
 
 
 
 
 
 
 
 

PHD DISSERTATION 
 

on 
 

Comparative Evaluation of Ising Couplings, 
Kinetic Ising Couplings,  

and Partial Correlations in Inferring 
Structural Connectivity 

 

 

Submitted by 

Balasundaram KADIRVELU 
b.kadirvelu@pgr.reading.ac.uk 

 
 

Thesis Advisors 

Prof. Slawomir J. Nasuto 
& 

Dr. Yoshikatsu Hayashi 
 
 

Prepared at 

The School of Biological Sciences  
University Of Reading 

July 2017 



Declaration of Authorship

I confirm that this is my own work and the use of all material from other

sources has been properly and fully acknowledged.

Signed:

Date:

i



Comparative evaluation of Ising couplings,

kinetic Ising couplings and partial

correlations in inferring structural

connectivity
Abstract: The problem of inferring the structural connections from the
functional connections obtained from the activity of the neuronal networks is
one of the major challenges in neuroscience. Studies suggest that maximum
entropy based Ising models can discount the effect of indirect interactions
and provide good results in inferring the underlying structural connections
in neuronal networks. Parameters of the kinetic formulation of the Ising
models, kinetic Ising models, have been found to agree well with anatomical
connectivity in in silico models of neuronal networks. Following this, Ising
and kinetic Ising models have attracted attention in the area of connectivity
studies. However, the performance of the Ising couplings and kinetic Ising
couplings have not been evaluated in comparison with other functional con-
nectivity metrics in the microscopic scale of neuronal networks for a varied
set of network conditions and network structures. This thesis sets out to
resolve this through a comparative evaluation of the ability of Ising cou-
plings and kinetic Ising couplings to unravel the structural connections when
compared to the widely used functional connectivity metrics of partial and
cross-correlations in in silico networks.

The thesis presents the finding that the network correlation level deter-
mines the relative performance of the functional connectivity metrics in de-
tecting the synaptic connections. At weak levels of network correlation, Ising
couplings and kinetic Ising couplings yielded better performance when com-
pared to partial and cross-correlations. Whereas at strong levels of network
correlation, partial correlations detected more structural links when com-
pared to other functional connectivity metrics in this study. This result was
consistent across varying firing rates, network sizes, densities and topologies.
Along with being directional and applicable in nonstationary cases, kinetic
Ising couplings also displayed better performance when compared to Ising
couplings. The findings of this thesis serve as a guide in selecting the right
functional connectivity tool to reconstruct the structural connectivity.

Keywords: - Functional connectivity, Structural connectivity, Ising mod-
els, Kinetic Ising models, Partial correlations
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Chapter 1

Introduction

Contents

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research problem . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Overview

The human brain, with its astounding capacity for learning, memory, cal-

culation, thoughts, coordination, and control is the most complex human

organ. The brain is made up of a complex network of billions of cells form-

ing two main cell classes - neurons and glia [Aze+09]. Over the last few

decades, we have made considerable progress in understanding how the

individual neuronal cell works. In this light, scientists have understood

1



Chapter 1. Introduction

the mechanisms behind the excitatory postsynaptic potentials (EPSP), in-

hibitory postsynaptic potentials (IPSP), action potentials and synaptic trans-

missions. However, we still know little about how neurons interact in

a network and how networks of neurons perform complex computations

[Yus15].

It is through these networks that the brain is able to perform complicated

activities such as thought and speech. Understanding individual neurons

is not sufficient to understand how the brain achieves these complex feats;

wemust understand the connectivity and the interactions between the neu-

rons. A great scientific challenge is to explain the principles governing the

connections and interaction between groups of brain cells [Yeh+10].

While we have a long way to understanding interactions in networks of

thousands and millions of neurons, recent advances have drawn us much

nearer to explaining interactions amongst tens of neurons. Improvements

in technology have enabled long-duration recordings from closely-spaced

neurons with excellent temporal resolution [Nic07; SK11]. At the same

time, technological advances in modern immunostaining and optogenetic

methods [Dei11] aremaking available the synaptic connectivity of networks

of neurons. Due to the possibility of having data about both the connectiv-

ity and the activity of many neurons at the same time, we have a chance to

begin understanding how networks of neurons work. An important step

in deciphering the spike train data recorded from the neuronal networks in

a functional context is to understand the relationship between the synaptic

connectivity among neurons and the observed neuronal activity. The in-

verse problem of inferring the underlying anatomical connections from the

observed neuronal activity is an active area of research [PR13].

2
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1.2 Research problem

Functional connectivity is a statistical description of the mutual dependen-

cies observed in multi-neuronal spiking activity [Ste+08]. Functional con-

nectivity has a non-trivial relationship with the underlying anatomical ar-

chitecture of the neuronal circuits [FBC11]. The ability to reconstruct the un-

derlying structural connectivity from the functional connectivity remains

an important open question [Ste+12; Orl+14].

The most common functional connectivity measure used in the study of

neuronal activity is cross-correlation [AG85]. However, the usefulness of

cross-correlation in inferring the structural connectivity in a neuronal net-

work is limited. Due to the fact that each pair of nodes is considered in-

dependently in calculating the cross-correlations, it is not possible to deter-

mine if the correlated activity of a neuron pair is the result of a direct or

indirect connection between them, or the result of a common input [EDS03;

Ada+12].

A second type of approach in obtaining the functional connectivity of a

neuronal network is to tune the parameters of a statistical model so that the

probability distribution of the spike data generated by that model agrees

with the probability distribution of the spike data recorded from the neu-

ronal network [HRT13]. Then the parameters of the model can be consid-

ered to represent the functional connections between the neurons in the

network. Shlens & co-workers [Shl+06] and Schneidman & co-workers

[Sch+06] observed that the computed probability distribution of the binary

second-order maximum entropy model was hardly distinguishable when

compared to the measured response distribution from groups of retinal

3
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neurons. This conclusion has also been later reported by other research

groups for both in vivo [Yu+08] and in vitro [Tan+08] recordings. The prob-

ability distribution of a second-order maximum entropy model is identical

to the Gibbs equilibrium distribution of the Isingmodel, widely used in sta-

tistical physics [Sch+06; HRT13]. Thus, the coupling parameter of the Ising

model lends itself as an alternative measure of functional connectivity de-

scribing the interaction between the neurons.

Studies [Sch+06; GSS11; BC13; Yu+08] suggest that the Ising coupling pa-

rameters can remove the effects of the indirect interactions and account

only for the direct interactions rendering Ising coupling parameter as a

robust indicator of the underlying structural connectivity in the network.

Hertz et al [HRT13] observed that the coupling parameters of a kinetic for-

mulation of the Ising model were able to reconstruct the structural connec-

tions of a model cortical network very reliably. Following this observation,

there has been a growing interest [RDH15] in applying and extending ki-

netic Ising models to infer connectivity in simulated models of neuronal

networks [Cap+15; RH11], and also to understand functional connectivity

in living neuronal networks [DMR15]. Compared to other statistical mod-

els, Ising models claim a better chance to reconstruct the true underlying

anatomical connectivity [HRT13].

Meanwhile, a recent study [Pol+16] has confirmed that partial correlation

based on scaled partial covariance density [EDS03] outperformed twowidely

used functional connectivitymethods, cross-correlations and one-delay trans-

fer entropy, in inferring the structural connectivity in simulated networks.

To the best of our knowledge, no comparison has been carried out between

4
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Ising couplings and kinetic Ising couplings against partial correlations in

the microscopic scale of neuronal networks, testing through a wide set of

network conditions and network topologies. Which of the functional con-

nectivity approaches provides the best measure of the underlying struc-

tural connectivity remains an open question, which has been addressed in

this dissertation.

1.3 Objectives

This thesis systematically studied the inference of the underlying structural

connections by Ising couplings and kinetic Ising couplings, in compari-

son to partial and cross-correlations, in in silico neuronal networks. As

it is possible to fully control the underlying topology and the different

network conditions in the case of in silico networks, in silico networks of

Izhikevich neurons [Izh03] were used in the study. In this thesis, Ising

couplings and kinetic Ising couplings were evaluated against partial and

cross-correlations in scale-free, modular small-world and random network

topologies of in silico networks, as studies [MPM15; EM06a; Dow+12] sug-

gest that the structural connectivity in neuronal networks exhibits features

of such complex networks. The functional connectivity measures were also

evaluated for different firing rates and correlation levels in networks of var-

ious sizes and network densities, as literature [Cha+15; IS10] indicates that

the activity of neuronal networks is characterised by such factors.
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1.4 Roadmap

The thesis is structured as follows. Chapter 2 reviews the scientific liter-

ature pertaining to structural and functional connectivity, Ising models,

kinetic Ising models, partial and cross-correlations. Then, Chapter 3 de-

scribes the general methods that are used throughout this dissertation. This

includes a description of the simulation network of Izhikevich neurons,

methods to compute Ising and kinetic Ising model parameters along with

the techniques to calculate partial and cross-correlations. Next, Chapter 4

presents the results of a detailed comparative study of the performance of

Ising couplings against partial and cross-correlations in inferring the struc-

tural connections. Analogous to the previous chapter, Chapter 5 presents

the comparative study of the performance of kinetic Ising couplings against

partial and cross-correlations. Finally, the results are summarised and the

general conclusions are discussed in Chapter 6.
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This thesis does a systematic study of the inference of the underlying struc-

tural connectivity by Ising couplings and kinetic Ising couplings, in com-

parison to partial and cross-correlations, in in silico neuronal networks. As

different forms of connectivity in neuronal networks exhibit features of

complex networks, the chapter first presents the basic concepts of complex

networks. This chapter then introduces the necessary background concepts

related to structural and functional connectivity and discusses the rela-

tion between structural and functional connectivity. Then, the chapter dis-

cusses the conventional functional connectivity metric of cross-correlation

followed by the relatively newer functional connectivity metric of partial

correlation which is based on scaled partial covariance density. Then the

statistical models of interest in this research namely Ising models and ki-

netic Ising models are discussed. Inference methods of the parameters of

the models are also presented. The chapter finally highlights the gap in ex-

isting literature that calls for a comparative study between the functional

connectivity metrics to recover the structural connectivity.
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2.1 Complex networks

Graph theory provides the mathematical framework to study the connec-

tivity in neuronal networks at all levels [RS10]. Graph theory aims to de-

scribe complex networks of interacting entities with an abstraction called

a graph. Graphs represent the entities of the system as nodes (or vertices)

and interaction or relationship between the nodes as edges. In a neuronal

network, the nodes correspond to either neurons or brain regions and the

edges correspond to synapses or white matter tracts or statistical depen-

dencies between the nodes. Sometimes, the term network is used to de-

note a graph when attributes are associated with nodes/edges. The terms

networks and graphs are used interchangeably in this thesis. Graphs are

described by an adjacency matrix (also called a connectivity matrix), which

is a square matrix of size equal to the number of nodes. The elements of

the adjacency matrix represent the strength of the edge between the pair of

nodes.

The simplest type of graph is a binary undirected graph. In this graph, all

the edges are unweighted (the edges have only one weight if present) and

undirected (the edges do not define a direction for the relation between the

nodes). All the elements of the adjacency matrix of a binary undirected

matrix are either 0 or 1 and the matrix is a symmetric matrix. Weighted

graphs assign weight to the edges so that the edges represent the strength

of the relationship between the nodes. Directed graphs assign directions

to the edges so that the edges can point the direction of the relationship

between the nodes. The adjacency matrix of a directed graph is asymmet-

ric. Weighted graphs can be converted to unweighted binary graphs by
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Figure 2.1: Illustration of different kinds of graphs. Weighted networks
can be converted to unweighted binary networks by thresholding and bi-
narising. Directional graphs can be converted to undirectional graphs by
symmetrising.
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thresholding (which omits edges whose weights are below the threshold)

followed by binarising (which sets the remaining edges to unit strength).

Directional graphs can be converted to undirectional graphs by symmetris-

ing. The different types of graphs are illustrated in Figure 2.1.

A network is characterized by a number of parameters. A few key parame-

ters used in the analysis of neuronal networks are the node degree, cluster

coefficient, and the average path length.

Node degree: A key property of a node is its degree which represents the

number of edges it has to other nodes (in the case of undirected networks).

In directed networks, incoming degree (kin
i ) of a node i refers to the number

of afferent (incoming) edges and outgoing degree (kout
i ) refers to the number

of efferent (outgoing) edges. The total degree (ki) of a node i is given by the

sum of incoming degree and outgoing degree.

ki = kin
i + kout

i (2.1)

Some networks exhibit few nodes with a high degree and many nodes with

a low degree. Nodes with high degree (at least one standard deviation

above the network mean degree) are called hubs. Nodes with degree one

are called leafs. The degree distribution P (k) of a network is defined as the

probability that a randomly selected node in the network has a degree k

and is given by the fraction of nodes in the network with degree k

P (k) =
Nk

N
, (2.2)
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where Nk gives the number of nodes in the network with the degree k and

N is the total number of nodes in the network.

Clustering coefficient: The local clustering coefficient of a node is a mea-

sure of howmuch the neighbours of a node are linked to each other. A node

iwith degree ki has ki neighbours. The maximum number of possible links

amongst the neighbours is ki(ki−1)
2

. If Li is the number of links between the

ki neighbours of node i, then the local clustering coefficient of the node i is

given by:

Ci =
2Li

ki(ki − 1)
. (2.3)

The local clustering coefficient Ci can vary between 0 and 1. When Ci = 0,

none of the neighbours of node i are connected to each other. When Ci = 1,

all the neighbours of node i connect to each other and they form a complete

graph. Ci indicates the probability that two neighbours of a node i are also

neighbours with each other.

The average clustering coefficient 〈C〉 of a network is defined as the average

of the local clustering coefficient of all the nodes of the network.

〈C〉 = 1

N

N
∑

i=1

Ci . (2.4)

In line with the earlier probabilistic interpretation, the average clustering

coefficient 〈C〉 gives the probability that two neighbours of a randomly se-

lected node are linked to each other [Bar14]. Equation 2.4 is defined for

undirected networks. The same concept can be generalized for directed

and weighted networks as well.
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Average path length: The average path length 〈d〉 of a network is the mean

distance between the all pairs of nodes in the network. The average path

length 〈d〉 is calculated as follows:

〈d〉 = 1

N(N − 1)

∑

i 6=j

d(i, j) , (2.5)

where d(i, j) is the shortest path distance between the nodes i and j. Aver-

age path length is a topological measure used to measure network’s level

of integration.

The degree distribution discussed earlier is one of the most studied char-

acteristics of a network. The shape of the distribution is used to classify

the networks into the following classes: scale-free, regular, and random

networks. Regular and random networks represent extreme cases of or-

der and randomness, respectively. Scale-free networks, along with another

class of networks called small-world networks, represent two types of real-

world networks. Both structural and functional connections in the brain

(reviewed in section 2.2) exhibit characteristics of scale-free and small-world

networks both at the cellular scale and the whole-brain scale [BS09]. An il-

lustration of the different classes of networks is presented in Figure 2.2.

The brain’s structural and functional systems have features of complex net-

works — such as small-world topology, highly connected hubs and mod-

ularity — both at the whole-brain scale of human neuroimaging and at a

cellular scale in non-human animals.

Random networks: Paul Erdős andAlbért Rényi introduced a simplemodel

for generating randomnetworks in 1959. In Erdős-Rényi randomnetworks,
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Figure 2.2: Illustration of the different classes of networks. All networks
were created with similar number of links. a. Scale-free networks form a
few highly connected hub nodes. b. Regular networks has localised cluster-
ing but no long range links. c. Random networks - Most nodes in random
networks have a degree in the vicinity of the average degree of the network.
d. Small-world networks present a balance of segregation and integration
through dense local links and long-range links.
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each pair of nodes is connected with a fixed probability p. As the probabil-

ity p increases from 0 to 1, the network density (the number of edges in the

network) is more likely to increase. In general, random networks are an

extension of the concept of random variables. Each random network repre-

sents a sample network selected from a space of possible networks with the

same number of nodes and edges. The exact form of the degree distribution

of a random network is the binomial distribution

P (k) =

(

N − 1

k

)

pk(1− p)N−1−k . (2.6)

Most real networks are sparse, meaning the average degree <k> << N. In

this limit, the degree distribution of a random network given by 2.6 is well

approximated by the Poisson distribution [Bar14]:

P (k) = e−〈k〉
〈k〉k
k!

. (2.7)

A random network has few local links and hence is characterised by low

values of clustering coefficient.

Regular networks: Also called lattice networks, regular networks are com-

pletely non-random. They are constructed on a set of nodes where each

node is connected to k nearest neighbours. The probability that a node i

has a degree k is given by

P (k) = c , (2.8)
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where c is a constant. Regular networks are highly ordered and show high

values of clustering coefficient.

Scale-free networks: Most real-world networks are neither completely or-

dered like the lattice networks nor completely random like the random net-

works. The degree distribution of many real-world networks are not Pois-

son but characterised by a power-law degree distribution given by

P (k) ∝ k−γ , (2.9)

where γ is the degree exponent. When logarithm is taken on both sides of

Equation 2.9, it becomes

logP (k) = −γlogk . (2.10)

When the degree distribution follows a power law distribution, the plot

of the degree distribution in a log-log plot will be a straight line with the

degree exponent γ giving the slope of the line.

A network whose degree distribution follows a power law is called a scale-

free network. Highly connected hub nodes are a characteristic feature of

scale-free networks. The presence of hub nodes decreases the number of

hops between the nodes in a network. As a result, the average path length

in a scale-free network is smaller than that in random networks [Bar14].

Both structural and functional connectivity networks in the human brain

are characterised by the presence of hub nodes [SHK07]. An analysis sug-

gests that hub nodes promote functional integration and efficient commu-

nication across the brain [HS13]. Scale-free networks are formed based on
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two principles of growth (new nodes join the network over time) and pref-

erential attachment (new nodes prefer to get connected to the more con-

nected nodes) [BA99].

Small-world networks: Small-world networks are a class of networks that

interpolates between a regular lattice network and a random network. A

lattice network has a high clustering coefficient and a high average path

length. A random network has a low clustering coefficient and a low av-

erage path length. Small-world networks are characterised by high clus-

tering coefficient and low average path length. Watts and Strogatz [WS98]

demonstrated that a random rewiring of a small percentage of edges in

a regular lattice results in a sharp decrease in the path length but only a

small decrease in the clustering coefficient. The Watts-Strogatz model of

small-world networks is illustrated in Figure 2.2d.

The small-world coefficient SW of a network is calculated by comparing

both clustering and path length of the network against the same metrics

from an equivalent random network having the same number of nodes and

edges [HG08]. The small-world coefficient is calculated as

SW =
〈C〉/〈C〉r
〈d〉/〈d〉r

, (2.11)

where 〈C〉 and 〈d〉 correspond to the network and 〈C〉r and 〈d〉r corre-

spond to an equivalent random network. If the small-world coefficient

is greater than one, then the network is considered to exhibit small-world
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property. Small-world networks present a balance of functional integra-

tion via long-range links and functional segregation via dense local clus-

tering. Modular networks (which are characterized by dense local con-

nections within the module and sparse inter-modular connections) exhibit

small-world property [MLB10] as they posses high clustering coefficient

and low path lengths. It should be noted that all modular networks are

small-world although the converse is not true. Small-world networks such

as Watts-Strogatz models do not exhibit modularity [MLB10]. An example

of modular small-world networks is presented in Figure 4.5b. Small-world

networks have been observed in the anatomical and functional connection

networks of the brain [Spo13].

2.2 Brain connectivity

Connectivity is described as one of the intrinsic characteristics of a neu-

ronal circuit as the neuronal activity cannot be attributed only to the sole

properties of the individual neurons but largely to the direct or indirect in-

fluence of other neurons in the network [Pol+16; MPF05]. A general theory

of brain function that can account for the different behaviours cannot be

explained by the study of individual neurons alone. Focus on the promi-

nence of individual neurons is fading in the recent years and, as the new

paradigm of computational neuroscience, neural network models are help-

ing us to understand behaviour and cognition that do not easily fit within

single-neuron frameworks [Yus15]. The neural network models assume
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that the function of neural circuits arises from the joint activity of the net-

work of neurons. Advancements in optical and electrophysiological multi-

neuronal recordings have revealed that networks of neurons, rather than

single neurons, make physiological units and give rise to the functional

properties of the brain [Yus15]. Three categories of connectivity are used to

describe the interactions of neuronal networks: structural, functional and

effective. These three categories of neuronal network connectivity are in-

terlinked but offer different perspectives. All three forms of connectivity

can be defined between units within a nervous system at multiple spatial

scales. The units can correspond to either single neurons, populations of

neurons, or anatomically segregated brain regions [BS09].

2.2.1 Structural connectivity

Structural connectivity corresponds to the physical (anatomical) connec-

tions between the nodes of a neuronal network. The structural connec-

tivity ranges over multiple spatial scales. On the microscopic scale of neu-

rons, the structural connections refer to the synaptic (chemical and electri-

cal synapses) connections between individual neurons. On the intermedi-

ate scale, structural connections refer to the connection bundles or synaptic

patches that link neuronal populations within a given brain region. On

the large scale of the brain, structural connectivity refers to the white mat-

ter tracts connecting different brain areas. Irrespective of the spatial scale,

structural connectivity is relatively stable on the shorter timescale of sec-

onds to minutes, but plastic and prone to changes on the longer timescale

of hours to days. Learning and plasticity happen by changing the structural

19



Chapter 2. Literature Review

connectivity between neurons and brain areas. Structural connections at all

levels of scale are both specific and variable [Spo07]. Specificity is found in

the arrangement of synaptic connections between distinct neuronal types,

in the branching pattern of axonal arborizations, and in the long-range con-

nectivity between brain regions. Variability is found in the shape of indi-

vidual neurons, in the size and connection of large-scale structures, and

corresponding structures in brains of individuals within the same species.

Structural variability is considered to be one of the key sources of functional

variability.

Mapping the anatomical networks at different scales has been a long-standing

technological challenge [BS09]. On the cellular scale of individual neurons,

mapping synapses within the tangle of billions of neurons represent an

overwhelming problem. Advances in electron microscopy have made pos-

sible mapping the complete connection matrix of the nematode Caenorhab-

ditis elegans at cellular resolution. Mapping of neuronal connections in the

mammalian cortex has been made possible recently by Brainbow [Liv+07],

a new promising neuroimaging technique developed by a team of researchers

from Harvard University. Brainbow uses a combination of genetic tech-

nologies and cell staining techniques and allows visualising complete neu-

ronal circuits by using distinct colours to label individual neurons. Brain-

bow is proving to be a powerful tool to neurobiologists to gain a better

understanding of the brain’s complex tangle of neurons. Histological dis-

section and staining and axonal tracing techniques have been used to map

whitematter pathways and hence identify structural connectionmatrices in

macaque visual cortex [FVE91] and the cat thalamocortical systems [Sca+99].

The structural network of the human brain at the scale of brain regions
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(also called the human connectome) have been mapped using non-invasive

MRI techniques like diffusion tensor imaging (DTI) and diffusion spectrum

imaging (DSI) which can measure macroscopic axonal organisation in ner-

vous system tissues. DSI technology has been used to generate 500-4000

region of interest cortical connection matrices [Hag+07].

Studies suggest that structural connectivity in neuronal networks at all scales

exhibits features of complex networks (described in the section 2.1). Small-

world properties have been demonstrated in the cellular networks of the

vertebrate brain stem [HGP06]. Studies support the existence of scale-free

network connectivity in primary cortical cultures [EM06b] and develop-

ing hippocampal networks [Bon+09]. Network analysis of basal brain grey

matter areas constructed using DTI revealed many non-random features of

connectivity such as high clustering and presence of hubs [IM+07]. Graph

analysis of the cortical connection matrices generated using DSI also iden-

tified small-world architecture in the cortical networks [Hag+07].

2.2.2 Functional connectivity

Functional connectivity is a statistical concept. Functional connectivitymea-

sures the statistical interdependence between the activity of two nodes of

a network without any assumptions about the process which causes the

statistical relationship [FBC11]. Two nodes are said to be functionally con-

nected if one can predict the activity of one node based on the activity of

the other node. It should be emphasised that functional connections do

not imply any underlying structural connections or any causal relations. In
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some cases, the statistical interdependence can occur because of underly-

ing structural connections. In other cases, the statistical dependence can

be present because of common input from a third neuronal or stimulus

sources. For example, the primary visual cortex has been shown to have

strong functional links between its left and the right cerebral hemispheres,

although underlying white matter connections are lacking between those

regions [DLIv+13]. However, if two nodes A and B are functionally con-

nected, it does not imply that activation of one node causes the activation

of the other node.

Functional connectivity is usually derived from time series observations

obtained from a variety of sources including multielectrode arrays (MEAs),

electroencephalography (EEG), magnetoencephalography (MEG), and func-

tional magnetic resonance imaging (fMRI). Deviations from the statistical

independence between the neuronal elements of the network are usually

captured in a correlation matrix (or a covariance matrix), which is com-

monly used to represent the functional connectivity of the neuronal net-

work. Other measures such as mutual information, spectral coherence or

phase-locking are also used as statistical indicators of functional connectiv-

ity [Spo07]. Unlike structural connectivity, functional connectivity is highly

time-dependent. Functional connections between the nodes of a neuronal

network often fluctuate on multiple time scales [Spo07].

2.2.3 Effective connectivity

Effective connectivity represents a thirdmode of representing and analysing

brain networks. While functional connectivity is the correlation concept,
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effect connectivity is the causation concept. The term effective connectiv-

ity has been defined by various authors in convergent ways [SF10]. Ef-

fective connectivity is defined as the causal influence one neural system

exerts over another either directly or indirectly, at the synaptic or the corti-

cal level [Fri94]. While functional connectivity just quantifies the statistical

dependence between the nodes, effective connectivity refers to the param-

eters of a model that tries to explain the observed statistical dependencies

[Fri11]. Some authors have defined effective connectivity as the simplest

possible circuit diagram that can replicate the timing relationships between

the recorded nodes of the networks [AP91]. Effective connectivity repre-

sents the effective mechanism generating the observed data, and provide

interaction coefficients. Feldt et al [FBC11] suggests that the causal effects

can be inferred by perturbing the activity of one node and measuring the

change in the activity of the other nodes.

Effective connectivity exists between two nodes could exist if activity in one

node modulates activity in the other node. Effective connectivity doesn’t

imply a direct physical connection - simply a causative influence. For ex-

ample, the spiking of one neuron can lead to the firing of another neuron

through a direct monosynaptic link or a polysynaptic path. Also, an effec-

tive connectivity between two nodes does not imply that activation of one

node results in the activation of the other node. Different forms of causal

modulation such as inhibition, phase modulation, firing rate change, etc.

can also be envisaged [FBC11].

As causes must precede effects in time, causal effects (and hence effective

connectivity) can be inferred through the application of time series causal-

ity measures such as Granger causality. Dynamic causal modelling (DCM)
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uses a Bayesian framework to compare causal models and select the best

model and its parameters (which are the effective connections) on the basis

of observed data.

It should be noted that there are overlapping definitions of the terms func-

tional connectivity and effective connectivity in the scientific studies [TC14].

Scientists in the field of brain connectivity have different views on the clas-

sification of connectivity metrics. Friston [Fri11] gives a stringent defi-

nition for effective connectivity, and he considers dynamic causal mod-

elling and structural equation modelling as effective connectivity measures

and classifies Granger causality and transfer entropy as functional con-

nectivity measures. However, Sporns [Spo07] classifies Granger causal-

ity and transfer entropy as model-free effective connectivity measures. A

review of the functional connectivity measures by Bastos and Schoffelen

[BS16] classifies Granger causality as a model-based functional connectiv-

ity method and transfer entropy as a model-free functional connectivity

method. Some studies use the terms functional connectivity and effec-

tive connectivity interchangeably to denote all non-structural connectivity

[TC14; Ste+08; HRT13]; while some studies [Pol+16] use the term functional-

effective connectivity to denote the non-structural connectivity. This thesis

evaluates Ising couplings, kinetic Ising couplings and partial correlations.

Since the key papers [HRT13; EDS03] on the application of these metrics

to the analysis of neural data have used the term functional connectivity to

denote these measures, this thesis will follow the conventions used in the

papers and refer to the metrics of Ising couplings, kinetic Ising couplings,

partial correlations and cross-correlations as functional connectivity met-

rics.
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2.2.4 Relation between structural and functional connectiv-

ity

Several studies [Wat+09; Bon+09] have explored the relationship between

the properties of the individual neurons in the network, the structural con-

nectivity in the network, the dynamics in the observed network activity and

the functional connectivity metrics calculated from the observed network

activity. The studies observed a strong link between network structure and

network dynamics. For example, network activity in developing cerebel-

lum which has a regular structural connectivity occurs as travelling waves

[Wat+09] and network activity in developing hippocampus which has a

scale-free structural connectivity occurs in synchronous bursts [Bon+09]. If

different structural connectivity patterns produce different dynamics, then

it can be suggested [FBC11] that functional connectivity which captures

those dynamics has a non-trivial relation with the structural connectivity

and at least some characteristics of the structural connectivity will be cap-

tured in the functional connectivity metrics. The problem of inferring the

structural connections from the network dynamics is a major challenge in

systems neuroscience [PR13].

One of the long standing issues in reconstructing structural connections

from the functional connections is that the latter is subject to the effect of

indirect connections. Consider the simple example of three neurons A, B,

and C where A drives B via an excitatory connection and B drives C via an

excitatory connection. In this situation, there will be strong correlations be-

tween the activities of A and C and an ideal functional connectivity metric

which is calculated from the activities of the three neurons should be able
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to discount the indirect connection between A and C. Similarly, when A

drives both A and B via excitatory connections, there will be strong correla-

tions between the activities of B and C and an ideal functional connectivity

metric should be able to explain away the indirect connection between B

and C.

A variety of functional connectivity metrics have been discussed in the

literature to discount the indirect interactions and reconstruct the struc-

tural connectivity network: Spike train covariances [PR13], Transfer en-

tropy [Ste+12], Granger causality [Zho+14], partial coherence [DES97], par-

tial covariance density [Pol+16]. Maximum entropy based Ising model cou-

plings have also been suggested to discount the indirect interactions and

account only for the direct connections [Sch+06; Yu+08]. The coupling pa-

rameters of the kinetic formulation of the Ising model (called kinetic Ising

model) have been claimed to reconstruct the structural connectivity with

great accuracy [HRT13].

Since no comparative analysis of the ability of the Ising couplings and ki-

netic Ising couplings in relation to other functional connectivity metrics ex-

ist in the literature, this thesis evaluates the performance of the Ising cou-

plings and kinetic Ising couplings against the two commonmetrics of func-

tional connectivity, namely cross-correlation and partial-correlation. The

rest of the literature review chapter discusses the background knowledge

and ideas relating to the functional connectivity metrics used in the the-

sis: cross-correlation, partial correlation, Ising couplings, and kinetic Ising

couplings.
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2.3 Cross-correlation

Cross-correlation is a widely used method to estimate functional connec-

tivity in neuronal systems [NL09]. It is a measure of the temporal correla-

tions between the spike trains of two neurons [WSB03]. Cross-correlation

is always evaluated pairwise, for each pair of neurons in the network. One

neuron is designated as the reference neuron. The other neuron is called the

target neuron. A suitable time frame for correlation, called the correlation

window, must be selected considering the delay in the neural circuits. Usu-

ally, a correlation window of around 200 ms is selected for synaptic inter-

actions, as time latencies greater than 200 ms are not of interest for synaptic

interactions [NL09]. The correlation window is split into a number of equal

time segments called bins.

Figure 2.3: Example of a cross-correlation calculation using a eight bin win-
dow.

The procedure to perform a cross-correlation between the spike trains of
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the two neurons is as follows. The correlation window is centred over the

first spike of the reference spike train. The number of spikes of the target

spike train that fall into each bin of the correlation window is counted. The

above step is repeated for each spike in the reference spike train. The results

of each step are accumulated to get the overall cross-correlation. This pro-

cedure is schematised in Figure 2.3. The plot of the cross-correlation results

is called a cross-correlogram. Thus, the cross-correlogram is a visualisation

of the count of the target neuron’s spikes at different time delays relative

to the spikes of the reference neuron. If the spikes of the target neuron oc-

cur at a fixed time relative to spikes of the reference neuron, then a peak

in the cross-correlation should occur at a time corresponding to the delay

between the reference and the target neuron. It should be noted that bin

counts are done for both positive and negative time delays. If the peak of

the cross-correlogram occurs for positive time delays, then it implies that

the target neuron spikes after the reference neuron. Conversely, if the peak

of cross-correlogram occurs for negative time delays, it implies that the tar-

get neuron spikes before the reference neuron. Thus, the direction of the

connections can be determined from the location of the peak in the cross-

correlogram.

Mathematically, cross-correlation is computed as the average value of the

product of the spike trains of the reference and the target neurons. Let x and

y be the spike trains of the reference and the target neurons, respectively.

The cross-correlation function Cxy(τ) is defined as follows [Pol+16]:

Cxy(τ) =
1

√

NxNy

Nx
∑

s=1

(τ+△τ

2
)

∑

ti=(τ−△τ

2
)

x(ts)y(ts − ti) , (2.12)
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where Nx and Ny are the total number of spikes in the spike trains x and

y, respectively, and ts is the timing of a spike in the spike train x. Equation

2.12 is normalised so that Cxy(τ) takes a value between between 0 and 1.

Cross-correlation can be interpreted as the probability of a neuron (called

the target neuron) spiking at a time (t + τ) conditioned on another refer-

ence neuron spiking at a time t where τ is called the time lag [Rie+97;

Pol+16]. Thus, the cross-correlation is a good indication of the presence

or absence of a linear statistical dependence between the firing of the two

neurons. Thus, if two neurons A and B are completely unrelated, then the

spike times of A will be totally independent of the spike times of B and

the cross-correlogram of the neurons will be flat with no significant peaks.

If the target neuron is firing consistently after the reference neuron, then a

significant peak should occur in the cross-correlogram of the two neurons.

Similarly, if the target neuron’s firing decreases consistently with the firing

of the reference neuron, then a significant dip will be present in the cross-

correlogram. Sometimes, false peaks can occur in a correlogram because of

random chance.

The cross-correlation function is symmetric.

Cxy(τ) = Cyx(−τ) . (2.13)

That is, if we compute the cross-correlation function keeping x as the refer-

ence and y as the target and then compute cross-correlation function keep-

ing y as the reference and x as the target, we will get the same function but

just reversed in time.
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Though cross-correlation can discriminate between excitatory and inhibitory

connections and can also infer the direction of the connections, cross-correlations

cannot distinguish between direct connections and common input connec-

tions. A common suggestion to overcome this limitation is to make infer-

ences based on the location of the peak in the cross-correlogram. It was

suggested that for common input cases, the peak will occur at a time lag

value of zero and for direct connections, the peak will occur at a non-zero

delay. However, if the common input to the nodes arrives with different

delays, then the above suggestion is not valid rendering cross-correlation

unable to discriminate between direct and common-input connections.

2.4 Partial correlation

Frequency domain measures of the association between spike trains have

been used to extend the traditional time domain analysis of the spike trains.

The Fourier transform of the cross-correlation function called the cross-

spectral density (or simply, cross spectrum) is used to calculate the spectral

coherence which is defined as the cross-spectral density of 2 spike trains

at a frequency ω divided by the square root of the power spectral density

of each spike train at a frequency ω. Let Rxx(τ) and Ryy(τ) be the auto-

correlation of the spike trains x and y respectively and Rxy(τ) be the cross-

correlation between the spike trains x and y. Let Sxx(ω), Syy(ω), and Sxy(ω)

represent the Fourier transform of Rxx(τ), Ryy(τ), and Rxy(τ), respectively.

Sxx(ω) and Syy(ω) are called the power spectral densities of the spike trains

x and y, respectively. Sxy(ω) is called the cross-spectral density of x and
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y. Spectral coherence SChxy between two spike trains x and y is given by

|SChxy(ω)|2 where SChxy(ω) calculated as [Pol+16]

SChxy(ω) =
Sxy(ω)

√

Sxx(ω)Syy(ω)
. (2.14)

Coherence is a measure of the phase consistency between the two spike

trains at a particular frequency. The coherence ranges between 0 and 1.

A coherence of 0 indicates a random phase relationship between the two

spike trains at a particular frequency. Similarly, a coherence value of 1

indicates a constant phase relationship between the two spike trains at a

particular frequency. Coherence is analogous to the correlation coefficient

defined at each frequency. Similar to the correlation coefficient, coherence

can describe the linear relationship between two spike trains without any

consideration of the rest of the spike trains of the population [Mak+14].

Partial coherences are analogous to the partial correlations of multiple re-

gression analysis. Partial coherence is a frequency domain concept based

on the method of linear partialisation and was introduced by Brillenger in

1976 ([BBS76]). Partial coherences describe the relationship between two

spike trains after accounting for the linear effects of the other neurons in

the population. Let P represent the population of all neurons except x and

y. The partialisation process removes the effect of the population P from

the cross spectral density Sxy of x and y as follows [BBS76; Pas+16]:

Sxy|P (ω) = Sxy(ω)− (SxP (ω) S
−1
PP (ω) SPy(ω)) , (2.15)

where Sxy|P is the partial cross-spectral density of the neurons x and y; SxP
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corresponds to the cross spectrum between the neuron x and the population

P , SyP corresponds to the cross spectrum between the neuron y and the

population P ; and SPP is the cross spectrum between all the neurons in the

population except x and y. The inverse Fourier transform of Sxy|P is the

partial covariance density,Rxy|P (τ).

Partialisation analysis in the frequency domain recommended the use of

the partial spectral coherence |Cxy|P (ω)|2 where

Cxy|P (ω) =
Sxy|P (ω)

√

Sxx|P (ω)Syy|P (ω)
(2.16)

Although partial coherence was able to distinguish between direct and in-

direct connections, it couldn’t distinguish between excitatory and inhibitory

connections [EDS03]. Based on the partial covariance densityRxy|P (τ), Eich-

ler introduced a partialisation analysis in the time domain called the scaled

partial covariance density. This approach combined the advantages of the

cross-correlation analysis in the time-domain and the partialisation anal-

ysis in the frequency domain. Similar to cross-correlations, scaled partial

covariance density can distinguish between excitatory and inhibitory con-

nections with peaks and troughs. Analogous to partial coherence approach,

scaled partial covariance density can discriminate between direct and indi-

rect connections [EDS03].

The scaled partial covariance density (SPCD) Sxy|P (τ), is defined as

Sxy|P (τ) =
Rxy|P (τ)√

rxry
, (2.17)
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Figure 2.4: SPCD inferring connections in simple three neuron networks
[EDS03]. Links with an open dot are excitatory connections. Links with a
filled dot are inhibitory connections. In all cases, the scaled partial covari-
ance density S21|3(τ) between the neurons 1 and 2 is plotted. Except for
the converging connections in cases g and h, SPCD is able to discriminate
direct connections from indirect connections and common inputs. Image
reproduced with permission of the rights holder,Springer.
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where rx and ry are the maximum peak values of the autocorrelation func-

tion.

The partial spectral coherence and the partial cross spectral density can be

efficiently computed from the inversion of the spectral matrix S(ω) of the

whole set of nodes [EDS03; Ide+07]. If G(ω) = S(ω)−1 , then

Cxy|P (ω) = −
Gxy(ω)

√

Gxx(ω)Gyy(ω)
, (2.18)

Sxy|P (ω) =
Cxy|P (ω)

1− |Cxy|P (ω)|2
, (2.19)

Sxy|P (ω) = −
Gxy(ω)

√

Gxx(ω)Gyy(ω)

1

1− |Cxy|P (ω)|2
. (2.20)

Figure 2.4 illustrates how effectively SPCD can differentiate between the

direct and indirect connections in simple networks of three neurons simu-

lated using integrate and firemodel. For each case, the scaled partial covari-

ance density S21|3(τ) calculated from the simulated data is plotted. Cases

a and b correspond to direct excitatory and inhibitory connections respec-

tively. It can be seen that the SPCD features positive peaks and negative

troughs for excitatory and inhibitory connections, respectively. Cases c and

d correspond, respectively, to indirect excitatory and inhibitory connections

via a third neuron. It can be observed that the partialization process has re-

moved the linear effect of the intermediate neuron. Cases e and f illustrate

SPCD removing the effect of common input. Cases g and h show that SPCD
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is unsuccessful in removing the effect of converging connections. This so-

called "marrying-parents effect" [EDS03] results in a peak in the SPCD if the

inputs are of the opposite type and a trough if the inputs are of the same

type. It should be noted that partialisation can remove the effect of indirect

connections and common input connections of the third neuron only if the

spike train of the third neuron is recorded. In practice, it is possible that

only a subset of the network nodes is recorded. In that case, SPCD can-

not remove the linear effect of neurons whose activity are not recorded and

can reveal the connectivity only relative to the set of the recorded neurons

[EDS03].

2.5 Ising models

This section discusses the Ising model, which is a statistical model of the

activity of neurons and is increasingly applied in the field of computational

neuroscience.

2.5.1 Maximum entropy models

Building statistical models of the spike trains requires constructing the prob-

ability distribution of all the spike patterns. For N number of neurons in

the population, the number of possible spike patterns is 2N (the reason be-

ing the firing of each neuron is represented as a binary quantity). This high

dimensionality of the space of the possible spike patterns makes collecting

enough data to construct the probability distribution a hard task [RNL08].

One approach to building good statistical description of the spike patterns
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without having to examine all the possible patterns is to use parametric

models [RTH09]. In this approach, one fits the data with the parametric

probability distribution with a smaller number of parameters when com-

pared to the number of possible spike patterns. Maximum entropy models

have gained a lot of interest in the recent years as parametric models to

describe the spike data from neurons following the pioneering studies by

Shlens et al [Shl+06] and Schneidman et al [Sch+06].

Figure 2.5: Binary representation of neuronal spiking activity

The spike data from a neuron can be represented by either a vector of spike

times (a point representation) or a binary vector of 1s and -1s. Maximum

entropymodels work on the binary representation of spike train data which
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can be obtained from the spike times of the neuron by dividing the time into

bins of equal width and representing the state of each bin using a binary

variable based on the presence of a spike in that time bin. Let the state of

a neuron i in a time bin t be represented using the notation σt
i , which can

take 2 values: +1 for the presence of a spike and -1 for the absence of a spike.

This form of binary representation has been used historically to represent

neuronal spiking activity [Hop82]. Thus, the time-binned spike train data

from a group of neurons can be visualised as a big array, ( N x T matrix for

N neurons and T time bins), of +1s and -1s as shown in Figure 2.5.

Following this notation, the average firing rate of a neuron i is given by

〈σi〉 =
1

T

T
∑

t=1

σt
i , (2.21)

where T represents the total number of time bins for the duration of the

recording, and t is the bin number.

The pairwise correlations for a neuron pair i and j is given by

〈σiσj〉 =
1

T

T
∑

t=1

σt
iσ

t
j , (2.22)

where the angled brackets denote temporal averaging.

In a given time bin, the state vector σ denotes the state of N neurons (out of

2N possible states) , and is represented as:

σ = {σ1, σ2, σ3, . . . σN} . (2.23)
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A first step towards understanding the collective firing activity of these

neurons would be to construct a model that accounts for the probability

distribution of the states of the ensemble of neurons. The simplest model

to characterize the distribution is a first-order model which assumes that

the neurons are independent and seeks to fit only the average firing rate

of the neurons. However, studies [Nir+01; Mas83] have shown that the

first-order model which assumes that the neurons are independent is un-

able to account for the frequencies for the joint firing event of two or more

neurons. Schneidman et al [Sch+06] observed that the true distribution ob-

served from a group of retinal cells was almost exponential andwhereas the

response distribution generated assuming the cells are independent was a

Poisson distribution. Schneidman further observed that even for typical fir-

ing patterns in the network, such as a single neuron firing while others are

not firing, the independent model made large-scale errors. Additionally,

the estimates by the independent model and the actual observations were

even highly anti-correlated for some firing patterns in the population.

As the first-order model which seeks to fit only the average firing rate of the

neurons is unable to characterize the response distribution of neurons, the

next approach is to consider a second-order model which seeks to fit both

the average firing rates and all pairwise correlations. There are countless

second-order models that will agree with the given average firing rates and

pairwise correlations. Hence, the challenge now is to generate a probability

distribution that agree only with the measured pairwise correlations and

does not make any assumptions about higher-order correlations.

The maximum entropy (also abbreviated as max-ent) approach provides a

38



Chapter 2. Literature Review

way to specify a model that fits the average firing rates and pairwise cor-

relations found in the data and is maximally unconstrained for all higher-

order correlations [Yu+08]. Relaxing all other constraints can be accom-

plished by maximizing the entropy of the model, subject to fitting the cho-

sen correlations. Let Pi denote the probability that event i occurs (with

ΣPi = 1), then the entropy is given byH = −ΣPi.logPi. “The maximum en-

tropy distribution is the set of probabilities Pi that maximise H , subject to

a set of specified constraints” [NV07].The maximum entropy distribution

provides null hypotheses for quantities which are not constrained explic-

itly. Mathematically, maximizing the entropy is equivalent to selecting the

maximum likelihood distribution which satisfies the specified constraints

[Shl+06].

Maximum entropy distributions occur in several familiar scenarios [NV07].

When the constraint is a specific mean, the exponential distribution gives

the maximum entropy distribution. When the constraints are a specific

mean and variance, the Gaussian distribution gives the maximum entropy

distribution. Similarly, when the constraint is a marginal distribution of

the individual variables, the maximum entropy distribution is the product

distribution of the variables.

Shlens & co-workers [Shl+06] and Schneidman & co-workers [Sch+06] ob-

served that the probability distribution of the second-order maximum en-

tropy model of spike trains(which was constrained only by the average fir-

ing rates and pairwise correlations) was able to explain around 90% of the

correlation structure of the multi-neuronal spiking patterns measured in

the retina. Shlens et al. [Shl+06] recorded the activity patterns of the cells of

a small retinal region using amulti-electrode array and then drew groups of
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seven cells. Then for each group of seven cells, the probability of all possi-

ble (27) activity patterns was calculated from the measurements. They then

wanted to understand if the entire set of spiking pattern frequencies can

be captured from a smaller number of parameters — the spiking rate of in-

dividual neurons (seven parameters) and the pairwise joint firing rates for

every pair of neurons (21 parameters). Shlens et al. observed that the com-

puted maximum entropy response distribution was hardly distinguishable

when compared to the measured response distribution.

The consequences of the results from Shlens et al. can be well appreciated

when they are extrapolated to a network of larger size [NV07]. In an N-

neuron network, we need to describe the frequencies of 2N activity patterns.

For a network of 25 neurons, this equates to approximately 32 million; and

for a network of size 60, the number of activity patterns is astronomical.

In a pairwise max-ent model, N + N(N-1)/2 parameters (the firing rate of

individual neurons and their pairwise firing frequencies) could explain the

multi-neuronal frequencies. Thus the number of parameters needed to de-

scribe a network of N neurons has decreased greatly (325 for N=25 and 1830

for N=60).

Schneidman et al. [Sch+06] also conducted a similar study and observed

that the global multi-neuronal activity patterns from a group of retinal gan-

glion cells could be accounted for by a maximum entropy model which is

estimated from pairwise correlations alone. This conclusion has also been

later reported by other research groups for both in vivo [Yu+08] and in vitro

[Tan+08] recordings. Marre et al. [Mar+09] observed that a maximum en-

tropy model based on the correlation values and respecting a Markovian

assumption was able to describe the spatiotemporal statistics of the activity
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on simple network models and recordings in the mammalian parietal cor-

tex in vivo. These developments have generated to a lot of interest in the

maximum entropy models in the past few years [Yeh+10].

As previously discussed, models of several orders can be used to capture

the data. A first-order model takes into account only the firing rates 〈σi〉

that are present in the data and it makes the assumption that all higher-

order interactions, such as 〈σiσj〉, are independent and, can be calculated

from the product of the first-order interactions: 〈σiσj〉 = 〈σi〉 〈σj〉. Let P1

represent the probability distribution generated by a first-order model. A

second-order model only accounts for the firing rates and pairwise correla-

tions and assumes that all higher-order interactions can be computed from

the first and second-order interactions. Let P2 represent the probability dis-

tribution generated by a second-order model. For N neurons, the proba-

bility distribution of a Nth order model (denoted by PN would be indistin-

guishable from the probability distribution of the data and would capture

interactions of all order (1 to N) found in the data.

The Shannon entropy S of a probability distribution P(σ) is given by:

S = −
2N
∑

k=1

P (σk).log(P (σk)) . (2.24)

As increasing the order of interactions always has the opposite effect on

the entropy [CT12; Sch+06], the entropy of higher-order models, S2, ...SN ,

is always smaller than the entropy of the first-order model, S1. Multi-

information, IN is defined as the difference between the entropy of the first-

order model and the entropy of the actual data [Sch+06].
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IN = S1 − SN . (2.25)

The amount of entropy explained by the second-order maximum entropy

model is:

I2 = S1 − S2 . (2.26)

Therefore the second-ordermaximum entropymodel’s performance ismea-

sured by the fraction of the multi-information IN that it captures. It is given

by the ratio r:

r =
I2
IN

. (2.27)

The ratio r can take a value between 0 and 1, where 1 represents 100% per-

formance. The ratio r is related to the Kullback-Leibler divergence (which is

a measure of how difficult it is to distinguish two probability distributions

[Shl+06] as follows:

r =
D1 −D2

D1

, (2.28)

where D1 is the Kullback-Leibler divergence between P1 and PN , given by

D1 =
2N
∑

i=1

PN(σi).log2

(

PN(σi)

P1(σi)

)

, (2.29)

and D2 is the Kullback-Leibler divergence between P2 and PN :

D2 =
2N
∑

i=1

PN(σi).log2

(

PN(σi)

P2(σi)

)

. (2.30)
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The r ratio is an intuitive measure of how much better a model would

do when compared to a first-order model [Yeh+10]. While applying the

second-order model to their data, both Shlens [Shl+06] and Schneidman

[Sch+06] found that the r ratio of the second-order model was close to 0.90

on average. This suggests that the second-order maximum entropy model

was able to predict the probability of most states correctly and hence could

account for approximately 90 % of the spatial correlation in the data. Even

with a r ratio of 0.9, it should be noted that the errors in the predictions

of few states were very high. This can be attributed to the inaccurate es-

timates of the entropy of a distribution of states. Very low firing rates of

neurons along with a short recording duration will result in data insuffi-

cient to sample the probability distribution of all the possible states ren-

dering the entropy estimates inexact. This problem becomes exponentially

worse as the number of neurons in the recording increases [RNL08]. Long

duration of recordings are necessary to reduce this problem. Both Shlens

and Schneidman circumvented this problem by making long recordings to

ensure sufficient sampling of all the states.

2.5.2 Relation between maximum entropy models and Ising

models

In a physical system, it is known that the maximum entropy distribution

consistent with an average energy 〈E〉 is the Boltzmann distribution, which

is given by the following equation

P ∝ exp(
−E
kBT

) , (2.31)
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where T is the temperature and kB is the Boltzmann’s constant. This can be

generalized as follows. If the average values of many variables fµ describ-

ing a system is known, then the maximum entropy distribution is given

by

P ∝ exp(−
∑

µ

λµfµ) , (2.32)

where λµ is the Lagrange multiplier for every constraint [Jay57; Sch+06].

In our case, the constraints are the average firing rate 〈σi〉 and the average

pairwise correlations 〈σiσj〉. The resulting maximum entropy distribution

is given by

P (σ1, σ2, ..., σN) =
1

Z
exp

(

∑

i

hiσi + 0.5
∑

i,j

Jijσiσj

)

, (2.33)

where Z is a normalisation factor and hi, Jij are the Lagrange multipliers

chosen such that the averages 〈σi〉, 〈σiσj〉 of this probability distribution

agree with the average firing rate and average pairwise firings recorded

from the observations. The second-order maximum entropymodel derived

above in equation 2.33 is same as the Ising model, widely used in statistical

physics.

The Ising model is a simple theoretical model of ferromagnetism used in

statistical physics. The model was invented by the German physicist Wil-

helm Lenz in 1920. The model is named after Ernst Ising, a student of Lenz,

who chose the model for his doctoral thesis published in 1925. Despite its

simplicity, the model can describe a variety of phase transitions including

the ferromagnetic-paramagnetic phase transition and the liquid-gas phase
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transition. And for this reason, the Ising model has received a lot of atten-

tion from both physicists and mathematicians [Gal13].

The Ising model consists of discrete variables which represent the magnetic

dipole moments of atomic spins. Consider N atoms arranged in a lattice

as shown in Figure 2.6. Each atom has a spin and can either take the value

of +1 (upward spin) or -1 (downward spin). The spin of the ith atom is

represented by the discrete variable σi ∈ {-1, +1}.

Figure 2.6: Two-dimensional illustration of an Ising model. The up and
down arrows represent positive and negative spins respectively.

The spin configuration σ = { σ1,σ2,...σN } can take one of the possible 2N con-

figurations. For any two spins i, j ∈N, one has an interaction Jij . A positive

Jij coupling (ferromagnetic interaction) favours the spin i to align with the

spin j. A negative Jij coupling (anti-ferromagnetic interaction) favours the
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spin i to spin in a direction opposite to that of the spin j. A zero Jij im-

plies no interaction between the spin i and j. Each spin also has an external

magnetic field hi interacting with it. The field parameter h is an indication

of how likely will the spin i be up in the absence of interaction from other

spins. A positive field hi tends to drive the spin i up and a negative field

hi tends to drive the spin i down. The energy of a spin configuration σ is

given by the Hamiltonian function

E(σ) = −
∑

i

hiσi − 0.5
∑

i,j

Jijσiσj . (2.34)

The Ising model is studied at equilibrium. At equilibrium, the probability

that the Ising model is in a configuration σ is given by the Gibbs measure

P(σ) defined below

P (σ) =
1

Z(T )
exp

(

−E(σ)

kBT

)

, (2.35)

where kB is the Boltzmann constant, T is the temperature and Z is the nor-

malization factor and is called the partition function. Z is defined as

Z(T ) =
∑

σ

exp

(

−E(σ)

kBT

)

. (2.36)

It can be seen that the Gibbs equilibrium distribution equation 2.35 for the

Isingmodel is same as themaximum entropy probability distribution equa-

tion 2.33 when kBT = 1. Changing the temperature just amounts to rescal-

ing the Jij’s and hi’s by a constant factor. The terms second-ordermaximum
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entropy model and Ising model are hence used interchangeably in this the-

sis.

2.5.3 Fitting the parameters of the Ising model

Usually, in statistical physics, one has the knowledge of the parameters of

the Ising model and is tasked to find the moments of the model which can

be measured from the experiments. One faces the inverse Ising problem

when one has the knowledge of the data statistics, namely the measured

average firing rate and the pairwise correlations, and is tasked with find-

ing the parameters of the Ising model which can reproduce the observed

moments.

The average firing rate and the pairwise correlations of the observations

(〈σi〉data and 〈σiσj〉data) can be calculated from the spike train data using the

equations 2.21 and 2.22. The expected values of the individual firing rates

and the pairwise interactions of the Ising model (〈σi〉model and 〈σiσj〉model
)

can be calculated as follows.

As described in subsection 2.5.2, the energy of a configuration of N spins

σ = {σ1, σ2, ..., σN} of the model is given by

E(σ) = −
N
∑

i=1

hiσi − 0.5
N
∑

i=1

N
∑

j=1

Jijσiσj , (2.37)

where the summation in the second term is carried out such that i 6= j.

The probability of occurrence of each configuration (out of the 2N possi-

ble configurations) can be calculated based on the energy assigned to the
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configurations. The probabilities of the energies in an Ising model are dis-

tributed exponentially in a manner that maximises entropy [Jay57]. Hence,

the probability of the occurrence of a configuration σk is given by

P (σk) ∝ e−E(σk)

=
e−E(σk)

∑2N

i=1 e
−E(σi)

. (2.38)

The denominator term in equation 2.38 is a normalization factor (called the

partition function in statistical mechanics) and involves summation over

each of the possible 2N configurations. One can see that the equation 2.38

makes configurations with low energy more probable than configurations

with high energy.

The expected values of the individual firing rates 〈σi〉model and the pairwise

interactions 〈σiσj〉model
of the Ising model can be calculated from the knowl-

edge of the probability of each configuration as follows:

〈σi〉model =
2N
∑

k=1

σi(σk)P (σk) , (2.39)

〈σiσj〉model
=

2N
∑

k=1

σi(σk)σj(σk)P (σk) , (2.40)

where σi(σk) indicates the state (which can be either +1 or -1) of neuron i

for the configuration σk.

As can be seen from equations 2.39 and 2.40, calculating 〈σi〉model and 〈σiσj〉model
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exactly involves summation over 2N terms and is a computationally inten-

sive task. This exact method of calculating the Ising model averages is pos-

sible only for smallN . For largerN , one has to resort to either analytical ap-

proximation methods like mean-field approximation methods (explained

in the subsection A.1) or to numerical techniques like Markov Chain Monte

Carlo simulations (explained in the subsection 2.5.3.1).

Boltzmann learning method [RTH09] is a typical method to improve the

agreement between 〈σi〉data, 〈σiσj〉data and 〈σi〉model, 〈σiσj〉model
. The Boltz-

mann learning method involves iterative updates to the Ising model pa-

rameters hi and jij as follows:

δhi = α.(〈σi〉data − 〈σi〉model) , (2.41)

δJij = α.(〈σiσj〉data − 〈σiσj〉model
) , (2.42)

where α is the learning rate. It is usually held constant and is generally kept

less than 1 to get a smoother convergence.

It can be seen from equations 2.41 and 2.42 that when the model average

is less than the average from the data, the last term of the equations 2.41

and 2.41, namely ( 〈σiσj〉data − 〈σiσj〉model
), becomes positive leading to an

increase in hi or Jij . Conversely, when the model average exceeds the av-

erage from the data, the last term becomes negative leading to a decrease

in the value of hi or Jij . After the adjustment of hi and Jij in an iteration,

new values of 〈σi〉model and 〈σi〉model are computed for the new values of hi

and Jij . The iterations continue till the 〈σi〉model and 〈σiσj〉model
agree with
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〈σi〉data and 〈σiσj〉data ) within the desired accuracy. Boltzmann learning is

a very slow algorithm as the averages 〈σi〉model and 〈σij〉model
have to be

computed for each iteration and the direct way of computing the averages

〈σi〉model and 〈σij〉model
involves summation over 2N terms and is computa-

tionally expensive. Mean field approximations [RTH09] have been devel-

oped to solve the inverse Ising problem. However, such approximations

suffer from a limited range of validity. Monte Carlo sampling based on

Metropolis-Hastings simulation is another method to compute the model

averages and is discussed next.

2.5.3.1 Metropolis-Hastings algorithm

Out of the possible 2N configurations needed to calculate the partition func-

tion, some configurations are more probable and some are less probable.

However, the direct summation would waste as much computing effort on

a less probable configuration as it does on a more probable configuration.

A better alternative would be to use a biased sampling which generates

representative samples which constitute an appropriate proportion of dif-

ferent configurations. The Metropolis-Hastings algorithm is the most com-

monly usedMarkov ChainMonte Carlo (MCMC) method to compute Ising

model estimations [NB99]. In Monte Carlo methods, randomly generated

samples are used to approximate a quantity of interest. In Markov Chain

Monte Carlo methods, the random samples are generated using a Markov

chain. One starts with a random sample and uses it to generate the next

sample and so on. Each sample only depends on the previous sample. The

transition rule between the samples is constructed such that the states the

Markov chain will take also sample from a target probability distribution.
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Metropolis-Hastings algorithm is named after Nicholas Metropolis, who

was an author along with AriannaW. Rosenbluth, Marshall N. Rosenbluth,

Augusta H. Teller, and Edward Teller of the 1953 paper ’Equation of State

Calculations by Fast Computing Machines’ which first proposed the algo-

rithm for the specific case of the canonical ensemble. W.K. Hastings later

extended the algorithm to the more general case in 1970 [NB99].

The basic idea of Metropolis sampling is to generate a collection of samples

according to a desired distribution P (x) (Boltzmann distribution in the case

of Ising models). To achieve this, Metropolis sampling uses a Markov chain

which converges to a stationary distribution π(x) such that π(x) = P(x). A

Markov process is defined by its transition probability T(x’|x) which gives

the probability of moving from a state x to another state x’. Detailed balance

is a sufficient but not necessary condition for the Markov chain to converge

to a stationary distribution. Detailed balance means that the probability of

being in state x and moving to state x’ is equal to the probability of being in

state x’ and then moving to state x.

P (x)T (x′|x) = P (x′)T (x|x′) . (2.43)

The transition probability of the Markov chain can be derived from the

above condition of detailed balance. The above equation 2.43 can be rewrit-

ten as

T (x′|x)
T (x|x′) =

P (x′)

P (x)
. (2.44)

The transition probability T(x’|x) can be split into two components: the
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proposal probability and the acceptance probability. The proposal proba-

bility g(x’|x) is the conditional probability of proposing a state x’ given x,

and the acceptance probability A(x’|x) is the conditional probability to ac-

cept the proposed state x’. The transition probability can then be written as

the product of the proposal probability and the acceptance probability.

T (x′|x) = g(x′|x).A(x′|x) . (2.45)

Inserting the relation of 2.45 in 2.44 gives

A(x′|x)
A(x|x′) =

P (x′)

P (x)

g(x|x′)
g(x′|x) . (2.46)

The algorithm assumes flipping a single spin as the only way to transition

from a state to another state. In that case, the two selection probabilities are

equal, g(x|x’)=g(x’|x). Hence equation 2.46 reduces to

A(x′|x)
A(x|x′) =

P (x′)

P (x)
. (2.47)

The probability of occurrence of a state x in an Ising model is proportional

to the exponent of the energy of state x. Hence the ratio of the probability

of being in state x’ and the probability of being in state x is equal to the

exponent of the energy difference between x’ and x, ∆E = E(x′)− E(x).

A(x′|x)
A(x|x′) = e−∆E . (2.48)
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However, this doesn’t help to uniquely specify A(x’|x). One common choice

is the Metropolis choice:

A(x′|x) =











e−∆E, ∆E > 0

1, otherwise
(2.49)

The above equation 2.49 which defines the transition probability of the

Metropolis-Hastings algorithm for Ising model can be rewritten as

A(x′|x) = min(1, e−∆E) . (2.50)

The Metropolis-Hastings algorithm consists of the following steps:

1. Pick an initial configuration at random.

2. Pick a single spin i and flip it. Compute the change in energy ∆ E =

E(x’)-E(x). One may compute ∆ E by separately computing E(x) and

E(x’). Since the change between both configurations is only at the spin

i, one may derive a computationally inexpensive expression for ∆ E

using equation 2.37. Accept the new configuration with the probabil-

ity min(1, e−∆E). If accepted, the configuration x transits to the new

configuration x’. If not accepted, the configuration stays at x. Flip-

ping a single spin and deciding whether to accept the flip constitutes

a Metropolis step.

3. Performing a Metropolis step for all the spins (1 to N) constitutes

a Metropolis sweep. Observables are usually measured once every

sweep.
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4. Performing M sweeps is a complete experiment. M should be chosen

so that the standard deviation of the measured Ising model average

reduces to a desired level of accuracy.

Figure 2.7: Flowchart of Metropolis-Hastings algorithm.
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Before running theMmetropolis sweeps in which the observables are accu-

mulated and measured, one should first run L Metropolis sweeps to allow

for the Markov chain to converge to the equilibrium distribution. The L

sweeps are called the burn-in or the thermalisation period. The M sweeps

are called the accumulation period. The states generated by the Markov

chain during the burn-in period are not used to measure the Ising model

observables of interest. A rule of thumb for choosing the number of sweeps

for the burn-in period is about 10 to 20% of the total number of sweeps in

the simulation.

The steps executed in the Metropolis algorithm are best summarised in the

flowchart depicted in Figure 2.7.

2.5.4 Reconstructing structural connectivity using Ising cou-

plings

With the success of the Ising model in characterizing the firing activity of

neuronal ensembles, the coupling parameter of the Ising model lends itself

as a measure of functional connectivity.

Since Ising parameters are calculated taking all the correlations in the net-

work into account, the Ising coupling parameters are able to correct the

indirect effects of the network [BC13; Sch+06; GSS11]. [Tka+09] describes

Ising coupling parameter Jij as “the direct mutual interaction between neu-

rons i and j that remains after the contributions from other interactions

in the network have been disentangled”. Yu et al[Yu+08] suggested that

Ising coupling parameters can distinguish between correlations caused by

shared inputs and correlations caused by direct mutual interaction. Hence
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Yu et al applied Ising models to built the functional interaction network for

neuronal recording taken in vivo from visual cortex of cats and observed

that the resultant functional networks have small world properties. The

ability of Ising coupling parameters to account only for the direct interac-

tions in the network renders them as robust indicators of the underlying

structural connectivity in the network.

However, the question of how the Ising couplings compare against the con-

ventional functional connectivity measures under different network con-

ditions has not been answered in a systematic and quantitative manner.

Chapter 4 answers this question by systematically studying the relation-

ship between Ising couplings and the underlying structural connections

and contrast it to partial and cross-correlations, in in silico neuronal net-

works for different network conditions.

2.6 Kinetic Ising models

The term “Ising model” and the term “equilibrium Ising model” will be

used interchangeably in this thesis to refer to the Ising model defined by

the equation 2.33 and described in the preceding section 2.5. To resolve am-

biguity, kinetic Ising model will be explicitly mentioned. The Ising model is

defined solely by the Gibbs equilibrium distribution. It only uses the prob-

ability distribution of the spins and ignores the temporal order of the spins

as it is based on a stationarity assumption. Even though the Gibbs equilib-

rium is satisfied in many applications, the equilibrium assumption may not

hold for systems driven by time-dependent external fields [RH11]. The con-

dition of detailed balance may not be satisfied in those systems. Also, the
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assumption of symmetric connections is not realistic when the Ising mod-

els are applied to biological networks such as neuronal networks. Kinetic

and non-equilibrium models have a bigger relevance for studying biologi-

cal systems.

Relaxing the assumptions of equilibrium and symmetric couplings led to

the development of inference methods based on a kinetic formulation of

the equivalent Ising system that results in maximum likelihood estima-

tions of the transition probabilities between successive states of the system

[Cap+15]. The Ising model is referred to as a kinetic Ising model if the state

of the spins follow a certain dynamics and are dependent on the time.

Following earlier notations used in this thesis, the state of each neuron in

a time bin t is represented by the binary variable σi(t) = ± 1 depending on

neuron i spiking in the time bin t. In a kinetic Ising model, the objective is

to infer a statistical model which maximizes the probabilities of the spike

histories σi(t)
N

i=1, 1 ≤ t ≤ T, where N is the total number of neurons in the

network and T is the total number of time bins. This is different from the

objective of a standard Ising model where one ignores the temporal order

of the spike patterns and is interested only in modelling the probability dis-

tribution of the spike patterns. Based on Glauber dynamics [Gla63], Hertz

and Roudi [HRT13] proposed the following kinetic Ising model for the neu-

ronal spiking data.

At each time step t, the neuron i receive inputs from both the external field

hi and the other presynaptic neurons in the network. The total field on

a neuron i in a time bin t, Hi(t) is given by the sum of the external field

component and the synaptic component and is calculated as
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Hi(t) = hi +
∑

j

Jijσj(t) . (2.51)

At the next time step (t+1), the neuron i fires with a probability equal to the

logistic sigmoidal function of its total field input conditional on the state of

the network at time step t:

P (σi(t+ 1) = 1|σj(t)) = f(Hi(t)) , (2.52)

where f(x) is the logistic sigmoidal function given by

f(x) =
1

1 + e−2x
. (2.53)

Equation 2.52 can be rewritten as

P (σi(t+ 1)|σj(t)) =
exp[σi(t+ 1)Hi(t)]

2coshHi(t)
, (2.54)

P (σi(t+ 1)|σj(t)) =
1

2
[1 + σi(t+ 1)tanhHi(t)] . (2.55)

Since Hi(t) (and hence the state of the system at a time (t+ 1)) is a function

of the state of the network at time step t only, the dynamics described in

equation 2.55 is Markovian. The external field parameter hi and the cou-

plings Jij are the parameters of the kinetic Ising model. The field param-

eter hi can be generalized to be time dependent. If the field parameter hi

is time dependent, then the network statistics will be non-stationary. This

makes it possible to apply kinetic Ising models to describe non-stationary

58



Chapter 2. Literature Review

data, assuming that the couplings Jij do not vary with time. In case of non-

stationary data, one needs data from many runs of the system to compute

hi(t) as the different time steps are not statistically equivalent.

The probability Pt(σ) that the system is in state σ at time t can be derived

from the knowledge of the transition probability equation 2.54 as follows:

Pt(σ) =
∑

σ′

P (σ(t)|σ′(t− 1))Pt−1(σ
′) , (2.56)

where P (σ(t)|σ′(t− 1)) is the transition probability from state σ′ at time-bin

(t− 1) to state σ at time-bin t and is given by

P (σ(t)|σ′(t− 1)) =Πi

exp[σi(t)Hi(t− 1)]

2coshHi(t− 1)
. (2.57)

This kinetic Ising model is the maximum entropy model for each time step,

given mean magnetizations and one step separated correlations [RH11].

The neurons/spins in a kinetic Ising model in a time-step can be updated

either synchronously or asynchronously. If all the neurons are updated si-

multaneously in parallel in a time step, the update is called a synchronous

update. In an asynchronous update, each time-step is further divided into

N smaller time increments. One neuron is randomly selected and updated

in a time increment. During the N time increments, each neuron gets se-

lected to be updated once on average. But it is not guaranteed that each

neuron will be selected and updated in a time step consisting of N time

increments. This mode of update where the neurons are updated sequen-

tially within a time step is called an asynchronous update. If the neurons

are updated asynchronously, then the kinetic Ising model reduces to the

59



Chapter 2. Literature Review

Gibbs equilibrium distribution of the standard Ising model if the external

field parameter hi is independent of time and the coupling parameter Jij are

symmetric. For the case of synchronous updates, if the field hi is constant

in time, then the network relaxes to a stationary distribution (though not

to the same distribution described by the Gibbs equilibrium distribution).

Since such a distribution cannot be described by the Gibbs equilibrium dis-

tribution, it is called a non-equilibrium distribution though it is station-

ary [HRT13]. Since the synchronous model will be easier to apply for the

time-binned data (like the neuronal spiking trains), this work focuses solely

on the synchronously updated kinetic Ising models. A detailed treatment

of asynchronously updated kinetic Ising models is available at [Zen+11;

Zen+13]. Also, it should be noted that kinetic Ising model can be seen as a

special case of generalised linear models (GLM) with a one-step time kernel

[HRT13; RDH15].

2.6.1 Inference of parameters of the kinetic Ising models

Let us first consider the case where the field parameter hi is constant in time

and the probability distribution P(σ) is stationary. The log-likelihood that

the kinetic Ising model generated the data is given by

L[σ, J, h] =
T−1
∑

t=1

N
∑

i=1

log(P (σi(t+ 1)|σ(t))

=
T−1
∑

t=1

N
∑

i=1

[σi(t+ 1)Hi(t)− log 2coshHi(t)] . (2.58)
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The model parameters hi and Jij can be found by maximizing the log-

likelihood of the data under the model. Similar to the Boltzmann learning

method of the standard Ising model, the maximization can be performed

using a gradient ascent algorithm. One starts with an initial value for the

model field parameters and the coupling parameters and adjusts them iter-

atively using the following rules

δhi = α
∂L
∂hi

, (2.59)

δhi = α[〈σi(t+ 1)〉t − 〈tanhHi(t)〉t] , (2.60)

δJij = α
∂L
∂Jij

, (2.61)

δJij = α
[

〈σi(t+ 1)σj(t)〉t − 〈tanhHi(t)σj(t)〉t
]

, (2.62)

where α is the learning rate.

It can be observed that pair of equations 2.60 and 2.62 are similar in form to

the pair of equations 2.41 and 2.42 corresponding to the equilibrium Ising

model. The right-hand side of both pairs of equations is the difference

between the averages of the data and the averages of the model. Com-

puting the model averages in the case of equilibrium Ising model involves

the summation of 2N terms and is time-consuming. However, in the case

of kinetic Ising model, the model averages can be computed directly and

quickly from the model parameters and the spike train data. Hence the

gradient ascent algorithm for kinetic Ising model runs much faster when
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compared to that of equilibrium Ising model. Theoretically, the gradient as-

cent algorithm defined as in equations 2.60 and 2.62 will recover the exact

values of the model parameters h and J after infinite iterations for spike-

train data of infinite length [HRT13].

In the non-stationary case, the field parameter hi is not constant and de-

pends on time. As the time-bins are not statistically equivalent, data from

many runs of the experiment is needed in the non-stationary case [HRT13].

Let σi(t, r) denote the state of the neuron i in the time-bin t during the rth

run. It should be noted that since hi is time-dependant,Hi is also now time-

dependent.

Most of the discussions for the stationary case applies to the non-stationary

case and hence the gradient ascent learning rules for hi(t) and Jij can be

written in a form analogous to the stationary case as follows [RH11]:

δhi(t) = α[〈σi(t+ 1, r)〉r − 〈tanhHi(t, r)〉r] , (2.63)

δJij = α
[

〈σi(t+ 1)σj(t)〉t,r − 〈tanhHi(t, r)σj(t, r)〉t,r
]

, (2.64)

where 〈...〉t,r represents averaging over both time and repeats and 〈...〉r rep-

resents averaging over repeats.
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2.6.2 Kinetic Ising model with time delays

The kinetic Ising model proposed by Hertz and Roudi [HRT13] did not

account for networks with variable spike transmission delays. Capone et

al [Cap+15] extended the kinetic Ising model to account for variable spike

transmission delays.

To understand the role of the size of the time-bin (time-step) on the infer-

ence of the Ising parameters, Capone et al simulated a pure excitatory net-

work of 50 neurons with a spike transmission delay δ of 3ms for all the

neuron pairs. The spike trains were then binarised for different choice of

time-bins dt and the kinetic Ising coupling inferred for each choice of time-

bin were analysed. It was observed that only when the time-bin size was

equal to the spike transmission delay, the histogram of the Ising couplings

corresponding to connected and unconnected pairs were separated. When

the time bin size did not match the spike transmission delay, some Jij cou-

plings corresponding to the neurons which are connected (by an excitatory

link) were even inferred as negative and appeared to have been estimated

as inhibitory. Capone et al explained their observation based on equation

A.21. A spike fired by a presynaptic neuron j reached the neuron i at a time

t+ δij (where δij is the spike transmission delay from presynaptic neuron j

to neuron i). Only when the time-bin size dt was equal to the transmission

delay δij , the conditional probability P ((σi(t+ dt) = 1)|(σj(t) = 1)) (the nu-

merator term in equation A.21) and hence the Ising coupling Jij was maxi-

mum. Thus, Capone et al established that the choice of time-bin should be

based on the spike transmission delay in the network.

As the kinetic Ising model discussed so far cannot cater to networks with
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variable spike transmission delays, Capone et al [Cap+15] conceived a two-

step method to solve this problem. They suggested to first estimate the

spike transmission delay for each neuron pair, and then use the estimated

pair dependent delay in the extended kinetic Ising model as follows:

Hi(t) = hi +
∑

j

Jijσj(t− δij) . (2.65)

As the spike transmission delay for each pair of neurons was handled, the

inference method was made independent from the choice of the time-bin dt

for a network with variable spike transmission delays.

Instead of maximizing the log-likelihood of the model under the data to

estimate δij used in equation 2.65, Capone et al suggested to infer δij as

the time when the time-retarded cross-correlation between the neurons i

and j reaches a peak/dip. This idea is based on the observation that the

cross-correlation peaks or dips (depending on whether the connection is

excitatory or inhibitory) at a time close to the spike transmission delay.

Capone et al applied the two-step extended kinetic Ising model to a simu-

lated network of excitatory and inhibitory Izhikevich neurons with variable

spike transmission delays and observed that there is a clear separation be-

tween the kinetic Ising couplings corresponding to the connected pairs and

the unconnected pairs.
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2.6.3 Reconstructing structural connectivity using kinetic Ising

couplings

The advantages of kinetic Ising couplings over Ising couplings are that they

are directional (whereas Ising model couplings are symmetric by construc-

tion) and can also account for non-stationary neural data. As kinetic Ising

couplings take into account the whole network activity, they have been

found to discard the spurious effect of common inputs and indirect con-

nections in the network [RDH15].

As the kinetic Ising couplings can correctly identify the true connections in

the network, they are very effective in reconstruction of the structural net-

works. Hertz et al [Her+10] observed that the coupling parameters of a ki-

netic formulation of the Ising model were able to reconstruct the structural

connections of a model cortical network very reliably. Assuming correct

level of sparsity, the average false positive and false negative rates were

found to be around 5.6% and 7.2% respectively in their study.

Over the recent years, there has been a growing interest in application of ki-

netic Ising models for network reconstruction. Mean field approximations

of the kinetic Ising model were developed to infer the structural connec-

tivity in networks [RH11; Zen+11]. Capone et al [Cap+15] extended the

kinetic Ising model (as described in section 2.6.2) to account for variable

spike transmission delays and found that the extended model was success-

ful in distinguishing the connected and unconnected pairs of neurons in the

network.

Roudi et al [RDH15] observed that kinetic Ising couplings performed bet-

ter than cross-correlations in identifying excitatory and inhibitory links in
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a simulated network (kinetic Ising couplings identified 94% and 62% of the

inhibitory connections and excitatory ones; cross-correlation analysis iden-

tified only 68% and 22% of the inhibitory and excitatory connections, re-

spectively). The results from [RDH15] are not surprising as cross-correlation

analysis is known to be susceptible to the impact of indirect interactions

arising out of poly-synaptic connections and common inputs [EDS03; Ada+12].

A more appropriate benchmark for the inference of structural connections

is partial correlation as it is known to be effective in removing indirect inter-

actions [EDS03; Pol+16]. Comparing kinetic Ising couplings against partial

correlations will help to make a choice regarding the right functional con-

nectivity tool to reconstruct the structural connectivity. No comparison has

yet been carried out between kinetic Ising couplings and partial correla-

tions in assessing their performance in inferring the structural links. Also,

the effect of network conditions on the relative performance of kinetic Ising

couplings and partial correlation has not be studied previously. Chapter 5

presents the results of the systematic study of the predictability of the un-

derlying structural connections by kinetic Ising couplings, in comparison

to partial and cross-correlations, in in silico neuronal networks and discuss

how the predictability is affected by different network conditions.

2.7 Summary

In summary, this chapter presented the background concepts pertaining

to complex networks and the three types of connectivity found in neuronal

networks (structural, functional and effective). The conventional functional
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connectivity metric of cross-correlation and the limitations of the cross-

correlation approach while inferring the structural connections were dis-

cussed. Partial-correlation based on scaled partial covariance densitywhich

has been shown to outperform cross-correlations in reconstructing struc-

tural connections was then presented. The chapter then introduced maxi-

mum entropy based Isingmodels and presented the inference of the param-

eters of the Ising model. Finally, the kinetic Ising model and an extended

kinetic Ising model that can cope with a distribution of spike transmission

delays were discussed. Though Ising couplings and kinetic Ising couplings

are claimed to be good indicators of the structural connectivity, the chap-

ter highlighted the gap in the existing literature about lack of benchmark

on the performance of Ising and kinetic Ising couplings against partial cor-

relations in inferring the structural connections for different network con-

ditions. The results of the comparative study of the performance of Ising

couplings against partial correlation is presented in chapter 4. And the re-

sults of the comparative study of the performance of kinetic Ising couplings

against partial correlation is presented in chapter 5. The methods used in

the comparative studies are discussed in the next chapter.

67



Chapter 3

Methods

Contents

3.1 Simulation network . . . . . . . . . . . . . . . . . . . . . . 69

3.1.1 Neuronal dynamics . . . . . . . . . . . . . . . . . . 69

3.1.2 Structural connectivity . . . . . . . . . . . . . . . . . 74

3.1.3 Generation of spike train data . . . . . . . . . . . . . 75

3.2 Calculation of equilibrium Ising parameters . . . . . . . . 77

3.3 Calculation of kinetic Ising parameters . . . . . . . . . . . 78

3.4 Calculation of cross-correlations and partial correlations 80

3.5 Evaluation of functional connectivity matrices . . . . . . 82

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

This thesis attempts to reconstruct the structural connections from func-

tional connectivity metrics in in silico networks. The functional connectiv-

ity metrics are calculated from the spike data recordings of the network

activity. The functional connectivity metrics considered in this thesis are
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equilibrium Ising couplings, kinetic Ising couplings, cross-correlations, and

partial correlations. This chapter will discuss the methods used in this the-

sis. Firstly, the chapter describes the in silico simulation network used to

generate the spiking data. Then, the methods used to calculate the func-

tional connectivity metrics are given. Finally, the procedure to evaluate

the performance of the functional connectivity metrics in reconstructing

the structural connectivity is discussed. As in other chapters of this the-

sis, the usage of the term "Ising couplings" refers to the equilibrium Ising

couplings. Kinetic Ising couplings are mentioned explicitly.

3.1 Simulation network

3.1.1 Neuronal dynamics

The in silico simulation network consisted of N Izhikevich spiking model

neurons [Izh03]. Izhikevich model was chosen for its computational effi-

ciency and its capability to generate several firing patterns based on four

parameters [Izh04]. The Izhikevich model is a two-dimensional (2-D) sys-

tem of ordinary differential equations:

v
′

= 0.04v2 + 5v + 140− u+ I , (3.1)

u
′

= a(bv − u) , (3.2)

with the auxiliary after-spike resetting

if v ≥ 30 mV, then v ← c, u← u+ d . (3.3)
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Here a, b, c, and d are the parameters of the model, v is the neuron’s mem-

brane potential, and u is the membrane recovery variable. The latter vari-

able serves to provide negative feedback to v and simulates deactivating

sodium current and activating potassium current. Once the spike reaches a

peak value (+30 mV), the value of v and u are reset as per the equation 3.3.

The variable I represents the total input current to the neuron. The function

0.04v2 + 5v + 140 is chosen such that v has mV scale and the time t has ms

scale. The model’s resting potential value varies according to the value of b

and ranges between -70 and -60 mV. The 30 mV occurring in equation 3.3 is

the peak value of the spike and not the threshold of the neuronmodel. Simi-

lar to biological neurons, themodel has a dynamic threshold. The threshold

potential can vary between a minimum of -55 mV to a maximum of -40 mV

depending on value of v before the initiation of the spike.

The parameter a denotes the time scale of the membrane recovery vari-

able u. Smaller value of a corresponds to slower recovery. The parameter

b denotes the sensitivity of the membrane recovery variable u to the sub-

threshold fluctuations of the membrane voltage v. The parameter c denotes

the reset value of the membrane voltage v after the spike. The parameter d

denotes the reset value of the membrane recovery variable u after the spike.

The Izhikevich simple spiking model is able to produce different bursting

and spiking behaviours of biological neurons for different values of the pa-

rameters (see Figure 3.1). Themodel is suitable for simulating large number

of neurons as it is computationally efficient and requires only 13 FLOPs for

simulation of 1 ms duration [Izh04].

To achieve heterogeneity in the spiking dynamics of the neurons, the excita-

tory neurons in the simulation networkweremodeled using the parameters
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Figure 3.1: Top left : Graphical illustration of the parameters a, b, c and d
of the Izhikevich model. Top right: Different parameter values resulting in
different firing patterns (bottom) of common neuron types. Excitatory:RS,
IB and CH. Inhibitory:FS and LTS. Electronic version of the figure and re-
production permissions are freely available at www.izhikevich.com
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(a, b) = (0.02, 0.2) and (c, d) = (−65, 8) + (15,−6)r2, where r is a uniformly

distributed random variable in the interval (0, 1). The case of r=0 corre-

sponds to a regular spiking neuron model and r=1 corresponds to a chat-

tering neuron model. r2 was used to bias the distribution towards regular

spiking neurons. The inhibitory neurons were modeled using the parame-

ters (a, b) = (0.02, 0.25) + (0.08, -0.05)r and (c, d) = (-65, 2). The case of r=0

corresponds to the low threshold spiking class of inhibitory neurons and

the case of r=1 corresponds to the fast spiking class of inhibitory neurons.

The ratio of excitatory to inhibitory neurons was set to 4:1 in agreement

with the experimental studies [MS02].

Inspired by Rocha et al [DLR+07], the total input current, Ii, to each neuron

i was modeled using the equation:

Ii = Ibasei + [(1− CF ) ∗ I thalamic
i + CF ∗ Isynaptici ] . (3.4)

The total input current Ii to each neuron i consisted of 3 components: Ibasei

was a constant input with an additive Gaussian noise of zeromean and unit

variance which influenced the average firing rate of the neuron. I thalamic
i

was a noisy random input which was given by a Gaussian variable multi-

plied by a constant and was uncorrelated for any two neurons. Isynaptici of a

neuron i was the sum of the synaptic inputs from the presynaptic neurons

connected to it. CF was a global control factor variable (0 ≤ CF ≤ 1)which

affected the amount of correlation between the firing of the neurons in the

networks by controlling the relative contribution of I thalamic
i and Isynaptici .

When CF = 0, the contribution of Isynaptici to total input became zero and

the input of a neuron was influenced by the noisy I thalamic
i and hence the
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firing between the neurons was less correlated. When CF = 1, the contri-

bution of the I thalamic
i component became zero. The firing of a neuron in-

creased the Isynaptici of its postsynaptic neuron and hence the postsynaptic

neuron had higher chances of firing together with the presynaptic neuron.

Thus, neurons spiked together more when CF = 1.

This choice of input allowed the simulation of two modes of functioning of

the cortical circuits namely the feedforward mode and the recurrent mode.

In the feedforward mode, the cortical circuits respond more to the afferent

incoming information from the external pathways rather than the recur-

rent internal synaptic pathways. The feedforward mode is simulated for

low values of CF where the afferent I thalamic
i input component is enhanced

and the recurrent Isynaptici input component is suppressed. In the recurrent

mode, the cortical circuits respond more to the recurrent internal synaptic

inputs than the external afferent inputs. The recurrent mode is simulated

for high values of CF where the Isynaptici synaptic input component is en-

hanced and the external I thalamic
i component is suppressed.

The synaptic current Isynaptici received by a neuron i is described the equa-

tions given below [DÖ13]:

Isynaptici =
N
∑

j( 6=i)

gj(t)(Esyn − vi) , (3.5)

dgi
dt

=
−gi + g∞
1− g∞

, (3.6)

g∞(vi) = 1/{1 + exp(v
∗ − vi
k

)} , (3.7)

where gi is the synaptic gate variable denoting the fraction of open synaptic
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ion channels, Esyn is the synaptic reversal potential (set to 10 mV), g∞ is the

steady state activation function, k is the synaptic slope factor (set to 2 mV)

and the parameter v∗ satisfies g∞(v∗) = 0.5.

The network of Izhikevich neurons was simulated for different values of

average firing rates by adjusting the values of Ibasei . The different corre-

lation levels were simulated by adjusting the values of the control factor

CF , the gain of the noisy random input component I thalamic
i and the gain

of the synaptic current Isynaptici . Very weak network correlation condition

was simulated using a combination of low value of CF , high gain factor of

I thalamic
i and a low gain factor of Isynaptici . This combination results in a high

random current component (which is uncorrelated between the neurons)

and a low synaptic current component (which is responsible for the corre-

lation between the neurons) and thus yielding a very weak correlated firing

condition in the network. Conversely, a high network correlation condition

was simulated using a combination of a high value of CF , low gain factor

of I thalamic
i and a high gain factor of Isynaptici .

3.1.2 Structural connectivity

The connectivity between the neurons was given by the adjacency matrix

A = (wij). The firing of the jth neuron affected the voltage of the ith neu-

ron by an amount wij multiplied by CF . The strengths of the links (non-

zero wij in the adjacency matrix) were distributed normally with a mean of

0.6 and a standard deviation of 0.13 and were limited to the interval [0.21,
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0.99]. Self-loops were not allowed. The adjacency matrix for each simu-

lated topology (scale-free, small-world, and random networks) was gener-

ated using the corresponding topology generation algorithms. Scale-free

(SF) topology was generated using directed preferential attachment model

for network growth [BA99]. Brain connectivity toolbox [RS10] was used to

generate modular small-world (SW) topology with a specified number of

fully connected modules connected via randomly distributed inter-module

connections. Erdos-Renyi (ER) random networks were generated with a

fixed connection probability between all pairs of neurons. For all topolo-

gies, the total number of links in the network was fixed at 20% of the total

possible links (which is N ∗ (N − 1) ) as studies [JTR99; MS02; Pol+16] sug-

gest that on an average each neuron is connected to 10% to 30% of the other

neurons in in vitro cultures. A sample of each network type generated for a

network of 30 neurons is presented in Figure 4.5b.

3.1.3 Generation of spike train data

The neuronal network was then simulated for a length of time to capture

the spike train data. When the voltage of a neuron reached a threshold

(which was a dynamic value, depending on the parameters of the neuron),

a spike was initiated. The time of the spike and the number of the neuron

which spikedwas recorded to generate the spike train data of the simulated

neuronal network.

The spike train data was converted to a binary vector by splitting the du-

ration of the simulation into many time bins of equal width. Ising model

can only infer the interactions which occur in the same time bin as they are
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calculated from equal-time correlations (rather than delayed correlations).

Hence, the length of the time bin for Ising couplings should be wider than

the spike transmission delay so that the spike of the presynaptic neuron and

the spike of the postsynaptic neuron are captured in the same time bin. The

spike transmission delay in the simulation network was between 4 ms and

6 ms. Hence, a time bin size of 10 ms was used to bin the firing data for use

in Ising models. This choice of bin size also made sure that not more than a

single spike from the same neuron fell in the same time bin (for firing rates

up to 100 Hz). As kinetic Ising model (and its extended version discussed

in section 2.6.2) depend on delayed correlations, the spike train was binned

at 1 ms for use with extended version of the kinetic Ising model.

The state of a neuron i in a time binwas represented by σi and it took a value

of +1 or -1 corresponding to the presence or absence of spikes in that time

bin. The average firing rate 〈σi〉data of a neuron i and the average pairwise

joint firing rate 〈σiσj〉data for a pair of neurons i and j were calculated using

the following equations [Tan+08]:

〈σi〉data =
1

T

T
∑

t=1

σt
i , (3.8)

〈σiσj〉data =
1

T

T
∑

t=1

σt
i .σ

t
j, (3.9)

where the angle brackets indicate averaging over time, T was the total num-

ber of time bins for the duration of the simulation and σt
i was the state of the

neuron i in a particular time bin t. The covariance Covij between the firing

of two neurons i and j was defined as Covij = 〈σiσj〉data − 〈σi〉data . 〈σj〉data.
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And, the correlation coefficient between the spike trains of the neurons i

and j was calculated as ρij =
Covij

sisj
where si was the standard deviation

of firing activity σi of the neuron i. The mean network correlation ρ was

calculated as the average of the correlation coefficient between all pairs of

neurons.

3.2 Calculation of equilibrium Ising parameters

In order to use the Ising model, it is necessary to estimate the parameters

hi and Jij of the model ensuring that the first and second order moments

of the model (given by 〈σi〉model and 〈σiσj〉model
) match with the observables

(〈σi〉data and 〈σiσj〉data ) from the simulation. The direct way to calculate the

Ising model parameters hi and Jij given the averages is Boltzmann learning

[RTH09]. A few approximate methods [RTH09] are available to calculate

the Ising couplings. The approximate methods make a few assumptions

about the network activity. As those assumptions may not be fulfilled in all

the cases considered, Ising couplings were calculated exactly using Boltz-

mann learning in this work. The Boltzmann learning method starts with an

initial value for the parameters hi and Jij and adjusts them iteratively ac-

cording to equations 3.10 and 3.11 till the first and second order moments

of the Ising model ( 〈σi〉model and 〈σiσj〉model
) agree with the estimates ob-

tained from the simulation data ( 〈σi〉data and 〈σiσj〉data ) within the desired

accuracy.

hnew
i = hold

i + α.(〈σi〉data − 〈σi〉model) , (3.10)
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Jnew
ij = Jold

ij + α.(〈σiσj〉data − 〈σiσj〉model
) , (3.11)

where α is the learning rate. It is usually held constant and is generally kept

less than 1 to get a smoother convergence.

As can be seen from the above equations, the first and second order mo-

ments of the Ising model need to be calculated for each iteration of the

gradient descent algorithm. The exact method for computing 〈σi〉model and

〈σiσj〉model
from the Ising parameters hi and Jij is given by equations 2.39

and 2.40 in section 2.5.3. As can be seen from equations 2.39 and 2.40, the

exact method of calculating the first and second order moments of the Ising

model has a computational complexity of the order O(2N) [Yeh+10] and

is a computationally intensive task. This exact method of calculating the

Ising model averages was used only for small N (≤ 20 ). For larger N,

Monte Carlo sampling based on standard Metropolis-Hastings simulation

(explained in section 2.5.3.1) was used. TheMetropolis Hastings has a com-

plexity ofO(NumberOfIterations). A very large number of iterations of the

order of 107 was used to calculate 〈σi〉model and 〈σiσj〉model
in this work.

3.3 Calculation of kinetic Ising parameters

This thesis uses the extended kinetic Isingmodel (described in section 2.6.2)

introduced by Capone et al in [Cap+15]. The change introduced by Capone

et al allowed the kinetic Ising model to account for variable synaptic in-

teraction delays. Using the same notations introduced earlier in section

3.1.3, σi(t) denotes the state of a neuron i recorded in a time bin t and
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σ = {σi(t)}, 1 ≤ i ≤ N . The kinetic Ising model is based on a stochastic

dynamics where the configuration σ(t + 1) depends on σ(t). At each time-

step, σ(t+ 1) is sampled according to the probability distribution:

P (σi(t+ 1)|σ(t)) = exp[σi(t+ 1)Hi(t)]

2 coshHi(t)
, (3.12)

Hi(t) = hi +
∑

j

[Jijσj(t− δij)] , (3.13)

where δij denotes the synaptic transmission delay from the presynaptic

neuron j to the postsynaptic neuron i.

The coupling parameters of the kinetic Ising model Jij are non-symmetric.

Hence the model has N(N-1) coupling parameters Jij and N field param-

eters hi. The parameters of the model are derived by maximizing the log-

likelihood of the data under the model which is given by the equation 2.58

in section 2.6.1. This results in the following learning rules [HRT13]

δhi = α[〈σi(t+ 1)〉 − 〈tanhHi(t)〉] , (3.14)

δJij = α[〈σi(t+ 1)σj(t)〉 − 〈tanhHi(t)σj(t)〉] . (3.15)

Equations 3.14 and 3.15 have a form analogous to the the equations 3.10

and 3.11 of the equilibrium Ising case. The right hand side of both sets of

equations are the difference between the averages over the data and the

averages of the model. The averages of the kinetic Ising model can be
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calculated directly from the data and the model parameters. Whereas in

the case of equilibrium Ising model, computation of the averages of the

model requires large number of iterations of the Metropolis Hastings sim-

ulation or summation 2N terms. Hence, the gradient descent algorithm in

the case of kinetic Ising parameters was much faster than in the case of

equilibrium Ising parameters [HRT13]. The synaptic transmission delay δij

for a given pair ij of neurons were calculated from the cross-correlogram

between the neurons. The time lag corresponding to the peak/dip (de-

pending on whether the connection is excitatory or inhibitory) of the cross-

correlogram corresponded to the synaptic interaction delay δij .

3.4 Calculation of cross-correlations and partial

correlations

Cross-correlation can be interpreted as the probability of one neuron (called

the target neuron) spiking at time (t+ τ) conditioned on the reference neu-

ron spiking at a time twhere Let x and y be the spike trains of the reference

and the target neurons respectively. The cross-correlation function Cxy(τ)

is defined as

Cxy(τ) =
1

√

NxNy

Nx
∑

s=1

(τ+△τ

2
)

∑

ti=(τ−△τ

2
)

x(ts)y(ts − ti) , (3.16)

where Nx and Ny are the total number of spikes in the spike trains x and

y, respectively, τ is called the time lag, and ts is the timing of a spike in the

spike train x. The cross correlation function is computed for each pair of
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neurons. The cross-correlation function is symmetric. That is, if we com-

pute the cross-correlation function keeping x as reference and y as the target

and then compute cross-correlation function keeping y as reference and x

as the target, we will get the same function but just reversed in time.

Cxy(τ) = Cyx(−τ) . (3.17)

The cross-correlation based functional connectivity matrix(CCM) is an N

x N matrix. The (i,j) element of the CCM corresponds to the maximum

amplitude of the cross-correlation function for the neuron pair (i,j). Because

of equation 3.17, the CCMmatrix is symmetric i.e. CCM(i,j) = CCM(j,i) and

the symmetric CCM cannot account for the direction of the links.

It is however possible to detect the direction of the links using the cross-

correlation function from the location of the peak of the cross-correlation

function. If the peak is located to the right side of the center of correlation

window, then the reference neuron is pre-synaptic to the target neuron. On

the other hand, if the peak is located to the left side of the center of corre-

lation window, then the reference neuron is post synaptic to the target neu-

ron. Thus a directional and asymmetric CCM can also be obtained from the

cross-correlation function.

Cross-correlation fails to distinguish between direct and indirect connec-

tions as it is calculated pairwise for each pair without any consideration

of influence of the other elements of the network on the activity of the

pair of neurons. Partial correlation approach attempts to solve this prob-

lem by removing the linear contribution of other neurons in the population

when calculating the dependence for a pair of neurons. Consider x and y as
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two neurons in a population P of neurons. The partialised cross-spectrum

Sxy|P between neurons x and y can be obtained as follows [BBS76; EDS03;

Pas+16]:

Sxy|P = Sxy − (SxP S−1PP SPy) , (3.18)

where Sxy is the full cross spectrum between the neurons x and y, SxP (SyP )

corresponds to the cross spectrum between the neuron x (y) and the pop-

ulation P and SPP is the cross spectrum between the rest of the neurons

in the population P. The partial correlation function is given by a scaled

version of the inverse Fourier transform of Sxy|P . Similar to obtaining the

symmetric and directional versions of the CCM matrix, one can obtain a

symmetric and a directional version of the partial connectivity based func-

tional connectivity matrix (PCM) as well.

An open-source toolbox based on C#, ToolConnect [Pas+16], was used in

this work to compute both the directional and non-directional cross-correlation

and partial correlation matrices (CCM and PCM). A time correlation win-

dow of 150 ms and a bin size of 1 ms were used to compute the cross-

correlation and partial correlation matrices.

3.5 Evaluation of functional connectivity matri-

ces

The structural connectivity matrix (also called the adjacency matrix) is a

directional and sparsely connected (i.e. connectivity defined only between
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specific pairs of neurons) binary matrix. The functional connectivity matri-

ces are generally all-to-all connectedmatrices and can be directional or non-

directional. Equilibrium Ising couplings are non-directional, while the ki-

netic Ising couplings are directional. Cross-correlation and partial correla-

tionmatrices can be directional or non-directional. For meaningful compar-

isonwith the structural connectivitymatrix, the functional connectivityma-

trices should be reduced to a sparse binary form, through thresholding and

binarising [RS10]. Thresholding absolute values of the functional connec-

tivity matrices will also take into account negative values, which can occur

in these matrices (which are indications of inhibitory links in the structural

topology). If the functional connectivity matrix is non-directional, then the

structural connectivity matrix should be symmetrised and converted to a

non-directional matrix before comparison with the functional connectivity

matrix.

In this work, the results of the comparison between the thresholded and

binarised functional connectivity matrices (FCM) and the structural con-

nectivity matrix (SCM) were recorded using the metrics of true positives

(TP), false positives (FP), true negatives (TN) and false negatives (FN). If a

non-zero value in the FCM corresponds to a non-zero value in the SCM, it

is recorded as a TP. If a zero value in the FCM corresponds to a zero value

in the SCM, it is recorded as a TN. If a zero value in the FCM corresponds

to a non-zero value in the SCM, it is called a FN. If a non-zero value in the

FCM corresponds to a zero value in the SCM, it is called as a FP.

The performance of the functional connectivity metrics to uncover the un-

derlying structural connectivity was assessed by the amount of match be-

tween the SCM and the FCM for different threshold levels. The results of
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the comparison were analysed using the standard receiver operating char-

acteristic (ROC) curve analysis. The ROC is a standard method to study

the performance of a binary classifier as the classification threshold is var-

ied [Faw06]. The ROC curve is the plot of the relationship between the true

positive ratio (TPR) and the false positive ratio (FPR) for different threshold

levels. The TPR is defined as the ratio of the number of links in the FCM

that match the the existing links in SCM to the total number of links in the

SCM. FPR is the defined as the ratio of the links in FCM that do not match

the links in SCM to the total number of zeros in the SCM. TPR and FPR are

given by the following equations:

TPR =
TP

P
=

TP

(TP + FN)
, (3.19)

FPR =
FP

N
=

FP

(TN + FP )
. (3.20)

The highest threshold level leads to a zero TPR as well as a zero FPR. At the

other extreme, the lowest threshold level leads to a 100% TPR and a 100%

FPR. Intermediate levels of thresholds give rise to a curve of TPR vs FPR

as a function of the threshold. Thus, the ROC curve shows the trade-off

between sensitivity (same as TPR) and specificity (defined as 1-FPR). An

increase in sensitivity will always be accompanied by a decrease in speci-

ficity. A random classifier will have a ROC curve along the diagonal line

joining (0,0) and (1,1). A perfect classifier will have a ROC curve hugging

the upper left corner of the plot. The more the ROC curve of a classifier

deviates from the diagonal, the better is its performance. An example of

the ROC curve is shown in Figure 3.2.
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Figure 3.2: Example of a ROC curve.

A common approach to summarize the performance of the ROC curve in

a single number is to calculate the area under the ROC curve (abbreviated

as AUC) [Faw06]. The value of the AUC will be between 0 and 1 as the

ROC curve covers a portion of the area under unit square (both TRP and

FPR vary from 0 to 1). A random classifier will have an AUC value of 0.5.

A perfect classifier will have an AUC value of 1.0. The closer the value of

AUC is to 1, the better is the classifier.

Though, the AUC score is a widely used method to assess the performance

of classifiers, it suffers from a few disadvantages as well. One of the main
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disadvantages is that it states explicitly nothing about individual parame-

ters such as sensitivity and specificity. It is a global measure and summa-

rizes the performance over the entire ROC space including the regions in

which one would rarely operate, e.g. the very high threshold region (which

corresponds to a low TPR as well as a low FPR) and a very low threshold

region (which corresponds to a high TPR as well as a high FPR). Hence, it is

a good idea to use complementary metrics to get a complete picture on the

performance of the functional connectivity metrics. Along with the AUC

scores, the paired measures of true positive rate and false positive rate for

a relevant threshold value and the noise to signal ratio metric are used in

this work to evaluate the functional connectivity metrics.

Hertz, Roudi and Tyrcha [HRT13] introduced a noise to signal ratio (NSR)

metric to capture the overlap between the functional connectivity couplings

corresponding to the presence of an anatomical connection and the cou-

plings corresponding to the absence of an anatomical connection in the

structural connectivity matrix. Functional connectivity couplings for which

an anatomical connection actually exists will have some spread (given by

the standard deviation sd1) around a mean value (given by µ1). Similarly,

functional connectivity couplings for which there are no anatomical con-

nections will also be spread (with a standard deviation sd2) around a mean

value µ2 (Please refer to Figure 3.3). When the spread of these two distribu-

tions is small when compared to the difference between their mean values,

the overlap between the two distributions reduces and it is easier to iden-

tify the functional couplings for which anatomical connections exists. The

noise to signal ratio is given by
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Figure 3.3: Illustration of noise to signal ratio calculation.

NSR =
sd1 + sd2
|µ1 − µ2|

=
sd1 + sd2

∆µ
. (3.21)

The noise to signal ratio is a measure of the error in the reconstruction of the

structural network connections. The smaller the noise to signal ratio, the

higher is the discrimination between the functional connections which are

anatomically connected and those which are not anatomically connected.
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3.6 Summary

To sum up, an in silico network of Izhikevich neurons with a known struc-

tural connectivity was simulated to generate the spike train data. Gradi-

ent descent algorithm was used to obtain the Ising model parameters that

model the first order and second order averages from the spike train data

binned at 10 ms. Parameters of the kinetic Ising model extended to ac-

count for variable spike transmission delays were computed using a two-

step approach. First, the spike transmission delay for each pair of neurons

was inferred from the cross-correlograms. Then gradient descent algorithm

was used to obtain the parameters of the kinetic Ising model that match

the delayed correlations from the spike train data binned at 1 ms. Both

the directional and non-directional versions of the cross-correlation based

connectivity matrix (CCM) and partial correlation based connectivity ma-

trix (PCM) were then computed for a time correlation window of 150 ms

and a bin size of 1 ms. Ising coupling matrix and the non-directional ver-

sion of the cross-correlations and partial correlationsmatrix were compared

against the symmetrized structural connectivity matrix for different thresh-

old levels. Similarly, kinetic Ising coupling matrix and the directional ver-

sion of the cross-correlations and partial correlationsmatrix were compared

against the structural connectivity matrix for different threshold levels. Re-

sults of the comparison for Ising couplings are presented in chapter 4 and

the results for kinetic Ising couplings are presented in chapter 5.
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Inferring structural connectivity

using Ising couplings
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This chapter presents the results of investigations of the equilibrium Ising

model’s ability to infer the structural connections and contrast it to that of

partial correlations and cross-correlations in in silico networks for differ-

ent network conditions. As the Ising couplings are non-directional, they

were compared with the non-directional versions of the cross-correlation
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and partial correlation matrices. The primary criterion used for the com-

parison was the AUC metric discussed in the section 3.5. For brevity, equi-

librium Ising models will be referred to as Ising models henceforth in this

chapter.

This study used in silico networks as the structural connections are known

and different network conditions can be controlled easily by construction.

In contrast, it is difficult to evaluate the performance of a functional connec-

tivity tool to infer the underlying synaptic connectivity in in vivo or in vitro

neuronal networks as the real anatomical connectivity in those networks is

not known fully [Ste+12].

This thesis evaluated Ising couplings against partial and cross-correlations

in scale-free, modular small-world and randomnetwork topologies of in sil-

ico networks, as studies [MPM15] suggest that the structural connectivity in

neuronal networks exhibits features of complex networks. Studies support

the existence of scale-free network connectivity in primary cortical cultures

[EM06a] and developing hippocampal networks [Bon+09]. The activity of

cultured neurons during maturation suggest an evolution of the network

structure from a random topology to a small-world topology [Dow+12].

Also, this work studied the performance of the three functional connectiv-

ity metrics for different firing rates and correlation levels in networks of

different sizes as literature [Cha+15; IS10] indicate that the activity of neu-

ronal network is characterized by such factors.
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4.1 Effect of mean network correlation

The performance of the three functional connectivity measures to uncover

the underlying synaptic connectivity for different levels of network corre-

lation for fixed firing rates in scale-free networks was initially studied. The

results from the the study on scale-free networks of 30 nodes for a fixed

mean firing rate of 20 Hz is shown in Figure 4.1b. For very weak levels

of correlation (ρ = 0.001 and ρ = 0.003), partial correlations and cross-

correlations performed no better than a random classifier and their AUC

values were close to 0.5. In contrast, the AUC value of Ising couplings

was significantly higher when compared to partial correlations and cross-

correlations (p < 0.01, two-sample t-tests). When the network correlation

level increased, the AUC of Ising couplings increased and then gradually

decreased. This can be explained as follows. When the network correlation

was very small, the synaptic connectivity in the network had a very weak

effect on the spike trains of the the neurons in the network and the neu-

rons with the weakest synaptic connections were indistinguishable from

the unconnected neurons. As the correlation level increased, the effect of

synaptic connectivity on the spike trains became stronger, and the gap be-

tween the correlation in the spike trains of the connected neurons and the

unconnected neurons increased. As a direct result, the detectability of the

links also increased. However, after a particular point, the effect of the indi-

rect connections became stronger and it became difficult for Ising couplings

to distinguish between the direct connections and the indirect connections

and the AUC dropped as a result.

The AUC curve of partial correlations followed a similar pattern. However,
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Figure 4.1: Effect of mean network correlation: (a) The first column in each
row shows the raster plot of the spiking activity from a simulated neuronal
network for a firing rate of 20 Hz and different network correlation levels.
The first, second and third rows correspond to mean network correlation
levels (ρ) of 0.001, 0.03 and 0.3 respectively. Histogram of the Ising cou-
plings, partial correlations and cross-correlations for the pairs of neurons
that are synaptically connected and not connected are shown respectively
in the second, third and fourth columns. The corresponding ROC curves
are shown in the last column. (b) Plot of the AUC values for different
mean network correlation levels and a fixed firing rate of 20 Hz in scale-
free networks of 30 neurons. Mean value was calculated from 10 simulated
networks. (c) True positive rate (TPR) and false positive rate (FPR) for the
reconstruction of the structural connections by the three functional connec-
tivity metrics thresholded at a sparsity threshold value of 20%.
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the performance of partial correlation increased at a much faster rate with

increase in the correlation levels, and soon it equalled and eventually sur-

passed Ising couplings for strong levels of correlation (ρ = 0.1 and ρ = 0.3).

The AUC of partial correlations was significantly higher than that of Ising

couplings for strong levels of correlation (p < 0.01, two-sample t-tests).

For intermediate levels of network correlation (ρ = 0.01 and ρ = 0.03),

there was no difference between the AUC values of Ising couplings and

partial correlations. The superior performance of the partial correlations at

stronger levels of network correlations can be explained as follows. When

the network correlation is strong, a spike in the presynaptic neuron evokes

a spike in the postsynaptic neuron with high probability, and a linear de-

pendency emerges between the spike train of the presynaptic and the post

synaptic neurons. Though indirect interactions emerge in the case of strong

network correlations, the relationship between the spike trains of the indi-

rectly connected neurons is still linear. As partial correlation can remove the

linear effects of the population, partial correlations were able to discount

the effect of spurious indirect interactions introduced at stronger levels of

network correlation. The study tested for the range of correlation levels for

different fixed firing rates and different network sizes and found that the

same trend persisted for all cases.

The AUC score gives a good summary of the performance of the functional

connectivity metrics for every possible threshold value. However, in prac-

tice, one has to use a single threshold value typically. This work tested

the quality of reconstruction of the structural links for a sparsity threshold

value of 20% (the strongest 20% of the functional connectivity links are con-

sidered to represent the structural links) assuming that other methods are
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Figure 4.2: Effect of mean network correlation on the noise to signal ra-
tio: Plot of the NSR values for different mean network correlation levels
and a fixed firing rate of 20 Hz in scale-free networks of 30 neurons. Data
was averaged over 10 simulated networks. Lower the NSR value, better
is the performance. For weaker correlation levels (0.001 and 0.003), NSR
value of Ising couplings was significantly lower compared to partial and
cross-correlations. For stronger correlation levels (0.1 and 0.3), partial cor-
relations had a significantly lower NSR value compared to Ising couplings
and cross-correlations (p < 0.01, two-sample t-tests).
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used to arrive at the true sparsity threshold value of 20% and the results

are presented in Figure 4.1c. The results are in general agreement with the

results obtained earlier using the AUC scores. One can see that a higher

AUC score in Figure 4.1b corresponds to a higher true positive rate (TPR)

and a lower false positive rate (FPR) in Figure 4.1c.

The noise to signal ratio (NSR) metric (discussed in the section 3.5) was also

used to evaluate the performance of the three functional connectivity met-

rics for the range of correlation values and the results of the evaluation are

plotted in Figure 4.2. The results obtained using NSR metric confirms the

results obtained using the AUC scores. At lower values of correlation, Ising

couplings delivered a significantly superior performance with a relatively

lowNSR score. However, at higher values of correlation, partial correlation

delivered a significantly better performance (p < 0.01, two-sample t-tests).

4.2 Effect of mean firing rate

This section reports an instigation of the effect of mean firing rate on the

quality of recovery of the structural connections. Figure 4.3b and 4.3c present

the effect of firing rate on the AUC of Ising couplings, partial and cross-

correlations for fixed network correlation levels of 0.001 and 0.3 respec-

tively. At a weak correlation level of 0.001, the AUC values of partial and

cross-correlations remained low at around 0.5 and the AUC of Ising cou-

plings was significantly higher than those of partial and cross-correlations

for all firing rates (p < 0.01, two-sample t-tests). At a strong value of corre-

lation of 0.3, all the three functional connectivity metrics show an increase
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Figure 4.3: Effect of mean network firing rate: (a) The first and second
rows correspond to firing rates of 10 Hz and 40 Hz respectively for a fixed
correlation level (ρ) of 0.001. The third and fourth rows correspond to firing
rates of 10 Hz and 40 Hz respectively for a fixed correlation level of 0.3.
Raster plot of the spiking activity is shown in the first column. Histogram of
the Ising couplings, partial correlations and cross-correlations for the pairs
of neurons that are synaptically connected and not connected are shown
respectively in the second, third and fourth columns. The corresponding
ROC curves are shown in the last column. (b) and (c) Plot of the AUC
values for different firing rates and fixed mean network correlation levels
of 0.001 and 0.3 respectively in scale-free networks of 30 neurons. Mean
value was calculated from 10 simulated networks.
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Figure 4.4: Effect of mean network firing rate: (a) and (b) Plot of the True
positive rate (TPR) and false positive rate (FPR) for the reconstruction of the
structural connections by the three functional connectivity metrics thresh-
olded at a sparsity threshold value of 20% for different firing rates and fixed
mean network correlation levels of 0.001 and 0.3 respectively in scale-free
networks of 30 neurons. (c) and (d) Plot of the NSR values for different
firing rates and fixed mean network correlation levels of 0.001 and 0.3 re-
spectively in scale-free networks of 30 neurons. Mean value was calculated
from 10 simulated networks.
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in performance with an increase in firing rates. The relative difference be-

tween the AUC scores of partial correlations and Ising couplings persisted,

and partial correlation detected significantly (p < 0.01, two-sample t-tests)

more links when the correlation was strong for all the firing rates con-

sidered. Our observation that the AUC of partial correlations and cross-

correlations increases with firing rates is consistent with the similar obser-

vations of Eichler [EDS03].

Along with the AUC scores, the paired measures of true positive rate and

false positive rate for a sparsity threshold value of 20 % and the noise to sig-

nal ratio metrics were also calculated and plotted (Figure 4.4 ). The TPR and

FPR plots and the NSR plot confirm the trend seen with the AUC scores.

4.3 Effect of network topology

Apart from networks with scale-free connectivity, the study assessed the

performance of Ising couplings, cross-correlations and partial correlations

in networks of neurons with modular small-world connectivity and ran-

dom connectivity. The link density was maintained the same across the

three topologies. The results of the assessment for networks of 30 nodes

for a mean firing rate of 20 Hz are plotted in Figure 4.5. The trend of

how the AUC scores of the three functional connectivity metrics vary with

the network correlation levels did not change across topologies. The AUC

scores of Ising couplings, partial and cross-correlations in scale-free topol-

ogy were not considerably different from their corresponding scores in ran-

dom topology. However, the AUC scores of the three metrics in the small-

world networks were considerably higher than their corresponding scores
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Figure 4.5: Effect of network topology: (a) Plot of the AUC values for
networks of 30 neurons with scale-free (SF), small-world (SW) and Erdos-
Renyi(ER) random network topologies. Data was averaged over 10 simu-
lated networks for each network condition. Firing rate was fixed at 20 Hz
in all cases. All the three topologies had the same link density of 0.2. (b) Ex-
ample of the structural connectivity network for each topology. Scale-free
networks form a few highly connected hub nodes. Modular small-world
networks present a balance of segregation and integration via dense intra-
module connections and sparse inter-module connections. Most nodes in
random networks have similar degree distribution.
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in scale-free networks. The high relative performance of the metrics in

the case of small-world networks when compared to scale-free networks

or randomly connected networks can be explained as a direct effect of the

topology construction. Themodular small-world networkswere constructed

by linking together fully connected modules with randomly distributed

inter-module connections [RS10]. The number of inter-module connections

was fewer when compared to intra-module connections. Hence each node

was influencedmore strongly by the direct interactions from the other nodes

in the same module (there were no indirect interactions within a module as

each node was connected to every other node in the module) when com-

pared to the indirect interactions from nodes in the other modules. So, the

effect of indirect interactions was weaker in the case of small-world net-

works when compared to scale-free and random networks. And as a result,

all the three functional connectivity metrics performed better at disentan-

gling direct interactions from indirect interactions in the modular small-

world topology when compared to the other two topologies. To sum up,

Ising couplings performed better at weaker levels of correlations and par-

tial correlations performed better at stronger levels of correlation irrespec-

tive of the underlying structural connectivity topology.

4.4 Effect of network size

To study how the number of nodes in the network affected the reconstruc-

tion of the structural connections, the three functional connectivity metrics

for networks of different sizes (11, 20, 30, 60 and 120 nodes) were computed
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Figure 4.6: Effect of network size: Plot of the AUC values for networks of
various sizes for a fixed firing rate of 20 Hz and correlation levels of 0.001
and 0.3 are displayed in the left panel (a) and the right panel (b) respec-
tively. The mean value was calculated from 10 networks for all cases except
for networks of 120 nodes in which case the data is from the simulation of
a single network.

101



Chapter 4. Inferring structural connectivity using Ising couplings

and analysed. For both weak (Figure 4.6a) and strong (Figure 4.6b) correla-

tion cases, all the three functional connectivity metrics displayed a reduced

performance with an increase in the number of nodes. Partial correlation

is known to have a reduction in performance with increased network size

because of the marrying-parents effect [EDS03] (When two neurons A and

B share a post synaptic neuron C, then the two input neurons A and B can

become correlated as an artifact). The current results show that Ising model

also suffers a reduction in detectability of the structural links for larger net-

works. Though the performance of all the three metrics decreased with

increase in network size, the relative performance difference between Ising

and partial correlation remained. As a result, Ising couplings had the high-

est AUC in weaker correlation levels in networks of all sizes and partial

correlations was the winner at stronger correlation levels in networks of all

sizes.

4.5 Effect of network density

The structural networks considered so far had a network density of 0.2.

To study the impact of the network density, structural networks were con-

structed with a network density of 0.5. The new structural networks were

simulated to generate activity patterns and the resulting functional con-

nectivity metrics were computed. Figure 4.7 shows the plot of the AUC

scores for Ising couplings and partial correlations for networks with the

network density 0.2 and 0.5. It can be observed that even for networks with

a higher network density of 0.5, the pattern of Ising couplings perform-

ing better at lower values of correlation and partial correlations performing
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Figure 4.7: Effect of network density: Plot of the AUC values of Ising cou-
plings and partial correlations of networks with two different network den-
sities for a fixed firing rate of 20Hz and varying correlation levels. Data was
averaged over 10 scale-free networks of 30 nodes.
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better at higher values of correlation was preserved. Another interesting

observation is that the AUC score of partial correlations in networks with

higher network density are significantly smaller when compared to the cor-

responding scores in networks with a network density of 0.2 (p < 0.01, two-

sample t-tests). This observation is consistent with the similar observations

of Poli et al ([Pol+16]). The reduced performance of the partial couplings

with increasing network density can again be attributed to the marrying-

parents effect. Ising couplings also showed a reduced performance when

the network density increased. However, the study did not find any signif-

icant statistical difference between the AUC scores of Ising couplings cor-

responding to the networks with two different network densities (p < 0.01,

two-sample t-tests).

4.6 Impact of the fit of Ising parameters

Ising parameters were computed using the gradient descent method. The

cost function of the gradient descent algorithm was defined as the maxi-

mum difference between the< σi > or< σiσj > of the Ising model and that

of the data from the simulation. The cost function quantified the error in

the fit of the Isingmodel parameters. Greater the difference between the av-

erages of the model and the data, greater is the error in the fit of the model

parameters. The gradient descent algorithm was run for different values

of the cost function to study how the fit of the Ising model parameters af-

fected the reconstruction of the structural connectivity. Figure 4.8 shows

the plot of the AUC values for different values of the error in the fit of the
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Figure 4.8: Effect of fit of the Ising model parameters on the inference
of structural links: The error in the fit of the Ising model parameters is
plotted against the AUC values obtained for the corresponding error levels
for threemean network correlation levels (ρ) and a fixed firing rate for scale-
free networks of 30 neurons. In all cases, lower the error in the fit of the
Ising model parameters, higher was the detection of links in the structural
connectivity matrix.
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Ising model parameters. It can be seen that the capability of the Ising pa-

rameters to reconstruct the structural connectivity (given by the AUC score)

increased with the decrease in the error in the fit of model parameters. It is

to be noted that the gradient descent algorithm takes more time to compute

more accurate model parameters. Thus, the number of the structural links

correctly detected by the Ising parameters depends on the accuracy of the

estimation of the model parameters, which, in turn, depends on the time

the gradient descent algorithm is run for. In comparison, partial and cross-

correlations can be computed using analytical solutions and also the time

required to compute partial correlations is a fraction of the time required to

compute Ising parameters, especially for larger systems.

4.7 Discussions

Functional connectivity metrics have been widely used to infer the un-

derlying structural connectivity of the neuronal circuits [Yat+15; MPM15;

Orl+14]. However, the conventional functional connectivitymetric of cross-

correlation is susceptible to the impact of indirect interactions arising out of

poly-synaptic connections and common inputs. Maximum entropy based

Ising models have been suggested to discount the effect of indirect inter-

actions and account for only the direct interactions [Sch+06; GSS11; BC13].

Similarly, partial correlation approach has also been reported to remove the

linear contribution of other neurons in the population and measure the di-

rect interaction strength [BBS76; EDS03]. Which of the above two functional

connectivity approaches provides the best measure of the underlying struc-

tural connectivity remains an open question, which has been addressed in
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this work.

Poli et al [Pol+16] reported that partial correlation outperformed cross-

correlation and transfer entropy in inferring the synaptic connectivity in

simulated networks of neuronal assemblies. At the same time, the study by

Watanabe et al [Wat+13] showed that the Ising couplings obtained from

a resting state fMRI data represented the anatomical connections of the

brainmore accurately than partial correlation and other common functional

connectivity measures. No comparison has yet been carried out between

Ising couplings and partial correlations in the microscopic scale of neu-

ronal networks for a wide set of network conditions and network topolo-

gies. This work systematically studied the predictability of the underly-

ing structural connections by Ising couplings, in comparison to partial and

cross-correlations, in in silico neuronal networks and how the predictability

is affected by different network conditions. As it is possible to fully control

the underlying topology and the different network conditions in the case

of in silico networks, in silico networks of Izhikevich neurons [Izh03] were

used in the study.

The main observation was that the relative performance of the three func-

tional connectivity tools was determined primarily by the network corre-

lation levels (Figure 4.1). Partial and cross-correlations performed only

as well as a random classifier at very weak levels of network correlation

(ρ = 0.001). In contrast, Ising couplings had a considerably higher AUC

score when compared to partial correlations when the correlation levels

were very weak (ρ = 0.001 and ρ = 0.003). However, partial correlation

gained the advantage when the network correlation increased. Partial cor-

relation performed better than Ising couplings at higher correlation levels
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(ρ = 0.1 and ρ = 0.3). At higher network correlation levels, whenever

a presynaptic neuron spikes, there is a high chance that the postsynaptic

neuron will spike as well and the relation between the spike trains of the

neurons in the network tend to become linear. As partial correlations can

remove the linear effects of the activity of all other neurons while assess-

ing the relationship between two spike trains [BBS76], partial correlations

outperform Ising couplings at higher network correlation levels. The trend

was found to be consistent across different firing rates, network sizes and

network topologies (Figure 4.1).

Also, when the network correlation levels are very high, synchronization

of more than two neurons and higher order correlations become more rele-

vant. Ising model is a second order log-linear model and the Ising coupling

parameters Jij correspond to the second order coefficients of the general-

ized log-linear model of order n [Mar+00]. The second order coefficients

of a log-linear model can represent only the second order (pairwise) inter-

actions and cannot account for the higher order interactions in a network.

As a direct consequence, when higher-order correlations become more rel-

evant at higher values of network correlation, Ising couplings fail in com-

parison to the partial correlations to represent the actual structure and in-

teractions in the network.

Studies on networks of vertebrate retina [Tka+14; AB10] have reported that

the correlation between the activity of pairs of neurons is usually very weak

(correlation coefficients in the range 0.001 to 0.1). Ising couplings perform-

ing better than partial correlation in very weak regimes of correlation en-

courages further studies in applying Ising couplings to assess structure-

function relationship for in vivo and in vitro networks of neurons at low
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correlations. At the same time, partial correlations are a better choice in

networks with high levels of correlation such as bursting neuronal cultures.

With technological advances [Mat+13; Ber+09], the number of electrodes on

the MEA are increasing and the performance of the functional connectivity

metrics for larger network size becomes important. It is known that the

AUC of partial correlations will deteriorate when the number of neurons in

the network increases because of the marrying-parents effect [EDS03]. The

study observed that the AUC of Ising couplings also decreased when the

number of neurons increased. Though all the three functional connectivity

metrics suffered a reduction in AUCwith an increase in the number of neu-

rons in the network for all tested correlation levels and firing rates (Figure

4.6), network size did not affect the relative performance amongst the tools.

Ising couplings had the highest AUC at weaker correlation levels, and par-

tial correlations had the highest AUC at stronger correlation levels for all

network sizes.

Along with the performance, the time required to compute the functional

connectivity metrics also needs to be considered, especially for larger net-

works. The Boltzmann learning method used to calculate the Ising pa-

rameters is a very slow gradient descent algorithm [RTH09]. For a larger

number of nodes, one also has to run long Monte Carlo sampling steps

per iteration as exact estimate of the moments of the Ising model are com-

putationally expensive [Yeh+10]. In comparison, analytical solutions exist

to compute partial and cross-correlations in a much shorter span of time.

For example, computation of partial and cross-correlations for a network

of 60 neurons took in the order of minutes using the ToolConnect toolbox

[Pas+16] whereas the computation of Ising couplings using the Boltzmann
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learning method took in the order of hours. Faster approximation methods

[RTH09; CM11] exist to compute Ising couplings quickly. Each approxima-

tion method makes a few assumptions about the structure of the underly-

ing network and firing conditions. One has to take care to ensure that the

assumptions are met before applying the approximations. This study also

observed that the reconstruction of the underlying structural connectivity

matrix by Ising couplings depended on the accuracy of the fit of the model

parameters (Figure 4.8). The smaller the error in the fit of the model param-

eters, the higher was the detection of the links in the structural connectivity

matrix. This has to be taken into account when opting between a time con-

suming exact solution vs a quick approximate solution to compute Ising

parameters.

Roudi et al [RTH09] calculated equilibrium Ising coupling parameters for

a simulated model of cortical network and found no significant relation

between the Ising couplings and the synaptic connectivity of the network.

The poor performance of the equilibrium Ising model in their work could

be attributed to the symmetry of its undirectional couplings, which were

nevertheless used to estimate the asymmetric directional connections of the

simulated network. For meaningful comparison and analysis between the

structural and functional connectivity matrices, both matrices should be

reduced to a sparse binary undirected form, through thresholding, binaris-

ing, and symmetrising [RS10]. The significantly improved results obtained

for Ising couplings in this study corroborate this approach for comparison

between the structural and functional connectivity matrices.

Hertz [Her+10] et al observed that the couplings of a kinetic Ising model

are successful in recovering the synaptic connectivity of a simulated cortical
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network when compared to a standard Ising model. Hertz’s results might

be taken to indicate that neural system’s state transitions are described by

the temporal dynamics of the stochastic process. However, in spite of the

fact that neural systems might indeed be non-equilibrium, the results of

this chapter may indicate that the systems investigated in this study were

to a large extent governed by equilibrium states, which can be described

by equilibrium Ising models. It is worth noting that Ising model itself will

not apply to systems far from equilibrium. A similar study of the capabil-

ities of kinetic Ising model couplings in comparison to partial and cross-

correlations for networks involving both excitatory and inhibitory neurons

under different network conditions was performed and the results of that

study are discussed in the next chapter.
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This chapter presents the results of the study on the ability of kinetic Ising

models to infer the underlying structural connections when compared to
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that of partial correlations and cross-correlations in in silico networks under

different network conditions. As the kinetic Ising couplings are directional,

they were compared with the directional version of the cross-correlation

and partial correlation matrices. The terms partial and cross-correlations in

the chapter refer to their directional versions. As in chapter 4, AUC metric

is the primary criterion used for comparing the performance of the kinetic

Ising couplings against partial and cross-correlations. All the functional

connectivity metrics in this chapter were computed from 10 minute dura-

tion of the spike trains obtained from simulations of scale-free networks

with all excitatory links, except in cases where it is explicitly mentioned

otherwise.

5.1 Effect of mean network correlation

How the mean network correlation affects the ability of the three functional

connectivity metrics was studied on scale-free networks of 30 nodes. Fig-

ure 5.1 shows the results of the study for a fixed firing rate of 20Hz. It can

be seen from the figure that mean network correlation level plays a criti-

cal role in deciding the relative performance of the kinetic Ising couplings

compared to partial and cross correlations.

The effect of mean network correlation on the performance of partial cor-

relations is illustrated in Figure 5.2. The figure shows the plot of partial

correlograms of three pairs of neurons (the first pair is not synaptically con-

nected, the second pair is weakly connected and the third pair is strongly

connected) for different network correlation levels. At weaker levels of cor-

relation, the effect of synaptic connections are weak and the post synaptic

113



Chapter 5. Inferring structural connectivity using kinetic Ising couplings

Figure 5.1: Effect of mean network correlation: (a) The first column in each
row shows the raster plot of the spiking activity from a simulated neuronal
network for a firing rate of 20 Hz and different network correlation lev-
els. Histogram of the kinetic Ising couplings, partial correlations and cross-
correlations for the pairs of neurons that are synaptically connected and not
connected are shown respectively in the second, third and fourth columns.
The corresponding ROC curves are shown in the last column. The first,
second and third rows correspond to mean network correlation levels (ρ)
of 0.001, 0.03 and 0.3 respectively. (b) Plot of the AUC values for different
mean network correlation levels in scale-free networks of 30 neurons for a
fixed firing rate of 20 Hz. Mean value was calculated from ten simulated
networks. (c) True positive rate (TPR) and false positive rate (FPR) for the
reconstruction of the structural connections by the three functional connec-
tivity metrics thresholded at a sparsity threshold value of 20%.
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neuron does not fire every time when its presynaptic neuron fires and the

relation between the firing of neurons is not linear. As partial correlations

can discount only the linear effects of the activity of the network, partial cor-

relations does not discriminate between connected and unconnected pairs

of neurons in this case of very weak correlations. This is evident in the top

panel of Figure 5.2. The value of the partial correlation (given by the max-

imum value of the partial correlogram and is indicated by the red vertical

line in the plot) for the unconnected pair of neurons is similar to the value

of the partial correlation between the weakly and strongly connected pairs

of neurons. However, when the correlation levels in the network increase,

neurons in the network fire together and the relation between the firing of

the neurons becomes linear. As partial correlations can discount the linear

effects of the activity of the network, partial correlations can distinguish be-

tween connected and unconnected pairs of neurons in this case. This can be

seen in the middle panel of Figure 5.2. The maximum value of the partial

correlogram of the strongly connected neurons is greater than that of the

weakly connected neurons, which in turn is greater than that of the uncon-

nected neurons. As the mean network correlation in the network increases

even further, the neurons in the network fire together even more often and

the effect of indirect interactions increases to an extent so that the partialisa-

tion approach is unable to differentiate between the weakly connected neu-

rons and the unconnected neurons (which may be connected indirectly).

This is noticeable in the bottom panel of Figure 5.2. The maximum value

of the partial correlogram of the unconnected pair is greater than the maxi-

mum value of the partial correlogram of the weakly connected pairs.

Kinetic Ising couplings follow a similar trend to that of partial correlations.
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However, kinetic Ising couplings are able to differentiate better between

the connected and unconnected pairs at very weak levels of correlations

(ρ=0.001 and 0.003) and the AUC values of kinetic Ising couplings are sig-

nificantly greater (p< 0.01, two-sample t-tests) than the AUC values of par-

tial and cross-correlations (Figure 5.1b). For medium levels of correlations

(ρ=0.01 and 0.03), kinetic Ising couplings have high AUC’s (in the range

of 0.9) similar to that of partial correlations. However, for stronger levels

of network correlation (ρ=0.1 and 0.3), kinetic Ising couplings are not as

good as partial correlations in discriminating direct and indirect connected

pairs of neurons and the AUC of kinetic Ising couplings are significantly

smaller (p < 0.01, two-sample t-tests) than the AUC values of partial cor-

relations (Figure 5.1b). Cross-correlations attain the lowest AUC score for

all cases of network correlation (except for 0.001 where both partial and

cross-correlations has a AUC score of around 0.5).

The AUC score measures the performance for every threshold value (which

includes both practical and impractical threshold values) and may not be

an accurate indicator of performance for practical threshold values. Hence

the performance of the kinetic Ising couplings and the partial and cross-

correlations were also studied using the metrics of true positive rate (TPR)

and false positive rate (FPR) for a sparsity threshold value of 20% (assum-

ing that other methods are used to arrive at the correct sparsity threshold

value). The performance is graphed in Figure 5.1c. The TPR/FPR metrics

display a similar trend to that of the AUCplot in Figure 5.1b. At weaker lev-

els of correlations, kinetic Ising couplings have a higher TPR and a smaller
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FPR compared to partial correlations. However, at stronger levels of corre-

lations, partial correlations display a higher TPR and smaller FPR, suggest-

ing better performance. Additionally, the noise to signal (NSR) metric was

also used to understand the amount of overlap of the functional connec-

tivity couplings corresponding to synaptically connected and unconnected

pairs of neurons in the network. Better performance of the functional con-

nectivity metrics is marked by smaller overlap, and a smaller value of NSR

metric indicates a higher performance. The plot of NSR metrics (Figure

5.3) reveal the same performance trend displayed earlier by AUC scores.

At weaker correlations, kinetic Ising couplings have a smaller NSR metric

whereas at stronger correlations, partial correlations have a smaller NSR

score. For intermediate value of correlations, there is no significant dif-

ference (p < 0.01, two-sample t-tests) between the NSR scores of partial

correlations and kinetic Ising couplings.

The effect of correlationwas tested on networks of different sizes and topolo-

gies and it was observed that the trend seen in Figure 5.1b was consistent.

5.2 Effect of mean network firing rate

The results of the study of how network firing rate affects the performance

of kinetic Ising couplings, partial and cross-correlations for a fixed mean

network correlation level is shown in Figure 5.4. For a weak correlation lev-

els of 0.001 (Figure 5.4b), there is no strictly increasing or decreasing trend

seen for all three functional connectivity measures. However, a clear pat-

tern arises for a stronger correlation level of 0.3 (Figure 5.4c). The AUC

score of kinetic Ising couplings, partial and cross-correlations increased
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Figure 5.2: Effect of mean network correlation on the partial correlations:
Partial correlogram corresponding to not connected, weakly connected and
strongly connected pair of neurons are shown respectively in the first, sec-
ond and third columns. The first, second and third rows correspond to
mean network correlation levels (ρ) of 0.001, 0.03 and 0.3 respectively. The
red marker corresponds to the time where the maximum value of the par-
tial correlogram occurs.
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Figure 5.3: Effect of mean network correlation on the noise to signal ratio:
Plot of the NSR values for different mean network correlation levels and a
fixed firing rate of 20 Hz in scale-free networks of 30 neurons. Data was
averaged over 10 simulated networks. Lower the NSR value, better is the
performance. For weaker correlation levels (0.001 and 0.003), NSR value of
kinetic Ising couplings was significantly smaller compared to partial and
cross-correlations. For stronger correlation level of 0.3, partial correlations
had a significantly smaller NSR value compared to kinetic Ising couplings
and cross-correlations (p < 0.01, two-sample t-tests).
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with an increase in firing rate. The observation that the AUC of partial cor-

relations increases with firing rate is consistent with similar observations

by Eichler [EDS03]. Along with the AUC score, the NSR of the functional

connectivity metrics for different firing rates was also studied and the re-

sults are presented in Figure 5.5. The same trend seen with the AUC scores

is reflected in the plot of NSR metrics and the TPR & FPR metrics.

5.3 Effect of network topology

The results discussed so far in this chapter are from scale-free networks.

The work primarily focussed on scale-free topology, as scale-free network

connectivity has been reported in primary cortical cultures [EM06a] and

developing hippocampal networks [Bon+09]. The work also tested the per-

formance of functional connectivity metrics in reconstructing the structural

connections in small-world and random topologies, as studies suggest the

presence of random topology and small-world topologies in cultured neu-

rons [Dow+12]. Comparison of the AUC scores of kinetic Ising couplings,

partial and cross-correlations for the three topologies is presented in Fig-

ure 5.6. The results suggested that topology didn’t affect the relative per-

formance of the three functional connectivity metrics. The results for the

ER random topology and the small-world topology were in line with the

performance for scale-free networks. It can be seen that the relative perfor-

mance in all the three topologies was determined primarily by the mean

network correlation levels.
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Figure 5.4: Effect of mean network firing rate: (a) The first and second
rows correspond to firing rates of 10 Hz and 40 Hz respectively for a fixed
correlation level (ρ) of 0.001. The third and fourth rows correspond to fir-
ing rates of 10 Hz and 40 Hz respectively for a fixed correlation level of 0.3.
Raster plot of the spiking activity is shown in the first column. Histogram
of the kinetic Ising couplings, partial correlations and cross-correlations for
the pairs of neurons that are synaptically connected and not connected are
shown respectively in the second, third and fourth columns. The corre-
sponding ROC curves are shown in the last column. (b) and (c) Plot of the
AUC values for different firing rates and fixed mean network correlation
levels of 0.001 and 0.3 respectively in scale-free networks of 30 neurons.
Mean value was calculated from 10 simulated networks.
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Figure 5.5: Effect of mean firing rate on the noise to signal ratio: NSR
values for different firing rates and fixedmean network correlation levels of
0.001 and 0.3 are plotted in the left and right panels respectively in scale-free
networks of 30 neurons. Data was averaged over 10 simulated networks.
Lower the NSR value, better is the performance.
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Figure 5.6: Effect of network topology: (a) Plot of the AUC values for
networks of 30 neurons with scale-free (SF), small-world (SW) and Erdos-
Renyi(ER) random network topologies. Data was averaged over 10 simu-
lated networks for each network condition. Firing rate was fixed at 20 Hz
in all cases. All the three topologies had the same link density of 0.2. (b) Ex-
ample of the structural connectivity network for each topology. Scale-free
networks form a few highly connected hub nodes. Modular small-world
networks present a balance of segregation and integration via dense intra-
module connections and sparse inter-module connections. Most nodes in
random networks have similar degree distribution.
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Figure 5.7: Effect of network size: Plot of the AUC values for networks of
various sizes for a fixed firing rate of 20 Hz and correlation levels of 0.001
and 0.3 are displayed in the left panel and the right panel respectively. The
mean value was calculated from 10 networks for all cases.
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5.4 Effect of network density

In order to study the effect of link density on the kinetic Ising couplings,

partial and cross-correlations, functional connectivitymetrics were also com-

puted for networks with a higher link density of 0.5. The results are pre-

sented in Figure 5.8. Partial and kinetic Ising couplings for networks with

a link density of 0.5 displayed a trend similar to that in networks with a

lower link density. However, the AUC values of kinetic Ising couplings

and partial correlations in networks with a link density of 0.5 are smaller

than the corresponding AUC values in networks with a lower link density

of 0.2. This can be explained by the higher link density resulting in in-

creased number of indirect interactions and thereby making the task of dis-

tinguishing the direct interactions from indirect interactions more difficult.

The decreased performance of partial correlations observed in this study

is consistent with similar observations by Poli et al [Pol+16]. The reduced

performance of the partial couplings with increasing network density can

again be attributed to the marrying-parents effect.

5.5 Effect of network size

The dependence of the performance of the functional connectivity metric

on the number of nodes in the network is an important factor to under-

stand as the increasing electrode density of MEAs are making it possible

to record from increasing number of nodes. Functional connectivity from

networks of varying number of nodes(11, 20, 30, 60 and 120 nodes) were

compared and the results are presented in Figure 5.7. It can be seen that
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Figure 5.8: Effect of network density: Plot of the AUC values of kinetic
Ising couplings, partial and cross-correlations of networks with two differ-
ent network densities for a fixed firing rate of 20 Hz and varying correlation
levels. Data was averaged over 10 scale-free networks of 30 nodes.
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for both weak and strong levels of correlations, the performance of kinetic

Ising couplings, partial and cross-correlations decrease with the increase in

number of nodes. However, the relative performance difference between

the kinetic Ising couplings and partial correlations persisted. As a result, for

strong correlation levels (ρ=0.1 and 0.3), partial correlations had the highest

AUC score and for weak correlation levels (ρ=0.001 and 0.003), kinetic Ising

couplings had the highest AUC score for all network sizes.

5.6 Effect of inhibitory connections

The networks studied so far had only excitatory synaptic links. To under-

stand how the inhibitory links affect the ability of the functional connectiv-

itymatrices to reconstruct the structural connectivitymatrix, structural con-

nectivity networks with a mix of 80% excitatory and 20% inhibitory links

were generated in agreement with the experimental studies [MS02]. The

new structural networks were simulated to generate activity patterns and

functional connectivity metrics were computed from the activity patterns.

Figure 5.9 shows the plot of the AUC scores for kinetic Ising couplings

and partial correlations for networks with excitatory links only and for net-

works with a mix of excitatory and inhibitory links. It can be observed that

there is no significant difference in the AUC scores of both kinetic Ising and

partial correlations corresponding to pure excitatory networks and mixed

excitatory-inhibitory networks. It should be noted that inhibitory connec-

tions will be represented by negative numbers in the functional connectiv-

ity matrices.
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Figure 5.9: Effect of inhibitory connections: Plot of the AUC values of ki-
netic Ising couplings and partial correlations of networks with purely exci-
tatory connections and a mix of excitatory and inhibitory connections for a
fixed firing rate of 20 Hz and varying correlation levels. Data was averaged
over 10 scale-free networks of 30 nodes.
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5.7 Impact of the fit of the kinetic Ising model pa-

rameters

This thesis evaluates kinetic Ising parameters over a range of network con-

ditions. As approximation methods to compute the kinetic Ising parame-

ters have a limited range of validity and the assumptions of the approxima-

tion methods may not be valid for all the network conditions tested in this

thesis, kinetic Ising parameters were computed using the gradient descent

method in this work. To study how the fit of the kinetic Ising model param-

eters affected the reconstruction of the structural connectivity, the gradient

descent algorithm was run for different values of the cost function which

quantified the error in the fit of the kinetic Ising model parameters. The

smaller the difference between the averages of the model and the data, the

smaller is the error in the fit of the model parameters. Figure 5.10 shows

the plot of the AUC values for different values of the error in the fit of the

kinetic Ising model parameters. It can be observed that the a decreased

error in the fit of the model parameters implies a higher AUC score. The

implication of this result should be considered when choosing between an

approximate but faster method against the slower but exact gradient de-

scent method to compute the kinetic Ising model parameters.

5.8 Comparison with equilibrium Ising couplings

To understand how kinetic Ising couplings compare against equilibrium

Ising couplings, their AUC scores obtained from the same set of spike train

recordings were compared. Figure 5.11 presents the plot of the comparison.
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Figure 5.10: Effect of fit of the kinetic Ising model parameters on the in-
ference of structural links: The error in the fit of the kinetic Ising model
parameters is plotted against the AUC values obtained for the correspond-
ing error levels for three mean network correlation levels (ρ) and a fixed
firing rate for scale-free networks of 30 neurons. In all cases, lower the er-
ror in the fit of the kinetic Ising model parameters, higher was the detection
of links in the structural connectivity matrix.
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It should be noted that kinetic Ising couplings are directional (asymmetric)

whereas the equilibrium Ising couplings are non-directional (symmetric).

Hence the AUC calculated for kinetic Ising couplings is based on the actual

structural connectivity matrix (which is asymmetric) and the AUC calcu-

lated for the equilibrium Ising couplings is based on the symmetrised struc-

tural connectivity matrix (which accounts only for the presence of links

and does not account for the direction of the links). To make fair compar-

isons between the AUC scores of the kinetic Ising couplings and the equi-

librium Ising couplings, the kinetic Ising coupling matrix was symmetrised

and compared with the symmetrised structural connectivity matrix and the

AUC scores obtained was also added to the Figure 5.11. It can be seen that

in all cases, the kinetic Ising couplings and the symmetrised kinetic Ising

couplings had either the same or a significantly larger AUC score when

compared to equilibrium Ising couplings. This suggests that even if one is

not interested in the directionality of the inferred structural links, kinetic

Ising couplings will give a better or at least a similar performance when

compared to the equilibrium Ising couplings.

5.9 Discussions

Since the relation between the actual synaptic connections in a neuronal

network and the functional connections inferred from the recording of the

neuronal activity is non-trivial [RDH15], inferring the underlying struc-

tural connectivity from functional connectivity measures is a useful strat-

egy. As it is now possible to record the activity of closely spaced neurons
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Figure 5.11: Comparison between equilibrium Ising couplings and ki-
netic Ising couplings: Plot of the AUC scores of the kinetic Ising couplings,
symmetrised kinetic Ising couplings and equilibrium Ising couplings for
different mean network correlation levels and a fixed firing rate of 20 Hz
in scale-free networks of 30 neurons. Data was averaged over 10 simulated
networks.
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at high temporal resolution over long periods of time [Mac+10], having re-

liable functional connectivity measures that can reconstruct the structural

connections is becoming increasingly important. Hertz et al [HRT13] ob-

served that the coupling parameters of a kinetic Ising model were able to

reconstruct the structural connections of a model cortical network very re-

liably. This success generated an interest in the application of kinetic Ising

models to infer synaptic connectivity in simulated models of cortical net-

works ([Cap+15; RH11] and to understand functional connectivity in in vivo

recordings of hippocampal grid cells in rats [DMR15].

Meanwhile, partial correlations based on scaled partial covariance density

were also reported to be effective in inferring structural connection in in

silico networks [Pol+16]. However, the performance of the kinetic Ising

couplings in comparison to partial correlations in inferring the structural

connections has not been studied previously. This chapter addresses this

question and evaluates the performance of the kinetic Ising couplings in

comparison with the partial and cross-correlations under different network

conditions and topologies.

The key finding of this chapter is that the mean network correlation level

played a significant role in determining the relative performance of kinetic

Ising couplings, partial and cross-correlations. At weak network correla-

tion levels (ρ = 0.001 and ρ = 0.003), kinetic Ising couplings outperformed

partial and cross-correlations in inferring the structural links and at strong

network correlation levels (ρ = 0.1 and ρ = 0.3), partial correlations were

superior to kinetic Ising couplings in reconstructing the structural connec-

tivity . Both kinetic Ising couplings and partial correlations outperformed
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cross-correlations in all cases. This observation is similar to the earlier ob-

servationmade in the section 4.1 regarding the equilibrium Ising couplings.

This confirms that the partialisation approach is very effective in removing

the linear effects of the other spike trains in the population while assess-

ing the relationship between two spike trains [BBS76] while kinetic Ising

models excel in cases of weak correlations. Also, the topology of the net-

work had no impact on this observation and the same effect of network cor-

relation was observed in scale-free, small-world and ER random network

topologies (Figure 5.6).

The study also tested whether the addition of inhibitory links to the net-

work affected the performance of the functional connectivity metrics. In-

hibitory connections in the functional connectivity metrics are distinguish-

able from the excitatory connections by the negative values in the corre-

sponding functional connectivity matrices. Therefore it was observed that

there was no difference in the AUC scores of kinetic Ising couplings and

partial correlations between neuronal networkswith purely excitatory links

and networks with a mix of excitatory and inhibitory synaptic connections

(Figure 5.9) suggesting both kinetic Ising model and partial correlation can

infer inhibitory connections as good as the excitatory connections.

Poli et al [Pol+16] observed that high network density decreases the per-

formance of the partial correlations because of married-nodes effect. The

results observed in Figure 5.8 confirm the observations of Poli et al about

partial correlations. It can be observed from the results in this thesis (Figure

5.8) that kinetic Ising couplings also suffer a reduction in performance in

case of networks with high connection density. Similarly, the performance
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of all the three functional connectivity metrics reduced with increased net-

work size (Figure 5.7). However, the relative performance difference be-

tween kinetic Ising couplings and partial correlations for the case of weak

and strong network correlations did not change with the changes in net-

work density and number of nodes in the network. In all cases, kinetic

Ising coupling outperformed partial and cross-correlations in case of very

weak correlation and partial correlation outperformed the other two meth-

ods in case of strong network correlation.

The decreased performance of all three functional connectivity metrics with

increase in number of nodes can be explained as follows. Thoughmarrying-

parents effect [EDS03] is suggested as a cause for the decreased perfor-

mance of partial correlations with increasing number of nodes in the net-

work, it should be remembered that the length of the spike train data was

kept the same for all network sizes (11,20,30,60, and 120 nodes). This could

have resulted in a relatively smaller amount of statistical information of

the correlation structure of the neurons for networks with large number

of nodes when compared with networks with smaller number of nodes. A

preliminary test donewith the longer recordings for larger number of nodes

suggests that a longer recording does help to improve the reconstruction for

all functional connectivity metrics. However, the relative performance dif-

ference between the kinetic Ising couplings and the partial correlations for

different correlation levels persisted. A more systematic study on the effect

of length of the recording on the relative performance of the functional con-

nectivity metrics has to be followed up in a future study. The study kept

the length of the recording at a fixed length of 10 minutes as functional

connections are known to fluctuate in time and also neural activity in real
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neuronal networks are rarely stationary for longer periods of time [Ste+12].

Similar to the case of equilibrium Ising couplings, increased accuracy of the

kinetic model parameters resulted in increased performance (Figure 5.10).

This result needs to be taken into consideration when applying approxima-

tions such as mean-field methods ([RH11; Cap+15]) proposed for the faster

(but less accurate) estimation of kinetic Ising couplings.

Results obtained in this chapter also indicate that kinetic Ising couplings

deliver a better performance when compared to the equilibrium Ising cou-

plings. With the added advantage of directionality, applicability in case of

non stationary data, a better performance at reconstructing the structural

connections along with a faster computation time, kinetic Ising couplings

can be considered as a better choice of functional connectivity tool in com-

parison with the equilibrium Ising couplings.

True and false positive rate calculations to evaluate the performance of

the functional connectivity metrics in in silico networks considered in this

chapter were possible as the ground truth about the structural connectiv-

ity is known in in silico networks. One of the challenges of extending the

application of functional connectivity metrics from in silico networks to liv-

ing networks is that the physical connectivity matrix is unknown in living

neuronal networks and a thresholding procedure to differentiate the con-

nected links from the unconnected links becomes critical. An advanced

thresholding approach such as cluster-span threshold [Smi+15] or multi-

threshold permutation correction [Dra+15] may prove effective in estab-

lishing a threshold. Future research in inferring structural connections from
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functional connectivity studies should also explore the impact of threshold-

ing approaches so that the functional connectivity studies can be applied to

living neuronal networks successfully.
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Conclusions

6.1 Discussions and conclusions

Identification of the structural connectivity of neuronal circuits is a criti-

cal step in understanding how neuronal systems behave [HTS10]. Despite

the massive technological advancements, mapping the structural connec-

tivity directly through electrophysiological techniques is challenging even

for small networks of neurons [Zho+14]. However, it is becoming rela-

tively easy to record the activity of the individual neurons and neuronal

populations at high spatial and temporal resolutions [SK11]. Functional

connectivity metrics which are obtained by the statistical analysis of the

recorded neuronal activity have been suggested to have interdependence

with the underlying anatomical connectivity [Wat+09; Bon+09]. Under-

standing how the structural connectivity in neuronal circuits can be re-

constructed by the functional connectivity metrics remains one of the chal-

lenges in neuroscience [Ste+12; Orl+14].
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The ability of a functional connectivity metric to discount the effect of indi-

rect interactions determines how well it can reconstruct the network struc-

ture [Ste+08]. Several studies [Sch+06; GSS11; BC13] have suggested that

maximum entropy based Ising models can distinguish the direct interac-

tions from the indirect interactions in a network. Studies by Hertz et al

[HRT13; RH11] have shown that parameters of kinetic Ising model were

successful in removing the indirect interactions and inferring the true struc-

tural connectivity in a simulated model of neurons. Following this, ac-

tive research is being pursued on kinetic Ising models [RDH15; Cap+15].

However, the performance of Ising couplings and kinetic Ising couplings

have not yet been rigorously evaluated against other functional connectiv-

ity measures across a broad set of network conditions. This thesis does a

methodical assessment of the performance of Ising couplings and kinetic

Ising couplings against partial and cross-correlations in in silico networks

and thereby contributes informed recommendations regarding selection of

an appropriate functional connectivity tool.

A number of contributions have been made by this research. Chapter 4

evaluated the performance of Ising couplings against the non-directional

version of partial and cross-correlations. It also addressed the question

of how firing rate, network correlation, network size, and topology affect

the performance of the functional connectivity metrics to unravel the true

anatomical structure of neuronal networks. Themain finding of the chapter

is that, amongst the various tested network conditions, the key factor that

influenced the relative performance of Ising couplings, partial and cross-

correlations was the mean network correlation level. Compared to partial

correlations and cross-correlations, Ising couplings reconstructed the most
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structural links, when the correlation levels were weak. The AUC scores

of partial and cross correlations were close to that of a random classifier at

very weak levels of network correlation. As the correlation levels in the

network became stronger, the AUC of partial correlations exceeded that

of Ising couplings and cross-correlations. The relative performance of the

functional connectivity metrics were insensitive to changes in firing rate,

network topologies and sizes of the in silico networks under test.

Chapter 5 evaluated the performance of kinetic Ising couplings against the

directional version of partial and cross-correlations for different network

conditions. Similar to the observations in chapter 4, the mean network cor-

relation level played a significant role in determining the relative perfor-

mance of kinetic Ising couplings, partial and cross-correlations. Analogous

to the behaviour of the equilibrium Ising couplings, kinetic Ising couplings

exhibited considerably higher performance in detecting structural links at

weaker correlation levels when compared to partial and cross correlations.

Partial correlations displayed superior performance over kinetic Ising and

cross correlations at strong correlation levels. In all cases, cross correla-

tions consistently scored the lowest AUC among the comparedmetrics. The

topology, network density and addition of inhibitory links to the network

did not affect the relative performance of kinetic Ising couplings and partial

correlations.

Results obtained in chapter 5 also indicate that kinetic Ising couplings de-

liver a better performance when compared to the equilibrium Ising cou-

plings. Therefore kinetic Ising coupling presents itself as a more favourable

choice over equilibrium Ising coupling as it is a directional measure and is

applicable to the case of non-stationary neural data as well. This suggests
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that even if one is not interested in the directionality of the inferred struc-

tural links, kinetic Ising couplings should be considered over Ising cou-

plings when inferring structural links. As Ising models have been used in

the past to explore the structure-function relationship in human brain us-

ing neuroimaging techniques [Wat+13], results of this thesis suggest that

application of kinetic Ising models couplings in fMRI studies might reveal

additional insights.

Vertebrate retina have been reported to be networks with very low corre-

lated levels of activity [Tka+14; AB10]. Results in this thesis which demon-

strate the superior performance of the kinetic Ising couplings at very weak

correlation levels motivates further application of kinetic Ising model cou-

plings in studying the structure-function relationship in such in vivo and in

vitro networks of neurons with low network correlation levels. On the other

hand, partial correlations are a better choice in networks with high levels

of correlated activity like neuronal cultures with burst activity [Sur+16].

Kinetic Isingmodels can be seen as a special case of generalized linear mod-

els which has found applications outside computational neuroscience. For

example, it has been used tomodel financial markets [ZLA14]. Results from

this thesis are directly applicable to other areas where kinetic Ising mod-

els are employed. Caution should be exercised when inferring functional

connections based on kinetic Ising couplings in cases of high correlation be-

tween the nodes of the network and alternate functional connectivity meth-

ods based on partialization approach should be considered.

Understanding the strengths and weaknesses of the individual functional

connectivity metrics, the network conditions in which they are applied and
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the computational time demands should be considered when selecting a

functional connectivity tool and the findings of this thesis guide the pro-

cess of choosing the right functional connectivity tool to reconstruct the

structural connectivity.

6.2 Future work

Structural connectivitywas the source of correlations seen in the spike trains

of the in silico networks simulations in this work. However, the synap-

tic structure need not be the only source of correlations. Another source

of correlation in the spike data is the correlated external inputs which are

seen in many neuronal systems, especially sensory systems. It is important

to understand how the reconstruction of the structural connectivity is af-

fected by correlation in the inputs. Theoretically, kinetic Ising models with

its h parameters which can vary with time has a better chance of separat-

ing the correlations caused by external inputs and recovering the synaptic

structure. Preliminary investigation [Tyr+13] in this area also confirms the

theoretical predictions. An important issue that remains to be elucidated

is how the relative performance of the functional connectivity metrics vary

with the correlations in the input.

Functional connectivity metrics in this work were computed assuming that

the data from every node of the network is available. However, current

technologies make it possible to record only from a sample of the popula-

tion of neurons. Hertz et al [HRT13] were able to reconstruct reliably the

structural connections in an under-sampled model cortical network using

kinetic Ising couplings. It is suggested that partial correlations are unable to
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discount the effect of spike trains from common input nodes which are not

recorded [EDS03]. This suggests the need for further evaluation of the im-

pact of sub-sampling on the performance of partial correlations and kinetic

Ising models in future works.

This thesis has furthered progress in the application of functional connec-

tivity measures to reconstruct the structural connectivity. Further research

in this direction will enable functional connectivity tools working hand in

hand with advanced structural connectivity techniques like optogenetics to

reconstruct living neuronal networks in the future.
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Appendix A

Mean field approximations

A.1 Mean field approximations for equilibrium

Ising model

The inverse Ising problem of inferring the model parameters to fit the data

from observations is a challenging problemwith no simple solution [BC13].

A typical solution to the inverse Ising problem is the Boltzmann learning

method, which involves long Monte Carlo simulations followed by small

updates to the model parameters. Though exact, the Boltmann learning

method is a very slow algorithm. Therefore, one has to resort to approxi-

mations. Mean field approximation is a simple approximationmethod used

to solve the inference of Ising parameters. There are many mean field ap-

proximation solutions, but they all share a common idea.

The basic idea of a mean field approach is to replace the effect of all other

individuals on a given individual by a single average or effective effect.

This reduces a multi-body problem into a one-body problem and makes
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the problem less complex to solve. The mean field approximation approach

assumes that every spin is interacting not with its real neighbours, but with

"mean-neighbours" or with a field generated by the mean orientation of

the spins. This section presents a simple mean field approximation theory

known as Weiss mean field theory. This section uses the notationmi = 〈σi〉

and Cij = 〈σiσj〉 −mimj . It should be noted that statisticians would call Cij

as covariances but statistical physicists would refer to Cij as correlations

[HRT13]. This chapter sticks to the convention used by statistical physicists

and refers to Cij as correlations.

It can be recalled that the energy of a configuration in an Ising model is

given by

E(σ) = −
N
∑

i=1

hiσi −
∑

i

∑

j

Jijσiσj , (A.1)

where the second sum is over each pair of spins when each pair is counted

only once.

All contributions to the energy by the spin i is given by

ǫ(σi) = −hiσi −
∑

j

Jijσiσj . (A.2)

Mean field theory approximates equation A.2 by replacing σj by their mean

valuemj = 〈σj〉
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ǫmf (σi) = −hiσi −
∑

j

Jijσi 〈σj〉

= −hiσi −
∑

j

Jijσimj . (A.3)

The single-spin Boltzmann distribution can be written as

P (σi) =
e−ǫmf (σi)

∑

σi=±1

e−ǫmf (σi)

=
e−ǫmf (σi)

e−ǫmf + eǫmf
. (A.4)

The average value of σi given by mi can be written as a sum of the Boltz-

mann probabilities as follows:

mi =
∑

σi=±1

P (σi)σi

=
ehi+

∑
j Jijmj − e−hi−

∑
j Jijmj

ehi+
∑

j Jijmj + e−hi−
∑

j Jijmj

= tanh(hi +
∑

j

Jijmj) . (A.5)

From equation A.5, the expression for hi can be derived as
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hi = tanh
−1mi −

∑

j

Jijmj . (A.6)

Considering hi as the external magnetic field andmi as the average magne-

tization, the inverse magnetic susceptibilty matrix χ−1 is defined as

χ−1ij =
∂hi

∂mj

=
δij

1−m2
i

− Jij . (A.7)

In equilibrium statistical physics, there is a theorem that the correlation ma-

trix is equal to the susceptibility matrix (up to a factor of the temperature,

which in our case is set to 1) [HRT13]. This leads to

(C−1)ij =
δij

1−m2
i

− Jij , (A.8)

where δij is the Kronecker delta function and is defined as

δij =











0 if i 6= j

1 if i = j
(A.9)

Equivalently, one can write the mean field expression for the Ising coupling

matrix J as

JMF = P−1 − C−1 , (A.10)
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where Pij = (1−m2
i )δij .

Using equations A.6 and A.10, one can obtain the Ising field matrix hi and

the Ising coupling matrix Jij from the knowledge of the average firing rates

mi and the average pairwise correlations Cij .

This mean field solution is a good approximation when the sum over j has

many terms (an informal kind of a central-limit argument) [HRT13]. This

solution becomes exact in the limits of dense connections for large number

of spins. Other approximation methods based on small-correlation expan-

sions [SM09], minimum probability flow [SDBD11], and selective cluster

expansion [BC13] have been developed to solve the Inverse Ising problem.

Even in cases where the approximation solutions are not used directly, they

can serve as initial conditions for Boltzmann learning.

A.2 Mean field approximations for kinetic Ising

model

As in the case of equilibrium Ising model, mean-field algorithms, which

provide faster approximations when compared to the exact gradient ascent

rules, can be derived for kinetic Ising model as well. The stationary case is

considered in this section. σi(t) in the equation 2.62 can be written as

σi(t) = mi + δσi(t) , (A.11)
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wheremi = 〈σi(t)〉. Similar to the equilibrium mean field equation A.5, the

value ofmi can be approximated as

mi = tanh(hi +
∑

j

Jijmj) . (A.12)

Hence equation A.11 can be rewritten as

σi(t) = tanh(hi +
∑

j

Jijmj) + δσi(t) . (A.13)

For the exact value of hi and Jij , δJij in the equation 2.62 should be zero.

Setting the term Jij in equation 2.62 to zero, substituting the term σi(t)with

equation A.13, and expanding tanh to the first-order results in the following

equation [RH11; HRT13]:

〈δσi(t+ 1)δσj(t)〉 = (1−m2
i )
∑

k

Jik 〈σk(t)δσj(t)〉 . (A.14)

The above expression can be written as a simple matrix equation

D = AJC , (A.15)
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where

D = 〈δσi(t+ 1)δσj(t)〉 , (A.16)

C = 〈δσi(t)δσj(t)〉 , (A.17)

A = (1−m2
i )δij . (A.18)

D is the one-step-delayed correlation matrix, C is the equal time correlation

matrix and δij is the Kronecker delta function.

From equation A.15, the Ising couplings Jij matrix can be determined as

J = A−1DC−1 . (A.19)

After determining Jij , Ising field parameters hi can be determined from

equation A.12 as

hi = tanh
−1mi −

∑

j

Jijmj . (A.20)

The above mean field solution is excellent in the limit of weak couplings

and for densely connected networks when the standard deviation of the

couplings is not large relative to the mean [Tyr+13]. If the standard devia-

tion is large then the fluctuations around the mean field becomes important

and the above approximate solution is not valid. Another mean-field based

approximation for Ising coupling Jij was derived by Capone et al [Cap+15]

as follows:
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Jij ≃
P ((σi(t+ 1) = 1)|(σj(t) = 1)−mi

mi(1−mi)(1−mj)
, (A.21)

where P ((σi(t + dt) = 1)|(σj(t) = 1) is the probability that the neuron i

spikes in the time bin t+1 conditional on the pre-synaptic neuron j spiking

in the time bin t.
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