. Procedures to retrieve Ts from satellite sensors (e.g. 

Wan, 2014) cannot be directly applied to ground-based observations as urban geometry, materials 

and radiative exchanges are resolved at sub-building scales rather than within a mixed satellite pixel. 

Depending on the viewing geometry and sensor resolution, a similar issue affects airborne 

observations (e.g. Voogt and Grimmond, 2000; Lagouarde et al., 2010).  

There are few studies with full Ts retrieval from observations at sub-building scales in complex urban 

areas. Ground-based cameras sensitive to LWIR in the atmosphere window (~ 8 – 14 μm) can 

underestimate atmospherically corrected Ts by more than 6 K for surface-camera path lengths (zpath) 

of ~300 m in an urban setting (Meier et al., 2011). With oblique view angles in ground-based RS the 

zpath, and therefore atmospheric effects, can vary greatly. Previously, zpath has been treated as a 

constant (e.g. Yang and Li, 2009) or spatially variable (e.g. Meier et al., 2011; Hammerle et al., 

2017).  

While zpath is a primary influence on the atmospheric correction, for an emissivity correction the 

emissivities and reflected radiance across the observed surfaces are critical. Facet surface materials 

and emissivity can be highly variable (Kotthaus et al., 2014). Although urban geometry is an 

important influence on reflected radiation from the sky and canopy elements that undergo complex 
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scattering events (Harman, Best and Belcher, 2004), space-borne or airborne RS emissivity 

corrections often only consider material effects (e.g. Mitraka et al., 2012; Chrysoulakis et al., 2018). 

To account for radiation trapping within street canyons, the emissivity correction has been 

parameterised using the sky view factor (SVF) characteristic for both urban earth observation (EO) 

(Yang et al., 2015, 2016) and for ground-based LWIR RS at sub-building scale (Adderley, Christen 

and Voogt, 2015).  

Limitations to the current methods to retrieve facet Ts include the following. Meier et al.'s (2011) 

correction procedure considers only the atmospheric effect and uses a lookup table based on the 

MODTRAN radiative transfer (RT) model. Adderley et al.'s (2015) emissivity correction simplifies 

the reflected radiation contribution by assuming isothermal radiation emission relative to the SVF of 

the target surface. No previous study has accounted for both the atmospheric and emissivity 

corrections within a single framework that explicitly resolves the related RT processes for both 

flexible instrument siting and number.  

As LWIR radiation exchanges within the canopy are very complex, some anisotropic factors 

determining the irradiance across urban surfaces may be important for the description (and 

correction) of emissivity effects in RS observations. LWIR radiance of clear sky varies with zenith 

angle (Verseghy and Munro, 1989), material and shadow patterns cause variability in surface 

temperature (Voogt and Oke, 1997; Chapter 2), and materials may have anisotropic emissivity 

(Sobrino and Cuenca, 1999). Relatively little is known about the magnitude of the uncertainties 

associated with these effects. Beyond Adderley et al.'s (2015) emissivity correction procedure, 

ground-based studies that derive Ts use: (1) bulk approximations for surface emissivity and reflected 

radiation (Yang and Li, 2009); (2) nocturnal observations (e.g. Ghandehari, Emig and 

Aghamohamadnia, 2018) when radiation received from sky and buildings are more similar; or (3) 

in-situ measurements (e.g. thermocouples affixed to surfaces, e.g. Rotach et al., 2005; Offerle et al., 

2007) with very limited spatial extent and portability. Given the complexity of within-canopy 

radiation scattering, many studies avoid obtaining Ts altogether by assuming black-body (BB) 

characteristics (Voogt and Oke, 1997; Christen, Meier and Scherer, 2012). However, the emissivity 

effect magnitude can be substantial (Jiménez-Muñoz and Sobrino, 2006; Chen et al., 2016) with 

effects on spatial thermal variations (Chapter 2). Analysing brightness temperatures Tb (K) rather 

than Ts means energy balance characteristics may not be portrayed adequately. 

Here the objective is to retrieve high-quality Ts at the sub-facet scale from ground-based LWIR RS 

by applying both atmospheric and emissivity corrections within a single modelling framework. The 

developed approach is flexible, uses RT, and is applicable for any high-resolution ground-based 

thermography. The 3D radiative transfer approach used here accounts for atmospheric and emissivity 

corrections using recent enhancements to the Discrete Anisotropic Radiative Transfer (DART, 

Gastellu-Etchegorry et al., 2015) model. No other high resolution 3D sensor view and RT model 



Chapter 3  41 

(e.g. LESS, Qi et al., 2019) accounts for the atmosphere or LWIR surface emission and multiple 

scattering effects or describes temperature and optical properties of the surface and atmosphere at 

similar resolutions. This is the first study to exploit these high-resolution RT capabilities of DART. 

Through using these methods, new insights into LWIR radiation exchanges between surfaces at high 

spatial resolution (< 1 m) are obtainable. Results are also expected to be valuable for the development 

of the increasingly detailed representations of urban processes in SEB model radiation schemes 

(Hogan, 2019). 

After the theoretical background for the retrieval of Ts is introduced (Section 3.2), the methods 

developed using DART (Section 3.3.1) are outlined, separated into the atmospheric (Section 3.3.2) 

and emissivity (Section 3.3.3) corrections. The developed methods are applied for LWIR cameras in 

a dense urban canopy that is characterised at a uniquely high level of detail (LOD) (Section 3.4). The 

atmospheric correction is evaluated using observations (Section 3.5.1), while the emissivity 

correction results are analysed using a sensitivity analysis (Section 3.5.2). Alternative and future 

ways the method can be applied are discussed (Section 3.6). 

3.2 Theoretical background to the corrections 

Atmospheric correction of RS observations is undertaken to remove the effects from emission and 

absorption of radiation by the air between the sensor and target (Sobrino, Coll and Caselles, 1991). 

The spectrally dependent path radiance (Lλ
atm) and transmittance of the atmosphere (Γλ

atm) between a 

target surface and a RS instrument contribute to the at-sensor radiance. For pixel (x, y) of a LWIR 

camera, the at-camera band radiance (Lcam, W m-2 sr-1) is (Meier et al., 2011):  

where Rλ is the normalised spectral response function and Bλ(Ts) is the contribution of the assumed 

BB Planck radiance (Bλ, W m-2 sr-1 μm-1) of LW radiation exitant from the surface. 

Eqn. 3.1 assumes the target surface is a perfect emitter of black-body radiation, whereas typically the 

spectral emissivity (ελ) is less than unity with the radiance Lλ (W m-2 sr-1 μm-1) emitted by a body at 

temperature T less than the Planck BB radiance at the same temperature (Becker and Zhao-Liang Li, 

1995): 

The spectral radiance from an opaque, non-BB surface located on a horizontal plane detected by a 

theoretical LWIR camera pixel at wavelength λ (Lλ
cam(x, y), W m-2 sr-1 μm-1) is a combination of 

emitted and reflected radiation from the surface, after correction for any atmospheric effects. 

Assuming ελ is isotropic, the surface temperature can be related to Lλ
cam by: 

𝐿cam(x, y) = ∫ 𝑑λ[𝐵λ(𝑇s)(x, y) ⋅ Tλ
atm(x, y) + 𝐿λ

atm(x, y)] ⋅ 𝑅λ(x, y)

λ2

λ1

 Eqn. 3.1 

ελ =
𝐿λ(𝑇)

𝐵λ(𝑇)
 Eqn. 3.2 
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with Eλ (W m-2 μm-1) the downwelling, isotropic spectral irradiance from the sky. Rearranging Eqn. 

3.3 gives Bλ(Ts): 

which is related to Ts using the inverse of the Planck function (Bλ
-1) as: 

with c1 = 1.191042 x 109 (W m-2 sr-1 μm-1) and c2 = 1.4387770 x 104 (μm K) the first and second 

radiation constants.  

In urban areas, the 3D surface structure gives rise to LW irradiance contributions from other surfaces 

and a reduction of sky irradiance. For a given point within the urban canopy, the spectral irradiance 

(Eλ, W m-2) can be described as (Nunez, Eliasson and Lindgren, 2000): 

with Lλ
sky(Ω↓) [Lλ

can(Ω↓)] the spectral radiance (W m-2 sr-1 μm-1) that originates from the sky [canopy] 

after any multiple scattering received by the surface from solid angle dΩ (sr), with θ the angle of 

incidence to the surface normal. Lλ
can(Ω↓) varies with surface temperature and emissivity within the 

given solid angle. For wavelengths in the LWIR atmospheric window, where typically thermal RS 

instruments are sensitive to absorption, emission and scattering of LW radiation, the air within the 

canopy surfaces (i.e. between buildings) can be neglected if the path lengths are short (determined 

by canyon geometry). Lλ
sky(Ω↓) varies with wavelength, the depth of precipitable water within the 

atmosphere and the portion of the sky seen (Verseghy and Munro, 1989). Critically, both Lλ
sky and 

Lλ
can change due to any prior scattering of both diffuse and specular radiation. 

3.3 Methods 

The correction of LWIR RS observations for atmospheric (Section 3.3.2) and emissivity (Section 

3.3.3) effects are outlined and applied to a central urban area (Section 3.4). The methods are 

applicable to any ground-based or airborne sensor for atmospheric window (7 – 14 μm) radiation and 

are applied in the context of LWIR cameras. 

𝐿λ
cam(x, y) = ελ𝐵λ(𝑇s) + (1 − ελ)

1

π
𝐸λ Eqn. 3.3 

𝐵λ(𝑇s) =
𝐿λ
cam(x, y) − (1 − ελ)

1
π
𝐸λ

ελ
 Eqn. 3.4 

𝑇s = 𝐵λ
−1[𝐵λ(𝑇s)] = 𝑐2

[
 
 
 
 

λ ∙ ln

(

 
 c1

λ5
𝐿λ
cam(x, y) − (1 − ελ)

1
π𝐸λ

ελ

+ 1

)

 
 

]
 
 
 
 

⁄  Eqn. 3.5 

𝐸𝜆 = ∫ 𝐿λ
sky(Ω↓)𝑐𝑜𝑠𝜃𝑑Ω + ∫ 𝐿λ

can(Ω↓)𝑐𝑜𝑠𝜃𝑑Ω

2𝜋2𝜋

 Eqn. 3.6 
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3.3.1 DART radiative transfer and sensor view model 

The Discrete Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry, Grau and Lauret, 

2012) is used to determine Ts from LWIR camera observations. This state-of-the-art 3D RT model 

has tools to generate and import surface and atmosphere properties of landscapes, as well as to 

simulate RT processes in the shortwave (e.g. Wu et al., 2018) and longwave (e.g. Wang et al., 2018) 

IR spectrum. DART has been evaluated for simple terrain (Sobrino et al., 2011) with more recent 

updates (Grau and Gastellu-Etchegorry, 2013; Gastellu-Etchegorry et al., 2017) where the 

atmosphere RT in DART has shown good agreement with MODTRAN simulations. Using a discrete 

ordinate (DO) ray tracing approach, DART simulates 3D RT processes in both natural and urban 

landscapes. Individual rays are tracked along discrete directions within angular cones (Yin et al., 

2013; Yin, Lauret and Gastellu-Etchegorry, 2015). DART’s “forward-tracking” allows emitted 

radiation from any combination of surface, sun and atmosphere not available in other software (e.g. 

LESS, Qi et al., 2019). DART is used for a simple urban landscape in Chapter 2. For a full description 

of the DART model see Gastellu-Etchegorry et al. (2015). 

Unlike Meier et al.'s (2011) MODTRAN-based atmospheric correction approach that uses sensor-

specific lookup tables (LUT) for each pixel distance, DART’s DO and 3D ray-tracing is combined 

with its recently updated ability to describe both the atmosphere and any number of virtual sensors 

among the landscape elements. This atmosphere can describe optical and temperature properties of 

air between the surface and sensor at high horizontal and vertical resolution (< 5 m). An updated 

sensor view model first shown here accepts hemispherical to narrow field of view (FOV) radiometers 

and frame cameras. The number of sensors used does not significantly alter the computation time. 

For the current work, the updated sensor view model can view the landscape from any location and 

direction with any sensor type rather than only downward directions with orthographic (Sobrino et 

al., 2011) or frame camera (Yin, Lauret and Gastellu-Etchegorry, 2015; Chapter 2) perspectives. The 

virtual sensors can be set up to exactly reproduce “real-world” observations with any sensor view 

perspective, geometry and spectral response functions. Modelled output images for the perspective 

of these sensors include the atmospheric transmittance and emission and the surface exitance. Such 

a model-based setup allows for very fast adjustments of virtual camera settings without the need to 

create specific correction factors for a new viewing geometry. 

Multiple scattering effects on emissivity corrections are simulated using DART at ground-based 

LWIR camera spatial resolutions (< 1 m). The DO approach tracks individual rays within the model 

landscape in many directions to simulate multiple scattering affecting the radiation reflected from 

the urban canopy surfaces and then detected by the LWIR cameras.  

To correct observations, DART uses a “model world” (MW) extending beyond the observed surface 

area, with the following components:  
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1) A vector-based 3D surface model (digital surface model, DSM) with a voxelated vegetation 

distribution (of e.g. trees and shrubs). The DSM consists of a mesh of triangles. 

2) A spatial distribution of surface temperature and materials to apply across the DSM and 

vegetation geometry. 

3) A spatial distribution of atmospheric properties to prescribe to the air within and above the 

canopy. 

4) The position, view angle, resolution and focal length (if applicable) of the RS observations to be 

corrected. 

DART populates the volume occupied by the MW surface with a 3D array of voxels with the selected 

horizontal (ΔX = ΔY) and vertical (ΔZ) resolution (Gastellu-Etchegorry, 2008). Each voxel manages 

the tracking of radiation for the media that occupies its space and stores optical properties (e.g. 

surface emissivity, extinction coefficient of air), temperatures (surface and air), and land cover 

properties (e.g. surface orientation and material). Here, effects of emission and absorption of 

radiation by the air along the surface-camera path (atmospheric correction, Section 3.3.2) and 

multiple scattering of LWIR radiation (emissivity correction, Section 3.3.3) are determined using 

DART and the MW (Figure 3-1). DART virtual sensors are chosen as frame (or “pinhole”) cameras 

(hereafter “MW cameras”) with any straight line of the MW surface projected as a straight line for 

the camera perspective (Hartley and Zisserman, 2004). The RT processes are for the perspective of 

these LWIR RS instruments to facilitate correction of atmospheric and emissivity effects on the 

observations. 

 

Figure 3-1. Procedure to correct LWIR camera observations for atmospheric and emissivity 

effects to obtain surface temperature (Ts) for pixels. See list of symbols and acronyms for 

definitions. 
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3.3.2 Atmospheric correction procedure 

3.3.2.1 DART simulation 

MW voxels that do not intersect any DSM geometry are “air voxels”. Each air voxel contains aerosols 

and gases, with a cross section, density, single scattering albedo and scattering regime (Rayleigh 

function for gases, double Henyey-Greenstein functions for aerosols), air temperature (Ta, K) and 

water vapor content. The vertical profile of gas and aerosol optical properties is provided by weather 

station observations. The choice of voxel spatial resolution needs to consider computational 

resources, MW surface complexity, sensor spatial resolution and surface-sensor path lengths. 

Following tests (zpath > 100 m) with the applied setup (Section 3.4) we recommend a voxel resolution 

of < 10 m. There are no other studies at this high resolution for reference.  

To simulate the atmosphere RT process in DART, all MW surfaces are initially prescribed a 

homogeneous kinetic surface temperature. Emission of rays W from the surface (Wsurf) are used by 

DART to determine the path atmospheric transmittance. Rays that cross a DART camera pixel carry 

at-sensor spectral radiances for the atmosphere and surface components separately; i.e., Watm are at-

sensor spectral radiance from the atmosphere only [Lλ
atm(x, y)] and tracked Wsurf rays with at-sensor 

radiance [Lλ
cam(x, y, Wsurf)] have Γλ

atm(x, y) determined by DART using (derived from Eqn. 3.1): 

3.3.2.2 Post-processing of DART simulation 

Although Γλ
atm(x, y) and Lλ

atm(x, y) can be used in the final atmospheric correction, with highly 

varying zpath across camera images we recommend a post-processing step for the following reasons. 

Atmospheric transmittance and thermal emission between two points depends on the characteristics 

(optical depth, single scattering albedo, temperature) of the gases and aerosols present along that 

path. In the LWIR the most important is water (H2O) vapour, and to a lesser extent, carbon dioxide 

and ozone. The optical depth describes the spatial integral of the product of particle density and cross 

section. The cross section of H2O varies as a function of zpath, relative humidity (RH, %), Ta, pressure 

and wavelength. DART uses a single path length calculation for the atmosphere. This initial single 

line of sight (SLOS) path length (zpath,SLOS) is used to determine a SLOS cross section of H2O for the 

DART simulations and here is based on the average path length of the observations. The MW 

instrumentation and 3D surface is loaded into rendering software (e.g. Blender, 2018) to render 

images from the MW instruments as zpath(x, y) using the z-buffer image channel output. This method 

is recommended as it requires less configuration compared to determining zpath(x, y) by transforming 

3D DSM geometry coordinates to the sensor view geometry (e.g. Meier et al., 2011). 

Γλ
atm(x, y) = 𝐿λ

cam(x, y,𝑊surf) 𝐵λ(x, y,𝑊
surf).⁄  Eqn. 3.7 
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DART Γλ
atm and Lλ

atm products (Section 3.3.2.1) based on zpath,SLOS (defined here as Γλ
atm,SLOS and 

Lλ
atm,SLOS) are corrected for the multi-line of sight (MLOS) nature of Γλ

atm and Lλ
atm by post-

processing. A five-dimensional (5D) LUT for H2O built using MODTRAN and available within the 

DART database files and developed by the DART modelling team (Tiangang Yin, Jean-Philippe 

Gastellu-Etchegorry personal communication 2018) considers the self- and global-broadening of 

spectral lines and non-Beer law behaviour of transmittance in spectral domains (i.e., where gas 

optical properties have strong spectral variations). The 5 dimensions are: zpath, RH, Ta, pressure and 

wavelength. 

The optical depths (τ) of H2O (τλ
H20) obtained from the 5D LUT for the SLOS [τλ

H20,SLOS(x, y)] and 

MLOS [τλ
H20,MLOS(x, y)] for each pixel are applied to convert Γλ

atm,SLOS to Γλ
atm,MLOS using: 

Initially, the equivalent emissivity for the SLOS path (ελ
SLOS) is estimated:  

where 𝑇a̅ (K) is the mean temperature of all air voxels in the MW area and 𝐵λ(𝑇a̅) the Planck radiance 

at 𝑇a̅ .The equivalent emissivities for each pixel of the MLOS path [ελ
MLOS(x, y)] are then estimated: 

to calculate Lλ
atm: 

This very fast (e.g. < 1 min for six cameras each with 160 x 120 pixels) post-processing can be 

configured to automatically run after a DART simulation. The post-processed Lλ
atm(x, y) and Γλ

atm(x, 

y) are used to calculate the per-pixel and band integrated LW radiance from the observed surface 

[Lsurf(x, y), W m2 sr-1] using Eqn. 3.1. Lsurf is related to the surface brightness temperature (Tb
surf) 

using a polynomial fit derived from a relation between band radiance and temperature, using band 

radiance calculated from: 

and fitted using a range of brightness temperatures (250 K → 350 K, ΔK = 0.1). 

3.3.3 Emissivity correction procedure 

LW emission and scattering processes from surface reflected radiation is determined for the at-sensor 

radiance using DART multiple scattering simulations of LWIR radiation across the MW surface.  

Γλ
atm(x, y) = exp [ln (Γλ

atm, LO (x, y)) + τλ
H2O, LO (x, y) − τλ

H2O,MLO (x, y)]. Eqn. 3.8 

ελ
 LO = 𝐿λ

atm, LO 𝐵λ(𝑇 ̅̅ ̅)⁄  Eqn. 3.9 

ελ
MLO (x, y) = 1 − exp[ln(1 − ελ

 LO ) + τλ
 LO − τλ

MLO (x, y)] Eqn. 3.10 

𝐿λ
atm(x, y) = ελ

MLO (x, y) ∙ 𝐵λ(𝑇a̅). Eqn. 3.11 

𝐿 = ∫ 𝑑λ ⋅ 𝑅λ(λ) ⋅ 𝐵λ(𝑇b)

14 𝜇𝑚

7 𝜇𝑚

 Eqn. 3.12 
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3.3.3.1 Surface temperature and optical properties 

Optical properties and LWIR radiation exiting the canopy surfaces are assigned. DART voxels that 

occupy DSM geometry space are surface voxels (VxS) with a specified surface temperature and 

emissivity. Unlike other RT models with sub-facet resolution, variables are not limited to planar 3D 

voxels geometry (e.g. TUF, Krayenhoff and Voogt, 2007) or require the DSM triangles to be the 

smallest spatial unit (e.g. SOLENE, Hénon et al., 2012; radiosity models, Ghandehari, Emig and 

Aghamohamadnia, 2018). The former prevents urban geometry such as pitched roofs and the latter 

is more challenging to adjust (i.e. the input DSM requires time consuming modification to adjust the 

model resolution). Thus, the DART combination of voxels and complex DSM geometry for RT 

models is both unique and highly flexible for prescribing and simulating surface properties for 

complex terrain. Here surface temperature and optical properties are assigned to voxels that occupy 

DSM surfaces classified by type (e.g. roofs, walls of different orientation, ground, grass). 

Observed vegetation (e.g. trees or bushes) have leaves with optical properties as a turbid 

representation with a given angular distribution (Wang, Li and Su, 2007; Pisek, Ryu and Alikas, 

2011). Given highly heterogeneous surface temperatures and materials, emissivity correction 

simulations are performed using a higher voxel resolution (i.e. < 2.5 m) than the atmospheric 

correction. 

3.3.3.2 Simulation and emissivity correction 

DART tracked rays are emitted across the surface geometry varying with surface temperature and 

optical properties for the simulated wavelength(s) across a predetermined number of discrete 

directions (Ω) over the 4π space. Each VxS face is split into multiple sub-faces to reduce the number 

of concurrent rays. Any rays tracked along the same discrete direction that cross the same sub-face 

are aggregated to a single ray. 

A specified number of rays are emitted across the top layer of voxels in the MW (bottom of 

atmosphere (BOA) layer) and simulate the downwelling spectral radiance from the sky (Lλ
sky) using 

a prescribed isotropic sky brightness temperature (Tb
sky) where DART determines an isotropic Lλ

sky 

using the Planck function at the simulation wavelength. 

After all rays are emitted and tracked to other surfaces or have crossed the BOA layer, some energy 

is scattered from the rays that intercept surface elements based on the surface reflectance (1 – ελ,p) 

under a state of thermodynamic equilibrium. Scattered rays are re-intercepted by surfaces for a 

specified maximum number of scattering events. If consecutive iterations have less than a specified 

threshold for exitance differences or are below a specified intensity the simulation is halted. Rays 

exiting a MW vertical side re-enter on the opposite side with same direction but at a height that 

accounts for differences in topography between the exit and re-entry points.  
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Rays tracked across the MW camera pixels determine the at-sensor spectral radiance from the 

surfaces as Lλ
DART(x, y) (W m-2 sr-1 μm-1). At each timestep both a BB (ελ = 1) and a non-BB (ελ < 1) 

DART simulation are processed to separate the radiation received by the surfaces within each camera 

pixel IFOV (instantaneous FOV). Both simulation types use the same voxel resolution (Section 

3.3.3.1) with a spatially variable, rather than an isothermal (e.g. Adderley, Christen and Voogt, 2015), 

surface temperature distribution to estimate the contribution of LWIR radiation from the urban 

canopy elements to the emissivity correction.  

MW camera images for the non-BB simulation [Lλ
DART(x, y, Ω↑, ελ < 1) (W m-2 sr-1 μm-1)] have at-

sensor radiance contributions from both emitted and reflected radiation leaving (Ω↑) the surfaces 

which is analogous to Lλ
cam (Eqn. 3.3). MW camera images for the BB simulation [Lλ

DART(x, y, Ω↑, 

ελ = 1)] have at-sensor radiance contributions from the emission only (analogous to Bλ(Ts), Eqn. 3.3). 

The BB simulation is computationally cheap as only the rays from surfaces within the FOV of the 

MW camera(s) are tracked. Results from the DART simulations are used to separate the spectral 

radiance received (Ω↓) by the surfaces within the IFOV of each camera pixel [Lλ
DART(x, y, Ω↓)] (W 

m-2 sr-1 μm-1) by rearrangement of Eqn. 3.3: 

with ελ(x, y) the per-pixel surface emissivity.  

The required ελ(x, y) (Eqn. 3.13) can be created two ways. The optical properties across the MW 

surface have a simple or homogeneous distribution in the applied correction (Section 3.4) and have 

an isotropic scattering phase function, meaning here an image offset mask is created. For scenes with 

more complex emissivity distributions including anisotropic scattering phase functions, the view 

angle dependent emissivity across an image can be determined using DART (Appendix C).  

The final conversion of Tb
surf(x, y) to surface temperature Ts(x, y) is performed using the inverse of 

the Planck function on the emissivity corrected spectral radiance: 

By simulation of RT processes at a narrow waveband, this approach assumes the surface and sky are 

grey bodies. Further, not explored in this study is the possibility of integrating over a broader range 

of wavelengths with spectral variance in surface emissivity. 

𝐿λ
DART(x, y, Ω↓) =

𝐿λ
DART(x, y, Ω↑, ελ  <  1) − ελ(x, y)𝐿λ

DART(x, y, Ω↑, ελ = 1)

1 − ελ(x, y)
  Eqn. 3.13 

𝑇s(x, y) = 𝐵−1 {
𝐵λ[𝑇b

surf(x, y)] − [1 − ελ(x, y)]𝐿λ
DART(x, y, Ω↓)

ελ(x, y)
}. Eqn. 3.14 
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3.4 Application of Methods 

3.4.1 Study area and observation sites 

The study area (Figure 3-2), in the Borough of Islington, London, UK (51°31’35” N, 0°06’19” W), 

has two primary observation sites on two high-rise residential tower blocks: IMU at 74 m agl (above 

ground level) and WCT at 36 m agl. A third rooftop (CUB, 26 m agl) is used for observational 

evaluation of the atmospheric correction. The area has an irregular arrangement of streets often lined 

with deciduous trees, with four- to six-storey residential and commercial buildings either as terraces 

or as large single units, parks with green space and asphalt, and three additional high-rise residential 

tower blocks (i.e. five high-rise buildings including IMU and WCT). 

The MW is a 420 x 420 m horizontal area centred on the IMU site with a DSM and VCEs (Figure 

3-2e, f) determined by Google Earth Pro (Google, 2019a) images and photogrammetry (Appendix 

D). The DSM (Figure 3-2e, f; grey) has ~750,000 triangles to capture all the Google Earth 3D surface 

elements except for vegetation. Vegetation canopy elements (VCE) are a 3D array of voxels (VxV) 

at ΔX = ΔY = 1 m, ΔZ = 0.1 m (Figure 3-2e, f; green) that are either filled with VCE or empty. 

As with vegetation canopies (Kuusk, 2017), a key issue in developing 3D RT models for urban 

canopies relates to how the canopy structure is described. Here a uniquely high level of detail (LOD) 

canopy description is created (Appendix D.1), with sub-facet structures such as sloped roofs and 

balconies, rather than the planar faces as used in other studies (e.g. Meier et al., 2011; Ghandehari, 

Emig and Aghamohamadnia, 2018). Its triangles are classified by orientation and material properties 

(Σ) including their cardinal facing direction, roofs, ground and vegetation (Figure 3-2c, Appendix 

D.2). 
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Figure 3-2. Study area characteristics: plan view of (a) above sea level raster digital surface model (rDSM) of all 

surfaces with (black lines) a reference building footprint model from Evans, Hudson-Smith and Batty (2006), 

(b) orthorectified raster RGB (rRGB) image from a mosaic of Google Earth (Google, 2019a) images (Appendix 

D.1) with (symbols) locations of the study sites, (c) “model world” (MW) surface geometry with surface 

orientation and material properties (Σ), (d) impervious and grass surfaces (white) and vegetation canopy 

elements (VCEs, light green) seen by the LWIR cameras within the observation network (Table 3-1). Camera 

locations (numbers) shown as pink dots (white text) with approximate azimuthal facing (pink arrow). Dark 

colours are surfaces not seen by cameras. MW surface geometry rendered using Blender (Blender, 2018) for: 

(e) camera C2 perspective and (f) oblique orthogonal view of scene. Coordinates for (a – d) are Coordinate 

Reference System WGS84 UTM grid zone 31N for study area extent of 420 m x 420 m. 
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3.4.2 Instrumentation and observations 

Optris PI-160 (Optris GmbH, 2018) LWIR cameras are deployed to observe the upwelling LWIR 

radiation (Table 3-1; Figure 3-3). The small, lightweight, industrial-grade camera uses uncooled 

microbolometer detectors, with 25 μm x 25 μm bolometer elements in a 160 x 120 focal plane array. 

The instrument outputs digital number (DN) values for each microbolometer pixel. DN values relate 

to at-sensor 7.5 – 14 μm radiance and were radiometrically calibrated by the manufacturer two 

months prior to measurements using a BB reference. Each operational measurement is calibrated 

using an internal shutter with reference temperature and BB characteristics. During this calibration 

the shutter is put in the optical path of the instrument whereby its emission is sampled. The noise 

equivalent differential temperature (NEDT) is 0.1 K and the manufacturer’s specified accuracy is ±2 

oC at ambient temperatures 23 ±5 oC (Optris GmbH, 2018), which is typical of most microbolometer 

LWIR camera systems available and used for such applications (e.g. Meier and Scherer, 2012; 

Adderley, Christen and Voogt, 2015; Lee et al., 2018).  

 

Figure 3-3. Digital camera images of: (a) cameras C5 and C6 taken at WCT site on 25th 

October 2017 looking southwest, with C6 enclosure shown open for maintenance, (b) 

southeast view from IMU site taken next to C4 on 21st July, (c) C1 enclosure taken at IMU 

site on 12th July looking east with WCT (C5, C6) site in background, and (d) northeast view 

from IMU site taken next to C2 and C3 on 30th May, with a portion of the roof at CUB site 

sampled by C7 (Appendix G) annotated. 
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The cameras have external enclosures (Figure 3-3, Appendix E) to reduce body temperature changes 

from strong winds and/or direct sunlight and protect against corrosion and have a derived spectral 

response function (Appendix F). 

With seven LWIR cameras installed at IMU, WCT and CUB observation sites (Section 3.4.1) for the 

study period (7th July – 10th November 2017) multiple view angles of surfaces with different 

orientation, material, microscale structure and distances to the cameras are sampled. 

The base sample resolution is 1 min. To reduce the frequency of observational gaps, the median 

brightness temperature through time is taken from 5 images giving (e.g. Figure 3-4a) a final temporal 

resolution of 5 min. 

Table 3-1. Siting properties of the ground-based longwave infrared (LWIR) cameras installed 

on high-rise residential towers (IMU, WCT) and London City University Building roof (CUB) 

within the study area. Study area, sites and position of instrumentation shown in Figure 3-2 and 

Figure 3-3. Further camera meta data shown in Appendix B. See list of symbols and acronyms 

for all other definitions. 
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  FOV  θ zpath zpath zpath 

C1 IMU 68.6 x 54.2 E 46.5 72.3 88.8 178.8 

C2 IMU 62.6 x 49.1 NE 51.7 70.1 97.9 198.93 

C3 IMU 62.8 x 49.2 NWW 52.9 73.1 106.6 198.2 

C4 IMU 37.3 x 28.4 SE 56.7 89.0 122.7 201.2 

C5 WCT 38.4 x 29.3 SW 66.6 47.1 79.0 167.4 

C6 WCT 62.4 x 48.9 W 61.7 41.3 67.5 220.1 

C7 CUB 38.1 x 29.0 N ~60 ~15 ~15 ~15 

The uncertainty in UTC time is assumed to be < 10 s. The cameras require a 2 h “warm up” period 

(Chapter 2) to allow the current-induced self-heating of the sensor elements to stabilize (Vollmer and 

Möllmann, 2017). Data prior to this are excluded. All data 0.5 h prior and 8 h after any rain event are 

excluded. A Davis Vantage Pro 2 weather station installed 114 m agl on top of a residential tower 

block located at the BCT site (1.1 km southeast of the IMU site) provides measurements of rain rate 

(mm h-1) along with Ta, RH, and atmospheric pressure (hPa) required for the atmospheric correction 

routine. A Kipp & Zonen CNR1 net radiometer installed at IMU next to C4 (Figure 3-2e, f) measured 

broadband (4.5 – 42 μm) LWIR irradiance downward from the sky (ELW
sky, W m-2) for the emissivity 

correction routine. 

The LWIR cameras lens distortion is corrected to match the rectilinear projection of the MW cameras 

(Appendix A) and the MW cameras are sited in the model domain using on-site measurements of 

each camera location and view angle (Table 3-1) and a fine-adjustment (Chapter 2).  
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Figure 3-4. (a) Undistorted brightness temperature images (Tb
cam) from Optris PI longwave 

infrared (LWIR) cameras at 11:30 on 27th August 2017 and (b) surface orientation and material 

property (Σ) projected onto the image plane (IP) of each “model world” (MW) camera 

classified for each image pixel using the perspective projection (Chapter 2) of a similarly 

classified DSM (Appendix D.2). 

The per-pixel orientation and material classes (Σ(x, y), Figure 3-4b) uses information from the 

similarly classified DSM (Appendix D.2) that is projected for the MW camera perspectives following 

methods in Chapter 2. Σ(x, y) enables the inter-Σ classification of observations for use in prescribing 

temperature for the DART emissivity correction (Section 3.4.3.2). 

3.4.3 Model setup 

The general model parameters for each simulation type used for the correction of observations (Table 

3-2) are explained below. 
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Table 3-2. General model parameters set for the Discrete Anisotropic Radiative Transfer 

(DART) model atmospheric and emissivity correction routines. 

Model 

parameter 

Units Atmospheric correction Emissivity Correction 

DART version - 5.7.4 build 1094 5.7.1 build 1058 (5.7.4 build 1094) 

Voxel resolution 

ΔX, ΔY, ΔZ 

m 2.5, 2.5, 2.5 1, 1, 1 

Voxel sub-faces - 1 36 

Wavelength(s) μm 7 – 14, Δλ = 0.2 10 

Discrete 

directions 

- 628 (for image directions only) 628 

BOA ray 

density 

rays 

m-2 

- 1600 

Surface ray 

density 

rays 

m-2 

10,000 10,000 

Number of 

scattering events 

- 0 5 

Surface 

temperature 

description 

- Homogeneous (300 K) From LWIR camera Tb
surf (see text) 

Emissivity - 1 Bulk variation across man-made 

surfaces using SLUM dataset (0.89 

– 0.97) 

3.4.3.1 Atmospheric correction 

A vertical profile of Ta and water vapor content for each horizontal voxel layer is created from the 

BCT in-situ measurements of Ta, RH and atmospheric pressure. Each horizontal layer of air voxels 

has Ta, water vapour content and pressure extrapolated by DART using a midlatitude summer 

atmosphere profile. As the weather station is 40 m above the top of the MW surface, Ta is extrapolated 

down to the bottom layer of the MW using the dry adiabatic lapse rate. 

Given the large number of camera observations, DART simulations for each observation timestep (5 

min) are not computationally viable (8 CPU threads per simulation: ~12 min using ~8GB memory 

and 8 processor cores). Instead, a 60 min simulation timestep is used. Post-processed (Section 

3.3.2.2) results for each band and timestep are temporally interpolated to the observational resolution 

using a spline (Moritz and Bartz-Beielstein, 2017). Interpolated values near timesteps without 

observations (e.g. maintenance, quality control) are rejected. To reduce the number of emission 

sources and subsequent computation time, VCE geometry is not included during atmospheric 

correction. 

3.4.3.2 Emissivity correction 

For the downwelling longwave radiation from the sky, ELW
sky from the CNR1 radiometer is related 

to Tb
sky for DART, using the Stefan-Boltzmann law: 
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Atmospherically corrected surface temperature (Tb
surf) observations are prescribed across the MW 

surfaces. The median Tb
surf of all pixels within a certain orientation and material class (Σ) is 〈Tb

surf(Σ)〉 

(class median = 〈 〉) are used, except for VCE. As Ts for trees is nearly equal to Ta (Meier and Scherer, 

2012), Ta from the Davis weather station is used for VCE. Broadband emissivity values are allocated 

for each DSM surface orientation and material property. As comprehensive urban emissivity 

databases are not readily available (Ghandehari, Emig and Aghamohamadnia, 2018), a representative 

range of urban emissivity values are used for the emissivity correction. Similar to Mitraka et al. 

(2012), the broadband (8 – 14 μm) emissivity from all non-metal and anthropogenic materials in a 

spectral library (SLUM, Kotthaus et al., 2014) is used as a fully opaque and grey body estimate for 

all non-vegetative surfaces (roof, ground, all walls) with the mean (ε0.93) being used as a baseline 

value. Minimum (ε0.89) and maximum (ε0.97) values are used in a sensitivity analysis (Section 3.5.2.3). 

VCE have a turbid representation of leaves within each VxV and are given a spherical angular 

distribution. Leaves are given “deciduous leaf” optical properties at 10 μm from the DART spectral 

database (leaf transmissivity = 0.0145, reflectance = 0.0195) with a leaf area density [leaf area within 

voxel / voxel volume (m2 m-3)] of 1.6 (Lalic and Mihailovic, 2004; Jeanjean et al., 2017).  

Rays tracked from turbid VCE directly to camera pixels are not considered. Accurate tracking of rays 

from turbid media across camera pixels requires higher resolution DART runs (e.g. higher density 

of rays and voxel sub-faces) and/or leaves determined using the discrete triangle cloud option. These 

factors are not tested as part of this study, so VCE pixel temperatures are not corrected for emissivity 

effects and are masked (e.g. Figure 3-4b). Ground-based thermography specific to urban trees and a 

simple emissivity correction applicable to observed VCE can be found in Meier and Scherer (2012). 

3.5 Results 

3.5.1 Atmospheric correction 

To evaluate the atmospheric correction, cameras C2 and C7, (Table 3-1) both viewing a flat asphalt 

roof (CUB, Figure 3-2, Appendix G details C7 siting) are used. For C2, the ~50 m2 area is ~155 m 

(zpath) away and covers seven pixels (Figure 3-4a, x = 35, y = 140), whereas C7 (zpath < 15 m) has a 

18542 pixel view. After DART shadow distribution simulations (Chapter 2), pixels are manually 

selected to exclude any shaded areas during the day as found in Meier et al.'s (2011) evaluation. 

Given the short C7 path length, atmospheric effects for this camera are assumed to be negligible [i.e. 

Tb
cam(C7) ≈ Tb

surf(C7)].  

During a predominantly cloudy evaluation period (7th – 26th September 2017) the minimum 

(maximum) Ta was 281.4 (293.9) K and minimum (maximum) absolute humidity ρv was 7.03 (12.71) 

𝑇b
sky

= √𝐸LW
sky

σ⁄ .
4

 Eqn. 3.15 
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g m-3 (Figure 3-5c). Less cloudy daytime conditions near the end of the period (from 22nd Sep) 

coincide with higher Ta values. The roof is fully sunlit (Figure 3-5d) from ~40 min after sunrise (e.g. 

15th September sunrise = 06:30, sample area fully sunlit at 07:05). Quality control (e.g. rain events 

(Figure 3-5d), camera maintenance) removed 1670 (29 %) 5 min periods of Tb
cam observations 

(Section 3.4.2). As site access prevented longer evaluation, more diverse meteorological conditions 

should be evaluated in future studies. 

The median brightness temperature of pixels that view the roof are used from each camera at each 

timestep. The difference in the brightness temperature observed by the two cameras ΔTb
cam = 

Tb
cam(C2) - Tb

surf(C7) (Figure 3-5a, blue) quantifies the atmospheric effect on the raw observations. 

Generally, ΔTb
cam is negative during the day and approaches zero at night, as atmospheric absorption 

reduces the amount of radiation leaving the surface that is received by the sensor, particularly during 

daytime when the surface is much warmer than the air. For clear and partly-cloudy daytime periods, 

ΔTb
cam is typically < -2 K (minimum -2.97, 15th September 09:15) when the brightness - air 

temperature differences are (Tb
cam(C7) - Ta) > ~10 K. Nocturnal clear and partly-cloudy periods (e.g. 

12th, 16th September, Figure 3-5d) can have high ΔTb
cam variability between timesteps. Sensor 

timestamp differences (~10 s) combined with fast temporal response (seconds) of Ts to changes in 

turbulent sensible heat fluxes (Christen, Meier and Scherer, 2012; Crawford et al., 2017), intermittent 

cloud cover and anthropogenic heat sources may explain this variability. 

After correction of atmospheric effects, Tb
surf(C2) is significantly closer to the reference observations 

(ΔTb
surf = Tb

surf(C7) - Tb
surf(C2) Figure 3-5a, black). The mean absolute error (MAE) between 

Tb
surf(C7) and Tb

surf(C2) is 0.39 K for all observations (r2 = 0.998, Figure 3-6) and 0.48 K (0.28 K) 

for day (night) time observations, respectively. This is a significant improvement compared to the 

uncertainty associated with omitting the atmospheric correction particularly during daytime where 

Tb
surf(C7) and Tb

cam(C2) have 1.03 K MAE. While the magnitude of the atmospheric correction 

(Tb
cam(C2) - Tb

surf(C2), Figure 3-5a, red) generally follows the variations of atmospheric effect 

[observationally quantified by Tb
cam(C2) - Tb

surf(C7), Figure 3-5a, blue], some artefacts remain during 

morning when ΔTb
surf is strongly positive at times. Of the 1st percentile of ΔTb

surf (> 1.02 K), most 

(93 %, n = 39) occur between 07:00 – 09:00 under clear or partly-clear sky conditions. Observations 

with strongly negative ΔTb
surf occur in the afternoon, with 95 % (n = 42) of observations in the 99th 

percentile (ΔTb
surf < -0.97 K) being between 12:00 – 15:00. 

Both the strongly positive and negative ΔTb
surf values could partly result from uncertainties in camera 

calibration. During the morning, rapid changes in air temperature can cause uneven heating of the 

camera bodies. During the afternoon, the vertical profile of air temperature may the air temperature 

between the cameras to differ. Inter-camera discrepancies in the manually selected area of roof could 

yield differences in observations depending on the fraction of shaded surface seen by each camera 

during these periods (also noted by Meier et al., 2011). As the dry adiabatic lapse rate rather than the 
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environmental lapse rate are used, humidity is not accounted for (Section 3.3.2.1). A weather station 

installed near ground level of the MW area to provide horizontal variability in temperature and water 

vapour for the correction and associated uncertainties unfortunately failed shortly prior to this period. 

 

Figure 3-5. Atmospheric correction evaluation using the C2 and C7 cameras (Table 3-1, Figure 

3-2, Figure 3-3) and meteorological variables (Section 3.4.2) observed at BCT and IMU sites 

(Figure 3-2): (a, red) uncorrected (Tb
cam) minus corrected (Tb

surf) surface brightness temperature 

for 155 m “far” path length from C2, (a, blue) uncorrected “far” minus reference ~15 m “near” 

path length from C7 and (a, black) corrected “far” minus “near”, (b) Tb
cam(C2), (c) air 

temperature (Ta) and absolute humidity (ρv) and (d) incoming shortwave (ESW
sky) and longwave 

(ELW
sky) radiation, and timing of rainfall (blue). 
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Figure 3-6. Comparison of surface brightness temperature corrected for atmospheric effects of 

a flat felt roof sampled with path length ~155 m [Tb
surf(C2)] and surface brightness temperature 

of the same surface sampled with path length ~15 m [Tb
surf(C7)] with negligible atmospheric 

effects. 

When the atmospheric correction procedure is applied to all cameras with substantial path length 

differences (Table 3-1) for the evaluation period, the greatest differences between the uncorrected 

at-sensor brightness temperature Tb
cam(x, y) to surface brightness temperature Tb

surf(x, y) are seen on 

24th September. The median of Tb
cam(x, y) - Tb

surf(x, y) for pixels with zpath between 240 – 260 m 

reaches a minimum of -4.53 K at 10:10. Impacts of different path lengths on this day are summarised 

in Figure 3-7 (see Appendix I for other days). The variability of Tb
cam(x, y) - Tb

surf(x, y) within each 

zpath bin (Figure 3-7) can be large (e.g. median -2.34 K, IQR 1.93 K at 06:00) as the magnitude of the 

correction varies based on the absolute value of Tb
cam(x, y), which again is highly variable in the 

urban setting (e.g. Figure 3-4a). 
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Figure 3-7. Atmospheric correction of longwave infrared (LWIR) camera observations for six 

timesteps on 24th September 2017, using pixels within ±10 m of five path lengths (zpath) with 

(white cells) meteorological input variables (coloured cells) median[IQR] values of: (a) 

difference between uncorrected camera brightness temperature (Tb
cam) and corrected surface 

brightness temperature (Tb
surf), (b) surface-camera path contribution of the at-sensor band 

integrated atmosphere radiance (Latm), and (c) surface-camera path contribution of band 

integrated atmospheric transmissivity (Γatm). See list of symbols and acronyms for all 

definitions and Appendix I for other days. 

Analysis of all pixels from all cameras on the 24th September (Figure 3-8a) indicates a decrease in 

Tb
cam(x, y) - Tb

surf(x, y) with zpath. This is explained by the associated increase (decrease) of Latm (Γatm) 

(Figure 3-8b, c). The outlier points (grey < 1000 pixels or 0.003 % of observations throughout the 

day) in Figure 3-8 are mainly from Γatm artefacts (Figure 3-9c). The 1st to 99th percentile range for 

Figure 3-8a is -3.17 to 0.06 K. Results are similar to Meier et al. (2011) which found Tb
cam - Tb

surf ≈ 

-6.5 K for zpath = 310 m around midday, but are potentially underestimated compared to Adderley, 

Christen and Voogt (2015) where with a 15 – 75 m zpath range, Tb
cam - Tb

surf was up to -8.6 K. Note 

that inter-study comparisons are challenging, as differences in zpath, Tb
cam, meteorological conditions 

and spectral response functions affect the magnitude of atmospheric effects. 
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Figure 3-8. Per-pixel atmospheric correction of all longwave infrared (LWIR) camera 

observations at 5 min resolution on 24th September 2017, with density of pixels (coloured 

shading; grey < 1000 pixels) against surface-camera path length (zpath) and (a) difference 

between uncorrected camera brightness temperature (Tb
cam) and corrected surface brightness 

temperature (Tb
surf), (b) surface-camera path contribution of the at-sensor band integrated 

atmosphere radiance (Latm), and (c) surface-camera path contribution of band integrated 

atmospheric transmissivity (Γatm). 

To illustrate spatial variations of the atmospheric correction components for the study area, the MW 

surface and cameras are used to calculate zpath, Latm and Γatm (Figure 3-9). As seen from the path lengths 

(Figure 3-9a), the complex real world (RW) surface geometry (Figure 3-2) is accurately reproduced, 

including buildings with complex footprints and multiple storeys (e.g. Figure 3-9a C3, x = 40, y = 35) 

and sloped roofs (e.g. Figure 3-9a C5, x = 40, y = 50; C6, x = 40, y = 10). Oblique view angles under 

RW conditions demand a high LOD surface geometry representation, as simplified MW geometry 

(e.g. flat roofs, planar walls) could lead to inaccuracies in modelled surface-sensor view geometry. 

For example, if the MW had flat roofs (i.e. low LOD) a C6 pixel viewing a sloped roof (Figure 3-9a 

C6, x = 40, y = 10) has zpath ≈ 75 m but with a low LOD geometry the roof may not be registered and 

instead have zpath > 250 m and hence an error in atmospheric correction of over 3K (Figure 3-7). 

Variability of zpath with buildings and oblique viewing geometry (Figure 3-9a) is resolved by the 

atmospheric emission (Figure 3-9b) and transmissivity (Figure 3-9c) components of the correction. 

The spatial variability of Latm(x, y) and Γatm(x, y) is related to the building geometry and zpath. 

Typically, a greater zpath causes an increase (decrease) of Latm (Γatm) (Figure 3-7). A small number of 

pixels underestimate Γatm (e.g. Figure 3-9c C5, x = 65, y = 80). For the surface within the IFOV of 

these pixels, the density of emitted rays (Wsurf, Section 3.3.2.1) may be too low for the accurate 

determination of Lcam(Wsurf). These artefacts can be eliminated by increasing the voxel resolution and 

the density of Wsurf at the expense of computation time. Pixels that view surfaces outside the MW 

area (e.g. Figure 3-9c C4, x = 38, y = 5) are excluded. 
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Figure 3-9. Atmospheric correction variables for each camera (Table 3-1) at 12:00 (24th September 2017): (a) 

Surface – sensor path length (zpath, m), (b) band integrated longwave emission from the atmosphere [Latm(x, y) 

= ∫  
14μm

7μm
dλ · Rλ (x, y) · Lλ

atm(x, y)] with dλ = 0.2 and Rλ(x, y) the sensor spectral response function, (c) band 

average atmospheric transmissivity. DART calculated Γλ
atm(x, y) and Lλ

atm(x, y), and (d) final difference 

between uncorrected (Tb
cam) and corrected (Tb

surf) brightness temperature observations. C3 shows more 

foreground roof than in Figure 3-4 (pixels excluded from all other results) from an altered view angle between 

the observation dates. 
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3.5.2 Emissivity correction 

3.5.2.1 Temporally resolved surface temperatures and incoming LWIR radiation 

The impact of the emissivity correction on the atmospherically corrected surface brightness 

temperatures (Tb
surf) is assessed on a day with predominantly clear-skies (27th August 2017, Figure 

3-10) and large variability of Ts between surfaces. As the surface emissivity is varied as part of the 

emissivity correction analysis, the radiance received by the surface [Lλ
DART(x, y, Ω↓, ε0.93), Eqn. 3.13] 

is shown instead of the (1 - ε) modified surface-leaving radiance. As broadband irradiance ELW (W 

m-2) using the Planck function and Stefan-Boltzmann law this is: 

Canopy brightness temperature observations used to prescribe spatial variability of radiation leaving 

the surfaces of different surface types (Σ) differ broadly as a function of the incoming shortwave 

radiation (ESW
sky) diurnal cycle (Figure 3-10b). While surfaces with a high SVF are more likely to 

receive shortwave energy input (Chapter 2), the inverse is true for longwave irradiance (Figure 3-10c) 

as surfaces within the canopy are warmer than the sky (even during the entire night). The median for 

north walls 〈Tb
surf(ΣNorth)〉 generally follows the diurnal cycle of Ta as the facets are mostly shaded 

throughout the day. 〈Tb
surf(ΣEast)〉 peaks at 10:00 (306.0 K), while the maximum (314.9 K) of 〈Tb

surf
-

(ΣSouth)〉 is reached ~100 mins later. This relatively short time between maxima of east and south 

facing walls is explained by a predominant south-southeast facing direction of these facets (median 

azimuth for “South” wall is 147.9°, cf. for “East” is 91.6°). 

Inter-class Tb
surf variations contribute to the simulated differences in ELW(x, y, Σ) (Figure 3-10c). This 

has implications on the final emissivity corrected observations (Figure 3-10d). Median differences 

for ELW(x, y, Σ) reach 74.3 W m-2 between ΣRoof[dark] and ΣEast during 13:00 – 14:55 (Figure 3-10c). 

The high SVF of roofs means ELW for roof surfaces [ELW(x, y, ΣRoof)] is mostly composed of sky 

irradiance and hence is in closest agreement to the broadband radiometer observations used to specify 

ELW
sky, while east facing walls receive large energy emissions from the opposing warm walls. The 

median for ELW(x, y, ΣRoof) is up to 19.9 W m-2 greater than the median ELW
sky during 13:00 – 14:55 

(Figure 3-10c) as the roof receives some radiation from other surfaces. Inter-wall differences in the 

median of ELW(x, y) reach 17.4 W m-2 between east and west walls during 13:00 – 14:55, which is 

driven by the lower temperatures of the shaded north facing walls. 

Of the walls, ELW shows greatest variability for those facing east, which is explained by very small-

scale variations of these structures. Cameras C5 and C6 primarily observe non-planar, east facing 

walls (Figure 3-4) with complex features such as balconies. Combined with the high zenith angle of 

observations (Table 3-1), the cameras have a near-perpendicular view of the east walls and thus 

𝐸LW
cam(x, y) = σ𝐵λ

−1[𝐿λ
DART(x, y, Ω↓, ε0.93)]

4
. Eqn. 3.16 
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sample both the upper and lower parts of the balconies that have contrasting view factors to the sky 

and ground surfaces. 

 

Figure 3-10. Observed and modelled data for 27th August 2017 stratified by surface orientation 

and material type (Σ) (colours) with (a) median per-pixel surface brightness temperatures 

[Tb
surf(x, y)]. For spatial pattern of emissivity correction (11:30, dashed lined) see Figure 3-11. 

(b) BCT observations of air temperature, relative humidity, Kipp & Zonen CNR1 net 

radiometer broadband incoming shortwave (ESW
sky) and longwave (ELW

sky) radiation. (c) 

Broadband LWIR irradiance (ELW) onto surfaces within the camera field of view, with ELW
sky 

for comparison. (d) Difference between emissivity (0.93) corrected surface temperature 

[Ts(ε0.93)] for non-vegetative surfaces and surface brightness temperature. Boxplots: based on 

pixels from all camera images (5 min resolution, for 2 h: 07:00 – 08:55 i.e. 08:00 is between 

07:00 and 09:00 vertical lines) with 5th and 95th percentiles (whiskers), interquartile range 

(box), and median (horizontal line). ELW
sky boxplot uses 15 min resolution observations and 

min and max values (whiskers). 
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3.5.2.2 Spatially resolved longwave irradiance and emissivity correction 

On the 27th August 2017 the spatially resolved emissivity correction for all cameras (Figure 3-11, 

Tb
cam in Figure 3-4a) have the maximum inter-facet variability of surface brightness temperature for 

within-canopy surfaces at 11:30 (Figure 3-10a, dashed line). The 〈Tb
surf(ΣSouth)〉 is 314.8 K, or 17.0 K 

higher than 〈Tb
surf(ΣNorth)〉. As a single surface emissivity is used for all the non-vegetative surfaces 

when correcting Tb
surf, the magnitude of the correction (Figure 3-11b) is related to spatial differences 

in ELW (Figure 3-11a). The ELW results account for RT process across the complex geometry seen by 

the RW camera observations (Figure 3-4a), e.g. compare east wall balconies (C5 and C6), sloped 

roofs (e.g. C2 x = 40, y = 40), complex roofs (e.g. C1, x = 55, y = 35; C3, x = 50 y = 60; C4 x ≈ 70 

→ 120, y ≈ 55 → 70), and vegetation (e.g. C2, x = 120, y = 80; C6, x = 120, y = 75). The atmospheric 

correction is not as sensitive to such small details across building facades. 

Wall ELW (Figure 3-11a) has high spatial variability associated with the wall geometry complexity. 

The overall ELW increases closer to ground level and in narrow street canyons where SVF are reduced 

(Figure 3-11a). ELW is typically lowest for roof surfaces (i.e. high sky view factor) and increasingly 

varies for roofs within the canopy (e.g. C6 x = 40, y = 60). Compared to adjoining walls, ELW for 

ground surfaces is typically lower as there is a preferential orientation of ground surfaces to the cool 

sky. Overall, ELW for the ground surfaces decreases with distance to buildings and is greater for 

ground surfaces close to trees, as these occlude the ground from most downwelling sky irradiance. 

Where the longwave irradiance approaches the radiation emitted by a surface, the emissivity 

correction is minimised (Figure 3-10b). 
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Figure 3-11. Observed and modelled results (27th August 2017 at 11:30) of (a) longwave 

irradiance (ELW) from broadband hemispherical radiometer (sky component) and 3D 

distribution of surface brightness temperatures from the network of longwave infrared cameras 

(canopy component) prescribed to DART to simulate the emission, irradiance and multiple 

scattering processes of LWIR radiation for correction of surface brightness temperature (Tb
surf) 

to emissivity (0.93) corrected surface temperature [Ts(ε0.93)], (b) Ts - Tb
surf difference. 

3.5.2.3 Uncertainty analysis 

The variability of Ts based on the emissivity and temperature value prescribed across the non-

vegetative surfaces is evaluated for each timestep. Initially with ε0.93 a heterogeneous distribution of 

surface temperature is used (Figure 3-12), and then repeated using the minimum (ε0.89) and maximum 

(ε0.97) broadband emissivities for dark impervious urban materials in the Kotthaus et al. (2014) 

spectral library; and repeated again (Figure 3-13) with an isothermal surface temperature that 

resolves the RT process similarly to the SVF approach of Adderley, Christen and Voogt (2015). 
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Figure 3-12. Per-pixel emissivity corrected surface temperature Ts differences (median = black 

lines, inter-quartile range = shaded) from LWIR camera observations (27th August 2017, 60 

min resolution) using different spectral library (Kotthaus et al., 2014) broadband emissivity 

values: mean (ε0.93), minimum (ε0.89, orange) and maximum (ε0.97, aqua) for non-vegetative 

surfaces (walls E, N, S, W; ground, roof) simulated using DART. 

The facet most sensitive to changes in surface emissivity is the roof as its high Tb
surf and SVF, and 

low incoming (sky) LWIR radiation combine to produce large contrasts between received and 

emitted radiation. On this day the emissivity effect for roof surfaces is most pronounced at 13:00, 

when median difference between the surface temperature derived using an emissivity of 0.93 is 1.4 

K higher (1.3 K lower) than with an emissivity of 0.89 (0.93) (Figure 3-12). Although ground 

surfaces also mostly receive radiance from the cold sky, temporal variability in Ts(x, y, ΣGround) is 

lower compared to roof surfaces as the diurnal amplitude of surface temperatures of this facet type 

is lower due to the relatively lower shortwave energy received (Figure 3-10a). 

For the wall facets, the magnitude of the emissivity effect is impacted by the wall’s orientation 

(Figure 3-12). Depending on the emissivity value used, the sign of the differences between surface 

temperatures obtained can even change throughout the day. For east and south facing walls the 

uncertainty is greatest in the morning when the surfaces are insolated and have high Ts, while their 
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opposite walls (west and north) are shaded with low Ts. By the afternoon, differences for east facing 

walls are minimised when the west facing walls are insolated and have similar temperature to east 

facing walls. The asymmetry of the uncertainty for south facing walls around solar noon, with greater 

uncertainty before noon, is linked to the preferential view of south-southeast walls and resulting 

diurnal cycle of Tb
surf(ΣSouth) (Figure 3-10a). Although east walls have a similar distribution of 

orientations to west walls, they respond differently to changes in prescribed emissivity. This is 

associated with the high diurnal variability of observed brightness temperatures in this class (Figure 

3-10).  

To assess the impact of variations in LWIR radiation leaving the canopy surfaces, the correction to 

Ts(ε0.93) is performed using two different distributions of surface brightness temperature across the 

MW area. The “heterogeneous” temperature (Tb
3D) is derived from the full temperature distribution 

[Tb
surf(X, Y, Z, Σ)]. This is compared to an “isothermal” case (Tb

iso) with two classes: roof (including 

both ΣRoof[dark], ΣRoof[light]), and “within canopy” (i.e. walls and ground). The combination of isothermal 

within-canopy temperatures and isotropy of surface emissivity and downwelling sky radiance means 

Tb
iso is analogous to the SVF approach of Adderley, Christen and Voogt (2015). Median of per-pixel 

surface brightness temperatures are calculated and assigned to surfaces of the respective groups. The 

isothermal distribution of temperatures eliminates strong contrasts between the walls, such as 

〈Tb
surf(ΣSouth)〉 up to 14.6 K greater than the median brightness temperature for the overall “within 

canopy” class at 11:30.  

Assigning a more realistic temperature distribution (Tb
3D) allows the heterogeneous urban canopy 

influences to impact the derived surface temperature [Ts(x, y, Tb
3D)] compared to the isothermal case 

[Ts(x, y, Tb
iso)]. A reduced emissivity enhances the surface temperature differences between the 

heterogeneous [Ts(x, y, Tb
3D)] and isothermal [Ts(x, y, Tb

iso)] cases (Figure 3-13). As the proportion 

of reflected radiation increases, the effect of assigning contrasting brightness temperature 

distributions increases with decreasing emissivity. Simulations using ε0.97 have a 5th – 95th percentile 

range of Ts(x, y, ε0.93, Tb
3D) - Ts(x, y, ε0.93, Tb

iso) that is typically less than 0.1 K (Figure 3-13, blue). 

The range for simulations using ε0.89 [5th – 95th percentile, Ts(x, y, ε0.89, Tb
3D) - Ts(x, y, ε0.89, Tb

iso)] is 

greatest for ΣGround[imp.] surfaces (up to 0.4 K at 11:00). As ΣRoof have low wall view factors, the 

sensitivity of this class to incoming LWIR radiation from within canopy surfaces is low throughout 

the day. The emissivity effect for the other within-canopy surfaces varies through the day with the 

brightness temperature of the opposite facets (Figure 3-10a). Given that the impact of surface 

emissivity is increased when the facing wall has a very different temperature (Figure 3-12), the 

relative temperature distribution between walls is important. For ΣNorth, the 5th percentile of Ts(x, y, 

ε0.89 Tb
iso) overestimates the 5th percentile of Ts(x, y, ε0.89, Tb

3D) by 0.25 K in the period 11:30 – 12:00. 

This effect of temperature distribution within the canopy on the emissivity correction can therefore 

be larger than when changing the actual emissivity value used for north walls, as the 5th and 95th 



Chapter 3  68 

percentile differences in Ts(x, y, ε0.89) - Ts(x, y, ε0.97) are within ±0.2 K during the same 11:30 – 12:00 

period (within ±0.5 K for 08:00 – 18:00) (Figure 3-12). These results highlight that assuming emitted 

radiation is only a function of SVF (Adderley, Christen and Voogt, 2015) does not account for the 

real complex thermal heterogeneity of the urban canopy and can contribute towards uncertainty in 

the emissivity correction. 

 

Figure 3-13. Difference in surface temperature Ts (60 min resolution, 27th August 2017) 

derived from LWIR camera observations based on emissivity (ε) corrections with a 

heterogeneous (Tb
3D) and isothermal (Tb

iso) assumption, respectively, using a range of ε values 

(non-vegetative surfaces) according to dark impervious materials in the Kotthaus et al. (2014) 

spectral library. As observations are not areally weighted, the lower and upper extent of the 

distributions can still represent large fractions of the surface seen by the LWIR cameras. 

3.6 Discussion 

3.6.1 Flexibility in the correction framework 

The correction methodology presented for a complex urban area is applicable to different observation 

sites and applications. Our single case-study in central London does not demonstrate the myriad of 

potential ways this approach can be applied. 

For the atmospheric correction, climate model or reanalysis data could be used as input data instead 

of the more costly and challenging in-situ weather station observations used here. A trade-off may 
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exist with model grid resolution and skill, but the horizontal and vertical distribution of air 

temperature, pressure and water vapour from the model may be more accurately resolved than that 

observed. Alternatively, standard gas and aerosol models are available within the DART database. 

In addition to vertical atmospheric variations, the 3D RT approach is unique in that any horizontal 

variability (e.g. associated with localised point sources or distributions of water vapour or soot) can 

be specified. We aimed for atmospheric correction processing at close to real time (< 5 min 

simulation time). The final ~12 min simulation time per timestep across all cameras means the 

sensitivity of the model resolution (e.g. voxels, number of rays) to the simulated results requires more 

investigation and there is much scope for reduction in simulation time. 

The emissivity correction uncertainty analysis could be expanded to consider more spatially variable 

materials and anisotropy in surface emissivity such as specular reflections from glass. The DO nature 

of DART means spectral properties and scattering phase functions can be determined either manually 

or from the DART database. In general, the distribution of material properties for the correction is 

only limited by the input data. More detailed optical property information is expected in the future 

and could be obtained by incorporating other datasets and classification techniques. Given that a 

primary benefit of ground-based RS in urban areas is that observations can be made of the full 3D 

structure including vertical surfaces, a description of the material composition of the vertical surfaces 

is particularly important and can be used here. Google Street View has been applied in urban climate 

studies (Gong et al., 2018; Zeng et al., 2018a) and could be used to obtain structure and material 

composition information for within-canopy surfaces across large areas (Lindberg et al., 2019).  

To further understand uncertainties with emissivity correction from changes in surface temperature 

distributions, the surface temperature distribution can be pre-processed by DART (e.g. Wang, Chen 

and Zhan, 2018) or by user-defined approaches (Chapter 2) to resolve its variability from shadow 

patterns.  

We assumed downwelling radiance from the sky to be an isotropic source to isolate variance from 

the other effects studied. However, an anisotropic sky radiance can be prescribed which uses the full 

above-BOA (bottom of atmosphere) radiative transfer capabilities of DART.  

Additional sensitivity analyses for all these processes could contribute to a benchmarking effort to 

reduce simulation times (each emissivity correction takes ~12 h using 4 cores, 40 GB ram) along 

with simplifications (e.g. using first order scattering of LWIR radiation only) and/or by reducing the 

resolution (e.g. fewer voxels and lower density of rays). 

3.6.2 Future application of corrected ground-based observations 

To enhance the applicability of ground-based thermography observations for studying physical 

exchange processes, the correction of atmospheric and emissivity effects is crucial. Surface kinetic 

temperature (Ts) from high resolution LWIR RS on ground-based platforms in urban areas are 



Chapter 3  70 

increasingly required for a wide range of applications. The role of complex geometry to 3D RT 

processes is important to understand, particularly as modelling typically uses low LOD geometry 

restricted by data availability (e.g. Ghandehari, Emig and Aghamohamadnia, 2018) or the nature of 

the model as a 2D (Harman, Best and Belcher, 2004) or simplified 3D (Krayenhoff and Voogt, 2007; 

Aoyagi and Takahashi, 2012) scheme. The corrected ground-based observations are expected to have 

application in the following specific fields: ground-truthing of airborne or space-borne surface 

temperatures by assessment of the anisotropy (directional variability) of upwelling LWIR radiation 

(Lagouarde et al., 2014; Krayenhoff and Voogt, 2016), estimation of complete urban surface 

temperatures (Voogt and Oke, 1997), evaluation of urban surface (e.g. Masson, 2000; Harshan et al., 

2018) and building (Bueno et al., 2012) energy balance models, studies of shadow hysteresis effects 

(Meier, Scherer and Richters, 2010a), inputs to unstably stratified large eddy simulations 

(Gronemeier, Raasch and Ng, 2017) and data assimilation (e.g. Ghent et al., 2010; Li and Bou-Zeid, 

2014). 

3.7 Conclusions 

As high-resolution thermal imagery starts to be gathered in urban settings for long periods, detailed 

automatic correction techniques are required. As building structures and vegetation may have 

different patterns and heterogeneity in the city centre compared to residential areas, flexible methods 

are needed that account for the specific urban morphology. Here, a radiative transfer model is used 

to convert brightness temperature observations to kinetic surface temperature from a network of 

seven thermal cameras deployed in a complex, central city area. The methods applied to correct 

atmospheric and emissivity effects are advantageous over earlier work as: (a) the correction is applied 

within one modeling framework, (b) a large number of cameras with varying properties can be 

corrected simultaneously with minimal increase to computational cost, (c) a very high level of detail 

and realistic surface model is created and explicitly models buildings with sloped roofs, micro-scale 

structures (such as balconies), and vegetation, (d) multiple scattering of radiation within the urban 

atmosphere and between building structures is accounted for, and (e) the heterogeneous distribution 

of temperatures within the urban canopy is used. 

Six cameras have path lengths to the viewed surfaces of ~ 50 – 250 m. The analysis (> 20 days) 

covers varying meteorological conditions. The atmospheric correction is greatest during the day (up 

to 4.53 K for ~ 250 m path length) coinciding with high daytime brightness temperatures. This 

correction is evaluated using concurrent observations of a surface from both a “near” (~ 15 m) and 

corrected “far” (~ 155 m) distance using a seventh camera. The mean absolute error is 0.39 K (r2 = 

0.998). New insights are gained about path length variability by using a high level of detail surface 

geometry model. By using detailed surface geometry, the pixel path length is accurately registered 
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even for complex features such as sloped roofs, where a more simplified geometry may give 

inaccurate results. 

The emissivity correction has a diurnal pattern and varies by surface type. On a clear-sky day, the 

correction is greatest around midday with roofs over 3 K warmer when corrected. An error in material 

emissivity is most important for roofs. A baseline correction using an emissivity of 0.93 (ε0.93) across 

all built surfaces gives around ±1.4 K variation compared to using a reasonable range of expected 

emissivity values for dark building materials (ε0.89 and ε0.97, Kotthaus et al., 2014). Driven by varied 

surface temperatures and sky view factors, the irradiance across the surfaces is highly variable (intra-

pixel differences > 70 W m-2). South facing walls are up to 17 K warmer than north walls. The latter 

generally follow the air temperature and have cooler temperature when corrected (< -0.25 K around 

midday). Without variation in surface temperature, which is analogous to a sky view factor correction 

(Adderley, Christen and Voogt, 2015), the correction changes by around 0.25 K (0.1 K) using the 

low (high) emissivity values of ε0.89 (ε0.97). Thus, the uncertainty introduced from using a simplified 

SVF approach could be larger from the uncertainty introduced from material emissivity choice. 

Roofs likely have the greatest uncertainty in estimated Ts. Because of their high sky view factor, error 

sources are from the prescribed material emissivity and longwave sky irradiance. A more general 

error source is rapid changes in camera body temperature during clear-sky mornings which 

correspond to relatively poor agreement between modelled and observed atmospheric correction 

magnitudes (~ 1 K difference). More work on the calibration and housing of longwave infrared 

cameras for outdoor settings is required. 

Overall, the technique introduced is flexible and corrects for atmospheric and emissivity effects at 

an unprecedented level of detail. Once a “model world” is defined that describes the observational 

area (i.e. observed surface geometry and sensor perspective), the use of an anisotropic radiative 

transfer model (DART, Gastellu-Etchegorry et al., 2015) simplifies this challenging and complex 

correction procedure. There is flexibility in the choice of model inputs and parameters including the: 

3D distributions of atmospheric optical properties, surface temperatures and (directional) surface 

emissivity; anisotropic downwelling longwave radiance from the sky; surface and vegetation 

geometry; remote sensing observations from different platforms and design (e.g. cameras and 

narrow-wide FOV radiometers) which may be important for configurations where the observations 

and model resolve more detailed material properties, including anisotropic emissivity and specular 

reflections. By using a network of cameras with observations of a broad range of urban surface types 

and surface-camera distances, the approach encompasses a range of these parameters which will 

invariably be relevant as a benchmark for future applications. 
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List of symbols and acronyms [units] 

3D Three dimensional 

agl Above ground level (m) 

Bλ Black-body Planck radiance [W m-2 sr-1 μm-1] 

BB Black-body 

BCT Observation site for weather data (~1 km outside study area) 

BOA Bottom of atmosphere 

C# Nonspecific camera (C) and unique reference number (#) 

c1 First radiation constant [1.191042 x 109 W m-2 sr-1 μm-1]  

c2 Second radiation constant [1.4387770 x 104 μm K] 

CUB Observation site within the study area 

DART Discrete Anisotropic Radiative Transfer model 

DO Discrete ordinate 

DSM Digital surface model (3D vector-based) 

ΔTb
cam  Atmosphere effect for C2 (no correction) as Tb

cam(C2) - Tb
surf(C7) [K] 

ΔTb
surf  Atmosphere effect corrected for C2 as Tb

surf(C2) - Tb
surf(C7) [K] 

ELW Broadband incoming longwave radiation flux (irradiance) [W m-2] 

ELW
sky Broadband incoming longwave radiation flux (irradiance) from sky [W m-2] 

ε Emissivity 

FOV Field of view [°] 

IFOV Instantaneous field of view 

IMU Observation site within the study area 

L Band radiance [W m-2 sr-1] 

λ Wavelength [μm] 

LOD Level of detail 

LUT Lookup table 

LWIR Longwave infrared 

Lλ Spectral radiance [W m-2 sr-1 μm-1] 

Lλ
atm Spectral atmospheric radiance contribution along zpath

 [W m-2 sr-1 μm-1] 

Lλ
cam At-sensor radiance [W m-2 sr-1 μm-1] 

MLOS Multi line of sight 

MW Model world 

Ω Solid angle [sr] 

Ω↓ Solid angle [sr] associated with radiation received by a surface 

Ω↑  Solid angle [sr] associated with radiation leaving a surface 

ϕ Zenith angle [°] 

p Scattering phase function 

r Nonspecific raster spatial dataset (nadir orthorectified) 

rDSM Raster digital surface model (ground and building height agl) 

RH Relative humidity [%]  

ρv absolute humidity [g m-3] 

rRGB True-colour raster RGB image 

RT Radiative transfer 

RW Real world 

Rλ Camera relative spectral response function 

Σ Surface property of orientation and material 

σ Stefan-Boltzmann constant [5.67 x 10-8 W m-2 K-4] 

SEB Surface energy balance 

SLUM Spectral Library of impervious Urban Materials (Kotthaus et al., 2014) 

Ta Air temperature [K] 

τ Optical depth 

Γatm Transmittance of atmosphere 

Γλ
atm Spectral transmittance of atmosphere 

Tb
3D Three-dimensional parameterisation of brightness temperature across MW surfaces 

Tb
cam Camera brightness temperature [K] 

Tb
iso Isothermal parameterisation of brightness temperature across MW surfaces 

Tb
surf Surface brightness temperature [K] 

θ Azimuth angle [°] 

Ts Surface temperature [K] 
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VCE Vegetation canopy element: e.g. trees, bushes or shrubs taller than 1.5 m agl 

VxS Surface voxel (intersected by DSM triangles) 

VxV VCE voxel 

x, y Nonspecific coordinate in 2D camera image 

X, Y, Z Nonspecific coordinate of 3D space 

zpath
 Path length between camera and target surface [m] 
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Chapter 4 Urban satellite view uncertainty assessed with ground-based 

thermography 

Abstract 

Ground-based thermal camera observations are used to determine the surface temperature (Ts) of a 

central urban study area to quantify view angle uncertainties in satellite land surface temperatures. 

Observations with high temporal (5 min) and spatial (~0.5 → 2.5 m) resolution cover a large source 

area (3.9 ha). A detailed model of the urban surface combined with sensor view modelling is used to 

quantitatively classify camera observations by geometry and material properties (e.g. surface 

orientation, albedo, solar irradiance and shadow history) at an unprecedented level of detail. 

Unsupervised shadow tracking within images reveals the recently shaded (< 30 min) ground is up to 

18.6 K warmer than concurrent ambient surface temperatures. The ground cools at a similar rate to 

walls but three times slower than roofs. Based on the classified observations the surface temperature 

distribution across a large area (430 x 430 m) is characterised at high (1 m) resolution. This is used 

to simulate the directional surface-leaving radiance (effective thermal anisotropy), accounting for 

multiple scattering within the canopy as opposed to only considering the changing view fraction of 

surfaces. Virtual surface temperature observations from an EO satellite (Ts
EO) are simulated, taking 

into account emissivity effects. On a mainly clear-sky day, Ts
EO varies by up to 5.1 K in response to 

view angle variations of up to 50° off-nadir, which is common for EO satellites (e.g. Aqua/Terra 

MODIS). This magnitude of effective thermal anisotropy is generally lower than observed or 

modelled by prior studies. Uniquely, the inter-class variability of observed Ts is here quantified for a 

complex surface geometry (cf. simplified geometry in prior studies) and (relatively cool) urban trees 

are explicitly resolved. Ts
EO has generally good agreement with concurrent MODIS observations. 

From a nadir view, Ts
EO overestimates the areally averaged surface temperature (“complete” surface 

temperature) by up to 1.9 K during the day. Realistic simulation of thermal anisotropy can inform 

further idealised descriptions of urban geometry (e.g. TUF-3D, Krayenhoff and Voogt, 2007; GUTA, 

Wang, Chen and Zhan, 2018) for future operational retrievals of Ts
EO over urban areas. 

4.1 Introduction 

Urban surface temperature Ts is closely linked to the surface energy balance (Krayenhoff and Voogt, 

2007). High-quality observations are needed to develop and evaluate parameterisations that address 

more realistically complex land surfaces in numerical weather prediction (NWP), climate models, 

thermal computational fluid dynamics (CFD) models and building energy models required to provide 

a wide range of integrated urban services (e.g. urban planning, heat stress warnings, Baklanov et al., 

2018). Across entire cities, earth observation (EO) satellites can resolve Ts (Ts
EO) at a local-scale to 

observe the urban heat island phenomenon (e.g. Roth, Oke and Emery, 1989; Kandel, Melesse and 
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Whitman, 2016), effects of land use change (e.g. Dousset and Gourmelon, 2003; Weng and Lu, 2008) 

and derive SEB components of QH (e.g. Voogt and Grimmond, 2000; Xu, Wooster and Grimmond, 

2008; Crawford et al., 2018) and ΔQs (e.g. Kato and Yamaguchi, 2007; Chrysoulakis et al., 2018; 

Lindberg et al., 2019). Further, Ts determined by urban climate models as part of their underlying 

physical equations can use Ts
EO for evaluation (e.g. Ghent et al., 2010; Li and Bou-Zeid, 2014). 

Despite the advances of thermal infrared monitoring from space, there are several limitations with 

the approach (Roth, Oke and Emery, 1989; Voogt and Oke, 2003). Ts
EO only provides an 

instantaneous snapshot at a given moment of the varied diurnal cycle. In addition, any remote sensing 

(RS) observation is taken from a limited view angle (Jiang et al., 2018) with a two-dimensional 

perspective of the surface-leaving radiance in which to determine Ts. Over urban areas, the three-

dimensional (3D) morphology and complex surface materials create a varied Ts distribution and 

anisotropic surface-leaving radiance (Krayenhoff and Voogt, 2016, Chapter 2). As a result, surface-

leaving radiance sampled by a remote sensor can change depending on the view angle. For example, 

an observation viewing directly downward (nadir) is biased to the surface-leaving radiance from 

horizontal surfaces and misses the large wall area. Anisotropy of surface-leaving radiance across 

urban canopies is defined as an “effective” thermal anisotropy, to differentiate from thermal 

anisotropy exhibited by individual surface components (Voogt and Oke, 1998b). 

Effective urban thermal anisotropy and view bias of urban thermal RS has been observed from 

helicopters, which enable multi-angular observations across scales representative of satellite pixels 

(local-scale i.e. 100 – 5000 m; Oke et al., 2017) with maximum anisotropy of up to 9 K (Voogt and 

Oke, 1998b) and over 10 K (Lagouarde et al., 2010). Long time-series satellite observations have 

drawn similar conclusions (Hu et al., 2016). Observations from these platforms cannot determine the 

diurnal development of thermal anisotropy. For this, surface temperatures at high temporal resolution 

over an extended time period are required, as urban surface temperatures have high temporal 

variability even over relatively short intervals (Christen, Meier and Scherer, 2012). RS observations 

from ground-based platforms can provide such information and observe the micro-scale (< 100 m) 

processes that contribute to effective thermal anisotropy at high temporal resolution from potentially 

concurrent observations of both the horizontal and vertical surfaces of the urban canopy. As the 

observations are at micro-scales but Ts
EO is at local-scale, comparison to EO data requires “upscaling” 

the observations across the whole surface area within the satellite pixel (i.e. micro-scale → local-

scale). This can be achieved by classifying which parts of the urban surface are “seen” (e.g. walls, 

roofs, ground) by the ground-based observations and allows their relative distribution across surfaces 

within the satellite pixel area to be determined. Prior studies using ground-based thermography may 

use manual inspection of images to determine which pixels view different surfaces such as walls, 

roofs and ground (e.g. Christen, Meier and Scherer, 2012), or may relate any contrasting distributions 

of observed values to different surface characteristics by clustering and frequency distribution 
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analysis, requiring a-priori decisions on the end-members (e.g. Voogt and Oke, 1997; Hénon et al., 

2012). These methods can be time consuming, qualitative, and have not been shown to reliably 

classify many complex micro-scale features such as surface materials and vegetation and have 

generally been upscaled across relatively homogeneous (Adderley, Christen and Voogt, 2015) or 

scale model (Chapter 2) morphology. 

Models enable analysis of effective thermal anisotropy for longer time series and under controlled 

conditions. Sensitivity of Ts to urban morphology cf. material properties have received attention (e.g. 

Krayenhoff and Voogt, 2016) because of the complexity in material distributions and properties. 

Surface geometry implemented in current modelling frameworks is created based on building plan 

area index (PAI), building height, sky view factor (SVF), building aspect ratio and street direction 

(Krayenhoff and Voogt, 2016; Jiang et al., 2018). These parameters are translated to surface models 

of simplified geometry, i.e. using planar wall facets, flat roofs and regular repeating arrays of 

buildings. Geometry simplification can underestimate maximum anisotropy (Krayenhoff and Voogt, 

2016) and likely overestimate the influence of certain view directions due to any repeating features 

of the surface model geometry (Chapter 2). Few studies include vegetation or details of buildings 

smaller than the building scale. Surface temperatures have been prescribed across facets derived from 

energy balance modelling (Krayenhoff and Voogt, 2007) or from sub-facet assimilation of 

observations (Wang et al., 2018, Chapter 2).  

In this paper, ground-based observations are used with high-resolution 3D radiative transfer 

modelling (Discrete Anisotropic Radiative Transfer (DART) to investigate effective thermal 

anisotropy and to develop a unique upscaling approach. Six ground-based infrared cameras provide 

the surface temperature at high spatial (sub-facet) and temporal (5 min) resolution in a city area. 

Ground-based remote sensing is highly directional and challenging to interpret across scales of 

satellite pixels as only a subset of all surfaces in any area are captured. To explore this, a 3D surface 

model with realistic surface geometry is used with classes based on sun-surface geometry, shadow 

history and materials. These are used to parameterise the observed surface temperature variability, 

creating a novel high resolution (< 1 m) surface temperature distribution applicable to a large area 

(430 x 430 m) that is spatially representative of a Ts
EO pixel; i.e. this new upscaling technique is 

applicable to complex urban areas. All of the surface classes are associated with sun-surface 

geometry which drives effective thermal anisotropy (Krayenhoff and Voogt, 2016). The upscaled 3D 

surface temperature is used with DART to simulate the radiative transfer processes and directional 

variability of Ts
EO at an unprecedented level of detail. 

4.2 Methods 

Surface temperature (Ts) across a “real world” (RW) urban study area is determined using a network 

of longwave infrared (LWIR) cameras (Section 4.2.1). Results are presented for one case study day. 
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A “model world” (MW, Section 4.2.2) describes geometry and instrumentation of the RW area. It 

facilitates the classification of observations quantitatively compared to qualitatively in earlier 

ground-based studies. Classified observations are upscaled across the MW geometry giving a 3D 

temperature distribution with local-scale extent (Section 4.2.3), enabling simulation of effective 

thermal anisotropy and comparison to satellite imagery (Section 4.2.4). 

 

Figure 4-1. Plan view of study area with: (a) height of all surfaces above sea level (asl) with 

building footprints (black lines, from Evans et al., 2011), (b) orthorectified RGB image from 

a mosaic of Google Earth (Google, 2019a) images with locations (symbols) of the study sites, 

(c) a render of the “model world” (MW) digital surface model (DSM) and vegetation canopy 

element (VCE) geometry with DSM (white) and VCEs (green) seen by the cameras located 

(pink dots) around the observation sites with different view directions (pink arrows) and 

unique camera identification (white) numbers (Table 4-1 gives details), (d) Digital camera 

image looking southeast and next to camera number 4 (C4) on 25th Oct 2017. (a – c) use 

Coordinate Reference System WGS84 UTM grid zone 31N. 

4.2.1 Real world study area and observations 

The RW study area, in the Borough of Islington, London, UK (51°31’35” N, 0°06’19” W), has 

observation sites on top of two high rise residential tower blocks (hereafter IMU at 74 m agl (above 
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ground level); WCT 36 m agl) (Figure 4-1a). The study area streets have an irregular pattern and are 

often lined with deciduous trees. Buildings are residential and commercial, often four to six storeys, 

arranged in terrace rows or large single units. 

Optris PI-160 (Optris GmbH, 2018) LWIR cameras (Table 4-1) measure upwelling longwave 

radiation from the study area (Figure 4-1c). The cameras, installed on tall buildings, have multiple 

view angles (Table 4-2) allowing various facets of the complete canopy surface to be sampled. A 

representative monitoring of the 3D surface is crucial for the upscaling of observations. More details 

about the study area and the observations are given in Chapter 3, including camera siting, 

measurement procedure, and the atmospheric and emissivity correction of observations to estimate 

Ts from the at-sensor brightness temperatures. 

Table 4-1. Measurement and corrections used to determine surface temperature (Ts) from 

LWIR cameras. 

Table 4-2. Siting properties of the ground-based longwave infrared (LWIR) cameras installed 

on two high-rise residential towers (IMU, WCT) within the study area (Figure 4-1).  

Property Description 

Platform Static ground-based 

Sample rate 1 min 

Temporal resolution  5 min (median of samples at end of interval) 

Image resolution 160 x 120 pixels 

Temperature resolution 0.1 K 

Number of cameras 6 

Observation campaign period 7th July – 10th Nov 2017 

Enclosure Custom built enclosures (Chapter 3) 

Radiometric calibration Manufacturer calibrated 2 months prior to study 

Accuracy ± 2 K 

Spectral range 7 – 14 μm 

Image distortion correction See Chapter 2 

Atmosphere correction See Chapter 3 

Emissivity correction See Chapter 3 

Camera Located 

Field of view (°) 

Horizontal x 

vertical 

Cardinal 

facing 

Viewing zenith 

angle (θ, °) 

Median path 

length (m) 

C1 IMU 68.6 x 54.2 E 46.5 88.8 

C2 IMU 62.6 x 49.1 NE 51.7 97.9 

C3 IMU 62.8 x 49.2 NWW 52.9 106.6 

C4 IMU 37.3 x 28.4 SE 56.7 122.7 

C5 WCT 38.4 x 29.3 SW 66.6 79.0 

C6 WCT 62.4 x 48.9 W 61.7 67.5 
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Meteorological observations used include air temperature (Ta, K) and downwelling shortwave (SW) 

irradiance (ESW
↓, W m-2) from a Davis Vantage Pro 2 weather station located 114 m agl, 1.1 km 

southeast of IMU, and broadband (4.5 – 42 μm) downwelling longwave irradiance (ELW,↓, W m-2) 

from a Kipp & Zonen CNR1 net radiometer at IMU. 

4.2.2 Model world 

The RW study area and instrumentation are represented in a “model world” (MW) environment to 

facilitate the analysis of observations and simulation of effective thermal anisotropy. The MW uses 

a vector-based 3D digital surface model (DSM) with a 3D mesh of triangles and a voxelated 

representation of vegetation covering the RW study area (Figure 4-1). It is discretised into voxels Vx 

of uniform size in a 3D raster format at high resolution (ΔX = ΔY = ΔZ = 1 m). The spatial resolution 

of the MW surface is the portion of DSM triangles (S) that occupies the volume of one surface voxel 

(a “surface element”, SVx, Figure 4-2). The voxel array stores a series of surface properties as a 

surface class (Table 4-3) and the surface temperature of MW surface elements. By using surface 

elements, surface features such as geometry, material, optical and temperature properties can be 

determined at a flexible spatial resolution, instead of at the triangle scale of the DSM (e.g. radiosity 

models of Emig, 2017 and Ghandehari et al., 2018; SOLENE model of Hénon et al., 2012). 

Many features of the MW are created and managed by the Discrete Anisotropic Radiative Transfer 

(DART) model (Gastellu-Etchegorry, Grau and Lauret, 2012). DART allows 3D radiative transfer 

(RT) processes to be simulated in both natural and urban landscapes in the visible to LWIR regions 

of the electromagnetic spectrum using a ray tracing approach. Here DART is used to: 

1) resolve the triangle-voxel intersection and store the surface class, upscaled surface temperature 

observations and optical properties for each surface element (Figure 4-2) 

2) simulate the 3D distribution of direct incoming SW radiation across the MW surface for surface 

and image classification based on sun-surface geometry  

3) simulate surface-leaving radiance from the perspective of EO satellites at various view angles 

using the MW surface geometry, temperatures and optical properties. 

For a full description of DART see Gastellu-Etchegorry et al. (2015). 

The vegetation canopy elements (VCE, any vegetation taller than 1.5 m) are a voxel array (VCEVx) 

with ΔX = ΔY = 1 m and ΔZ = 0.1 m resolution (Figure 4-2). The final MW geometry (Figure 4-3) 

is determined from a series of Google Earth (Google, 2019a) images photogrammetrically processed 

as a 3D point cloud using Agisoft PhotoScan Professional software (Agisoft LLC, 2013) and 

subsequently post-processed (Appendix D) to separate the DSM and VCE. 
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Figure 4-2. Surface representation and interaction in the “model world” (MW) that is used to 

interpret the “real world” (RW) urban area and observations, with radiative processes and 

triangle-voxel intersection managed by the DART model. The pinhole camera can also be 

below the bottom of atmosphere (BOA) layer. See list of symbols and acronyms for 

definitions.  

Each surface element (Figure 4-2) is assigned three properties: orientation and material (Σ), sun-

surface geometry (bidirectional reflectance factor, BRF) and shadow history (time in shade, tshd, min) 

which are all used to inform the upscaling of observed surface temperatures. The three properties 

(Table 4-3) combine to a unique surface class i at timestep t resulting in a 3D voxel array of surface 

classes [Vx(X, Y, Z, i, t)]. 

Table 4-3. Surface properties of orientation and material (Σ), bidirectional reflectance factor 

(BRF) and shadow history (tshd) assigned to each surface element (Figure 4-2) of the “model 

world” (MW) at ΔX = ΔY = ΔZ = 1 m spatial and 5 min temporal resolution. A surface element 

has three surface properties: i(Σ, BRF̅̅ ̅̅ ̅̅ , tshd). 

 Property Method Description Values Fig. e.g. 

Σ Orientation and 

material 

Blender 3D modelling  

Land cover map  

Airborne hyperspectral  

Cardinal 

orientation 

and material 

Roof[dark] 

Roof[light] 

Ground[imp.] 

Ground[grass] 

North 

East 

South 

West 

Down 

Mixed 

Masked  

Figure 4-3 

Figure 4-5b 

BRF̅̅ ̅̅ ̅̅  Sun-surface 

geometry 

DART simulation DART BRF 

simulation 
BRF binned (BRF̅̅ ̅̅ ̅̅ ) as 0 → 2 

at Δ0.25 (unitless). Shaded 

surfaces (BRF < 0.05) are 

assigned BRF = -1 

Figure 4-4 

tshd Shadow history DART simulation Time in shade 0 → 2τ Δ5 (min) Figure 4-5d 
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Figure 4-3. Digital surface model (DSM) and vegetation canopy elements (VCE) for the study 

area created from Google Earth (Google, 2019a) imagery (Appendix D) with (colours) 

orientation and material surface properties (Σ), rendered in Blender (Blender, 2018) for off-

nadir view directions facing: (a) north, (b) east, (c) south, (d) west and (e) northeast with focus 

on the study sites and surface geometry, rendered without Σ. The VCE product covers slightly 

larger area than the DSM. 

The DSM triangle orientation property (walls by cardinal orientation, roofs, ground and downward) 

is extracted from the surface model using the Blender 3D modelling software version 2.79b (Blender, 

2018). Incorporating a 4 m raster land cover dataset (Lindberg and Grimmond, 2011) and a roof 

albedo classification derived from a 1 m airborne hyperspectral image (NERC ARSF, 2010) allows 

for the surface classes to be enhanced. Ground is subdivided into grass (Ground[grass]) and 

impervious (Ground[imp.]) while roofs are either of high albedo (Roof[light]) or low albedo 



Chapter 4  82 

(Roof[dark]). Further details can be found in Chapter 3 and Appendix D. The final DSM with Σ 

assigned to each triangle (Figure 4-3) is intersected with the voxel array to determine Σ for each 

surface element. 

4.2.2.1 Surface-sun geometry 

DART simulations of direct incoming SW radiation across the MW surface (Figure 4-4) are used to 

determine the sun-surface geometry of each surface element through time, and the shadowing of 

surface elements by other surface elements and VCEs. 

All surface elements are defined in DART as Lambertian reflectors. Direct downwelling spectral 

irradiance (Eλ
↓,dir) is simulated by DART at 0.5 μm wavelength (λ, Δλ = 0.01 μm) with solar angles 

calculated using NOAA solar calculator equations (NOAA, 2016). Rays from the BOA (bottom of 

atmosphere, Figure 4-2) layer (625 rays m-2) are tracked with spectral radiant flux density Eλ(θ, ϕ, Ω, 

t) (W m-2 μm-1) along solid angle Ω (sr) and direction (θ, ϕ) through the lower atmosphere and land 

surface at timestep t. Eλ(θ, ϕ, Ω, t) that is intercepted by SVx(X, Y, Z) is scattered isotropically for all 

possible scattering directions, according to its position and orientation. Energy from rays scattered 

from the surfaces are stored by the voxel of SVx(X, Y, Z).  

 

Figure 4-4. Surface geometry of the “model world” (MW) with bi-directional reflectance 

factor (BRF̅̅ ̅̅ ̅̅ ) (bins) from direct incoming solar radiation simulated using DART for 27th 

August 2017 11:00 and stored as a 3D array of voxels. See Figure 4-1b for (pink symbols) 

observation sites. 
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Across the entire scene this produces a 3D array of voxels with values of locally scattered radiation 

(SR) for a given timestep [Mλ(X, Y, Z, t), W m-2]. The fraction fSRDART references any sun-surface 

geometry to spectral irradiance for a flat surface: 

by normalising with the downwelling spectral irradiance at the BOA layer [Eλ
↓,dir(X, Y, Z = top, t), 

Figure 4-2]. Based on fSRDART(X, Y, Z, t), a 3D distribution of bidirectional reflectance factor 

BRF(X, Y, Z, t) is derived (Appendix J). The final surface property BRF̅̅ ̅̅ ̅̅ (X, Y, Z, t) (Figure 4-4) is 

created from the BRF binned (indicated by overbar) from 0 → 2 with a bin width of 0.25. To 

differentiate shaded surfaces [BRF(X, Y, Z, t) ≈ 0] from the lowest BRF̅̅ ̅̅ ̅̅  bin (BRF̅̅ ̅̅ ̅̅  = 0 → 0.25), 

surface elements with BRF(X, Y, Z, t) < 0.05 are assigned BRF̅̅ ̅̅ ̅̅ (X, Y, Z, t) = -1. The same is done 

for timesteps without direct solar radiation, determined based on ESW
↓ observations (Section 4.2.1). 

4.2.2.2 Shadow history 

The time series of BRF̅̅ ̅̅ ̅̅ (X, Y, Z, t) is used to estimate the time a surface element has spent in shade 

(tshd, min). BRF̅̅ ̅̅ ̅̅ (X, Y, Z, t) is compared to the prior timestep [BRF̅̅ ̅̅ ̅̅ (X, Y, Z, t – 5min)] (Table 4-1). 

If a surface element becomes shaded at time t, it has spent tshd(X, Y, Z, t) = 5 min in shade. For the 

timestep prior to this (t – 5 min), the surface element has spent zero minutes in shade and has tshd(X, 

Y, Z, t – 5min) = 0 min. A surface element that continues to be in shade [i.e. BRF̅̅ ̅̅ ̅̅ (X, Y, Z, t + 5min) 

= -1] has tshd(X, Y, Z, t + 5 min) = 10 min at the next timestep, etc. A surface element can be part 

sunlit and part shaded, even across multiple timesteps, however, each surface is reassigned as fully 

sunlit or fully shaded based on a 50 min window around each timestep. If a surface element has 

BRF̅̅ ̅̅ ̅̅ (X, Y, Z, t) > -1, is sunlit at t – 25 min and shaded at t + 25 min, then it is assumed that the 

surface element could be partially sunlit. In these cases, the following threshold is used to determine 

if the surface element is more shaded than sunlit, and used to update tshd by: 

When tshd(X, Y, Z, t) = 0, surface elements are allocated the maximum BRF̅̅ ̅̅ ̅̅ (X, Y, Z) that occurred 

up to 5 timesteps prior (i.e. max{BRF̅̅ ̅̅ ̅̅ (X, Y, Z, t – 25min → 0)}) to assign partially shaded surfaces 

with a fully sunlit status. 

4.2.2.3 Instrumentation and image classification 

RW images are classified using the MW surface and “instrumentation”. Sensor view modelling 

replicates the RW LWIR camera perspectives in the MW, with (X, Y, Z) elements of the MW surface 

geometry projected on to the MW camera image plane (IP). Pinhole cameras (Hartley and Zisserman, 

2004) are used. Each have a location, view angle and field of view within the MW. The pinhole 

f RDART(X, Y, Z, t) =  
𝑀λ(X, Y, Z, t)

𝐸λ
↓,dir (X, Y, Z = top, t)

⁄  Eqn. 4.1 

tshd(X, Y, Z, t)= {
0       if BRF(X, Y, Z, t) < [0.75 · BRF(X, Y, Z, t - 25 min)]
5       otherwise

. Eqn. 4.2 
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camera rectilinear perspective projection causes 3D straight lines to be straight lines the in images. 

The RW cameras are geometrically calibrated to match the pinhole camera projections (i.e. image 

distortion correction applied, see Chapter 2 and Appendix A for details). MW surface elements 

projected onto the MW camera IP provide the RW image classes (e.g. Figure 4-5a) per-pixel (x, y): 

surface properties of Σ(x, y), BRF̅̅ ̅̅ ̅̅ (x, y) and tshd(x, y) (Figure 4-5). 

Surface property Σ for each camera pixel [Σ(x, y), Figure 4-5b] is obtained using Blender, with 

colours from each DSM triangle property (Figure 4-3) projected for the MW camera perspective (see 

Chapter 2 for details). A pixel is Σmixed(x, y) (dark grey, Figure 4-5b) if more than one surface and 

orientation property is rendered within the pixel’s instantaneous field of view (IFOV). RW pixels 

viewing surfaces beyond the MW (e.g. Figure 4-5b C2, top of image) are assigned Σmixed(x, y). Near-

field pixels that are challenging to align (e.g. IMU and CUB roofs) include a metal roof (C2, Figure 

4-5b) and the corner of the C1 enclosure (Figure 4-5b, top left); these are manually assigned the 

additional class Σmasked(x,y) and excluded from further analysis. 

Per-pixel surface properties of BRF [BRF(x, y, t), Figure 4-5c] are determined using DART. Rays 

scattered from the surface of each fSR(X, Y, Z) (Eqn. 4.1) simulation for 3D classification of sun-

surface geometry are tracked across the IP of each MW camera (Yin, Lauret and Gastellu-Etchegorry, 

2015). These sensor-tracked rays are used by DART to calculate at-sensor spectral radiance [Lλ
cam(x, 

y, t), W m-2 sr-1 μm-1] with: 

As a low density of rays incident on a surface cause inaccuracies and erroneous patterns in BRF(x, 

y), isolated “sunlit” pixels [BRF(x, y) > 0] (i.e. none of the surrounding 8 pixels have BRF(x, y) > 

0) are reassigned to Σmixed(x, y). A low density of incident rays occurs if the direct-beam solar 

radiation is near-perpendicular to surfaces and/or when the sun angle is low relative to the surface.  

Again, pixel values of BRF(x, y) are binned as BRF̅̅ ̅̅ ̅̅ (x, y). BRF̅̅ ̅̅ ̅̅ (x, y) provides the time the surface 

sampled by each pixel has spent in shade [tshd(x, y)] in the same way as tshd(X, Y, Z, t) (i.e. 2D pixels 

rather than 3D voxels). 

BRF(x, y, t) =
π𝐿λ

cam(x, y, t, Ω) 

𝐸λ
↓,dir(t)

 . Eqn. 4.3 
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Figure 4-5. (a) Optris PI longwave infrared (LWIR) camera observations for 27th August 2017 

12:00 UTC and (b – d) simulated surface properties projected onto the image plane (IP) of 

“model world” (MW) cameras that simulate the perspective of (a). Surface properties are: (b) 

orientation and material (Σ), (c) shortwave bidirectional reflectance factor (BRF) assuming 

Lambertian reflecting surfaces, and (d) time surfaces have spent in shade (tshd, white → blue) 

or sun (white → red). The cameras (Table 4-2) are indicated to the left of each image. 
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4.2.3 Upscaling classified surface temperature across model world 

Classified observations are upscaled across the MW surface to give a 3D surface temperature 

distribution [Ts
3D(X, Y, Z, t)]. According to class i (combination of Σ, BRF̅̅ ̅̅ ̅̅  and tshd, Table 4-3), per-

pixel surface temperature observations [Ts(x, y, i, t)] at timestep t are aggregated to give per-class 

values of surface temperature [Ts(i, t)]. These are then gap-filled and allocated to all surface elements 

based on the 3D surface classes [SVx(X, Y, Z, i, t)]. 

Initial per-pixel surface temperature aggregation uses Σ and BRF̅̅ ̅̅ ̅̅  for each timestep [Ts(Σ, BRF̅̅ ̅̅ ̅̅ , t)], 

excluding “mixed” and/or “masked” pixels. As there are more Ts(Σ, BRF̅̅ ̅̅ ̅̅ , tshd, t) combinations than 

observed, a per-class shaded temperature [Ts(Σ, BRF̅̅ ̅̅ ̅̅  = -1, t)] is used. To account for the hysteresis 

effect inherent to the cooling of shaded surfaces (Meier, Scherer and Richters, 2010b; Chapter 2), a 

“cooling event” time window is defined. A cooling event starts when a pixel is sunlit for the last time 

(tshd(x, y) = 0 min) and ends when it is substantially cooled (tshd(x, y) > nτ), with time constant τ (min) 

and multiplicative factor n. To determine a representative length of time for cooling events, τ(x, y) 

is calculated using an exponential rate of cooling (Vollmer, 2009) from all pixels that enter shade as: 

based on different surface temperature observations (Table 4-3). 

Table 4-4. Surface temperature sub-classes used to determine exponential cooling (Eqn. 4.4). 

See text and list of symbols and acronyms for definitions. 

 Surface temperature (Ts) description Full definition 

𝑇s[a] Pixel Ts with time in shade no longer than nτ minutes. 𝑇s(x, y, 𝛴, BRF̅̅ ̅̅ ̅̅ > −1, tshd > 0 & ≤ 𝑛τ, t) 

𝑇s[b] Ambient Ts at time t, aggregated (median) from pixels in 

shade for more than nτ minutes. 
𝑇s(𝛴, BRF̅̅ ̅̅ ̅̅ = −1, tshd > 𝑛τ, t) 

𝑇s[c] Pixel Ts at the timestep prior to shading (tshd = 0), i.e. at 

the start of the cooling event (t = 0). 
𝑇s(x, y, 𝛴, BRF̅̅ ̅̅ ̅̅ > −1, tshd = 0, t = 0) 

𝑇s[d] Ambient Ts at the timestep prior to shading (t = 0), 

aggregated (median) from pixels in shade for more than 

nτ minutes. 

𝑇s(𝛴, BRF̅̅ ̅̅ ̅̅ = −1, tshd > 𝑛τ, t = 0) 

Cooling event lengths (nτ) need to be initially estimated. Using all pixels within a day, nτ is set at 15 

min and increased in increments of 15 min until the majority of observations are at ambient surface 

temperature; i.e. when > 75% of pixels with tshd(x, y) = nτ have an exponentially cooled Ts (Ts[a]) 

lower than ambient temperature (Ts[b], median) plus one standard deviation. Only considered are 

cooling events where the pixel has a recorded temperature at tshd(x, y) = 0 and tshd(x, y) = nτ. 

In Eqn. 4.4, the temperature difference between the recently shaded surface and the ambient surface 

temperature throughout the cooling event (Ts[a] – Ts[b], Table 4-2 and Figure 4-6b) isolates the rate 

of cooling from any ambient variations in temperature. After τ minutes, the temperature difference 

is reduced to 1/e (~0.368) of the value at tshd = 0 (Vollmer and Möllmann, 2017). The established 

𝑇s[a] = 𝑇s[b] + (𝑇s[c] − 𝑇s[d])𝑒
(−

t
τ
)
 Eqn. 4.4 
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time window for observations within cooling events (e.g. Figure 4-6a) enables the estimation of τ(x, 

y, t) using a nonlinear least squares (NLS) fit of Eqn. 4.4 (e.g. Figure 4-6b) for all per-pixel cooling 

events. The NLS fit of τ(x, y, t) is rejected if (1) it contains less than 5 timesteps, (2) the pixel surface 

property becomes “mixed” (Section 4.2.2.3) at any point during the event, (3) the NLS fit fails to 

converge, or (4) τ(x, y, t) > 1000 min. A final daily value of τ uses the median value of τ(x, y, t, Σ) 

determined from all eligible cooling events as one representative time constant for three surface 

types: roofs, walls, and ground [τ(Σ)]. From this, the initial estimate of nτ is updated to use τ(Σ) and 

a value of n that is explicitly defined (here n = 2). 

 

Figure 4-6. All C3 camera (Table 4-2) roof-viewing pixels shaded from t = 0 and t = 90 (min) 

(10:00 and 11:30 on 27th August 2017): (a) all samples (grey lines) and one (random, black) 

cooling event with the background surface temperature (blue) line) (b) an exponential fit (red, 

Eqn. 4.4) to one (black line from a) to one cooling event. 

Meier et al. (2010) describe surface heating rates under controlled conditions in an urban courtyard 

with homogeneous surface materials. However, for our complex site we could not generate a 

parameterisation for recently sunlit surfaces as the required “well sunlit” reference temperature is 

challenging to define given the greater variability in sunlit temperatures compared to shaded 

temperatures. 
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4.2.3.1 Gap-filling per-class surface temperatures 

As observations do not cover all facets of the entire study area, there are more 3D classes SVx(X, Y, 

Z, i, t) than aggregated per-class observations [Ts(i, t)]. This requires observations to be gap-filled. 

The multiple and static cameras sample all Σ except for downward facing surfaces (Σdown) (e.g. under 

a balcony, rendered as Σmixed(x, y), Figure 4-5b). These are gap-filled using per-pixel observations 

from all shaded walls.  

Bins of Ts(Σ, BRF̅̅ ̅̅ ̅̅ ) with less than 96 pixels (0.5 % of an image) are gap-filled with the nearest lower 

bin [e.g. Ts(Σ, BRF̅̅ ̅̅ ̅̅  = 0.5) filled with Ts(Σ, BRF̅̅ ̅̅ ̅̅  = 0.25)] consecutively until all gaps are filled. For 

gap-filling the lowest possible BRF bin (i.e. BRF̅̅ ̅̅ ̅̅  = -1), observations from all per-pixel shaded 

temperatures [i.e. Ts(x, y, BRF̅̅ ̅̅ ̅̅  = -1)] are used. 

For cooling events with an ambient temperature at t = 0 that is greater than the sunlit temperature at 

tshd = 0 min, the ambient temperature is used throughout the cooling event. If the recently shaded 

surface temperature becomes less than the well shaded temperature (Ts[b], Table 4-2) then this 

temperature and all subsequent temperatures with a greater time in shade are given the ambient 

temperature (Ts[b]). 

4.2.3.2 Extrapolating observations to 3D and complete surface temperature 

Ts(i, t) is allocated to the 3D space [SVx(X, Y, Z, i, t)] to create 3D surface temperature [Ts(X, Y, Z, 

i, t)]. A surface element can have multiple triangles with multiple properties of Σ. For example, a 

voxel at the edge of a roof may contain a surface element comprising ΣRoof and ΣNorth DSM triangles. 

In these cases, the mean temperature of all classes involved is allocated to the respective surface 

element. 

Interpretation of thermal anisotropy and satellite directional view bias uses the complete surface 

temperature (Tc, K) or areally averaged 3D surface temperature rather than a directional surface 

temperature from RS (Voogt and Oke, 1998b; Jiang et al., 2018). Tc is important as surface-

atmosphere exchanges involve (to some extent) all surfaces in contact with the atmosphere. Each 

surface element has an area [SVx(X, Y, Z), m2] that is incorporated to weight Ts(X, Y, Z, i, t): 

where AVCE (m2) is the VCE surface area across the domain and Ts
VCE the VCE surface temperature. 

Similar to Voogt and Oke (1997), AVCE is taken as plan area of all VCEs, here derived from a 0.2 m 

raster mask of the VCE distribution. Vegetation can exhibit complex thermal anisotropy but on 

average is nearly equal to Ta (Meier and Scherer, 2012), so Ts
VCE is approximated by Ta from the 

weather station (Section 4.2.1) rather than thermography. 

𝑇 (t) = ∑ 𝑇s(X, Y, Z, i, t)

n

X,Y,Z

[
 Vx(X, Y, Z)

∑  Vx(X, Y, Z)n
X,Y,Z + AVCE

] + 𝑇s
VCE [

AVCE

∑  Vx(X, Y, Z)n
X,Y,Z + AVCE

] Eqn. 4.5 
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4.2.4 Simulation of satellite surface temperature 

In order to simulate the effective thermal anisotropy, surface-leaving spectral radiance (Lλ
surf) from 

the MW area is simulated with DART for a series of discrete upward directions [Lλ
surf(ϕ, θ, Ω)]. 

Optical properties at 11.02 μm are used to correspond with the centre of MODIS (Moderate 

Resolution Imaging Spectroradiometer) band 31 (10.780 – 11.280 μm). For ΣGround[grass] the mean of 

all dry grass samples (ε11.02μm = 0.955) in MODIS UCSB (University of California, Santa Barbara) 

spectral library (Wan, Ng and Dozier, 1994; Snyder, Wan and Zhang, 1997) is used. As the surface 

material and associated emissivity are not well known for other DSM elements, the mean spectral 

emissivity (ε11.02μm = 0.945; min = 0.900, max = 0.968, n = 60) from all non-metal and non-plastic 

impervious materials in the SLUM spectral library (Kotthaus et al., 2014) is used.  

VCE optical properties are parameterised using a spatially homogeneous turbid representation of 

leaves with a spherical angular distribution (Wang, Li and Su, 2007; Pisek, Ryu and Alikas, 2011) 

within each VCEVx. Leaves are given “deciduous leaf” optical properties from the DART spectral 

database (leaf transmissivity = 0.020, reflectance = 0.027) with a leaf area density [leaf area within 

voxel / voxel volume (m2 m-3)] of 1.6 estimated for summertime conditions (Lalic and Mihailovic, 

2004; Jeanjean et al., 2017). 

DART is used with the MW geometry, surface temperature Ts(X, Y, Z, i, t) and the optical property 

distribution with Δλ = 0.01 bandwidth. ELW,↓ from the CNR1 radiometer determines the sky 

brightness temperature (Tb
sky) by inversion of the Stefan-Boltzmann law. It is used in DART to 

determine an isotropic source of downwelling spectral radiance received from the BOA layer 

[Lλ
sky(Ω↓)] with the Planck function at the simulation wavelength (11.02 μm). The emission and 

multiple scattering of radiation across the surfaces is tracked across a large number of individual rays 

(Appendix K). Rays that cross the BOA determine a spectral radiance image with the BOA cell 

resolution for each upward direction [Lλ
surf(x, y, ϕ, θ, Ω)] that is averaged across each image pixel to 

give Lλ
surf(ϕ, θ, Ω). 

Lλ
surf(ϕ, θ, Ω) is combined with Lλ

sky(Ω↓) and a representative bulk spectral emissivity used for EO 

land surface temperature (LST) applications (ελ
EO) to give a directional LST estimate [Ts

EO(ϕ, θ)] 

using: 

with c1 = 1.191042 x 109 (W m-2 sr-1 μm-1) and c2 = 1.4387770 x 104 (μm K) the first and second 

radiation constants. Operational determination of ελ
EO (Li et al., 2013) uses land cover datasets for 

𝑇s
EO(𝜙, 𝜃, Ω) =  c2

[
 
 
 
 
 

λ ∙ ln

(

 
 
 c1

λ5
𝐿λ
surf(𝜙, 𝜃, Ω) − (1 − ελ

EO)
1
π𝐸λ

ελ
EO

+ 1

)

 
 
 

]
 
 
 
 
 

⁄  Eqn. 4.6 
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the split-window approach (Wan, 1996; Snyder and Wan, 1998) or concurrent estimation with land 

surface temperature following the temperature emissivity separation method (Wan, 1997). Here the 

emissivity for band 31 from the MODIS M*D11A1 collection 6 (Wan, 2014) split-window product 

is used to replicate the MODIS land surface temperature product. 

The M*D11A1 collection 6 processed by MODIStp (Busetto and Ranghetti, 2016) have temperature, 

emissivity and quality control products with a 927 m pixel resolution. EO data of the pixel covering 

the IMU site are compared to simulated directional surface temperatures. 

4.3 Results 

4.3.1 Assessment of the morphometric and land cover characteristics of the MW 

area 

To assess how representative the study area is compared the spatial extent of the complete city and 

also a single satellite pixel, the morphometric and land cover characteristics are analysed for a ~ 4 

km x 4 km area around the site (Figure 4-7a). South and east of the site is the central business district 

(CBD). Building height (zb) and building plan area index (λp) on average decrease northwards and 

higher vegetation fractions coincide with more residential areas. The study area is generally similar 

to the larger area (Figure 4-7), except with respect to VCE and grass fraction (Table 4-5) which are 

higher than the 75th percentile of the larger area (cf. Figure 4-7b, c). The park in the study area has a 

large amount of vegetation (Figure 4-1b, centred on grid coordinates 284500, 5712850) while there 

is an overall lower fraction of vegetation to the south around the CBD and River Thames. 

The study area has a higher urban density than prior ground-based thermography studies. For 

example, the area-weighted building height of 6.23 m from Adderley et al. (2015) and 1.5 m from 

Chapter 2 are both much lower than the median height of 13.5 m in this study (Table 4-5). The 

vegetation density is most likely lower than in the area studied by Meier and Scherer (2012). 

Table 4-5. Study area (Figure 4-1) land cover fractions in the MW (from raster data) and 

variability of morphometric parameters indicated by percentiles (P). 

MW parameter Symbol MW P25 P50 P75 

Plan area fraction: 

           VCE 

  

0.17 

   

           Grass   0.17    

           Building (plan area 

index) 

λp 0.37    

Building height (m) zH  6.90 13.49 19.10 

Sky view factor Ψsky  0.41 0.57 0.75 
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Figure 4-7. Variability of surface characteristics in central London (49 areas of 420 m x 420 

m) oriented to grid north (WGS84 UTM grid zone 31N) around the study area (red) and 

MODIS M*D11A1 pixel (orange) with (upper) maps and (lower) histograms with nth 

percentiles (Pn) of (dashed lines) P25 → P75, (solid line) P50 for the study area. (a) Land cover 

(4 m) central London with (white dashed box) extent of maps in b – l and (red) the study area 

(Figure 4-1). Surface characteristics: (b) plan area fraction of tall vegetation (> 2 m) (c) plan 

area fraction of grass (d) plan area fraction of buildings (i.e. plan area index), (e – h) building 

height, (i – l) sky view factor (Dozier and Frew, 2002) calculated in R (R Core Team, 2017) 

with the “horizon” package (Doninck, 2018), and (g, l) standard deviation of the respective 

parameter. 
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4.3.1.1 Observational source area and image classification 

The observational source area is critical to understand as surface temperatures upscaled across the 

entire study area are derived from inherently sub-sampled measurements. Although this source of 

uncertainty exists in previous ground-based studies, it has never been quantified. Given the 

complexity and heterogeneity of the present study area, it is particularly critical to assess the extent 

to which the observations capture the full diversity of the total study area.  

Of the total MW surface area ATOTAL (4.1 x 105 m2, Figure 4-8), 88.0 % is composed of DSM triangles 

and the remainder (12.0 %) is from the VCE plan area. East and west walls are 23.3 % of ATOTAL 

compared to 18.3 % for north and south walls. These numbers are not equal given the MW buildings 

are not necessarily cuboid and are frequently cut off at the MW edges (Figure 4-3). The ground 

surfaces (30.6 %) (i.e. streets, parks, courtyards etc.) have greater area than the roofs (15.6 %). The 

latter mostly have low albedo (Roof[dark], 12.8 %). The fraction of downward facing surfaces is 

very small (0.9 %) so their required gap-filling has little impact. 

Using Blender, the DSM vertices that are completely within the FOV of any camera are selected. 

Adding the area of all selected DSM triangles gives the overall camera source area (ACAM, m2) which 

is 9.5 % of ATOTAL (3.9 ha). ACAM excludes VCEs directly but resolves the occlusion of other surfaces 

by VCEs. Where cameras have overlapping source areas (Figure 4-1c, Figure 4-5) the overlapping 

area is allocated arbitrarily to the camera with lowest numeric ID (Table 4-2). As ACAM is calculated 

directly from the DSM and not from rendered images (Section 4.3.1.1), ACAM includes all mixed 

(“complex” geometry) and masked (near field objects, e.g. roofs directly beneath cameras, Figure 

4-5b) pixel leading to a small overestimation of ACAM. Still, it is expected that ACAM underestimates 

the actual source area for classified pixels because triangles that are partially visible through the MW 

camera FOV are rejected. 

 
Figure 4-8. Area of surface (m2) across (ATOTAL) the total three-dimensional study area and (ACAM) 

seen by the LWIR cameras (Table 4-2) for (colours) different surface and orientation properties. 
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Inter-camera differences in ACAM result from camera siting height, zenith view angle and the 

occlusion of far-field surfaces by near-field objects. Located 75 m agl with an oblique view angle, 

camera C2 has the largest source area (2 % of MW area, Figure 4-8) whereas C5 and C6, mounted at 

37 m agl, have the smallest source areas (~ 1 % of MW each). In contrast to RS from spaceborne 

platforms, ground-based sampling is not limited to predominantly capture the horizontal facets 

(ground, roof). Due to oblique view angles, vertical facets substantially contribute to the 

observational source area. Still, while roof and ground surfaces are observed by all cameras, the 

vertical facets sampled depend on the camera azimuth (Table 4-2). Cameras can appear to view 

surfaces from opposing directions (e.g. east and west) due to the grouping of the heterogeneous wall 

facings into the four cardinal directions (Figure 4-9). 

The azimuth and zenith of DSM triangles within each camera pixel IFOV are given in Figure 4-9. 

The distribution of surface azimuth angles for the walls is uneven (Figure 4-9a). Some angles have 

many samples (maximum 2677 pixels for 342.5° → 347.5°) and others far fewer (minimum 130 

pixels for 127.5° → 132.5°) as building walls have a few fixed directions and sensors observe only 

limited views (Table 4-2). Given the complexity of the study area geometry, the azimuthal facings 

are well distributed within each wall orientation bin (Figure 4-9a, between vertical dashed lines) 

except for the ΣSouth where a view bias of southeast facing (θ ≈ 135° → 150°, Figure 4-9a) surfaces 

is found. This can be explained by the southwest-to-northeast street orientation seen by the northward 

facing cameras (C2 and C3, Figure 4-1). The BRF̅̅ ̅̅ ̅̅  values associated with southwest walls have fewer 

samples or require gap-filling (Section 4.2.3.1) using the well-sampled southeast facing observations. 

Sloped roofs, chimneys and balconies, etc. resolved in the DSM widen the surface zenith angle 

distribution (Figure 4-9b). Most observed walls are vertical (median 90.83°) with variability (±11.07° 

standard deviation) from the sub-facet wall geometry (e.g. balconies). Roof pixels are mainly flat 

(median 176.74°). Here, slight slopes (8579 pixels are between 177.5° and 178.25°) may result from 

inaccuracies in the DSM, as these pixels most likely view flat roofs in the RW. 
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Figure 4-9. Frequency of pixels by surface orientations within the instantaneous field of view 

of each camera (excluding VCE but including “mixed” and “masked” pixels) for (a) azimuth 

facing (zenith angle <135°), and (b) zenith angles of pixels. Azimuth angle of 0° (180°) is 

north (south) for WGS84 UTM grid zone 31N. Pixels with a zenith angle of 90° (180°) face 

vertically (horizontally). 

4.3.2 Drivers of observed surface temperature variability 

The surface properties impact surface temperature variability and effective thermal anisotropy. To 

quantify the role of various drivers, results from the sensor view and 3D modelling are used with the 

controls on variability considered by scale: (i) building scale variability (facet, orientation and 

material Σ), Section 4.3.2.1), (ii) sub-facet within a surface orientation (e.g. different roof slopes) 

related to the sun-surface geometry (BRF̅̅ ̅̅ ̅̅ , Section 4.3.2.2) and (iii) high spatial resolution shadow 

histories (tshd, Section 4.3.2.3). 

4.3.2.1 Variability from surface orientation and material at the building scale 

The building facets, orientations and their materials provide the coarsest surface characteristics for 

explaining surface temperature variability. Initially all observations (i.e. except for ΣVCE, Σmixed or 

Σmasked pixel classes) are considered together (pre-classified – white, Figure 4-10a) to understand the 

overall variability of Ts observed during the day. Differences of 37.5 K are found between the 5th 

percentile (P5) → P95 during the period 12:00 – 12:55 (hereafter defined as time ending, i.e. 13:00). 

The mixed pixels (Figure 4-10a, grey) have a smaller hourly and diurnal range than the pre-classified 

temperatures. Mixed pixels are primarily associated with walls, as those often have complex small-

scale features (e.g. balconies - C6, Figure 4-5a, b). These are generally cooler than roof and ground 

surfaces. Unresolved balconies can create complex shading patterns and may be cooler than facets 

with simpler more planar geometry. 
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As expected (e.g. Adderley, Christen and Voogt, 2015; Chapter 2), roofs have the greatest diurnal Ts 

range (Figure 4-10b, median Σroof[dark] 290.6 → 329.0 K). The change in Σroof[dark] Ts across timesteps 

representative of Aqua and Terra satellite overpasses (10:30 and 13:30, respectively) is around 5 K 

(median Σroof[dark] Ts increases from 321.7 K at 11:00 to 326.9 K at 14:00, which is less than in early 

morning when the roofs are first sunlit (e.g. between 09:00 and 10:00, median Ts for Σroof[dark] pixels 

increases from 303.9 K to 315.0 K). Within each hour, roofs have consistently large Ts variability 

driven by insolation (Section 4.3.2.2 and 4.3.2.3). The generally higher albedo of Σroof[light] surfaces 

means less shortwave radiation is absorbed which leads to lower surface temperatures. Hence median 

Σroof[light] (313.8 K) at 13:00 is 14.2 K lower than the coinciding Σroof[dark] temperature. Prior to an 

overcast period in the afternoon (15:30 – 15:55, Appendix L) the two roof types have distinct Ts 

distributions. The fewer Σroof[light] are mainly sunlit throughout the day, wheras Σroof[dark] have some 

within-canopy surfaces affected by prolonged (> 1 h) shading. With the overcast conditions the 

distributions begin to converge as the contrasting albedos have reduced effect when only diffuse 

solar radiation is incident. After the overcast period, the overall shortwave radiative forcing is weaker 

because of the lower sun angles. These results have important implications for effective thermal 

anisotropy modelling. If (as often applied) homogeneous material properties are assigned to the urban 

surfaces, potential variations may not be captured by sensitivity analyses. The response of surface 

temperature to albedo may have a significant impact on the anisotropy of an urban area, which is 

rarely considered as part of Ts
EO uncertainties. This effect is expected to be particularly important for 

roof surfaces for two reasons: (a) their high SVF generally correlates with greater access to direct 

solar radiation and (b) near-nadir RS observations have a view bias of horizontal facets (Hu and 

Wendel, 2019). 

Grass (ΣGround[grass]) Ts has a smaller diurnal range than impervious ground (ΣGround[imp.]). From the 

grass, evaporative cooling and some shading from grass blades (i.e. leaf area index is greater than 1) 

are likely to occur while the impervious areas lack moisture (4 days since rainfall). Also, the generally 

higher heat capacities of ΣGround[imp.] causes more heat to be stored during the day and released slowly 

over night. Uncertainty in grass temperature may arise from a potential sample bias as only one 

camera (C1) captures grass surfaces compared to all cameras having some ΣGround[imp.] in their view 

(Appendix M). The relatively coarse (4 m) land cover dataset may introduce unquantified 

classification uncertainties.  

Wall pixels by cardinal orientation follow the expected general trend from insolation (Appendix M). 

ΣEast (ΣWest) pixels are warmest during morning (afternoon), with median Ts reaching 306.1 (310.6) 

K at 11:00 (17:00). ΣWest surfaces peak at higher temperatures ΣEast, as the latter are among the first 

to be heated in morning while ΣWest surfaces have already been heated throughout the day. ΣSouth are 

warmest during representative Aqua and Terra overpasses. ΣWest remains warm past sunset, with 

differences in per-pixel medians of 1.2 K to ΣNorth at 23:00. This is reasonable given that Ts of ΣNorth 
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pixels are consistently low with reduced variability as they are mainly shaded throughout the day. 

Only just prior to sunset, ΣNorth surfaces receive a little direct solar irradiation, causing their 

temperatures to be slightly higher than those of ΣEast in the evening. 

The south-east sampling bias (Section 4.3.1.1) causes the median Ts for ΣSouth to peak (315.8 K) at 

12:00, i.e. earlier than expected for a wall distribution centred around 180° azimuth. Before sunrise, 

median Ts differences for wall orientations are less than 0.8 K but are up to 4.9 K warmer than 

ΣRoof[dark] at 01:00 during a clear-sky period. During daytime, walls are generally much cooler than 

roofs and the complex geometry and materials contribute to these variations. Roofs are mostly planar 

with small features (e.g. chimneys and air conditioning units) whereas walls have many balconies 

and other shade causing features that reduce their overall temperature. The emissivity of glass is 

unaccounted for and is expected to cause wall temperature overestimation. 

 

Figure 4-10. Variability of LWIR camera derived surface temperature (Ts) for 27th August with 

observations classified as (a) all classes (white) (except VCE and “masked” and “mixed” 

(grey) pixels, (b) roofs, (c) walls, and (d) ground. Boxplot are from all camera images (5 min 

samples) by group (colour) during 1 h (e.g. first hour is 00:00 → 00:55 for Time (HH) “01” 

between vertical lines) with interquartile range (box), median (horizontal line) and 5 and 95 

percentiles (whiskers) of pixel values.  

4.3.2.2 Variability from shortwave irradiance 

The facet (orientation and material) observations are stratified by irradiance using BRF̅̅ ̅̅ ̅̅  as Ts are 

positively correlated with this variable (cf. Figure 4-5b, c).  
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Despite the importance of roofs for upwelling longwave radiation sampled from space (Ts
EO), prior 

studies typically simplify their radiative, geometric and material characteristics. Here the complex 

geometry of this facet type is uniquely observed and modelled. To assess the importance of BRF as 

a driver for temperature variability of the low albedo roofs (ΣRoof[dark]), the difference between sunlit 

flat [Ts(BRF ≈ 1)] and all [Ts(BRF̅̅ ̅̅ ̅̅ )] roofs (Figure 4-11) is calculated through a day. Overall there is 

clear separation in Ts between BRF̅̅ ̅̅ ̅̅  bins. At 09:15, median Ts differences for sloped roofs facing the 

sun reach 13.2 K [Ts(BRF̅̅ ̅̅ ̅̅  = 1.5) - Ts(BRF ≈ 1), Figure 4-11]. Sloped roofs with BRF̅̅ ̅̅ ̅̅  < 1 but still 

sunlit have median Ts up to 23.3 K cooler than the flat roofs at 11:55. Contributions to the observed 

Ts variability within each BRF̅̅ ̅̅ ̅̅  class at a given timestep are the variable time in sun (Figure 4-5d), 

differences in surface albedo and emissivity within the ΣRoof[dark] surface property, and uncertainties 

in atmosphere and emissivity corrections Chapter 3. 

 

Figure 4-11. Observed daytime surface temperature (Ts) for 27th August for (top) pixels 

viewing surfaces with bidirectional reflectance factor (BRF, Schaepman-Strub et al., 2006) 

equivalent to solar irradiance for a flat surface (BRF ≈ 1) and (bottom) BRF for any given 

daytime sun angle and binned values of BRF (BRF̅̅ ̅̅ ̅̅ , bin width 0.25) across all observed sun-

surface geometries (shown as difference to BRF ≈ 1 i.e. top). BRF calculated using DART 

assuming Lambertian surfaces.  

The overcast period (15:30 – 15:55) has BRF̅̅ ̅̅ ̅̅  = -1 for all surfaces. This may explain the smaller 

differences in Ts(BRF̅̅ ̅̅ ̅̅ ) during the afternoon and into the evening (Figure 4-11). There are fewer and 
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less consistent observations of sloped roofs compared to flat roofs, causing temporal gaps in Ts(BRF̅̅ ̅̅ ̅̅ ) 

(e.g. Ts(BRF̅̅ ̅̅ ̅̅  = 0.25) for around 12:00 → 14:00). Large gaps (> 4 h) for high BRF bins occur during 

high sun angles which correspond to peaks in Eλ
↓,dir (Eqn. 4.3) and a preferential view of roofs to the 

sun at these high sun angles. This combines to give Ts(BRF̅̅ ̅̅ ̅̅  ≤ 1.25) the highest physically possible 

values around midday (± ~ 2.5 h). When repeated for ground and wall surfaces (Appendix M), 

analysis confirms that the sun-surface geometry of vertical facets is mostly captured by the 

orientation and material property, with ground surfaces also showing small variations. 

4.3.2.3 Variability from shadow history 

The instantaneous sun-surface geometry drives surface temperature variability (Section 4.3.2.2) but 

does not explain the transient effects of shadowing. The history of shading is potentially significant 

given the thermal inertia of urban materials (e.g. concrete). It has not previously been quantified 

using quantitative shadow distributions for a high-resolution set of observations and is often not 

considered as part of what is “seen” by simulated remote sensors in the study of effective thermal 

anisotropy or any other LST analysis.  

On the study date, a cooling time window τ(x, y, t, Σ) (Eqn. 4.4) was determined (Figure 4-12) for 

1.15 x 106 per-pixel cooling events. The starting times occur across the day and their P25 → P75 

statistics are distributed with 12:00 → 17:00. This distribution is reasonable as more cooling events 

are expected in the afternoon and more surfaces are becoming sunlit in the morning. To assess the 

goodness of fit of τ(x, y, t, Σ) and the variability in cooling, observed (e.g. Figure 4-6b, black) and 

modelled per-pixel cooling events (e.g. Figure 4-6b, red) are compared (Figure 4-12). Generally, the 

fits are good for all three surface types with mean absolute error (MAE) of 0.7 K (ground, roof) or 

0.6 K (walls) and are linear (red dashed line, Figure 4-12) across the range of temperature differences 

(approx. 0 → 30 K). A small number of points have negative differences meaning the shaded 

temperature is warmer than the sunlit. This gives the flat “tail” to the scatter, as negative modelled 

values are not permitted. Negative differences account for 1.3 % of all cooling events and reach -2.5 

K at P5. 

To model surface temperature cooling, the coefficients are determined from medians by surface type 

(Figure 4-12, row 2). As τ(x, y, t, Σ) is highly variable (e.g. 25th → 75th percentile of 91.08 → 196.27 

min for ground surfaces), using a single set of coefficients results in a greater spread between 

observed and modelled results (Figure 4-12 cf. row 1 and 2). There is generally good agreement but 

with some large (> 10 K) departures when facets have distinctly different thermal properties. 

Uncertainty for roofs is increased as roof pixels’ shading during daytime can only be from nearby 

taller buildings (e.g. Figure 4-5b, foreground of C2 and C3) which is only for short periods. This 

reduces the number of pixels available for the background shaded temperature. Additionally, the 
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emissivity correction uncertainty is greatest for roof surfaces because of the large contrast between 

LWIR irradiance (from the relatively cool sky) and LWIR exitance (Chapter 3).  

Uncertainties may arise for ground pixels from the highly contrasting material properties (impervious 

and grass), whereas for walls the more complex surface geometry may lead to uncertainties in shadow 

patterns and history. Walls also have a mix of glass and masonry/concrete with their contrasting 

thermal properties and cooling rates not accounted for. 

As walls and ground have slower cooling rates than roofs, they take longer to reach the well shaded 

temperature. The P95 temperature differences between recently shaded and well shaded are 21.6 K 

(walls), 27.5 K (ground) and 16.5 K (roof) at 10 min after entering shade (tshd = 10 min). After 30 

min the corresponding differences are 18.6 K, 17.3 K, 14.7 K greater (assuming the well shaded 

temperature remains constant).  

In previous studies, shaded surfaces seen by a sensor have been assumed to all have the same 

temperature (e.g. Voogt, 2008) which presumably accounts for some uncertainties in their results. 

Variability in τ is directly related to variability in heat transfer rate (radiative, convective and 

conductive), material heat capacities, density, volume and overall mass of the observed surface 

structures. These properties are central to surface energy balance partitioning and therefore the 

resulting urban heat island. Both the storage of heat during the day and its release at night are 

impacted. Cooling rates associated with storage heat flux can be modelled based on bulk material 

properties (Roberts et al., 2006) and detailed knowledge on cooling rates is valuable for the 

evaluation and improvement of bulk parameterisations of storage heat flux. the generally shorter 

cooling time constant of roofs (median τ(Σ) = 43.13 min), may be explained by a list of 

characteristics, including roofs are often thinner (lower mass facilitating conductive heat loss), have 

higher sky view factor (facilitating radiative heat transfer), and are more exposed to higher wind 

speeds (facilitating convective heat transfer). 
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Figure 4-12. Surface temperature (Ts) cooling rates observed (x axis) and estimated (using 

Eqn. 4.4) for each pixel with colours indicating number of pixels (npixel) with (row 1) fitted 

time constant τ per pixel [τ(x, y, Σ)] and (row 2) modelled time constant as median τ(x, y, t, 

Σ) per surface type [τ(Σ)] for (column 1) ground (grass and impervious), (column 2) roof (light 

and dark) and (column 3) walls (N, E, S, W). Statistical metrics: coefficient of determination 

(r2), mean absolute error (MAE). 

4.3.3 Crossing scales between satellite and ground-based observations 

The surface-leaving radiance varies markedly across complex 3D geometry. However, the effective 

thermal anisotropy that causes this is not captured by current models that are mainly using simple 

surface parameters. Using high resolution fixed-platform observations, the view angle uncertainties 

can be assessed in a way similar to airborne studies (Lagouarde et al., 2010) but at much higher 

temporal resolution to explore the diurnal evolution of the anisotropy phenomena.  

Ts differences between surface types are greatest during daytime (Section 4.3.2). Hence, Ts
EO(ϕ, θ, 

Ω) sampled from space is particularly sensitive during this time to the surface types seen by the 

satellite instrument. Characterising effective thermal anisotropy is crucial for the correct 

interpretation and implementation of thermal EO products over cities. 

4.3.3.1 Spatially resolved thermal anisotropy 

Thermal anisotropy is explored at < 1 m resolution (Section 4.2.3.2) for a sub-sample of DART 

simulated view directions. The high spatial resolution and directional upwelling radiance simulated 

by DART [Lλ
surf(x, y, ϕ, θ, Ω), Section 4.2.4] based on high-LOD DSM geometry (Figure 4-2, Figure 
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4-4) and high-resolution surface temperature observations combines as a unique dataset to explore 

effective thermal anisotropy at an unprecedented level of detail. The high-resolution images (Figure 

4-13) are shown using brightness temperatures (Tb) as the bulk emissivity correction to give Ts
EO(ϕ, 

θ, Ω) is only applicable across satellite pixel scales. Appendix K explains why the gaps at the edge 

of the images occur. 

Depending on the view angle, different surfaces are seen in the images (Figure 4-13) which reveal 

unique brightness temperature distributions. Roof, ground and vegetation are viewed from the nadir 

direction. Off-nadir view angles also have wall surfaces visible, many with complex Tb distributions. 

With simple planar surface geometry, Tb across a wall would vary only from building shadows and 

shadow hysteresis. However, the sub-facet wall geometry creates contrasting temperatures around 

sunlit portions and cooler shaded areas (e.g. recesses, from balconies) or with oblique sun-surface 

angles. Similarly, for roofs, complex shadow patterns from roof geometry detail lowers their average 

Tb. Differences in Tb from shadowing are less distinct from the sunlit surfaces in the afternoon image 

(14:00) than the morning. Larger differences between sunlit and shaded temperatures in the afternoon 

drive this spatial variation. 

VCE create spatial patterns in contrast to impervious surfaces due to their lower temperatures and 

generally homogeneous Tb (Ts prescribed based on air temperature). The average tree crown 

temperature is approximated by Ta but sub-tree variations in Tb result from variable exposure to the 

sun (shortwave irradiance) and other canopy elements (LWIR and shortwave diffuse irradiance). 
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Figure 4-13. Surface-leaving radiance across the study area as brightness temperatures (Tb) simulated 

using observationally derived and three-dimensional (3D) surface temperature and the DART model 

for 27th August at (left) 10:00 and (right) 14:00 for (top) nadir and (middle – bottom) off-nadir zenith 

(ϕ) angles and (triangles) IMU and CUB sites (Figure 4-1b). Images projected onto the bottom of 

atmosphere horizontal plane (Figure 4-2) with (grey labels) surface → sky directions, with θ = 0° 

grid north and e.g. θ = 90° grid east (WGS84 UTM grid zone 31N) and ϕ = 0° (ϕ = 90°) perpendicular 

(horizontal) to the surface. Rotating images view angle by (θ, ϕ) gives orthographic projections. 
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4.3.3.2 Time series of thermal anisotropy 

While airborne studies can provide an instantaneous view of the complex surface geometry, the 

present study allows for anisotropy to be characterised at 30 min resolution across an extended time 

period (e.g. an entire study day, Figure 4-14). Before sunrise, the more homogeneous Ts between 

surface classes gives near-isotropic Ts
EO(ϕ, θ, Ω), with greatest absolute difference in temperature 

between any two Ts
EO(ϕ, θ, Ω) directions with up to 50° zenith angle (maximum anisotropy, Λ) of 

less than 0.5 K.  

Half-hourly simulations after sunrise show greater Ts
EO(ϕ, θ, Ω) for off-nadir view angles with 

markedly higher temperatures in small angular regions (hot spots) that are up to 2.9 K warmer than 

the nadir view (302.5 K) at 10:00 (Λ = 4.95 K). The maximum anisotropy is at 10:30 (Λ = 5.1 K) 

and is 3.52 K across ±30° off-nadir angles. Across ±10° off-nadir, maximum anisotropy is typically 

within 1 K (e.g. 1.06 K at 10:30). A small bias in the nadir temperature and the model domain edges 

negligibly impact modelled results (Appendix K). The hot spot present near the sun direction is 

consistent with prior mid-latitude observations and with simplified geometry (Hu and Wendel, 2019; 

Chapter 2). Previously, the directional temperature near the sun hot spot has been found to decrease 

rapidly with small azimuth angle increments. Here, the hot spot effect occurs across a greater angular 

region around the sun direction (i.e. not as concentrated around small angular regions). Simplified 

geometry with regularly repeating features mean a small change in azimuth angle can have a large 

effect on the streets and walls seen (Hu and Wendel, 2019) and may contribute towards the formation 

of multiple hotspots (e.g. Krayenhoff and Voogt, 2016). These are not found in the real world, non-

uniform wall orientations and sub-facet heterogeneities (e.g. balconies) studied here, which are 

resolved in the satellite image simulations (Figure 4-13) used to calculate the anisotropy. 

To assess implications of these anisotropy results (Figure 4-14) on differences in surface 

temperatures, two surface temperature estimates are compared: Ts
EO sampled by a satellite sensor at 

a given viewing geometry and the complete surface temperature Tc which accounts for the full 3D 

temperature distribution across the urban canopy. This helps to put temporally sporadic satellite data 

into context of near-continuous observations. MODIS observations (Table 4-6) are compared to both 

the continuous surface data assuming the same viewing direction (Ts
EO, 30 min resolution) and using 

Tc (5 min resolution) (Figure 4-15) as Tc is uniquely non-directional (Voogt, 2000). The high angular 

and temporal resolution of Ts
EO means MODIS sampling characteristics can be closely matched with 

respect to view angle (within ~ ± 5° for azimuth and zenith) and sampling time (< 30 min). 
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Figure 4-14. Polar plots with difference in surface temperature [Ts(θ, ϕ, Ω)] from nadir 

temperature [(Ts(θ, ϕ = 0, Ω) - Ts(θ, ϕ, Ω)] for upward directions with zenith angle (ϕ) ≤ 50° 

simulated using observationally derived, three-dimensional (3D) Ts across the study area 

(Figure 4-1). DART is used to simulate surface-leaving radiance for (black crosses) discrete 

directions. Directions and (yellow dot) the sun position are oriented with a surface → sky 

perspective, with θ = 0° grid north, θ = 90° grid east, etc (WGS84 UTM grid zone 31N) and ϕ 

= 0° (ϕ = 90°) perpendicular (horizontal) to the surface. Grey lines have (radial) Δϕ = 10° 

(straight) Δθ = 30°. The maximum absolute difference Λ and nadir temperatures are given at 

each timestep. 

 

The diurnal Tc pattern (Figure 4-15) highlights a gap-filling constraint for the recently shaded 

observations and sampled surface types through time. Prior to 18:00, C1 and C4 view the most sunlit 

ground pixels (Appendix K). After 18:00 the ground sampled by these pixels becomes shaded and 

the sunlit ground is seen be relatively few pixels from C2 and C3 that are cooler than the well shaded 
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ground. This prevents calculation of a cooling rate until these surfaces are heated to above the well 

shaded ground temperature, which occurs at 18:25 and is seen as a step change in Tc at 18:25 (Figure 

4-15). 

Table 4-6. MODIS collection M*D11A1 land surface temperature and emissivity for the grid 

cell intersecting the study area. Products obtained using MODIStp package (Busetto and 

Ranghetti, 2016). 

Time (UTC) 

27th August 

2017 

Platform LST 

error 

(± K) 

Emissivity 

value 

(Band 31) 

Emissivity 

error 

View 

zenith 

angle (°) 

View azimuth 

angle (°) 

10:30  Terra ≤ 3 0.982 ± 0.02 48 98.2 (east) 

12:18 Aqua ≤ 1 0.982 ± 0.01 44 98.2 (east) 

21:42 Terra ≤ 3 0.982 ± 0.04 7 81.8 (east) 

The IQR estimate of Tc (Figure 4-15) provides an uncertainty estimate for the upscaling of 

observations. There is generally more uncertainty during the day (maximum 4.9 K at 13:00) than at 

night (minimum 1.6 K at 07:20). The IQR distribution indicates the unresolved Ts variability from 

using the selected surface properties (Section 4.3.2). It is much smaller than if unclassified 

observations were used, as this IQR is over 20 K (Section 4.3.2.1). By incorporating more surface 

properties (e.g. materials, insolation history) intra-class per-pixel distributions could be reduced and 

translate to more certain Tc with smaller IQR.  

In agreement with Adderley et al. (2015), Ts
EO has greater diurnal range than Tc. During the night, Tc 

is higher than Ts
EO as walls are more represented by Tc and generally have higher Ts than horizontal 

surfaces (Figure 4-10). When Ts for roof and ground are higher during the day, Ts
EO(nadir) - Tc 

reaches its maximum (1.9 K at 12:30). Ts
EO(nadir) is within 0.5 K of Tc during morning (up to 10:00) 

and after 16:00. Around 09:00 – 10:00 Ts
EO(nadir) ≈ Tc. Anisotropy is more evident after sunset than 

after sunrise as afternoon sunlit surfaces cool overnight but by sunrise are near homogeneous. 

The satellite-derived surface temperatures from MODIS (Table 4-6) and the nearest concurrent view 

angle from Ts
EO have varying agreement. Clearly, the nocturnal MODIS observation underestimates 

(-3.4 K) the corresponding Ts
EO. However, the MODIS error flag for this observation is ≤ 3 K (Table 

4-6), i.e. significantly worse than for an optimal retrieval (≤ 1 K). During daytime, Ts
EO 

underestimates MODIS by 1.4 K (1.8 K) for the 10:30 (12:18) MODIS observation [error flags: ≤ 3 

K (≤ 1 K), Table 4-6]. This comparison demonstrates how ground-based observations and modelling 

can complement satellite observations to support data assimilation for NWP or urban climate 

modelling applications (e.g. surface energy balance fluxes) and aid evaluation of EO land surface 

temperature products. 

The choice of surface temperature definition remains an open question (Adderley, Christen and 

Voogt, 2015), with no consensus on if Tc is more appropriate than Ts
EO in the context of surface-

atmosphere exchanges and urban – rural temperature differences, described as the surface urban heat 

island (SUHI). As Tc is more representative than Ts
EO of all the surfaces, prior studies using Ts

EO for 
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SUHI without consideration or correction to Tc may have overestimate or underestimate the SUHI 

during the day and night, respectively. This is further confounded by how the SUHI is determined, 

whereby the SUHI intensity (ΔSUHI) is usually calculated as the temperature difference between 

urban pixels and suburban or rural reference pixels (Peng et al., 2012; Clinton and Gong, 2013), the 

latter likely having more homogeneous terrain and reduced view angle effects. Thus, a distinction 

between land use over land form is needed in such ΔSUHI studies. At night the ΔSUHI may be 

underestimated, explained by the ~ 1 K underestimation of Tc by Ts
EO. This is significant given 

ΔSUHI magnitudes have been reported with similar ranges; between 0.5 – 1.2 K in London from 

MODIS observations (Zhou et al., 2016), ~ 1 – 2 K in Beijing (Meng et al., 2018) and also < 2 K (± 

~1.5 K standard deviation) globally from ~193,000 “cities” (Clinton and Gong, 2013). During 

daytime the opposite may be true following the overestimation of Tc by Ts
EO found here. This is 

supported by Hu et al. (2016) who find anisotropic effects account for 25 – 50 % of the satellite 

derived ΔSUHI in New York City and Chicago.  

For surface-atmosphere exchanges and the broader study of surface energy balance components from 

space (e.g. Chrysoulakis et al., 2018), a difference of 1 K is significant. Such uncertainties could 

represent the difference between stably and unstably stratified nocturnal boundary layers with impact 

on nocturnal boundary layer depth and pollution dispersion (Kotthaus and Grimmond, 2018; Lee et 

al., 2019).  

Daytime application of Ts
EO to estimate ΔSUHI is far more complex due to the pronounced variations 

in surface temperatures and thermal anisotropy. Hence, anisotropy has not been considered beyond 

the removal of extreme view angles from observations (Hu et al., 2014). Similar to the sunlit treetops 

in forest stands (Sun and Mahrt, 1995), it may be that roof surfaces have a bias contribution to the 

exchange of heat from the surface to the atmosphere (Loridan et al., 2010). Harman and Belcher 

(2006) and Porson et al. (2010) find that roof properties are crucial to the surface-atmosphere 

coupling in urban surface energy balance modelling. The rooftop bias has potential synergy with the 

satellite view bias of roofs meaning Ts
EO may be an appropriate measurement if the view angle 

variation was accounted for by e.g. adjusting temperatures from off-nadir to nadir (Hu et al., 2016). 
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Figure 4-15. Temperatures for 27th August 2017 with: (grey line) complete surface temperature 

(Tc) from median (P25 and P75, shading) of intra-class observations and extrapolated as a three-

dimensional (3D) Ts and then areally weighted across the complete surface of the study area, 

(Ts
EO(θ, ϕ, Ω), black) directional surface temperature simulated using 3D Ts (median of intra-

class observations) and the DART simulation (triangles, centre point in Figure 4-14 polar 

plots) for Ts
EO at (upward triangles) nadir view and (vertical lines) minimum and maximum 

range for 0° → 50° off-nadir view directions, (black dots) MODIS collection 6 LST with 

(dashed lines) error from quality assurance data flags and (blue line) air temperature (Ta) from 

nearby weather station. 

The relative contribution of walls, roofs and other individual surface types to modelled Ts
EO(θ, ϕ) is 

explored. An inter-class fractional contribution (fΣ) to the radiance value used to calculate Ts
EO(θ, ϕ) 

is determined using DART outputs. The separation of radiance by surface type resolved by DART 

constitutes the surface-leaving (cf. surface-emitted) radiance. The sum of fΣ for the n surface types 

of orientation and material is unity and across each timestep, view direction and surface type Σ, 

𝑓𝛴(𝜙, 𝜃) is: 

with Lλ(x, y, ϕ, θ, Ω) the per-pixel radiance for a DART orthographic image (e.g. Figure 4-13 without 

the Planck conversion to Tb) and npx the total number of image pixels. Lλ,Σ(x, y, ϕ, θ, Ω) in Eqn. 4.7 

is the same except only considers the radiance leaving surface type Σ, from pixels that view surface 

𝑓𝛴(𝜙, 𝜃) =  
∑ 𝐿𝜆,𝛴(x𝛴 , y𝛴 , 𝜙, 𝜃, Ω)
𝑛𝑝𝑥

(x𝛴,y𝛴)

∑ 𝐿λ(x, y, 𝜙, 𝜃, Ω)
𝑛𝑝𝑥

(x,y)

 Eqn. 4.7 
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type Σ (xΣ, yΣ). Unlike prior work, where fΣ is a geometric view fraction (e.g. Hu and Wendel, 2019) 

often with idealised urban geometry (e.g. Wang, Chen and Zhan, 2018), fΣ from Eqn. 4.7 is more 

realistic as it varies according to the temperature, emissivity, SVF and incoming longwave radiation 

of surfaces within the IFOV of each DART image pixel and also uses the realistic DSM. fΣ across 

different view zenith angles (Figure 4-16, azimuth angles are aggregated) shows fΣ differs most at 

near-nadir view angles between surface types (fΣ=Wall is north, east, south, west walls combined) . For 

near-nadir view angles, the ground has the largest contribution to the observed radiance (fΣ=Ground > 

0.4) for ϕ < 20°. For view angles with larger ϕ, more walls are visible which also occlude the ground, 

meaning fΣ=Wall (fΣ=Ground) generally increases (decreases) with view zenith angle. The greatest 

variation in fΣ, between timesteps on the study day occurs between sunrise (~06:00) and shortly prior 

to the overcast period (14:00), is attributed to the large diurnal variation in roof temperatures (Figure 

4-10) i.e. roofs are much cooler at night relative to other surfaces and thus the contribution of radiance 

leaving these surfaces is less than during the day when the roofs are notably warmer. Azimuthal 

variations increase with ϕ, with 5th – 95th percentile fΣ=Wall differences increasing from around ±0.1 

at ϕ = 9° (i.e. near-nadir and very small fraction of visible walls) to ±0.023 for oblique view angles 

(ϕ = 57°). Changes in (e.g.) fΣ=Roof with azimuth angle (Figure 4-16, shading) may result from micro-

scale roof geometry and occlusion of roofs by larger buildings for given view angles. Modelled Ts
EO 

(Figure 4-15) therefore has highly varied contributions from the different surfaces types, with a near-

equal contribution of surfaces (not including wall direction) at oblique view angles. 

 

Figure 4-16. Temporal and angular variation (on 27th August 2017 06:00 to 14:00) in the 

fractional contribution of different surface types (colours) to upwelling radiance, with median 

(dots) 5th – 95th percentile (shading) of all azimuth angle variations for the given zenith angle 

(ϕ). 
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4.4 Conclusions 

Ground-based thermography observations are combined with detailed modelling of urban geometry, 

materials, sensor views and radiative transfer processes to explore view angle uncertainties in 

satellite land surface temperatures. The study is conducted in central London using data for a mainly 

clear-sky summer day. The methods presented allow for various drivers of surface temperature 

variations in a complex, urban area to be quantified. Thermal data are quantitatively interpreted and 

upscaled from sub-facet (~ 1 m) to a high level of detail (LOD) 3D distribution of Ts across a large 

(430 m x 430 m) area using a novel technique. This distribution is used to explore view angle effects 

of Ts derived from earth observation satellites, overcoming constraints of prior studies, including (a) 

simple geometry descriptions, (b) modelled surface temperatures, and (c) limited temporal 

representation of observations (from airborne platforms). 

In the upscaling process, surfaces are classified from camera observations using detailed source area 

analysis that allows for assessment of the measurement characterisation of a larger study area and 

satellite pixels. With a very high LOD surface description and integrated sensor view modelling, the 

footprint analysis is unprecedented for such a complex urban setting. The objective image 

classification separates drivers of surface temperature variability without requiring a-priori decisions 

on the number of clusters or manual image classification. Observed temperature are highly variable, 

with 5th – 95th percentile differences in per-pixel Ts observations up to 37.5 K during the daytime. 

Diurnal patterns of Ts for surfaces with different orientation show general agreement with prior 

studies at similar latitude. The high detail of image classification allows for quantification of Ts 

variability in direct relation to the sun-surface geometry features. This determines the amount of 

short- and long-wave radiation incident onto a surface, driving shadow patterns, direct solar 

irradiance and radiation trapping between buildings. Material properties are especially important for 

roof surfaces with increased access to solar radiation and high exposure to the cold sky. 

Variability of Ts is significantly driven by a surface’s orientation to the sun. While differences in 

surface temperatures between facets such as walls, roofs and ground have been quantified before, 

here they are shown relative to more complex sub-facet geometry. Differences in surface temperature 

between flat and sloped roofs reach 23.3 K due to sun-surface geometry effects while roofs with high 

albedo are up to 14.2 K colder than roofs with low albedo. Inter-facet variability is of similar 

magnitudes with median differences between wall orientations reaching 18.1 K, while walls, roof 

and ground facets reach contrasting temperatures by up to 29.3 K. 

The second important driver of surface temperature variability is shading. For the first time, the effect 

of shadows is explicitly quantified. The energetic history of recently shaded surfaces greatly affects 

their Ts, e.g. recently shaded roof surfaces are up to 27.5 K warmer than those in shade for long 

periods. Cooling characteristics are derived from observations. Cooling characteristics were found 
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exponential with time constants (τ) estimated relative to long-term shaded surface temperatures 

describing the duration a certain surface requires to stabilise its thermal state. Clear contrasts were 

found between facet types with roofs on average cooling much faster τ(ΣRoof) = 43.13 min than 

ground τ(ΣGround) = 132.98 min and walls τ(ΣWalls) = 173.54 min. Surfaces shaded at sunset will have 

cooled to within 5 % of the ambient temperature by ~3τ i.e. over 6 h and 8.5 h into the night for 

ground and walls, respectively. The developed shadow history methodology could be extended to 

study recently sunlit temperatures in the future. Quantifying heating and cooling characteristics of 

the urban surface is critical to advance the understanding of the storage heat flux, which is notoriously 

difficult to measure (Meyn and Oke, 2009) particularly over a large urban area (Kato and Yamaguchi, 

2007; Chrysoulakis et al., 2018). Models to quantify the storage heat flux in urban areas (e.g. ESTM, 

Offerle et al. 2005) require observational inputs and evaluation (Roberts et al., 2006). 

Material properties determine the amount of incoming energy absorbed. Using simple albedo 

characteristics (i.e. two classes “light” (high albedo) and “dark” (low albedo); excluding any metal 

or glass) clearly explains differences in observed temperature distributions. Dark roofs are up to 14.2 

K warmer during the day as more solar radiation is absorbed. The material classification of roofs 

could be expanded if high spatial resolution datasets of surface optical material properties are 

available. 

Effective urban thermal anisotropy, modelled with high-resolution surface geometry and Ts 

distribution, includes the effect of sloped roofs for the first time. The daytime maximum thermal 

anisotropy (up to 5.1 K) is generally lower than prior observational studies (e.g. Lagouarde et al., 

2010) particularly for near-nadir measurements (anisotropy for ±10° off-nadir is nearly always within 

1 K). Care should be taken with such inter-study comparisons, as Lagouarde et al. (2010) found 

maximum anisotropy across 60° zenith angles, whereas here it is at 50°. More generally, seasonality, 

urban geometry and materials are all variable between cities and studies. Notably, North American 

grid-like cities differ from more heterogeneous European cities.  

The few prior ground-based studies used simplified or suburban models to describe the study areas 

for source area analysis whereas here a realistic, high resolution representation of a diverse central 

urban area (e.g. little repeating building patterns) is implemented. Critically, it shows less abrupt 

directional variation, particularly around the sun angle. Overall the combination of a relatively large 

fraction of vegetation, complex geometry and associated surface temperature distributions and 3D 

radiative transfer modelling give a unique temporally continuous case-study compared to other 

studies.  

The high LOD observations and modelling combined here could provide a benchmark for 

computationally cheaper (e.g. Krayenhoff and Voogt, 2016) and analytical (Wang et al., 2018) 

approaches which cannot explicitly resolve sub-building scale geometry or related Ts variability and 

radiative transfer processes. Future work could include a sensitivity analysis to quantify the relative 
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contribution of surface characteristics to thermal anisotropy, including e.g. sub-facet geometry, Ts 

classes, flat vs sloped roofs, vegetation, or street “clutter” (e.g. cars). This has challenges given the 

myriad of configurations of the urban form and material distributions. Specific to the 3D vector 

digital surface model (DSM) and its sensitivity towards effective thermal anisotropy, any changes in 

the DSM geometry description would require careful consideration as it is more challenging to alter 

a complex 3D model than a more simple urban morphology description, e.g. in form of raster datasets 

or bulk parameterisations (Biljecki et al., 2015).  

The classified Ts observations and 3D distribution has potential for application in other areas of urban 

climate study, including as inputs for large eddy simulation modelling and evaluation of the 

prognostic surface temperature from urban climate models. Further, they could aid in challenges with 

in-situ satellite verification over more homogeneous non-urban areas, where sensor positioning, 

source area uncertainties and micro-scale temperature variations are still problematic during daytime 

(Wang, Liang and Meyers, 2008; Duan et al., 2019). 
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List of symbols and acronyms [units] 

3D Three dimensional 

agl Above ground level (m) 

AVx Surface area of a surface element [m2] 

Bλ Planck black-body spectral radiance [W m-2 sr-1 μm-1] 

BB Black-body 

BOA Bottom of atmosphere 

BRF (BRF̅̅ ̅̅ ̅̅ ) Surface property of bidirectional reflectance factor (binned) 

C# Nonspecific camera (C) and unique reference number (#) 

CBD Central business district 

DART Discrete Anisotropic Radiative Transfer model 

DSM Digital surface model (vector based) 

DSM Digital surface model 

E Broadband incoming radiation flux (irradiance) [W m-2] 

Eλ Incoming spectral radiation flux (spectral irradiance) [W m-2 μm-1] 

ELW,↓ Broadband incoming longwave radiation flux (irradiance) [W m-2] 

ESW,↓ Broadband incoming direct and diffuse shortwave radiation flux (irradiance) [W m-2] 

Eλ
↓,dir  Incoming direct spectral radiation flux (spectral irradiance) [W m-2 um-1] 

EO Earth observation 

ε Emissivity 

ελ
 Spectral emissivity 

FOV Field of view [°] 

fSR Fraction of scattered radiation (to BOA irradiance) 

i Surface class containing (Σ, BRF̅̅ ̅̅ ̅̅ , tshd) surface properties 

λ Wavelength [μm] 

Lλ
cam At-sensor spectral radiance [W m-2 sr-1 μm-1] 

Lλ
sky Spectral radiance from the sky [W m-2 sr-1 μm-1] 

Lλ
surf Surface-leaving spectral radiance [W m-2 sr-1 μm-1] 

LOD Level of detail 

LWIR Longwave infrared 

Mλ Spectral exitance [W m-2 μm-1] 

MW Model world 

NLS Nonlinear least square 

Ω Solid angle [sr] 

ϕ  Zenith angle [°] 

Pn nth percentile 

RT Radiative transfer 

RW Real world 

S Triangle(s) of digital surface model mesh [m2] 

SVx Triangle(s) intersecting a voxel (a surface element) [m2] 

Σ Surface property of orientation and material 

σ Stefan-Boltzmann constant [5.67 x 10-8 W m-2 K-4] 

SR Scattered radiation 

SVF Sky view factor 

SW Shortwave 

t Nonspecific timestep 

τ Time constant [min] 

Tb
EO Surface brightness temperature from satellite earth observation platform [K] 

θ Azimuth angle [°] 

Ts Surface temperature [K] 

Ts
EO

 Surface temperature from satellite earth observation platform [K] 

tshd
 Surface property of time in shade [min] 

UHI Urban heat island 

VCE Vegetation canopy element 

VCEVx Vegetation canopy element within a voxel space 

Vx Nonspecific voxel 

x, y Nonspecific coordinate in 2D camera image 

X, Y, Z Nonspecific coordinate of 3D space 
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Chapter 5 Conclusions 

Ground-based thermography is applied to determine the effective thermal anisotropy in urban areas 

that contributes to uncertainties in satellite derived land surface temperatures critical for urban 

climate studies. As ground-based thermography has only been used occasionally in urban climate 

research, a major contribution of this work is to the advancement of the observational technique. 

Two case studies are undertaken: (1) at the Comprehensive urban Scale MOdel (COSMO) site 

(Kanda et al., 2007) with an array of concrete cubes that provide a simplified urban geometry and 

material properties; and (2) in central London with a complex mix of residential, commercial and 

recreational park land-use. 

5.1 Main contributions and conclusions 

5.1.1 Application and interpretation of ground-based thermography 

A unique multi-camera approach developed for ground-based thermography allows the urban surface 

to be viewed from different angles to measure a more representative and larger 3D source area than 

in previous studies. This new approach uses simple static platforms rather than mechanical rotating 

masts (Adderley, Christen and Voogt, 2015) or vehicle transects (Voogt and Oke, 1997) so it is not 

limited to providing temporally sporadic data. It also reduces the trade-off between temporal 

resolution and spatial extent found in other remote sensing observations. In London, six cameras 

view 9.5 % of the 430 x 430 m study area. 

To understand the drivers of surface temperature variability captured by the camera images, 3D 

modelling and perspective projection techniques are developed that combined to create a new 

quantitative interpretation of the surface geometry, including both building facets and vegetation, 

effects of sunlit/shaded conditions and surface orientation for each camera pixel. For London, this 

classification is enhanced to include discrete irradiance bins and a shadow history. 

With these advances and applications of the methods, the following conclusions are drawn from the 

interpreted observations: 

(1) There are several technical challenges regarding the application and interpretation of 

observations. Continuous measurements at 1 min resolution means cameras capture over 10,000 

raw thermographs (1.94 x 107 data points) for the London study across each day. Compared to 

other ground-based imaging studies using fewer cameras on different platforms, or more 

conventional meteorological instrumentation such as radiometers or weather stations, the capture 

and storage of this large amount of data cannot readily adopt more flexible approaches such as 

wireless and cellular networking. Instead the multiple cameras require mains power across 
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multiple wired connections that can also accommodate high bandwidth data transfer. These 

challenges compound with the need to have access to appropriate sites. 

(2) For both the COSMO and London studies, the observations are highly variable. During clear-

sky conditions on summer days, temperatures around midday (12:00 – 13:00 local time) for the 

simpler COSMO surface have a 313 – 331 K brightness temperatures (Tb
cam) range whereas the 

more complex London surface temperature (Ts) range is even greater (297 – 335 K). The London 

(hourly resolution) Ts diurnal range reaches 38.4 K for roofs but is significantly less for natural 

surfaces (e.g. grass, < 12 K) and the predominantly shaded north walls (8.3 K). The latter 

generally follow the diurnal range of air temperature (8.9 K). 

(3) The sky view factor is shown to influence inter-class variability. At COSMO, roofs are cooler 

than other surfaces at night (up to 2 K) and warmer during the day (up to 15 K). Similar results 

are found in London but, with more detailed surface classes, the more complex surface and 

material characteristics can be accounted for. A simple description of the roof albedo (either light 

or dark) shows dark roofs are up to 14.2 K warmer during the day due to the greater absorption 

of solar radiation. The high level of detail in this study allows for the effect of roof slopes to be 

assessed. The difference in Ts between flat roofs (assumed in low level of detail modelling) and 

sloped roofs (in the high level of detail modelling here) reaches 23.3 K. 

(4) With a calculated sunlit/shaded status of pixels on the COSMO surfaces, the corresponding 

distribution of temperatures are not always bimodally distinguishable. This is a critical finding 

as previous studies using manual digitisation or frequency distribution approaches usually 

assume the two thermal states are clearly separated. The distributions are least distinguishable 

for afternoon periods when thermal inertia of the concrete gives a thermal hysteresis effect 

relating to the shadowing history.  

(5) The shadow hysteresis observed at COSMO is parameterised in London using an exponential 

cooling model by determining the time a surface has spent in shade. From this, recently shaded 

roof surfaces are up to 27.5 K (95th percentile) warmer than those in shade for long periods. 

(6) Across a day at the London site, the cooling surfaces are shown to follow an exponential rate 

with time constants (τ, min) differentiated by facet (roof = 43.13 min, ground = 132.98 min, 

walls 173.54 min). Individual pixels also closely follow an exponential rate.  

(7) Walls that enter shade at sunset will have cooled to within 5 % of the “ambient” shaded surface 

temperature after ~3τ. The slow cooling is a primary cause of the nocturnal urban heat island 

(Oke, 1981). 

5.1.2 Retrieval of surface temperature 

In general, retrieval of Ts from ground-based remote sensing (RS) is a very challenging process. A 

unique correction procedure is developed in this thesis using the Discrete Anisotropic Radiative 

Transfer (DART) three-dimensional radiative transfer (3D RT) model for the London case study, 
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accounting for both atmospheric and emissivity effects. It is concluded that the correction 

methodology is streamlined by using one model. Prior studies either use multiple models or do not 

account for both atmospheric and emissivity effects. The designed approach is flexible, having utility 

with any ground-based or even airborne observation campaign allowing any degree of complexity of 

the urban surface. 

General characteristics of the atmospheric and emissivity effects for the London study can be 

quantified:  

Across six cameras viewing the surface with ~ 50 – 250 m path lengths over 20 days with varied 

meteorological conditions, the atmospheric correction is greatest during the day (up to 4.53 K for ~ 

250 m path length) coinciding with high daytime brightness temperatures. Evaluated using 

concurrent observations from cameras with a “near” and “far” distance to a reference surface, the 

correction has 0.39 K mean absolute error (r2 = 0.998). The approach is shown to be scalable with 

multiple instruments in the model area with minimal impact on computation time and applicable for 

operational use for observations at 5 min resolution.  

For the emissivity correction, spatially variable descriptions of surface emissivity and emitted LWIR 

radiation across the canopy were successfully resolved by the DART model. The approach is shown 

to model RT processes at a level of detail and resolution not seen before in prior studies, where the 

exchange of LWIR radiation within the urban canopy is also resolved across realistic geometry 

whereby the buildings have balconies, sloped roofs, etc. and vegetation has a realistic canopy 

structure. An anisothermal case that used surface temperatures varying by surface orientation is 

compared to an isothermal case where all temperatures in the canopy are the same. Inter-case 

differences reach ±0.25 K mainly for walls with high view factors of surfaces with contrasting (up 

to 17 K) temperatures, such as when west walls are facing the warm east walls in the morning, and 

vice-versa in the afternoon. Non-3D RT approaches (e.g. using the sky view factor - SVF) are 

constrained to the isothermal case (e.g. Adderley, Christen and Voogt, 2015). The correction is 

generally more sensitive to variation in the surface emissivity, which is varied according to a spectral 

library of urban materials (Kotthaus et al., 2014). As roofs have the highest SVF, with the sky is 

much cooler than the surfaces under the mainly clear-sky conditions, varying the roof material 

emissivity from 0.89 – 0.97 from the baseline value of 0.93 resulted in Ts of more than ±1.5 K during 

daytime, when roof temperatures are generally high (surface brightness temperatures up to 325.5 K). 

From the same variation in emissivity, the multiple scattering and lower sky view factor for within-

canopy surfaces (walls, ground) gives a typically lower (± 1 K) range. 

5.1.3 Urban effective thermal anisotropy 

Previous studies have combined ground-based or airborne observations with 3D modelling to study 

satellite view angle uncertainties from urban effective thermal anisotropy. However, this is the first 
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method combining observations from a network of cameras with detailed, anisotropic radiative 

transfer for both simplified urban geometry (COSMO) and a real urban area (London). 

Across the two sites, the maximum difference in angular temperatures (maximum absolute 

anisotropy, Λ, K) is generally greatest at the COSMO site (Λmax = 6.18 K at 13:00) but less than 

reported previously (e.g. over 10 K for airborne brightness temperatures, Lagouarde et al., 2010). 

Despite the greater intra-pixel daytime range of temperatures in London, the site has lower maximum 

anisotropy (maximum Λ = 5.1 K at 10:30). Across both study areas, the low night-time minimum in 

Λ (< 0.5 K) is consistent with the literature. Conclusions relating to inter-site and inter-study 

differences in Λ are challenging to draw given the unique study dates, meteorological conditions, 

surface temperature distributions, etc. Further, COSMO results do not consider the emissivity effect 

and use brightness temperatures (as in Lagouarde et al., 2010). A reference non-directional surface 

temperature that accounts for all surfaces without view bias (the “complete” surface temperature, Tc) 

is determined for London. Simulated surface temperatures as seen from a satellite with directional 

view bias (Ts
EO) are ~ 1 K lower than Tc at night, which is significant in the context of nocturnal 

surface urban heat island intensity. The opposite is true during the day when Ts
EO for nadir views 

overestimates Tc by up to 1.9 K, in part because of its view bias of warm roofs. For low frequency 

revisit platforms such as Landsat (off-nadir view angles ~10°) maximum anisotropy is relatively low 

(typically < 1 K). As the view angle increases, as occurs for platforms with more frequent revisit 

times (e.g. twice daily for Aqua/Terra satellites), the retrieved temperature includes these vertical 

facets that better represent Tc, but clearly require some correction or consideration of angular 

variation before application (e.g. surface urban heat island analysis). Without correction, any near-

nadir satellite observations can be considered close to Tc in the morning, Night-time observations 

have small angular variation. Off-nadir measurements outside these time windows should be treated 

with greater care. Future operational corrections will benefit from verification using the datasets and 

methods shown here, particularly given the fractional contribution to total radiance is shown to be 

more evenly distributed among the roofs, walls and ground for more oblique view angles. If left 

uncorrected, any conclusions drawn based on temporal variations in Ts
EO should include uncertainty 

estimates for anisotropy. More simulation case studies for (e.g.) different cities and times of year 

may reveal further limitations on the current scientific value of urban Ts
EO observations, particularly 

when studies conduct multi-timestep and multi-city analyses.  

This work both advances the methods for future ground-based case studies and demonstrates case 

studies at an unprecedented level of detail. A significant conclusion regarding the differences in 

anisotropy between the study areas in this thesis relate to the directional patterns of anisotropy 

through time. For the COSMO site, patterns have similar characteristics to prior modelling work with 

simple geometry, with steep gradients across narrow solid angles that align with bulk geometry 

features such as the building wall facings and the sun angle. This can occur when buildings are 
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arranged in repeating arrays with walls with the same cardinal direction (Krayenhoff and Voogt, 

2016); but is generally not found when random orientations are used (Wang, Chen and Zhan, 2018). 

For the real urban surface geometry at the London site with a wide range of wall orientations, the 

directional temperature around the sun angle decreases more gradually across larger increments of 

azimuth angle. Further, the zenith view angle has similar or greater importance to the anisotropy in 

the real urban setting. This suggests that features of complex geometry found in the London area that 

are not well represented by simple geometry descriptions are substantially driving the thermal 

anisotropy. No vegetation is present at COSMO and many prior modelling studies neglect the green 

infrastructure (Krayenhoff and Voogt, 2016; Wang, Chen and Zhan, 2018; Hu and Wendel, 2019). 

However, for the central London study area, 12.0 % of the total area is canopy vegetation, and the 

contribution of vegetation is realistically modelled here for the first time. 

5.2 Recommendations for future work 

Based on the findings and contributions presented in this thesis, recommendations for future work 

relate to: 

Ground-based thermography observations 

• A primary benefit of ground-based RS platforms is the temporally continuous nature of 

observations. Additional value has been demonstrated ranging from days to months. 

However, future studies may benefit from an inter-seasonal range of observations. 

• Presented methods now enable streamlined correction and analysis of observations from a 

network of thermal cameras. Implementing multi-camera approaches of ground-based 

thermography now allows for the 3D thermal characteristics even of complex urban settings 

to be captured. With thermal camera technology becoming increasingly affordable with use 

in many commercial and industry sectors, operating a network of sensors with varying view 

angles becomes increasingly feasible.  

• Two distinct study areas are assessed here, demonstrating the applicability of methods both 

in a simplified setting (COSMO) and a highly complex area (London) that encompasses 

many of the challenges associated with measurements in “real” urban areas. These case 

studies can inform future studies across a wide range of cities. The approach may face 

additional challenges in e.g. high-rise central business districts that can have very distinct 

surface geometry and material properties. With high fractions of glass, the lower emissivities 

and specular reflections in these areas may require cameras with different spectral responses 

and the emissivity correction may have a greater range of uncertainty unless more 

comprehensive material datasets are available. The geometry of compact high-rise areas may 

also limit the source area of measurements, unlike the open high-rise geometry of the London 

area and prior studies (e.g. Meier et al., 2011), or generally low-rise surfaces of COSMO or 
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other prior studies (Meier, Scherer and Richters, 2010a; e.g. Adderley, Christen and Voogt, 

2015). Longer distance and wider angled siting approaches (Yang and Li, 2009; e.g. 

Ghandehari, Emig and Aghamohamadnia, 2018) have potential to overcome this issue. 

• The interpreted and corrected datasets compiled here have potential for the evaluation of 

surface energy balance models that resolve the canopy at increasingly high resolution 

(Grimmond et al., 2010), especially given surface schemes simulate surface temperatures 

separately for roofs, walls and ground and also distributed by solar radiation (Masson, 2000). 

The derived cooling rates and shadow histories have much scope for further study given the 

slowed release of heat by urban surfaces forms the basis of the nocturnal urban heat island 

effect. 

3D modelling of urban areas 

• Urban mapping is anticipated to produce more readily available and higher level of detail 

3D urban models in the future as a result of ever-increasing use of photogrammetry, 

computer vision and 3D geometry in a variety of fields (Biljecki et al., 2015). As 3D surface 

models form the basis of much of the image interpretation, correction and radiative transfer 

modelling in this thesis, such advances should be used to positively impact future 

applications of the work shown here. 

• Material property distributions across urban surfaces in 3D and at high spatial resolution and 

extent are not well documented compared to the material-specific emissivity estimates 

(Kotthaus et al., 2014), which is important for a range of urban climate applications and in 

particular for both emissivity correction and effective thermal anisotropy shown here. A 

better understanding of urban material properties at high spatial resolution will 

completement the projected future availability of 3D urban models. A combination of 

relatively recent advances in computer vision, machine learning and crowd sourced or open 

access “big data” may help with this effort, for example by using Google Street view imagery 

(Zeng et al., 2018b), unmanned aerial vehicles (e.g. Kirsch et al., 2018) and the Open Street 

Map framework (Jokar et al., 2015) which could be particularly advantageous for surveying 

the horizontal surfaces that are not always seen from typical airborne and satellite platforms. 

• The London case study uses a very high level of detail 3D model. However, once the model 

is created it is hard to modify or simplify it as part of a sensitivity analysis to complement 

many of the findings in this thesis. As most 3D modellers are interested in increasing the 

level of detail (Biljecki, Ledoux and Stoter, 2017), ways to reliably and quickly reduce the 

level of detail have not been explored as much. In general it is harder to modify complex 3D 

models compared to idealised 3D or 2.5D raster digital elevation models (Biljecki et al., 

2015). Future work should aim to address this issue to enable geometry related sensitivity 

studies such as the effect on the effective thermal anisotropy. To date, the latter has only 
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been investigated by Krayenhoff and Voogt (2016) using variations of highly idealised 

geometry in a similar configuration to COSMO. 

Surface temperature retrieval from ground-based thermography 

• For the atmospheric correction, the observational evaluation could benefit from a longer 

(annual) campaign to capture more variation in meteorological conditions. The sensitivity of 

the correction to the assumed atmosphere profiles of temperature and water vapour could be 

explored, including the use of different input data such as from climate model output or 

reanalysis.  

• For the emissivity correction, information on the directional nature of surface emissivity and 

downwelling longwave radiation from the sky would be beneficial. Uncertainty analysis 

could explore the relative importance of these processes which are not well known but are 

readily applicable using this emissivity correction methodology. This analysis would also 

help to optimise the computational cost of future simulations. 

• Generally, the 3D RT approach requires a benchmarking framework to understand the trade-

offs associated with the various model parameters that can be set by the user, such as voxel 

resolution and the number of rays tracked. Challenges are associated with the complex model 

output when considered across the multiple cameras each with different viewing perspectives 

of the model domain. 

Modelling of effective thermal anisotropy 

• The interpreted thermography observations were not compared against high resolution 

energy balance model outputs (e.g. TUF-3D, Krayenhoff and Voogt, 2007) and there is 

generally a lack of observational evaluation of such models. Using the thermography 

interpretation framework shown in this thesis, observations can be used more effectively for 

the evaluation and improvement of models. With improved and evaluated models, their high-

resolution surface temperature can be used more confidently over observations. 

• The high-resolution modelling of effective thermal anisotropy shown throughout this thesis 

can inform future parameterisations of effective thermal anisotropy in urban areas. Future 

work should aim to evaluate recent advances in more simple parameterisations (e.g. GUTA, 

Wang et al., 2018b) such that generic morphometric parameters and sun-surface geometry 

can be used for the operational correction of view angle effects on land surface temperature 

products from earth observation satellites. 

• Using the present model setup, a sensitivity analysis could inform the development of future 

model parameterisations. By incrementally simplifying modelled aspects, such as the surface 

geometry, material properties, RT processes and surface temperature distributions, their 

relative contribution to effective thermal anisotropy can be better quantified. 
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Application for architects, building planners and energy management studies 

• The high resolution (e.g. spatial, angular, spectral) 3D building and RT modelling in this 

thesis lends itself to further uncertainty analyses with thermography for (e.g.) building 

envelope studies that often use brightness temperatures to infer results that actually demand 

a retrieved kinematic surface temperature.  

• With glass and metal commonplace in urban design, there is increasing need for more 

realistic RT modelling of the undertaken as these surfaces have a strong specular reflection 

component that. If not accounted for during architectural design phases can result in 

unexpected micrometeorological impacts and costly building retrofits. 

Infrared camera metrology 

• The thermal stability and accuracy of thermal cameras, affected by their sampling conditions, 

has been considered. Radiation shields successfully protected the instruments from 

differential heating from direct sunlight.  

• Aspirated enclosures developed here have potential to reduce large and rapid variation in 

body temperature experienced in outdoor environments. More work is required to quantify 

the impact of enclosures on the accuracy of infrared cameras through time in these 

environments. 

 



Appendix A  122 

Appendix A: Thermal camera lens distortion correction 

A rig was designed to calibrate the Optris PI-160 (Optris GmbH, 2018) longwave infrared (LWIR) 

cameras for lens distortion effects. A geometric calibration or “resectioning” of the camera intrinsic 

or “internal” parameters of focal length, scale factor (aspect ratio of pixels), principal point offset 

(misalignment of the camera focal plane array with the centre of the image) and lens distortion were 

undertaken. The fundamentals of computer vision and camera calibration are detailed in Hartley and 

Zisserman (2004). 

The calibration rig (Figure A-1) was designed to be detectable in the LWIR portion of the 

electromagnetic spectrum. Thermal images of the calibration rig were analysed using the Matlab 

“camera calibration toolbox” (Bouguet, 2008) to perform the geometric calibration of the LWIR 

cameras presented. 

 

Figure A-1. (a) Preparation of and (b) final construction of the calibration rig used for the 

calibration of the Optris PI-160 longwave infrared cameras used. The metal plate is a 0.5 m x 

0.5 m steel plate highly reflective in the infrared (emissivity ε < 0.1) populated with masking 

tape 0.05 m wide with a contrasting low reflectance (ε ≈ 0.95), which was taped onto the plate 

and cut into a grid of 8 x 7 cells each 0.05 m x 0.05 m. 

Images are taken with the Optris PI-160 longwave infrared camera (Figure A-2) of the calibration 

rig when it is outside under clear skies. For an image, the Matlab camera calibration toolbox is run 

to detect the corners of each grid cell (green points) and the origin of the grid cell (yellow) which 
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have known “real world” dimensions. Multiple images (> 20) of the grid are captured, from different 

view angles and parts of the camera image. 

 

Figure A-2. Output images from the Matlab camera calibration toolbox of the calibration rig, 

with (a) the distorted image originally taken by an Optris PI-160 longwave infrared camera 

with points (green) detected and (red) estimated by the Matlab camera calibration toolbox and 

(b) the undistorted image determined using the camera parameters. Black (white) relates to 

low (high) camera brightness temperatures. Camera (lens) serial number 12080017 

(17050013). 

The location and orientation of the camera during each image capture (Figure A-3) and the re-

projected grid points (Figure A-2a, red) is estimated by the combination of the known “real world” 

dimensions and the detected grid points. The differences between the detected and re-projected points 

are evaluated, and the process is repeated until the error is minimised in a least squares sense, at 

which point the best distortion correction parameters are saved and referenced manually to the serial 

number of the given camera and its installed lens. 



   

 

Figure A-3. Output images from the Matlab camera calibration toolbox showing in three-dimensions the estimate of the relative position and orientation of 

the calibration rig (grey square) to the camera during the capture of 48 images (coloured boxes with frustums) of the plate. Relative positions plotted in 3D 

and shown with perspective along the (a) vertical Z axis (b) horizontal X axis and (c) horizontal Y axis. 
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Appendix B: Longwave infrared camera meta data 

Table B-1. Meta data for all Optris PI cameras installed during the two observation campaigns 

in this thesis with (deployment) the time window where a camera has a static location and 

rotation and (internal meta data ID) a reference to the London Urban Climate metadata system 

(www.urban-climate.net) used to manage the observational meta data. 

Camera 

reference 

in thesis 

Deployment start 

date 

(DD/MM/YYYY) 

Deployment end 

date 

(DD/MM/YYYY) 

Observation 

site 

Serial 

number 

(body) 

Serial 

number 

(lens) 

Internal 

meta 

data ID 

CNorth 16/06/2014 26/09/2014 COSMO 12070026 12060012 363 

CSouth 16/06/2014 26/09/2014 COSMO 12060057 12060030 364 

CNorth 16/06/2014 26/09/2014 COSMO 12070026 12060012 365 

C1 13/07/2017 27/07/2017 IMU 12080019 17050029 444 

C4 17/07/2017 02/08/2017 IMU 12080017 17050013 443 

C1 22/07/2017 02/08/2017 IMU 12080019 17050029 444 

C4 22/07/2017 02/08/2017 IMU 12080017 17050013 443 

C2 22/07/2017 02/08/2017 IMU 12080016 16060004 403 

C6 22/07/2017 02/08/2017 WCT 12070069 17050015 406 

C5 22/07/2017 02/08/2017 WCT 12060057 16080014 405 

C3 22/07/2017 02/08/2017 IMU 12080103 17050030 401 

C4 22/07/2017 02/08/2017 IMU 12080017 17050013 443 

C2 22/07/2017 02/08/2017 IMU 12080016 16060004 403 

C1 22/07/2017 02/08/2017 IMU 12080019 17050029 402 

C4 22/07/2017 02/08/2017 IMU 12080017 17050013 443 

C1 22/07/2017 24/10/2017 IMU 12080019 17050029 402 

C2 22/07/2017 24/10/2017 IMU 12080016 16060004 403 

C3 04/08/2017 10/11/2017 IMU 12080103 17050030 453 

C4 04/08/2017 10/11/2017 IMU 12080017 17050013 404 

C6 04/08/2017 10/11/2017 WCT 12070069 17050015 441 

C5 04/08/2017 10/11/2017 WCT 12060057 16080014 442 

C1 17/08/2017 10/11/2017 IMU 12080019 17050029 437 

- 17/08/2017 10/11/2017 IMU 12080017 17050013 439 

C7 17/08/2017 10/11/2017 CUB 12070026 12060012 431 

C3 17/08/2017 10/11/2017 IMU 12080103 17050030 434 

- 17/08/2017 10/11/2017 IMU 12080017 17050013 439 

C2 17/08/2017 10/11/2017 IMU 12080016 16060004 403 

C1 17/08/2017 10/11/2017 IMU 12080019 17050029 437 

- 17/08/2017 10/11/2017 IMU 12080017 17050013 439 

- 17/08/2017 10/11/2017 IMU 12080016 16060004 440 

C1 17/08/2017 10/11/2017 IMU 12080019 17050029 437 

- 17/08/2017 10/11/2017 IMU 12080016 16060004 440 
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Appendix C: Camera image emissivity maps from the DART model 

An emissivity map is required for the emissivity correction of longwave infrared (LWIR) cameras. 

A map covers the perspective of a camera image and has emissivity values across the image pixels 

informed by the surfaces observed and their associated material and optical properties. With an 

isotropic emissivity, the view angle of the camera does not alter the observed surface emissivity, thus 

an emissivity map can be created that is referenced to any prior image classification (e.g. surface 

orientation and material maps, Figure 3-4a). For anisotropic emissivity situations, DART can be used 

to calculate a pre-processed emissivity map that considers the view angle dependence of surface 

emissivity for any given camera and its pixels. For this, the surfaces in the DART model world (MW) 

would be configured to have materials with scattering phase functions (p) to give an anisotropic and 

spectral emissivity ελ,p. A DART simulation similar to that used for the non-black-body (non-BB) 

radiance calculation (Lλ
DART(x, y, Ω↑, ελ,p < 1), W m-2 sr-1 μm-1, see Section 3.3.3) is used and adjusted 

to have: one known surface temperature (𝑇�̅�) across all surfaces, no sky emission (sky brightness 

temperature Tb
sky = 0 K) and no scattering events. This gives a non-BB surface-leaving radiance 

product [Lλ
DART(x, y, Ω↑, ελ,p < 1, Tb

sky = 0, 𝑇�̅�)] used to determine ελ,p(x, y) across the MW camera 

perspective with: 

where Bλ(𝑇�̅�) is the expected at-sensor Planck radiance for a black-body (i.e. ελ,p = 1) at the given 

homogeneous temperature. 

ελ,𝑝(x, y) =
𝐿λ
DART (x, y, Ω↑, ελ,𝑝  <  1, 𝑇b

sky
= 0, 𝑇�̅�)

𝐵λ(𝑇�̅�)
 Eqn. C.1 
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Appendix D: Creation and classification of complex 3D surface and 

vegetation models 

Photogrammetry techniques are used to build a high level of detail (LOD) description of the surface 

geometry within the central London study area (Chapter 3 and Chapter 4). 

D.1: Creation 

Urban surface geometry of buildings, roads, and vegetation (Figure D-1) are resolved to include sub-

facet details (e.g. sloped roofs and balconies). The model world (MW) area has an initial horizontal 

extent of 450 x 450 m. 

 

Figure D-1. Urban surface geometry as (grey) a vector-based 3D surface model and (green) a 

voxel-based model of vegetation canopy elements for the central London (UK) study area 

(Chapter 3 and Chapter 4) rendered using Blender (Blender, 2018). 

The MW area is first split into nine 150 m x 150 m georeferenced tiles (3 x 3 array). In Google Earth 

Pro (Google, 2019a), a programmed “tour” takes 32 images per tile at 200 m from the centre of each 

tile with a 45° zenith angle at 11.25° azimuth angle steps (tile height: mean height above ground 

level (centre), derived from Google Maps API, Google, 2019b). The tour, saved in .kml file format, 

can be read by Google Earth. By taking images around a centre point, most of the Google Earth 3D 

surface present within a tile is captured (Figure D-2).  
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Figure D-2. Sample images captured by Google Earth using a pre-programmed Google Earth 

“tour”. Images are used to create a dense point cloud “tile” in Agisoft PhotoScan Professional 

(Figure D-3). 

Agisoft PhotoScan Professional (Agisoft LLC, 2013) photogrammetry software suite (“PhotoScan”) 

Version 1.3.4 build 506 is used to process the Google Earth images. The relative position and rotation 

of the cameras stored in the .kml file is verified by Photoscan using unsupervised detection of inter- 

and intra-image control points. For each tile, image depth mapping with Photoscan is used to 

construct a dense 3D point cloud (120,000 – 160,000 points) of Google Earth surfaces containing the 

3D coordinate (X, Y, Z), surface normal and RGB attributes (Figure D-3). 
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Figure D-3. Screen captures from the Agisoft PhotoScan Pro user interface (Version 1.3.4 

build 506) with (a) a dense point cloud (1.56 x 107 points) across a 150 x 150 m “tile” centred 

on WGS UTM 31N coordinates (x = 284450, y = 5712800) with the camera position for the 

Google Earth images shown above and (b) a close-up of the sample dense point cloud. 

Point clouds for each tile are rasterised at 0.2 m resolution to give raster (r) digital surface models 

(rDSM, e.g. Figure D-4a) for each tile which are then merged.  

As the Google Earth images only sample the top and sides of convoluted urban surfaces, the complete 

vegetation canopy is underrepresented by the point cloud. Thus, vegetation canopy points are 

extracted from the point cloud and modelled separately. Ground points within each point cloud are 

automatically classified with Photoscan and rasterized to create a raster digital elevation model (rDEM) 

at 0.2 m resolution (rDEM, Figure D-4b) which is aggregated to 5 m using the median values and 

resampled back to 0.2 m. Green vegetation canopies are selected using an RGB colour filter applied 

to an orthorectified true-colour raster of the Google Earth surface (rRGB, Figure D-4d) combined with 

an above ground level (agl) height threshold ([rDSM - rDEM] > 1.5 m). Manual digitisation is used to 

select any shaded or non-green vegetation not selected, and to deselect any raster cells incorrectly 

identified (e.g. artificial turf). The combined automated filter and manual digitised vegetation forms 

a vegetation map (rVEG). Any point cloud points with horizontal coordinates that intersect a 

vegetation cell from rVEG are moved to the height of the corresponding rDEM cell, to produce a 

modified point cloud that excludes all vegetation canopy elements (VCE). A VCE is defined as any 

vegetation taller than 1.5 m agl (e.g. trees, bushes or shrubs). 

The modified point cloud is converted to a 3D vector DSM using Poisson surface reconstruction 

(Kazhdan and Hoppe, 2013). As surfaces near (<10 m) each edge of the DSM extent are poorly 

reconstructed with this method, they are removed; hence, the final horizontal extent of the DSM is 

430 x 430 m. 

The geometry of VCE is contained with a 3D array of voxels (VxV) at ΔX = ΔY = 1 m, ΔZ = 0.1 m, 

that either are filled with VCE or empty. rVEG cells that intersect VxV determines the horizontal 



Appendix D  130 

distribution of VCE. The vertical distribution of VxV uses a canopy top and base height, between 

which all voxels are filled. The canopy top is assumed to be the 95th percentile height of the 

corresponding rDSM and rVEG cells. The canopy base height is determined for each VCE. First, 

individual VCE crowns are identified by applying a local maxima filter (Roussel and Auty, 2018) to 

rDSM cells mapped as rVEG. The horizontal extent of each VCE crown, determined using a watershed 

algorithm (Plowright, 2018), produces a polygon outline for each (Figure D-4d). The “Virtual 

London” building footprint model (Evans, Hudson-Smith and Batty, 2006; Figure 3-2a) is used to 

determine if a VCE is on top of or near a building. A VCE polygon that intersects > 90 % of the area 

of a building footprint polygon is assumed to originate from a roof surface. The base height of each 

VxV within a roof VCE is set to the 25th percentile height of all rDSM pixels within 0.5 m of the roof 

VCE perimeter. For the voxels within each non-roof VCE, the base or “trunk” height is assumed as 

0.25 of the 95th percentile height of rDSM pixels within the VCE polygon. 
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Figure D-4. Raster (r) products for one 150 x 150 m “tile” of the larger study area, 

photogrammetrically processed from the 3D point cloud with (a) digital surface model (rDSM) 

(b) base resolution (0.2 m) digital elevation model (rDEM) (c) above ground (green) surfaces 

and (d) orthoimage determined by Agisoft using the raw Google Earth images and classified 

vegetation canopy elements (VCE, red lines). All rasters are (i) used to determine a 3D 

distribution of VCE (ii) shown in grid coordinate system UTM 31N (m) and (iii) above sea 

level (m) where appropriate. 

D.2: Classification 

The final classified London surface geometry is shown in Figure 3-2a and e.g. Figure 4-3. To create 

this, each triangle of the DSM is assigned an “orientation” (either north, east, south or west facing 

wall, roof or ground) using Blender 3D modelling software version 2.79 (Blender Foundation, 2018, 

hereafter “Blender”). The orientation of each triangle is defined by the smallest angular difference 

between the normal of a DSM triangle and the normal of each cardinal and upward (downward) 

direction. To differentiate upward facing triangles as roof or ground, the height of the centroid of 

each upward facing triangle (i.e. triangles not assigned a cardinal orientation) is compared to the 
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height of the corresponding rDSM (e.g. Figure D-4) cell. A triangle is classified as ground if its centroid 

height is within 2 m of the corresponding rDSM cell. Remaining upward triangles are assigned as 

roofs. 

Land cover (rLC) and hyperspectral reflectance (rλ
ω) maps are used to assign simple materials of: 

Roof [light | dark] and Ground [imp. (impervious) | grass] (Figure 3-2). rLC contains built surfaces, 

grass and “tree” classes at 4 m resolution (Lindberg and Grimmond, 2011). As VCE are modelled 

(Section D.1) and classified separately, the ground below each VCE within rLC is assigned as 

Ground[grass] for pixels that intersect the Ordnance Survey Greenspace dataset (Ordnance Survey, 

2018) or otherwise as impervious (Ground[imp.]). rλ
ω is derived from Specim AISA “Eagle” 

pushbroom sensor (0.40 – 0.97 μm, 253 channels) mounted on the Natural Environment Research 

Council (NERC) Airborne Research and Survey Facility (ARSF) Dornier 228 plane observed on 3rd 

June 2010 (NERC ARSF, 2010). The radiometrically calibrated observations are georeferenced using 

flight navigation data and orthorectified using on-board Light Detection and Ranging (LiDAR) data 

with NERC-ARF-DAN (Natural Environmental Research Council Airborne Research Facility Data 

Analysis Node) APL (Airborne Processing Library) software (NERC-ARF, 2016) at 1 m spatial 

resolution and cropped to the MW area extent. After rejecting shaded pixels and atmospheric 

absorption bands, rλ
ω is classified using k-means (k = 3) clustering (Leutner and Horning, 2016). The 

three clusters identified are: low reflectance, high reflectance and vegetation. Low reflectance and 

shaded surface clusters are assigned to “dark” pixels in the rλ
ω dataset and high reflectance clusters 

are assigned to “light” pixels. Google Earth imagery between 2010 and 2017 suggests land use and 

surface materials remain largely unchanged within the study area. Processes such as weathering and 

re-roofing that may impact the classification are not accounted for. 

Roof and ground DSM triangles are assigned materials using rLC and rλ
ω based on the intersection of 

the (X, Y) coordinates of a triangle centroid and the (X, Y) coordinates of each raster cell. Ground 

surfaces are assigned ground[grass] from rLC. Roof surfaces are assigned Roof[dark] or Roof[light] 

from rλ
ω. Ground surfaces are not assigned any further material properties as they are often shaded 

and occluded by trees and buildings when viewed from airborne platforms (Weng, 2012). Materials 

of vertical surfaces cannot be informed by the plan view raster datasets. Almost universally limited 

high-resolution urban land cover and material datasets makes further land cover classes and surface 

material classification challenging to include. 



Appendix E  133 

Appendix E: Thermal camera enclosures 

During the years 2015-16 when the LWIR cameras (Optris PI-160) were installed in central London 

(Figure E-1), damage occurred from exposure despite being advertised as having complete protection 

against both dust contact and water immersion up to 1 m depth (“IP67” rating from IEC 60529 

international standard) and therefore new enclosures were designed. The original aluminium 

enclosures covered the top of each camera (Figure E-1) to limit differential and rapid warming of the 

camera body from direct sunlight. 

 

Figure E-1. Example setup of Optris PI-160 LWIR camera (years 2015-16) at the IMU site 

with (a) overall mounting of south facing camera (photo looking southwest) (b) close-up of 

the Optris PI-160 camera in original aluminium housing, and (c) front of the camera within 

the aluminium housing. 

Examples of the degradation of the lens anti-reflective coating include a sensor installed at 110 m 

residential tower facing into the prevailing winds (south-westerly) for 11 months (Figure E-2b, right). 

The degradation is evident when compared to a new lens (e.g. Figure E-2a, left; Figure E-2b, left). 

Unfortunately, the overall effect of the degradation is an unaccountable reduction in transmissivity 

of the lens over time. This reduction in observational accuracy made images appear to be out of focus 

(image aberrations). Attempts to clean the lenses during and after the 2015-16 campaign concluded 

the lenses were damaged beyond repair. 
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Figure E-2. Camera lenses after the 2015-16 observation campaign, camera body serial 

numbers ending in (a) 57 and 26 (b) 03 and 69 (c) 17 and 03 (see Appendix B). 

New designs for housing the cameras considered sealed enclosures but as these require LWIR-

transparent windows they were not used as the windows 1) may also be susceptible to the same 

degradation, and 2) would gradually and unaccountably reduce the transmittance of the camera 

system. The solution developed (Figure E-3) protects the lenses without directly interfering with the 

camera system.  

Each enclosure (Spelsberg TK-PS IP66 polystyrene enclosures, 182 mm x 180 mm x 111 mm) 

housed a camera, a Raspberry Pi model B computer and a servo motor (Hitec HS-322HD) that 

controlled an external shutter. Enclosures are covered in reflective aluminium tape to minimise 

absorption of radiation. The Raspberry Pi controlled the servo motor, the internal shutter motor of 

the camera, and recorded the internal body temperature sensor of the camera. A shutter mounted on 

the servo motor occluded an opening in the enclosure located in front of the camera. A schematic for 

the components used inside each enclosure is shown in Figure E-4 and supplemented by Table E-1. 
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Figure E-3. (a) Construction of the 7 enclosures used for the LWIR camera observations in the 

thesis with (1) Spelsberg TK-PS IP66 polystyrene, 182 mm x 180 mm x 111 mm enclosure 

housings without aluminium tape, (2) lids for the enclosure housings prior to aluminium tape 

application and temporarily holding the electronics for each enclosure, (3) 20 m USB data 

transfer cable between the camera and data collection computer, (b) completed enclosure with 

(1) Optris PI-160 LWIR camera, (2) 30 mm fan with 5 mm holes underneath to promote the 

circulation of air within the enclosures, (3) Hitec HS-322HD servo motor attached to (4) a 

shutter that covers the opening in the enclosure, (5) camera lens assembly (6) enclosure 

housing, (c) enclosure installed at the IMU site with the camera facing northeast with (1) the 

Raspberry Pi and electronics housed at the back of the enclosure on an L-shaped acrylic plate, 

(2) additional housing for an ethernet switch and 12V power supply, (d) final installation of 

the camera (shown in c) with Dr Ben Crawford closing lid. 

Table E-1. Description of process interface (PIF) connectors for Optris PI-160 cameras (Optris 

GmbH, 2018), referenced numerically in Figure E-4. 

PIF port # (Figure E-4) Short name Description 

1 PIF_VIN Power: 5V DC +ve 

2 Shield - 

3 PIF_AO1 Analog output 

4 PIF_AIN1 Analog input 

5 PIF_DIN1 Digital input 

6 PIF_GND Ground 



 

 

 

Figure E-4. Component and wiring configuration for Optris PI camera enclosures. Camera process interface (PIF) terminals shown in Table E-1. Raspberry 

Pi also connected via Cat 5 Ethernet to give an internet connection over a local area network.
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Appendix F: Camera spectral response function 

As the spectral response function (SRF) for the cameras is unavailable from the manufacturer except 

for a generic focal plane array (FPA) detector response function, the full camera response function 

that includes the FPA and lens is derived (Figure F-1) from laboratory experiments for camera C2 

(Table 3-1) from 6 – 14 μm at 0.1 μm resolution using a Bentham TMS300 single monochromator 

emission source, with reference measurements of the emission source using a Bentham Py-CAL 

pyroelectric detector. The emission source is sampled by C2 using the camera digital number (DN) 

output across a 9 x 3 region of pixels that observe the centre of the projected emission source at the 

monochromator exit slit. The per-pixel DN values were normalised and the median of this was 

compared to the normalised signal from the Py-CAL detector which has a flat response function 

across the entire bandwidth. From the two normalised responses of the emission source across the 

spectral range, the SRF was determined and applied across each pixel of each camera. 

 

Figure F-1. Spectral response function experimentally derived for camera C2 (solid line) and 

from the camera used by Meier et al., (2011) (dashed line) (Fred Meier personal 

communication 2018). 
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Appendix G: Siting of camera for observational evaluation of 

atmospheric correction 

A longwave infrared camera (C7) was installed at the atmospheric correction evaluation site (“CUB” 

site, Section 3.4, Figure G-1). The flat asphalt felt roof (~ 600 m2) is surrounded by a low (< 2 m) 

metal railing and connected by a metal stairway.  

 

Figure G-1. Enclosed longwave infrared camera (camera C7) installed at the CUB site for 

atmospheric correction evaluation with its “short” roof-camera path length (a) mounted on a 

bell tower to the southwest of the target roof. Images taken on 7th September 2017. 

A bell tower (~12 m taller than the roof) to the southwest of the roof was used to mount the enclosed 

(Appendix E) camera at ~6.5 m above the roof facing northeast and pointing towards the flat roof 

below. To the east and west of the roof, there are no taller buildings in close proximity (~100 m), 

allowing the camera target area in the centre of the roof to be mostly sunlit even during low sun 

angles around sunrise and sunset. 
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Appendix H: Time series images of atmospheric and emissivity 

correction 

 

Figure H-1. Difference between at sensor-radiance as brightness temperature (Tb
cam) (K) and 

corrected surface temperature (Ts) accounting for atmosphere and emissivity effects for camera 

C1. Each image is the instantaneous value of Ts – Tb
cam (K) using emissivity of 0.93 for all 

non-vegetative surfaces. 
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Figure H-2. As Figure H-1 but for C2. 
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Figure H-3. As Figure H-1 but for C3. 
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Figure H-4. As Figure H-1 but for C4. 
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Figure H-5. As Figure H-1 but for C5. 
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Figure H-6. As Figure H-1 but for C6. 
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Appendix I: Statistics for atmospheric correction 

 

Figure I-1. Atmospheric correction of longwave infrared (LWIR) camera observations for six 

timesteps on 7th September 2017, using pixels within ±10 m of five path lengths (zpath) with 

(white cells) meteorological input variables (coloured cells) median[IQR] values of: (a) 

difference between uncorrected camera brightness temperature (Tb
cam) and corrected surface 

brightness temperature (Tb
surf), (b) surface-camera path contribution of the at-sensor band 

integrated atmosphere radiance (Latm), and (c) surface-camera path contribution of band 

integrated atmospheric transmissivity (Γatm). See list of symbols and acronyms in Chapter 3 

for all other definitions. 

 

Figure I-2. As Figure I-1 but for 8th September. 

 

Figure I-3. As Figure I-1 but for 9th September. 

-0.32[0.27]

-0.58[0.26]

-0.72[0.30]

-1.27[0.64]

-2.07[1.29]

-0.29[0.30]

-0.54[0.29]

-0.67[0.36]

-1.25[0.73]

-2.06[1.31]

-0.62[0.41]

-1.04[0.45]

-1.33[0.77]

-1.94[0.72]

-3.38[0.88]

-0.52[0.37]

-0.89[0.36]

-1.14[0.53]

-1.74[0.77]

-2.79[1.34]

-0.47[0.35]

-0.79[0.36]

-1.10[0.43]

-1.88[0.87]

-3.48[2.07]

-0.40[0.37]

-0.75[0.37]

-1.05[0.47]

-1.96[1.00]

-3.76[2.70]

50

100

150

200

250

z
p

a
th
 (

m
)

-3 -2 -1Tb

cam
−T b

surf
 (K)

(a)

1.41[0.36]

1.98[0.20]

2.82[0.23]

3.48[0.31]

4.05[0.21]

1.53[0.39]

2.17[0.22]

3.10[0.26]

3.83[0.34]

4.46[0.23]

1.78[0.45]

2.49[0.25]

3.55[0.29]

4.39[0.35]

5.11[0.25]

1.78[0.45]

2.49[0.25]

3.54[0.29]

4.36[0.38]

5.06[0.27]

1.96[0.50]

2.75[0.28]

3.91[0.32]

4.82[0.42]

5.59[0.29]

1.92[0.49]

2.71[0.28]

3.86[0.32]

4.76[0.41]

5.50[0.28]

50

100

150

200

250

z
p

a
th
 (

m
)

2 3 4 5L
atm

 (W m
−2

 sr
−1

)
(b)

0.96[0.01]

0.94[0.01]

0.92[0.01]

0.90[0.01]

0.88[0.01]

0.96[0.01]

0.94[0.01]

0.91[0.01]

0.89[0.01]

0.87[0.01]

0.95[0.01]

0.93[0.01]

0.90[0.01]

0.88[0.01]

0.85[0.01]

0.95[0.01]

0.93[0.01]

0.91[0.01]

0.88[0.01]

0.86[0.02]

0.95[0.01]

0.93[0.01]

0.90[0.01]

0.87[0.01]

0.83[0.02]

0.95[0.01]

0.93[0.01]

0.90[0.01]

0.86[0.01]

0.83[0.03]

50

100

150

200

250

z
p

a
th
 (

m
)

0.84 0.87 0.90 0.93 0.96Γ
atm

(c)

286.85 285.75 288.20 290.33 289.74 288.47

71.12 84.00 81.17 68.37 80.00 88.75

368.14 378.48 366.84 355.59 352.39 355.53

8.40 9.28 10.42 9.98 11.27 11.58

T a (K)

RH (%)

CO2 (ppm)

ρv (g m
3
)

02:00 06:00 10:00 14:00 18:00 22:00
2017-09-07 (HH:MM)

286.85 285.75 288.20 290.33 289.74 288.47

71.12 84.00 81.17 68.37 80.00 88.75

368.14 378.48 366.84 355.59 352.39 355.53

8.40 9.28 10.42 9.98 11.27 11.58

Ta (K)

RH (%)

CO2 (ppm)

ρv (g m
3
)

02:00 06:00 10:00 14:00 18:00 22:00
2017-09-07 (HH:MM)

286.85 285.75 288.20 290.33 289.74 288.47

71.12 84.00 81.17 68.37 80.00 88.75

368.14 378.48 366.84 355.59 352.39 355.53

8.40 9.28 10.42 9.98 11.27 11.58

T a (K)

RH (%)

CO2 (ppm)

ρv (g m
3
)

02:00 06:00 10:00 14:00 18:00 22:00
2017-09-07 (HH:MM)

-0.41[0.33]

-0.70[0.34]

-1.00[0.41]

-1.76[0.85]

-3.10[1.99]

-0.39[0.35]

-0.71[0.35]

-0.96[0.44]

-1.71[0.88]

-3.00[1.85]

-0.27[0.33]

-0.51[0.31]

-0.69[0.40]

-1.34[0.83]

-2.18[1.67]

NA[NA] NA[NA] NA[NA]

NA[NA] NA[NA] NA[NA]

NA[NA] NA[NA] NA[NA]

NA[NA] NA[NA] NA[NA]

NA[NA] NA[NA] NA[NA]

50

100

150

200

250

z
p

a
th
 (

m
)

-3 -2 -1Tb

cam
−T b

surf
 (K)

(a)

1.88[0.48]

2.64[0.27]

3.76[0.31]

4.64[0.41]

5.38[0.28]

1.86[0.48]

2.62[0.27]

3.74[0.31]

4.61[0.41]

5.36[0.27]

1.73[0.45]

2.44[0.25]

3.48[0.29]

4.30[0.38]

5.00[0.26]

NA[NA] NA[NA] NA[NA]

NA[NA] NA[NA] NA[NA]

NA[NA] NA[NA] NA[NA]

NA[NA] NA[NA] NA[NA]

NA[NA] NA[NA] NA[NA]

50

100

150

200

250

z
p

a
th
 (

m
)

2 3 4 5L
atm

 (W m
−2

 sr
−1

)
(b)

0.95[0.01]

0.93[0.01]

0.90[0.01]

0.87[0.01]

0.84[0.02]

0.95[0.01]

0.93[0.01]

0.90[0.01]

0.87[0.01]

0.84[0.02]

0.95[0.01]

0.93[0.01]

0.91[0.01]

0.88[0.01]

0.85[0.02]

NA[NA] NA[NA] NA[NA]

NA[NA] NA[NA] NA[NA]

NA[NA] NA[NA] NA[NA]

NA[NA] NA[NA] NA[NA]

NA[NA] NA[NA] NA[NA]

50

100

150

200

250

z
p

a
th
 (

m
)

0.84 0.87 0.90 0.93Γ
atm

(c)

288.45 287.27 287.45288.31 288.66 287.43

85.00 91.00 84.0088.00 89.35 75.85

356.11 450.51 373.51373.14 376.76 351.91

11.08 11.03 10.3011.37 11.79 9.29

T a (K)

RH (%)

CO2 (ppm)

ρv (g m
3
)

02:00 06:00 10:00 14:00 18:00 22:00
2017-09-08 (HH:MM)

288.45 287.27 287.45288.31 288.66 287.43

85.00 91.00 84.0088.00 89.35 75.85

356.11 450.51 373.51373.14 376.76 351.91

11.08 11.03 10.3011.37 11.79 9.29

Ta (K)

RH (%)

CO2 (ppm)

ρv (g m
3
)

02:00 06:00 10:00 14:00 18:00 22:00
2017-09-08 (HH:MM)

288.45 287.27 287.45288.31 288.66 287.43

85.00 91.00 84.0088.00 89.35 75.85

356.11 450.51 373.51373.14 376.76 351.91

11.08 11.03 10.3011.37 11.79 9.29

T a (K)

RH (%)

CO2 (ppm)

ρv (g m
3
)

02:00 06:00 10:00 14:00 18:00 22:00
2017-09-08 (HH:MM)

-0.25[0.30]

-0.55[0.24]

-0.68[0.47]

-1.32[0.76]

-1.93[1.40]

-0.32[0.29]

-0.56[0.26]

-0.73[0.31]

-1.26[0.65]

-1.95[1.19]

-0.48[0.33]

-0.75[0.42]

-0.98[0.62]

-1.40[0.59]

-2.54[0.64]

-0.48[0.38]

-0.89[0.36]

-1.12[0.55]

-1.65[0.69]

-2.46[1.16]

-0.33[0.30]

-0.65[0.31]

-0.81[0.40]

-1.45[0.81]

-2.12[1.22]

-0.31[0.31]

-0.56[0.28]

-0.69[0.37]

-1.25[0.72]

-2.01[1.33]

50

100

150

200

250

z
p

a
th
 (

m
)

-2.5 -2.0 -1.5 -1.0 -0.5Tb

cam
−T b

surf
 (K)

(a)

1.49[0.38]

2.12[0.21]

2.98[0.19]

3.71[0.31]

4.35[0.21]

1.43[0.37]

2.03[0.21]

2.90[0.24]

3.60[0.32]

4.20[0.21]

1.54[0.39]

2.15[0.22]

3.07[0.25]

3.80[0.31]

4.43[0.22]

1.54[0.39]

2.17[0.22]

3.08[0.25]

3.80[0.34]

4.42[0.23]

1.57[0.40]

2.21[0.22]

3.14[0.26]

3.89[0.34]

4.52[0.23]

1.51[0.39]

2.13[0.22]

3.05[0.25]

3.78[0.33]

4.40[0.22]

50

100

150

200

250

z
p

a
th
 (

m
)

1.5 2.0 2.5 3.0 3.5 4.0 4.5L
atm

 (W m
−2

 sr
−1

)
(b)

0.96[0.01]

0.94[0.01]

0.92[0.01]

0.89[0.01]

0.87[0.01]

0.96[0.01]

0.94[0.01]

0.92[0.01]

0.89[0.01]

0.87[0.01]

0.96[0.01]

0.94[0.01]

0.92[0.01]

0.89[0.01]

0.87[0.01]

0.96[0.01]

0.94[0.01]

0.92[0.01]

0.89[0.01]

0.87[0.01]

0.96[0.01]

0.94[0.01]

0.91[0.01]

0.89[0.01]

0.87[0.01]

0.96[0.01]

0.94[0.01]

0.91[0.01]

0.89[0.01]

0.87[0.01]

50

100

150

200

250

z
p

a
th
 (

m
)

0.88 0.90 0.92 0.94Γ
atm

(c)

285.05 284.05 286.97 289.35 287.21 285.25

86.81 90.00 75.81 63.28 77.00 86.82

376.21 378.68 364.74 356.29 357.18 365.61

9.18 8.94 9.03 8.71 9.30 9.29

T a (K)

RH (%)

CO2 (ppm)

ρv (g m
3
)

02:00 06:00 10:00 14:00 18:00 22:00
2017-09-09 (HH:MM)

285.05 284.05 286.97 289.35 287.21 285.25

86.81 90.00 75.81 63.28 77.00 86.82

376.21 378.68 364.74 356.29 357.18 365.61

9.18 8.94 9.03 8.71 9.30 9.29

Ta (K)

RH (%)

CO2 (ppm)

ρv (g m
3
)

02:00 06:00 10:00 14:00 18:00 22:00
2017-09-09 (HH:MM)

285.05 284.05 286.97 289.35 287.21 285.25

86.81 90.00 75.81 63.28 77.00 86.82

376.21 378.68 364.74 356.29 357.18 365.61

9.18 8.94 9.03 8.71 9.30 9.29

T a (K)

RH (%)

CO2 (ppm)

ρv (g m
3
)

02:00 06:00 10:00 14:00 18:00 22:00
2017-09-09 (HH:MM)



Appendix I  146 

 

Figure I-4. As Figure I-1 but for 10th September. 

 

Figure I-5. As Figure I-1 but for 11th September. 

 

Figure I-6. As Figure I-1 but for 12th September. 

 

Figure I-7. As Figure I-1 but for 13th September. 
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Figure I-8. As Figure I-1 but for 14th September. 

 

Figure I-9. As Figure I-1 but for 15th September. 

 

Figure I-10. As Figure I-1 but for 16th September. 

 

Figure I-11. As Figure I-1 but for 17th September. 
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Figure I-12. As Figure I-1 but for 18th September. 

 

Figure I-13. As Figure I-1 but for 19th September. 

 

Figure I-14. As Figure I-1 but for 20th September. 

 

Figure I-15. As Figure I-1 but for 21st September. 
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Figure I-16. As Figure I-1 but for 22nd September. 

 

Figure I-17. As Figure I-1 but for 23rd September. 

 

Figure I-18. As Figure I-1 but for 24th September. 

 

Figure I-19. As Figure I-1 but for 25th September. 
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Figure I-20. As Figure I-1 but for 26th September. 
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Appendix J: Three-dimensional bidirectional reflectance factor from 

DART 

The fraction of scattered radiation (fSR) for each surface voxel [fSR(X, Y, Z, t)] simulated as fSRDART 

by the Discrete Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry, Grau and 

Lauret, 2012) for each observational timestep t is corrected to a 3D bidirectional reflectance factor 

(BRF). This correction is required because fSR is a DART radiation budget product while BRF is 

inherently a remote sensing product. 

As there can be insufficient density of solar illumination rays compared to the voxel and surface 

geometry resolution, when the area of a surface element [AVx(X, Y, Z), m2] is small, fSRDART for the 

associated voxel can be lower than expected due to insufficient rays of the DART incoming spectral 

radiant flux [Eλ(θ, ϕ, Ω, t)] intercepting the surface element. The effect is corrected for by determining 

AVx for “non-shifted” [AVx(X, Y, Z)] and “shifted” [AVx(X’, Y’, Z)] DSM positions, shown for simple 

urban geometry in Figure J-1. AVx (X’, Y’, Z) is calculated by moving the DSM horizontally by half 

the horizontal resolution of the voxels [(ΔX, ΔY)/2]. Non-shifted [fSRDART(X, Y, Z, t)] and shifted 

[fSRDART(X’, Y’, Z, t)] cases are then simulated and merged as fSR(X, Y, Z, t) as: 

with ΔXΔY the horizontal area of a voxel (m2) and n a threshold factor (n = 0.98). Remaining voxels 

in fSR(X, Y, Z, t) (purple cells, Figure J-1) unable to be filled from fSRDART(X, Y, Z, t) or fSRDART(X’, 

Y’, Z, t) are filled using the average of fSR values within co-planar voxels with fSR(X, Y, Z, t) > 0.  

In addition to the correction for ray density, the amount of energy that can be intercepted and 

subsequently scattered by a voxel is modified by the available surface area AVx and requires 

correction. For a planar surface element with horizontal or vertical alignment with the voxel array, 

AVx(X, Y, Z) is equal to the horizontal model resolution (ΔXΔY). This meanins fSR(X, Y, Z) is equal 

to BRF(X, Y, Z) for the voxel that contains these surface elements as the projected area of the surface 

element is equal to the horizontal surface area considered for ESW
↓,dir(X, Y, Z = top, t) (Eqn. 4.1 in 

main text). AVx is typically larger than ΔXΔY for sloped and heterogeneous surface elements and 

smaller than ΔXΔY if the surface element only partially intersects the voxel. The “effective” 

horizontal surface area of a voxel is therefore calculated as AVx(X, Y, Z) / ΔXΔY and used to 

approximate BRF(X, Y, Z) by: 

fSR(X, Y, Z, t)={

fSR
DART

(X, Y, Z, t)     if AVx(X, Y, Z) > nΔXΔY

fSR
DART

(X', Y', Z, t)   if AVx(X, Y, Z) ≤ nΔXΔY and AVx(X', Y', Z) > nΔXΔY

0                                 otherwise

 Eqn. J.1 

BRF(X, Y, Z, t)≅
f R(X, Y, Z, t)

AVx(X, Y, Z) ΔXΔY⁄
 . Eqn. J.2 



Appendix J  152 

This approximation is reasonable for surface elements with relatively simple geometry and uniform 

irradiance (e.g. planar sloped roofs and not building edges, balconies), whereas Lambertian surfaces 

with complex geometry at scales smaller than the voxel resolution can still have highly anisotropic 

reflectance. This limitation can be mitigated by using a high-resolution voxel array (e.g. ΔX = ΔY = 

ΔZ ≤ 1 m used in the thesis) which is still computationally viable. Recent updates in development 

versions of DART (e.g. 5.7.3 V1079) allow fSR to be stored for each voxel face instead of per-voxel, 

which was not explored here but has potential to enhance these methods. 

 
Figure J-1. Procedure for correcting the fraction of scattered radiation simulated by DART (fSRDART) using DSM 

elements (black lines) stored per-voxel and timestep [fSRDART(X, Y, Z, t), coloured squares] shown as vertical 

(X, Z) cross section of a theoretical sloped roof building that is infinitely long on Y axis. The voxel-surface 

intersection is resolved for DSM geometry that is (a) unshifted and (b) shifted by half the horizontal resolution 

of the voxels [(+ΔX, +ΔY)/2]. The area (A) of DSM intersecting a voxel (AVx) is calculated. For the unshifted 

case (a), if AVx(X, Y, Z) ≤ nΔXΔY (orange), fSRDART(X, Y, Z) can be poorly resolved and is replaced using the 

corresponding voxel from (b) [i.e. fSRDART(X’, Y’ , Z, t), Eqn. J.2] and used as a surface voxel in the corrected 

product (fSR(X, Y, Z, t), blue voxels, c). Remaining voxels where AVx(X, Y, Z) ≤ nΔXΔY in (a) and AVx(X’, 

Y’, Z) ≤ nΔXΔY in (b) are filled using the average fSR from neighbouring horizontal voxels (purple, c). 
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Appendix K: Details of DART longwave infrared simulation 

The Discrete Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry, Grau and Lauret, 

2012) is used to simulate the radiative transfer (RT) processes associated with longwave infrared 

(LWIR) emission and multiple scattering from complex surfaces to correct a series of LWIR cameras 

for emissivity effects and also simulate effective thermal anisotropy. This appendix details the RT 

process for the “model world” (MW) in central London (Chapter 3, Chapter 4) which extends across 

a London study area observed by the cameras and is modelled for the camera perspectives. 

Across the MW surfaces, emitted rays are tracked across 628 discrete directions (Ω) over the 4π 

space with equal solid angle (ΔΩ ≈ 0.02 sr). Under a state of thermodynamic equilibrium all rays are 

emitted and tracked to other surfaces where energy from the is scattered based on the surface 

reflectance (1 – ε). Scattering is repeated for up to 5 iterations, with a threshold for stopping rays 

scattered with a very small intensity. Rays exiting any MW vertical side re-enter on the opposite side 

with the same direction but with a height adjusted by any topographic differences in the built surface 

and underlying ground between the exit and re-entry points. 

The approach to simulate the effective thermal anisotropy (Section 4.3.3) is validated using a simple 

surface temperature configuration. Any radiance that leaves the side of the MW area is cycled to the 

opposite MW area edge to the cross the bottom of atmosphere (BOA) layer (Figure 4-2) at a point 

outside the MW extent. For off-nadir radiances, this process produces gaps around the inside space 

of buildings that are at the MW edge (Figure 4-13, white), where the buildings obstruct the rays that 

would otherwise exiting the MW sides. It is anticipated that the effect does not impact the simulated 

directional spectral radiance [Lλ
surf(ϕ, θ, Ω)] and is validated using a DART simulation with black-

body surfaces, homogeneous Ts (300 K) and no vegetation canopy elements (VCE). Area-integrated 

results have maximum directional brightness temperature at nadir (300.05 K) and a 299.97 K median 

(standard deviation 0.02 K, mean absolute error 0.03 K) and minimum (299.9 K). Theoretically, the 

directional radiance is isothermal with a 300 K equivalent Tb. Errors likely result from a small number 

of lost rays at the edge of the scene, and also across the entire scene where the resolution of DART 

voxels and sub-voxels is too coarse for some areas of very complex sub-meter scale geometry. 
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Appendix L: Meteorological conditions for 26th – 27th August 2017 

 

Figure L-1. Meteorological observations prior and on 27th August 2017 (day of year - DOY - 

239). A Davis Vantage Pro 2 weather station located ~1 km southeast of the study area (114 

m above ground level) measured (Ta) air temperature, relative humidity, wind speed and 

direction. A Kipp and Zonen CNR1 net radiometer at the IMU site (Section 4.2.1) measured 

(ESW
↓) broadband incoming shortwave (W m-2) and (ELW

↓) broadband incoming longwave 

radiation fluxes. Last recorded rain was 11.8 mm h-1 on 22nd August 2017 at 22:45. 
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Appendix M: Time series and per-pixel classification of observations 

The fraction of surface properties of orientation and material [Σ(x, y)] seen by each camera pixel are 

well sampled except for ΣDown and ΣRoof[light] (Figure M-1). Multiple factors determine the inter-camera 

differences in the fraction of Σ(x, y) sampled. As expected, the camera view angles determine the 

surface orientations seen (e.g. west facing cameras (C5, C6) view east facing surfaces that become 

sunlit after 06:00 and shaded after 12:10) (Figure M-1, orange). For non-mixed and masked values of 

Σ, ΣRoof[dark] (ΣRoof[light]) is the most (least) well sampled with maximum 14 % (0.9 %) of pixels across 

all cameras. Light roofs are generally rare in the study area (Figure 4-3). 36.6 % (32.9 %) of pixels 

are ΣMixed during daytime (nighttime).  

The absence of ΣDown pixels is because of the downward facing view angle of all cameras. C2 and 

C3 images contain the highest proportion of mixed pixels (42.8 % and 44.5 %) as these observations 

have longer path lengths, increasing pixel IFOV and the likelihood of viewing multiple surface 

properties therein.  

C2 and C3 view more surfaces outside the MW area. Mixed pixels within images (Figure 4-5b) are 

associated with complex surface geometry at sub-pixel resolution (e.g. east wall in C6, south wall in 

centre of C2, roof at top right of C1; corresponding to balconies, sun-shades and an irregular shaped 

roof, respectively). More mixed pixels are present during daytime from an “isolated pixel” filter for 

BRF(x, y) (Section 4.2.2.3). 

 
Figure M-1. Fraction of all pixels (19200) in a camera (C#) image that are assigned an orientation and material 

surface property (Σ) and sun status during the case study day in central London (27th August 2017) at 5 min temporal 

resolution. Interval of daytime shadow (~15:30) is from an overcast period. Mixed pixels contain multiple Σ values 

or are isolated pixels (Section 4.2.2.3). See Section 4.2.1 for overview of study area and instrumentation. 
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Appendix N: Surface temperature variability by shortwave irradiance – 

extended 

More complete per-pixel Ts observations with surface properties of orientation and material [Σ(x, y)] 

to the sun-surface geometry of surfaces (bidirectional reflectance factor, BRF) are provided in Figure 

N-1. 

 
Figure N-1. Longwave infrared camera derived surface temperature (Ts) for 28 timesteps (sub-plots) on 27th 

August 2017 grouped by surface properties (colour) of orientation and material (Σ) and incoming shortwave 

radiation (bidirectional reflectance factor, BRF) with BRF = 1 equivalent to irradiance for a flat surface for any 

daytime sun angle. BRF binned (BRF̅̅ ̅̅ ̅̅ ) by 0.25 bin widths with shaded values (BRF ≈ 0) binned as -1. BRF 

determined using the Discrete Anisotropic Radiative Transfer (DART) model. Boxplots excluded if number of 

pixels < 50. Ground and Roof[light] excluded from analysis as most surfaces have BRF ≈ 1. Boxplots include 

median (horizontal line), interquartile range (box), and 5 and 95 percentiles (whiskers).
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