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Abstract Traditional parameterizations of the interaction between convection and the environment
have relied on an assumption that the slowly varying large‐scale environment is in statistical equilibrium
with a large number of small and short‐lived convective clouds. They fail to capture nonequilibrium
transitions such as the diurnal cycle and the formation of mesoscale convective systems as well as observed
precipitation statistics and extremes. Informed by analysis of radar observations, cloud‐permitting model
simulation, theory, and machine learning, this work presents a new stochastic cloud population dynamics
model for characterizing the interactions between convective and stratiform clouds, with the goal of
informing the representation of these interactions in global climate models. Fifteen wet seasons of
precipitating cloud observations by a C‐band radar at Darwin, Australia are fed into a machine learning
algorithm to obtain transition functions that close a set of coupled equations relating large‐scale forcing,
mass flux, the convective cell size distribution, and the stratiform area. Under realistic large‐scale forcing,
the derived transition functions show that, on the one hand, interactions with stratiform clouds act to
dampen the variability in the size and number of convective cells and therefore in the convective mass flux.
On the other, for a given convective area fraction, a larger number of smaller cells is more favorable for
the growth of stratiform area than a smaller number of larger cells. The combination of these two factors
gives rise to solutions with a few convective cells embedded in a large stratiform area, reminiscent of
mesoscale convective systems.

Plain Language Summary The work presents a stochastic cloud population model for
convective and stratiform clouds for ultimate application to the development of parameterizations of
those clouds in high‐resolution regional and global climate models. Machine learning is applied on
precipitation radar observations to derive transition functions that represent interactions between
convective cells and stratiform area. The model shows that interactions with stratiform clouds limit the
variability in the size and number of convective clouds.While the size distribution of the convective cells also
influences the size of stratiform area. Specifically, for the same total convective area, many small convective
cells are more favorable for the formation of stratiform clouds than fewer larger convective cells. Those
interactions coupled with the sensitivity of convective mass flux to cell size lead to solutions with a few cells
embedded in a stratiform area as in MCSs and to damped convective mass flux variability.

1. Introduction

Rapid progress in computational resources and numerical methodologies over this decade has led to the rise
of operational global weather and experimental climate models with horizontal grid spacing ≤ 10 km (e.g.,
Hólm et al., 2016; Satoh et al., 2014). Despite the obvious advantages, the increased resolution makes several
assumptions that typically go into traditional cumulus parameterizations unrealistic. In traditional parame-
terizations, cumulus convection is assumed to be in statistical equilibriumwith the large‐scale environment,
which is slowly evolving while the cloud population is responding instantaneously and deterministically to
any changes in the large‐scale forcing with no explicit dependence on its own history or internal variability
(Arakawa & Schubert, 1974). Such an assumption requires that a grid box contains many updrafts and there-
fore to be large compared to both the size of individual clouds and the typical spacing between clouds (e.g.,
Arakawa & Wu, 2013; Jones & Randall, 2011; Plant & Craig, 2008).
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Various efforts are underway to address these issues, and Rio et al. (2019) provide a review of recent and
ongoing developments. One strand has been a revival of interest of schemes with multiple cloud types
(e.g., Goswami et al., 2017; Khouider et al., 2010) or cloud spectra (e.g., Neggers, 2015; Park, 2014; Plant &
Craig, 2008) in attempts to circumvent the limitations of a bulk cloud approach (Plant, 2010). Such schemes
require a model for the convective cloud population to represent the number and size/type of clouds. Further
discussions on modeling population dynamics for the purpose of convective parameterizations of clouds can
be found in Hagos et al. (2018), Khouider (2019), and Plant (2012).

In parallel with these developments in convective parameterization, there is a long and rich history of stu-
dies of cloud populations from analyses of radar and satellite observations which have provided insights
into cloud‐cloud and cloud‐environment interactions (e.g., Gehlot & Quaas, 2012; Kumar et al., 2013;
Weusthoff & Hauf, 2008). Scanning precipitation radar and geostationary satellites provide near‐
continuous information on the distribution of cloud sizes from different perspectives (e.g., Koren et al.,
2008; Peters et al., 2009; Wood & Field, 2011). However, the direct application of insights gained from
observations to the development and evaluation of parameterizations cloud population models is not
straightforward partly because the observed variables (often radar reflectivity or brightness temperature,
etc.) do not correspond directly to the quantities of interest in parameterizations (e.g., size and strength
of updraft in a convective cell).

Recent efforts to bridge the gap include studies by Peters et al. (2017), Cardoso‐Bihlo et al (2019), Hagos et al.
(2018), for example. The present study may be considered as an extension of Hagos et al. (2018) in which the
use of observational radar data was complemented by insights from corresponding convection‐permitting
simulations. Specifically, a stochastic model of convective cloud populations was developed, with the evolu-
tion of convective cell sizes being predicted from the probabilities of growth and decay obtained from analysis
of the behavior of convective cell sizes from C‐POL radar observations at Darwin. The role of the convection‐
permittingmodel simulationswas to provide necessary information on the relationship between the cell sizes
and themass fluxes associated with them. It was shown that accounting for cloud‐base mass flux to be a non-
linear function of convective cell area, and allowing convective plumes to aggregate spatially, can lead to a
recharge‐discharge behavior under steady forcing.

Cloud‐resolving model data have also been used to train deep learning algorithms, with the hope that the
trained models can be used as proxies for cumulus parameterizations. Recent work on such an approach
has shown some promising results. Rasp et al. (2018) and Gentine et al. (2018) trained a deep neural network
and used it as a replacement for traditional subgrid parameterizations in a global general circulation model
(GCM). They show that multiyear simulations reproduced the mean climate and variability including preci-
pitation extremes. Similarly, O'Gorman andDwyer (2018) used an ensemble of decision trees (random forest)
as a convection parameterization in a GCM and showed that the GCM runs stably and accurately captures
important climate statistics including precipitation extremes under both present and future climates when
trained by future climate but not when trained by only present climate.

In this paper, we take a machine‐learning approach in order to extend Hagos et al. (2018) by developing a
model for the evolution of populations of convective cells and their associated stratiform area. The appro-
priate coupling of convective and stratiform cloud is an important issue in the parameterization context
from several perspectives (e.g., Bechtold et al., 2008; Gerard, 2015; Gross et al., 2018; Storer et al., 2015;
Thayer‐Calder et al., 2015). For example, the calculations of condensate detrainment from convection,
which provides a key source for stratiform cloud development (e.g., Morcrette & Petch, 2010; Tiedtke,
1993; Wilson et al., 2008) are particularly problematic in bulk convective parameterizations (Plant, 2010)
and pose issues for the application of equilibrium closure conditions (Yano & Plant, 2019). The extended
treatment enables an assessment to be made of the importance and the characteristics of the interactions
between convective cells and stratiform area, and our model is constructed with a view towards being able
to incorporate those interactions in a natural way within a GCM. The development of this model involves a
hybrid of physical arguments and machine learning. Specifically, machine learning algorithms and radar
data are used to obtain the transition functions that represent the interactions among the convective cells
and between convective cells and the stratiform area in the cloud population model.

In section 2, the observational data and model simulations used are described. In section 3, detailed descrip-
tion of the modeling framework and the machine learning algorithm is presented, and interpretation of the
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interactions between convective and stratiform clouds are provided in section 4. Finally, the behavior of the
full cloud populationmodel under steady and diurnally varying random large‐scale forcing is documented in
section 5.

2. Observations and Convection‐Permitting Model Simulation

As in Hagos et al. (2018), the radar observations used in this study are obtained from the C‐band polarimetric
(CPOL) scanning radar located at Darwin, Australia (Kumar et al., 2013). The details of the data processing,
which was also used in other previous studies over the Darwin region (e.g., Kumar et al., 2013) and over the
tropical Indian Ocean region (e.g., Hagos, Feng, Burleyson, et al., 2014, Hagos, Feng, Landu, et al., 2014), are
the same as in Hagos et al. (2018) except that in this study we use 15 wet seasons of CPOL data from 2002 to
2016. While the details of the data processing are discussed in the above‐mentioned papers, the key points
are briefly summarized in this paper.

The CPOL radar collects a 3‐D volume of reflectivity data within a horizontal radius of 150 km at 10 min fre-
quency. Each volume scan consists of a total of 16 sweeps at elevation angles ranging from 0.5° to 42°. As a
first step, the sweep data are then gridded to a regular Cartesian grid of (ΔX,ΔY, ΔZ) = (2.5, 2.5, 0.5) km. The
vertical extent of the gridded data is from 0.5 to 20 km. The Steiner et al. (1995) algorithm is applied to the
radar reflectivity field at 2.5 km height in order to identify the convective cells from the stratiform area they
are embedded in. The convective/stratiform separation parameter settings follow Steiner et al. (1995) as the
algorithm was originally designed for the CPOL radar at Darwin. Stratiform area is defined as radar reflec-
tivity at 2.5 km > 10 dBZ that is not designated as convective echoes. Contiguous convective pixels (4‐neigh-
bor directly adjacent to the pixels) are grouped as a convective cell (Hagos, Feng, Landu, et al., 2014, 2018).
The smallest cells that are considered to be resolved by the gridded CPOL radar have an area of 31.25 km2. It
is important to note that a convective cell defined using radar reflectivity is not completely filled with strong
updrafts or downdrafts but is rather a proxy of where strong local vertical mass flux could occur intermit-
tently and sporadically (Yuter & Houze, 1997). A total of 157,032 frames of CPOL volumetric data are used
to construct the cloud population statistics. Figure 1 shows a snapshot of radar reflectivity at 2 km height and
the convective cells (colors) and stratiform area (green) obtained from the data processing. The resulting
data set contains the sizes of all the convective cells in the snapshot and the total stratiform area. For the pur-
pose of this study, the stratiform area is assumed to be a single object for simplicity.

The convection permitting model (CPM) simulation is also described in Hagos et al. (2018). The simulation
covers the monsoon period between 1 January 2006 and 28 February 2006. The Weather Research and
Forecasting (WRF) model (Skamarock et al., 2008) is run at 2.5 km grid spacing. The domain covers the
region between 25–5°S and 120–150°E. The identification of convective cells within the domains of fourteen
“virtual radars” was done in the same way as for the observations. For each convective cell, the cloud base
mass flux is calculated. Empirical relationship between mass flux and convective cell size, shown in Figure 2
a, is used in this study. The solid lines represent the relationship for the meanmass flux per cell area, and the
dashed lines represent the average standard deviation, which is used to introduce a Gaussian stochasticity in
the cloud population model. We also tested the effect of a more stringent definition of convective cell using
the Powell et al. (2016) radar echo classification method (Figure 2b). Powell et al added additional criteria to
identify weak and isolated shallow convective cores commonly observed in tropical oceanic environment.
This algorithm uses the same radar reflectivity threshold and peakedness method as Steiner et al. (1995)
to identify convective cores but further defines additional “isolated convective cells.” Another key difference
is that Powell et al. classify regions peripheral to convective cores as either “isolated convective fringe” or
“uncertain” depending on the echo object area and intensity, while those peripheral regions are included
as part of the convective cells in Steiner et al (1995).

Using the Powell et al. algorithm to separate convective and stratiform echoes results in smaller convective
cells, primarily because the weak isolated convective echoes are identified as convective cells in that algo-
rithm. The results shown in this study are primarily from the use of Steiner et al. (1995) algorithm to facil-
itate direct comparison with the Darwin CPOL radar observations, but the effect of applying Powell et al.
algorithm is also investigated and briefly discussed. To that end, for each of the convective cells identified
using the reflectivity from the simulation via the processing described above, the cloud‐base mass flux per
unit cell area was calculated. For the model simulation, we use stronger reflectivity thresholds (45 dBZ
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compared to 40 dBZ for the CPOL radar data) to identify convective cells to account for the often stronger
simulated radar reflectivity that could be related to uncertainties in microphysics parameterizations
and/or insufficient model resolution (~5–7Δx or ~12.5–17.5 km) to resolve updrafts. The key point to note
here is that the convective mass flux per cell area increases with cell size: In other words, larger cells
carry more than their share of the mass flux. The empirical nonlinear relationship between the cell cloud‐
base mass flux MBi and cell area ai, the mean size of convective cells in the i‐th bin, shown in Figure 2a is
given by piecewise linear relationship:

mbi ¼ λ þ μai (1)

with intercept λ and slope μ given by 2.23e–10 kgm−4 s−1 and 0.47 kgm−2 s−1 for cell size less than 1,000km2

and 1.9e–11 kg m−4 s−1 and 0.68 kg m−2 s−1 otherwise. The solid red line represents this empirical relation-
ship. The dashed lines represent the one standard deviation width, which has average value of 0.226 kg m−2

s−1.

Applying the Powell et al. (2016) convective cell identification to the model simulation yields a different cell
area‐cloud‐base mass flux relationship, although the overall trends are similar (Figure 2b). As discussed
above, the Powell et al. algorithm identifies more weak and small convective echoes as “isolated convective
cells” and excludes peripheral regions of larger convective cores that are otherwise included as part of “con-
vective cells” in the Steiner et al. algorithm. These differences result in generally smaller cells and a much
steeper cell area‐cloud‐base mass flux relationship, where the mass flux per cell area is almost doubled com-
pared to that obtained from the Steiner et al. (1995) algorithm (Figure 2a). The slope flattens at ~500 km2 cell
area in comparison to ~1,000 km2 for the Steiner et al. algorithm. The impact of different cell area‐cloud‐base
mass flux relationship to the cloud population model will be discussed in section 5.

3. Development of the Cloud Population Model
3.1. Formulation

In order to construct the model, first the state of the cloud population in a given radar snapshot is defined by
a vector c for convective cells size distribution at 2 km and the stratiform area by a scalar s. The elements of
vector c and ci represent the sum of the sizes of all the convective cells of size between ai and ai+1, where
ai = ia for i ∈ 1…n. n is the number of bins set here to n = 60. a1 is the size of the smallest convective cell,
defined here as five connected pixels, and the bin spacing a is also set to the same value. Given the 2.5 km

grid spacing a1 = 31.25 km2. The total convective area in the domain is then Ac ¼ ∑n
i¼1ci. As in Hagos et al.

(2018), the evolution of convective area is assumed to be governed by the imbalance between destabilization

Figure 1. (a) An example radar reflectivity snapshot at 2.5 km height showing the C‐Pol radar site at Darwin and (b) the
convective cells (colors) embedded in the stratiform area (green).
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by large scale forcing (F) and the stabilizing effect of total cloud base mass
flux Mb, with a given constant adjustment time of and mean convective
mass flux per unit convective cell area mb at cloud base.

dAc

dt
¼ 1

mb
−

1
τc
Mb þ F

� �
(2)

That assumption is inspired by the original potential energy equation of
Arakawa and Schubert (1974) and Lord and Arakawa (1980) for an
ensemble of convective updrafts. The total mass cloud base flux is the
sum of the contributions of all the convective cells and as noted in the last
section depends on the size of convective cells.

Mb ¼ ∑
n

i¼0
cimbi aið Þ (3)

The dependence ofmbi on ai is approximated by the empirical relationship
obtained from the convection‐permitting simulation (the red regression
line in Figure 2a). For a given cell size value the mean flux per cell area
is obtained from the piece‐wise linear relationship then that mean and
the standard deviation are used to obtain a random value of mass flux
per‐cell area assuming Gaussian distribution within the cell size bin.
Based on these simulations from Hagos et al. (2018), we also set the aver-
age mass flux per unit area mb to 0.78 kgm2s‐2 and τc = 4.0 hours.

The next step is the representation of the evolution of the convective cell
size distribution and its relationship to convective area and stratiform
area. Here we assume that a change in c, given a change in Ac, is some
function of the current state. This state is represented by [s,c] that is a vec-
tor whose first element is the stratiform area and the other elements are
the convective cell size distribution as defined above. Thus,

dc
dAc

¼f c s; c½ �ð Þ: (4)

The rate of change of stratiform area is also assumed to depend on the current state. To represent the strati-
form area, we gained some insights from analysis of observations. Being primarily a result of outflow of
hydrometeors from the convection in the tropics, stratiform clouds typically peak several hours after convec-
tive clouds. The rate of growth of stratiform area is therefore assumed to be a result of imbalance between
formation from the convective cells and the diffusive decay as the hydrometeors mix with the environment
or precipitate. The rate of decay is assumed to be proportional to the stratiform area.

ds tð Þ
dt

¼ −
s tð Þ
τs

þ f s cð Þ (5)

In order for this set of equations to be closed, the functions fc and fs as well as the parameter τs have to be
specified. These two functions, hereafter referred to as convective and stratiform transition functions, repre-
sent the interactions among convective cells as well as with the stratiform area within the domain.

The full system of four equations represents a transition from one state to another through the following
steps: (1) a change in Ac may occur due to an imbalance between the current mass flux and the large‐scale
forcing and will be reflected in a change of the convective cell size distribution (equations (2) and (4)), (2)
subsequently a new mass flux is calculated from the new cell size distribution (equation (3)), while in the
meantime the stratiform cloud also evolves in response to the convective cell size distribution and its own

Figure 2. The relationship between cloud‐base mass flux per unit area and
convective cell size (a) using Steiner et al. (1995) algorithm and (b) using
Powell et al. (2016) algorithm to identify convective cells. The red regression
lines are used to parameterize the relationship in the cloud population
model, and the dashed lines mark the average width of one standard
deviation.
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diffusion (equation (5)). In the next two subsections, the design of the machine learning algorithms used to
determine these functions and the parameter τs and their validations will be discussed. This machine
Learning Assisted Model Population of clouds will be referred to as LAMP hereafter.

3.2. The Machine Learning Algorithm

As discussed above, the radar data provide the convective cell size distribution vector c and stratiform area
scale s every 10 min, which corresponds to about 157,000 pairs of snapshots from which the observed differ-
ences between successive snapshots Δc and Δs are calculated. The goal of the machine learning algorithm is
to determine fc, fs, and the constant τs given c,s, Δc, and Δs and thereby to close equations (4) and (5). For
both the convective and stratiform transition functions, a single nonlinear hidden layer machine learning
algorithm is constructed. The hidden layer constitutes a rectified linear unit (RELU) that sets negative values
in the input arrays (Zc0 and Zs0) to zero thereby introducing nonlinearity. A graphic depiction of the algo-
rithms is provided in Figure 3. The convective transition function is assumed to completely defined by the
pairs of weight arrays (wc0 and wc1) and bias vectors (bc0 and bc1) and given the constraint that the error
(Errorc), defined as the sum of the squares of the difference between elements of predicted and true Δc
arrays, is minimized. Likewise, the stratiform transition function is defined by (ws0 and ws1) and (bs0 and
bs1) that minimize the Errors defined as the element wise sum of the square of the difference between the
predicted and true Δs.

In constructing a machine learning algorithm, one must balance accuracy with a simplicity that allows for
interpretation. In choosing a single‐layer model, we favored simplicity. The code is written in TensorFlow,
and the Adaptive Moment Estimation (ADAM) optimizer (Kingma and Ba 2014) is used in the minimiza-
tion. Once the training is complete the weight arrays and bias vectors are saved; fc and fs are constructed.
As is standard in machine learning applications only half of the data is used for training, and the other half
is used for evaluation. The results are rather insensitive to which half is used for training versus evaluation.

3.3. Evaluation

To assess whether the convective and stratiform transition functions derived from the machine learning
algorithm correctly represent the actual transitions, at least in a statistical mean sense, we consider their

Figure 3. The machine learning algorithm constructed to derive the convective and stratiform transition functions (fc and fs). See text for variable definitions.
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representation of the subsequent state given the necessary input from the current state (equation (4)). For fc,
it is to be noted that cell size distribution at the current state was assumed to depend on the cell size
distribution, stratiform area, and the change in total convective area from the previous time (10 min
prior). Thus, for the second half of the data set, which was not included in the training, the cell size
distribution is predicted given those variables. The predicted cell size distribution is compared with what

is observed. First convective area fraction is defined as Ac
Ad
, where Ad is the area of the radar domain of

radius 150 km. Twenty‐five convective area fraction bins of size 0.015 are constructed for which the mean
of convective cell size for the radar frames that fall in those bins is calculated (shaded in Figure 4).
Figure 4 shows the comparison between the predicted cell size distributions and that from the
observations. Similar analysis is performed for the diurnal cycle of the cell size distribution as well, where
the size distributions are partitioned by the hour. Since the cell size distribution is more or less
exponential, the logarithm of the cell sizes is reported. Overall, fc captures the size distribution well. In
both the observations and LAMP, the logarithm of the convective area accounted for by a given cell size
decreases approximately linearly with the cell size. In both the observations and LAMP the largest mean
cell size appears at about 2 p.m. in the afternoon.

A similar analysis is performed on the stratiform transition function of LAMP, fs. Here, as discussed above,
the input variables are the stratiform area and cell size distribution from the previous time step. Figure 5
compares the distribution of the stratiform area and the diurnal cycle predicted by the LAMP to what is

Figure 4. Comparisons of convective cell size distribution (top panels) and their diurnal cycles (bottom panels) calculated
using fc with that from C‐Pol observation. The shading represent the logarithm of the total convective area contributed by
the given cell size bin in the vertical axis.
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Figure 5. Comparisons of (a) stratiform area distribution and (b) their diurnal cycles calculated using fswith that from C‐
Pol observation.

Figure 6. The differences in cell size distributions between stratiform feedback turned on and off as a function of (a) area
fraction and (b) time of day.
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observed. The agreement suggests that the assumption of treating the stratiform area as a scalar is reasonable
and allows the model to capture the evolution. The machine learning algorithm predicts the timescale τs to
be about 7 hr, which is comparable to the lag produced between the peak convective area at 2 p.m. and peak
stratiform area at about 9 p.m. (Figure 4 bottom panels vs. Figure 5).

Figure 7. (a) The dependence of growth rate of stratiform area on the convective area fraction and convective cell sizes
calculated using fs from the machine learning algorithm, (b) the relationship of the ratio of stratiform area to total con-
vective area with the sum of the perimeters of the convective cells at five values of convective area fraction from C‐POL
radar data and (c) same but with mean of the radii of the convective cells.

10.1029/2019MS001798Journal of Advances in Modeling Earth Systems

HAGOS ET AL. 9 of 17



4. Interaction Between Convective Cells and Stratiform Area

Now thatwe have shown that the convective and stratiform transition functions fc and fs capture the observed
transitions well, we take a close look at the interactions they represent. As discussed above, the predicted cell
size distribution is assumed to depend on stratiform area through the fc function, but there are no preconcep-
tions imposed on the form of that function. Plausible interaction mechanisms are based on the physical
expectation that stratiform area will introduce a broad area of subsidence, and this in turn could lead to
the formation of new small convective cells at the margins of the subsidence area and/or could lead to aggre-
gation of small convective cells into larger and deeper cells (Feng et al., 2015; Rowe andHouze, 2014) via cold
pool dynamics.

Now that the convective transition function is obtained, the effect of the presence of the stratiform area can
be quantified by repeating the above calculation but setting the stratiform area s to zero and comparing the
resulting convective cell size distribution with the actual distribution. Figure 6 shows the difference
between the cell size distributions with the effect of stratiform area on (as shown in Figure 5) and that cal-
culated with stratiform effect off (with s = 0). Both in the dependence on convective area fraction and the
diurnal cycle, the mean cell area of large cells is reduced with the stratiform feedback present: that is, the
number of large cells is reduced. As the green shadings indicate, the number of convective cells smaller
than 1,500 km2 increases by about three times (100.4) while that of cells larger than 4,000 km2 is reduced
by about a third (10−0.4).

The other leg of the two‐way interaction between convective cells and stratiform area is also investigated
by examining the dependence of the growth rate of stratiform area on the convective cell size distribution.
To that end, we examine the response of fs to various convective cell size distributions. There are many
ways that the convective cell size distribution could add up to a given convective area Ac. For our present
purposes, let us assume that the convective area is composed of n number of cells with average size
Am = Ac/n. fs is evaluated for the various mean cell sizes in given area fraction bins. In order to obtain
a robust result, the calculation is performed 100 times for each area fraction (average cell size) by randomly
selecting cell sizes within each bin. Figure 7a shows the dependence of the growth rate of stratiform area
on convective area fraction and mean convective cell size. The first point to note is that the growth rate of
stratiform area increases with convective area fraction. This intuitively makes sense given that convective
cells are the source of the hydrometeors that constitute the stratiform area. The other more important
point is that, for the same convective area fraction, the growth rate of stratiform area is larger when there
is a large number of small cells (right bottom corner) in comparison to when there are fewer but larger
cells (right top corner). This result can be understood physically if one considers the fact that the hydro-
meteors are detrained from the convective cells to form stratiform area through the perimeters of the con-
vective cells. Therefore, a large number of small cells implies a large total perimeter through which the
hydrometeors detrain from the convective cell. In other words, hydrometeors in large cells are more likely
to fall within the cell. This mechanism, referred to as the “particle fountain” model of convection, is exten-
sively discussed in Yuter and Houze (1995).

Such a physical interpretation can be tested through its implications for the dependence of stratiform area on
convective area fraction and convective cell size. If indeed the hypothesis holds that stratiform area As is
related to the perimeter of the convective cells, then it will be related to the number of cells and mean cell
size as

As∼2πn
Am

π

� �1=2

: (6)

On the other hand, the number of cells is given by

n ¼ Ac

Am
: (7)

Combining equations (6) and (7) and defining Rc as the mean radius of convective cells, we obtain
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Figure 8. Convective area contributed by cells of sizes given in the vertical axis obtained from the model under steady for-
cing with stratiform feedback (a) off and (b) on (c) and their time averaged values.
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As

Ac
∼

1
Rc

; (8)

which we here define as stratiform to convective area ratio. To verify the relationship between stratiform to
convective area ratio and the sum of the perimeters of the convective cells embedded in it and therefore

Figure 9. The response of the model to the constant mean random forcing with stratiform feedback off and on (a) mass
flux, (b) total convective area, and (c) stratiform area.
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equation (8), the radar frames are grouped intofive bins ofmeanAc= [0.03,0.09,0.15,0.21,0.27]. The frames in
each convective area fraction bin are further partitioned into 15 bins of total perimeter of 150 km increment.
The mean of the total perimeter of the cells in each bin and the associated stratiform area are calculated for
each bin. Figure 7b shows the relationship for each convective area fraction bin. Confirming our interpreta-
tions, the stratiform to convective area ratio increases with the perimeter more or less linearly, with the slope
decreasing with larger convective area fraction. The slope of the relationship decreases with convective area
fraction as one would expect the perimeter of the convective cells matters less as more cells are in the interior
of the stratiform area and contribute less to its growth. A similar analysis is performed for the relationship
between stratiform area and mean radius of convective cells. Figure 7c shows that stratiform to convective
area ratio decreases with the mean of the convective cell radius for all convective area fraction bins
equation (8).

5. The Model Response to Forcing

With the convective and stratiform transition functions, fc and fs, derived from observations and the mass
flux dependence on convective cell size obtained from the convection‐permitting simulations (Figure 2)
now both in place, the set of equations that make up the model is closed. Therefore, one can now examine
the model's response to external forcing, F. Two illustrative random forcing cases are considered in order to
mimic the observed variability in forcing. The first case features a constant mean value meant to represent
the low frequency quasi‐uniform forcing often associated with oceanic environments. In the second case, a
diurnal variability is added to the mean value to mimic a typical forcing associated with a land surface.
Details of the forcing and the model behavior are discussed below.

5.1. Constant Mean Forcing

The forcing is defined to be a random fluctuation about a prescribed equilibrium mass flux Meq
b as

F tð Þ ¼ Meq
b

τc
X tð Þ; (9)

where X(t) is a random variable with exponential distribution of mean value of 1/λ

X∼Exp λ ¼ 1:0ð Þ: (10)

At every time step of 10 minutes, a new value of X is introduced. The equilibriummass flux is set to be a rea-
listic value of 0.05 kgm‐2s‐1 consistent with the convection‐permitting model simulation of Hagos et al.
(2018). The random forcing fluctuations are not intended to represent any specific large‐scale physical
mechanism but rather are included to induce perturbations that then demonstrate how the character of
the interactions in fc and fs affects the maintenance and nature of the equilibrium cloud distribution.

The model is run with stratiform cloud effects on convective clouds turned on or off (specifically turned off
by setting fc(c,s) = fc(c,s= 0)) for a hundred days in order to obtain a stationary variability. Figure 8 shows the
size distributions of convective cells obtained from each run. With stratiform feedback turned off, the cell
sizes cover a broad range of values from a large number of very small cells but also with a substantial number
of large cells. While with the full model, so that the stratiform feedback is on, the large fluctuations in cell
size distribution are damped, and the cell sizes rarely exceed 250 km2. This is consistent with the result
obtained directly from the convective transition function discussed earlier (Figure 6).

This character of the stratiform feedback through the derived fs has important implications for the variability
inmass flux, convective cell size, and the stratiform area itself. Figure 9 shows the time series of mass flux. As
may be expected, the mass flux variability is greatly damped as it depends on convective cell size variability.
As discussed above (Figure 7), a large number of small cells are favorable for the growth of stratiform area.
Therefore, even though the total convective areas are essentially the same with stratiform feedback off and
on, the impact of the stratiform feedback to convective cells is to produce a larger stratiform area. Thus,
under constant mean forcing, the overall effect of the interaction between convective cells and stratiform
area is to produce a large number of small convective cells with a large and persistent stratiform area.
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5.2. Response to Diurnally Varying Forcing

Finally, the response to a random forcing with diurnally varyingmean value is considered. Themean forcing
is aimed to mimic the diurnal cycle over land. It is a half sine function with its peak at noon and is zero
between 6 p.m. and 6 a.m. local time. Again, the amplitude is modulated by a random factor X as defined
above, and the long‐term mean mass flux is set to 0.05 kgm2s‐1. Figure 10 shows the responses with strati-
form feedback turned on and off. The first point to note is that the observed lag in mass flux is realistically
captured (see Figure 10a) in that the peak mass flux is about 3 hours after noon (time of maximum forcing).
The strong moderating effect from the stratiform area interactions is readily apparent in the weaker variance
in mass flux (Figure 10b), as well as its effects in producing a smaller number of both very large and very
small cells while having little impact on the overall convective area (Figures 10c and 10d).

The nonlinear relationship betweenmass flux and stratiform area are critical components of the interactions
between convective and stratiform area obtained from this analysis, and thus, results are sensitive to the
representation of these relationships. For example, the above analysis was performed with a steeper cell
area‐mass flux relationship obtained from the Powell et al. (2016) algorithm (Figure 2b), and the damping
effect of mass flux variability is found to be stronger as mass flux, and its sensitivity to cell size is stronger
(not shown). Thus, actual implementation of such a model in parameterization might require a more precise
empirical relationship, for example, one that is obtained from large domain LES simulations and mass‐flux‐
based definition of convective cells.

6. Conclusion

In order to understand the processes that govern the interactions between convective cells and the associated
stratiform area, and thereby accurately represent the frequency distributions of cloudiness and precipitation
in climate models, this work presents a model for the population dynamics of clouds. The key assumptions
in the model include the following: (i) The growth rate of convective cell area is controlled by the imbalance
between large‐scale forcing and damping by mass flux; (ii) the growth rate of convective cells is a function of

Figure 10. The response of the model to a random forcing of diurnally varying mean value with stratiform feedback off and on (a) mass flux, (b) total convective
area, (c) stratiform area, and (d) the mean of convective area contributed by the give convective cell size bin.
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the cell size distribution and the stratiform area in the current state and the change in convective area frac-
tion; (iii) the growth rate of stratiform area is related to the production by convective cells and the diffusive
decay of existing stratiform area; and (iv) the mass flux associated with convective cells is a stochastic non-
linear function of convective cell size. This stochastic nonlinear function is obtained from a convection‐
permitting model simulation.

The two functions that represent transitions in convective cell sizes and stratiform area are determined by a
machine learning algorithm trained by precipitation radar observations. The response of the functions to
idealized forcing shows that interactions with stratiform clouds damp the variability in size and number
of convective cells. Furthermore, for a given convective area fraction, a larger number of smaller cells is more
favorable for the development of the stratiform area than a small number of large cells. These two factors
lead to a large stratiform area (i.e., MCS like features) under a steady forcing.

The nature of the transition functions is consistent with forms of behavior that are observed in conditions of
convection organization where the appearance of larger cells and the resulting cold pool dynamics can lead
to the formation of small cells (Feng et al., 2015), which could potentially aggregate to form larger precipi-
tating cells as their number increases (Rowe and Houze 2014). Moreover, the sensitivity that was found
for the stratiform area to the number and sizes of convective cells is consistent with the “particle fountain”
conceptual model proposed by Yuter and Houze (1995). That conceptual model implies the stratiform area is
related to the sum of the perimeters of the convective cells embedded in it. We show that indeed for a given
convective area fraction the stratiform area is approximately linearly related to the sum of the perimeters of
the convective cells. This result also implies for the same convective area fraction a large number of small
cells is more favorable for stratiform area than a smaller number of large cells.

Our cloud population model has been devised with a view towards implementation in a climate model, as a
possible extension of a spectral or multitype cumulus parameterization. The function fc provides a basis for
modifying the determination of a (e.g., Plant & Craig, 2008; Wagner and Graf, 2010; Zhang & McFarlane,
1995) convective population distribution dependent on the stratiform area. In turn, a consistent coupling
of the convective population to the stratiform cloud area determination, as expressed through fs, could be
straightforwardly incorporated as a deep‐convective source term in a prognostic cloud scheme such as
Tiedtke (1993) or PC2 (Wilson et al., 2008). As for any data‐driven approach, one of course needs to keep
in mind the limitations arising from the scope of the data: here that our cloud population model is con-
structed based on radar observations and convection‐permitting model simulation over the tropics. A para-
meterization drawing on the cloud population model presented here could be thought of as a hybrid of
physically based arguments and of machine learning and therefore promises a potentially acceptable bal-
ance between accuracy and interpretability. This study emphasizes in particular the importance of a careful
coupling between convective and stratiform clouds for determining the cell size distribution and suggests a
route towards accomplishing that. Implementation of a machine learning assisted parameterization based
on this cloud population model into an atmospheric model is ongoing, and the results will be reported in
future manuscripts.
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