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Abstract: We introduce a family of models for magnetic skyrmions in the plane for
which infinitely many solutions can be given explicitly. The energy defining the models
is bounded below by a linear combination of degree and total vortex strength, and
the configurations attaining the bound satisfy a first order Bogomol’nyi equation. We
give explicit solutions which depend on an arbitrary holomorphic function. The simplest
solutions are the basicBloch andNéel skyrmions, butwe also exhibit distorted skyrmions
and anti-skyrmions as well as line defects and configurations consisting of skyrmions
and anti-skyrmions.

1. Introduction

Magnetic skyrmions are topologically non-trivial configurations which occur in certain
magnetic materials. It was first observed in [1] that particular examples of such configu-
rations are minimisers of natural energy expressions for the magnetisation vector. They
have since then become the subject of intense study, both experimentally and theoreti-
cally, not least because of their potential use as information carriers in magnetic storage
devices, see [2] for a review.

In this paper we use tools from gauge theory, complex analysis and differential
geometry to introduce models for magnetic skyrmions which can be solved explicitly.
Themodels are grounded in the physics of magnetic skyrmions and belong to the general
class already considered in [1], with an energy expression consisting of a Dirichlet
term, a Dzyaloshinskii–Moriya (DM) interaction energy [3,4] and a potential combining
Zeeman and easy plane anisotropy terms. However, our formulation reveals that, for
critical values of the coupling constants, the models are of Bogomol’nyi type, which
means that static solutions can be obtained by solving a first order partial differential
equation. Moreover, this equation can be solved in terms of an arbitrary holomorphic
function. Both the Bogomol’nyi property and the existence of an infinite family of
explicit solutions are novel in the context of magnetic skyrmions.
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Models of Bogomol’nyi type have historically played an important role in the study
of topological solitons [5]. They require a particular choice of coupling constants, but
their mathematical properties allow for a far more detailed and explicit study of the
solitons and their dynamics than would be possible in the generic case. Intricate and
surprising features of soliton dynamics such as shapes and symmetries of multi-soliton
configurations or scattering behaviour were first observed in models of Bogomol’nyi
type and later found in generic soliton models.

The focus of this paper is the mathematical structure of the critically coupled models
for magnetic skyrmions, and we only begin to explore the properties of our solutions.
However, even at this stage it is clear that our infinite family of solutions contains
several of the ground state configurations associated with the various phases of generic
models [6–8], and that it illustrates elliptical deformations [9,10] and the recently studied
skyrmion bags [11] or ‘sacks’ [12].

The simplest topological soliton theory ofBogomol’nyi type is theO(3)-sigmamodel
in the plane [13]. The basic field is amap from the plane to the sphere, andfiniteness of the
Dirichlet energy requires the field to tend to a constant at spatial infinity, and to extend to
a map from sphere to sphere. Such maps have a topological and integer degree, which is
physically interpreted as the soliton number. The energy is bounded below by a multiple
of the absolute value of the degree, and this bound is attained by configurations which
satisfy the first order Bogomol’nyi equation. In this particular case, the Bogomol’nyi
equation requires the configuration to be a holomorphic or anti-holomorphic map to the
Riemann sphere.

In analogy with the baby skyrme model [14], one would expect the inclusion of DM
interactions, Zeeman potential and anisotropy terms inevitably to destroy the Bogo-
mol’nyi property of the pure O(3) sigma model. However, here we shall show that, with
a careful choice of potential and for a one-parameter family of DM interaction terms,
our models preserve the Bogomol’nyi property and can be solved in terms of a fixed
anti-holomorphic and an arbitrary holomorphic map to the Riemann sphere. The fixed
anti-holomorphic part turns out to be an analytical version of the usual Bloch or Néel
magnetic skyrmions, but the holomorphic part is new.

Our family of models is introduced in Sect. 2, and the solutions are studied in Sect. 5.
Readers primarily interested in the models and their solutions are invited to skip directly
from Sect. 2 to Sect. 5. In the intervening sections we derive the Bogomol’nyi equation
in two different ways. In Sect. 3, we write the theory as a non-abelian gauge theory
with a fixed non-abelian gauge field and apply a trick for constructing gauged sigma
models of Bogomol’nyi type introduced in [15]. In Sect. 4, we derive the Bogomol’nyi
equation in complex stereographic coordinates and give the general solution in terms
of fixed anti-holomorphic and an arbitrary holomorphic function. We show that, when
that holomorphic function is rational, the energy is generically positive and quantised
in multiples of 4π . We also point out that the energy is not well-defined when the
leading holomorphic term at spatial infinity is linear, and propose a regularisation which
preserves the generic formula. We study detailed properties of rational solutions in
Sect. 5. The final Sect. 6 contains our conclusion and a brief discussion of open questions.

2. The Model

2.1. Energy and symmetry. The basic field in any mathematical model for magnetic
skyrmions is the magnetisation vector, which in the planar and static case is a map
n : R2 → S2. Here we consider models where the energy of a configuration is measured
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by the sum of three terms: the Dirichlet or Heisenberg energy (quadratic in derivatives),
a generalised DM interaction energy (linear in derivatives), and a potential term which
may involve linear or quadratic terms in the Cartesian components of n = (n1, n2, n3)t

(with the constraint n21 + n22 + n23 = 1 always understood). General models of this sort
were considered in the seminal paper [1] in which the possibility of topologically stable
configurations now known as magnetic skyrmions was first pointed out, and have been
widely studied since then.

Our one-parameter family of models belongs to the general family considered in [1]
but requires a particular choice of coupling constants, which we call critical. The param-
eter in the family is an angle α ∈ [0, 2π), and describes a generalised DM interaction
term. In order to define this term, we need some additional notation.

We use Cartesian coordinates x1 and x2 in the plane and write ∂1 and ∂2 for partial
derivatives with respect to them. Thinking ofR2 as embedded in EuclideanR3 and using
three-dimensional notation, we also write e1, e2, e3 for the canonical basis of R3, with
e3 = e1 × e2. In terms of the rotation R(α) about the 3-axis by α ∈ [0, 2π), we define

eα
1 = R(α)e1 =

⎛
⎝
cosα

sin α

0

⎞
⎠ , eα

2 = R(α)e2 =
⎛
⎝

− sin α

cosα

0

⎞
⎠ , e3 =

⎛
⎝
0
0
1

⎞
⎠ . (2.1)

Extending the usual definition of the gradient ∇ = ∑2
i=1 ei∂i to write

∇α =
2∑

i=1

eα
i ∂i , (2.2)

and defining

nα = R(α)n, (2.3)

the family of DM interaction terms we are interested in is

nα · ∇ × nα = n · ∇−α × n. (2.4)

In components, it consist of two familiar parts:

n · ∇−α × n = cosα wB + sin α wN , (2.5)

where wb and wN are the following contractions of the chirality tensor n × ∂in:

wB = n1∂2n3 − n2∂1n3 + n3(∂1n2 − ∂2n1),

wN = −n1∂1n3 − n2∂2n3 + n3(∂1n1 + ∂2n2). (2.6)

Choosing energy units so that the coefficient of the Dirichlet energy term is unity,
the family of energy functionals we want to consider is

E[n] =
∫
R2

1

2
(∇n)2 + κn · ∇−α × n +

κ2

2
(1 − n3)

2 dx1dx2. (2.7)

The coupling constant κ could also be set to unity by a choice of length unit, but we find
it convenient to keep it in our calculations. We assume κ > 0 for the remainder of this
paper. Since

1

2
(1 − n3)

2 = (1 − n3) − 1

2
(1 − n23), (2.8)
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our potential term combines a Zeeman and easy plane anisotropy potential, with coeffi-
cients chosen in such a way that the sum is a perfect square.

The energy expression (2.7) is invariant under translations in the plane and under
the group O(2) of rotations and reflection of the plane, combined with simultaneous
rotations and reflections of the target sphere. On fields, the rotations act as

n(x1, x2) �→ R(σ )n(cos σ x1 − sin σ x2, sin σ x1 + cos σ x2), σ ∈ [0, 2π), (2.9)

and the generator of reflections acts as

n(x1, x2) �→ R(2γ )n̄(x1,−x2), with n̄=
⎛
⎝

n1
−n2
n3

⎞
⎠ and γ=π

2
−α. (2.10)

The symmetry group is smaller than that of generic baby skyrmemodels [14] because the
DM interaction breaks the product of the orthogonal groups in space and target space
to a diagonal subgroup. It is worth noting that it would be mathematically natural to
consider an alternative version of the DM interaction with the opposite chirality:

n̄ · ∇−α × n̄. (2.11)

If this termwas used instead of the standard DM interaction, the symmetry would consist
of spatial rotations as in (2.9) but combined with rotations R(−σ) of n. Both the DM
interaction term (2.4) and the flipped version (2.11) were considered in [16], together
with a generic linear combination of the Zeeman and anisotropy potential (1 − n23).
We will work with the DM interaction (2.4) and primarily consider the critical linear
combination (2.8), but we discuss the more general potential in Sect. 2.2 and comment
on how our results would change if we had used the opposite chirality in the Conclusion.

At this point we should really specify which boundary conditions we impose on the
field n at spatial infinity. It is a priori not clear if one should, as in the discussion of
the O(3) sigma model, consider only configurations which extend to continuous maps
S2 → S2. If they did, then

Q[n] = 1

4π

∫
R2

n · ∂1n × ∂2n dx1dx2 (2.12)

would automatically be an integer, giving the degree of the extended map.
As we shall see, we should in fact allow for configurations which do not have a

continuous extension S2 → S2. Such maps do not have a topological degree, but the
integral expression for Q still plays an important role. We will refer to it as degree
throughout this paper.

In our model, the degree occurs invariably in conjunction with a term which also
depends on the boundary behaviour, namely the total vortex strength

�[n] = 1

4π

∫
R2

ω dx1dx2, (2.13)

where the integrand is the vorticity of the first two components of nα:

ω = κ(∂1n
α
2 − ∂2n

α
1 ). (2.14)

The expressions we have given for the total energy, the degree and the total vortex
strength should all be interpreted as functionals on the space of magnetisation fields. For
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some magnetisation fields n, the relevant integrals may not be well-defined. One might
therefore want to restrict the following discussion to a class of configurations which have
a well-defined total energy, total vortex strength and degree. However, as we shall see, it
is impossible to do this without discarding some of the most interesting configurations
which arise as solutions in our model. In order to keep the discussion general but also
mathematically rigorous, we therefore need notation for the restrictions of the integrals
(2.7), (2.12) and (2.13) to compact subsets D ⊂ R

2. We define

ED[n] =
∫
D

1

2
(∇n)2 + κn · ∇−α × n +

κ2

2
(1 − n3)

2 dx1dx2,

QD[n] = 1

4π

∫
D
n · ∂1n × ∂2n dx1dx2,

�D[n] = 1

4π

∫
D

ω dx1dx2, D ⊂ R
2. (2.15)

Clearly, ω dx1 ∧ dx2 = d
, where


 = κ(nα
1 dx1 + nα

2 dx2) (2.16)

is a differential one-form which plays a central role in this paper. It then follows that

�D[n] = 1

4π

∫
∂D


. (2.17)

In particular, one can take D to be a disk of radius R and centred at the origin, so that
∂D = CR is the circle of radius R. For some of the configurations we consider, the limit

�◦[n] = 1

4π
lim
R→∞

∫
CR


 (2.18)

exists even when the integral defining�[n] does not.Wewill treat�◦[n] as a regularised
total vortex strength in those cases. When� is well-defined it necessarily coincides with
�◦.

For the solutions we construct in this paper, the total vortex strength is generically
well-defined and finite, and, as a consequence, the total energy turns out to be given by
a simple formula. The regularisation (2.18) is such that the resulting regularised energy
for the non-generic solutions naturally fits into this general formula. However, we should
stress that the regularisation procedure is not essential for our main results.1

Postponing a more detailed discussion of allowed configurations and topological
invariants to Sect. 4 and the Conclusion, we now derive the variational equation for (2.7),
only assuming that n is twice differentiable. By considering the variation δn = ε ×n for
an infinitesimal vector function ε which vanishes rapidly at spatial infinity, we obtain

2κ(n · ∇−α)n =
(
�n + κ2(1 − n3)e3

)
× n. (2.19)

We will show that this equation is in fact implied by a first order equation.

1 See the Note added at the end of this paper for a brief discussion of an alternative energy expression
which differs from the one defined in (2.15) by a boundary term and leads to the same variational equations.
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2.2. Hedgehog fields. In the skyrmion literature, the magnetisation n is often described
in terms of spherical polar coordinates, defined via

n =
⎛
⎝
sin θ cosφ

sin θ sin φ

cos θ

⎞
⎠ , (2.20)

where θ and φ are functions on the plane. This parametrisation is particularly useful
when considering hedgehog fields. By definition, and using polar coordinates (r, ϕ) in
the plane, hedgehog fields have a profile θ which depends on r only and a longitudinal
angle φ which is related to ϕ according to

φ = ϕ + γ, (2.21)

for a constant angle γ . Such fields are invariant under the rotational symmetry (2.9).
They are additionally invariant under the reflection symmetry (2.10) if and only if we
choose γ to be the complementary angle of α as in (2.10), and we nowmake this choice.
With the boundary condition

θ(0) = π, θ(∞) = 0, (2.22)

one checks that hedgehog fields have degree Q = −1.
Before developing the general machinery for generating solutions of the equation

(2.19), we note some properties of the much simpler hedgehog solutions in our model.
We do this in a slightly more general family of models, obtained from (2.7) by replacing

κ2

2
(1 − n3)

2 → μ2

2
(1 − n3)

2 (2.23)

for a further real constant μ. Minimisers of the resulting energy functional were studied
in [17], and those of degree Q = −1 were shown to have holomorphicity properties
similar to the ones which we will demonstrate more generally for stationary points of
(2.7). We will exhibit these properties in our discussion of example solutions in Sect. 5.
Here we derive the profile of hedgehog solutions by a more pedestrian method.

For hedgehog fields and γ = π
2 − α, the energy expression with the replacement

(2.23) is

E = 2π
∫ ∞

0
rdr

(
1

2

(
dθ

dr

)2

+
sin2 θ

2r2
+ κ

(
dθ

dr
+
sin(2θ)

2r

)
+

μ2

2
(1 − cos θ)2

)
.

(2.24)

The Euler–Lagrange equation is

d2θ

dr2
= −1

r

dθ

dr
+
sin(2θ)

2r2
− 2κ

sin2 θ

r
+ μ2 sin θ(1 − cos θ). (2.25)

With the boundary condition (2.22), this is solved by

θ = 2 tan−1
(

2κ

μ2r

)
. (2.26)

As already advertised, we will recover this profile from the simplest solution of a first
order Bogomol’nyi equation in the case μ = κ in equation (5.2).
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3. A Bogomol’nyi Equation for Magnetic Skyrmions

Wewill now show that the energy functional (2.7) can be written as the sum of a squared
expression and a linear combination of the integral expression for the degree (2.12) and
the total vortex strength (2.13). The vanishing of the squared expression gives a first
order Bogomol’nyi equation which implies the variational second order equation (2.19).

Our derivation of the Bogomol’nyi equation is inspired by a similar treatment of
gauged sigma models in [15] and [18]. As noticed in [19], the combination

∂in − κei × n, i = 1, 2, (3.1)

which occurs in many calculations involving magnetic skyrmions and which is often
called ‘helical derivative’ can be thought of as a covariant derivative with respect to a
non-abelian gauge field. To see the benefits of this, we take a more general viewpoint
and consider more general su(2) gauge fields.

To minimise notation, we identify the su(2) Lie algebra with R3 and the Lie algebra
commutator with the vector product. Defining the covariant derivative of n as

Din = ∂in + Ai × n, (3.2)

and the non-abelian field strength

Fi j = ∂i A j − ∂i A j + Ai × A j , i, j = 1, 2, (3.3)

we note

(D1n + n × D2n)2 = (D1n)2 + (D2n)2 − 2D1n × D2n · n. (3.4)

and also, as already observed by ’t Hooft [20],

n · D1n × D2n − n · F12 = n · ∂1n × ∂2n + ∂2(n · A1) − ∂1(n · A2). (3.5)

This equation shows that the particular combination of the degree density (the integrand
of (2.12)) with a two-dimensional curl on the right hand side can be expressed in a
manifestly gauge invariant way.

We can now state and prove the main result in this section.

Lemma 3.1. The energy for magnetic skyrmions at critical coupling associated with a
compact subset D ⊂ R

2 can be written as

ED[n] = 4π(QD[n] + �D[n]) +
∫
D
(D1n + n × D2n)2 dx1dx2, (3.6)

where we used the covariant derivative

Din = ∂in − κe−α
i × n, i = 1, 2, (3.7)

defined in terms of (2.1). In particular, the equality

ED[n] = 4π(QD[n] + �D[n]) (3.8)

holds for all compact subsets D ⊂ R iff the Bogomol’nyi equation

D1n = −n × D2n (3.9)

is satisfied. This equation implies the variational equation (2.19).
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Proof. Consider the gauge field given by the constant, Lie algebra-valued one-formwith
Cartesian components

Ai = −κe−α
i , i = 1, 2. (3.10)

Then

F12 = κ2e3, n · Ai = −κnα
i , i = 1, 2, (3.11)

and therefore combining the results (3.4) and (3.5) for this gauge field gives

(D1n + n × D2n)2=(D1n)2+(D2n)2−2
(
n · ∂1n×∂2n+κ(∂1n

α
2−∂2n

α
1 )+κ2n3

)
.

(3.12)

One also checks that

1

2
(D1n2 + D2n2) = 1

2
(∇n)2 + κn · ∇−α × n +

1

2
κ2(1 + n23), (3.13)

and so the energy density of (2.7) can be written as

1

2
(∇n)2+κn · ∇−α × n +

κ2

2
(1 − n3)

2

= 1

2
(D1n + n × D2n)2 + n · ∂1n × ∂2n + κ(∂1n

α
2 − ∂2n

α
1 ). (3.14)

Integrating and using the definitions (2.15), we deduce that the energy associated with
a compact subset D ⊂ R2 can be written as claimed in (3.6). The equality (3.8) holds
for all D ⊂ R

2 iff

D1n = −n × D2n ⇔ D2n = n × D1n, (3.15)

where the equivalence follows by applying n×.
Showing that the Eq. (3.15) implies the variational equation is a lengthy but standard

calculation.We indicate the main steps. Spelling out the Bogomol’nyi equation, we have

∂1n = −n × ∂2n + κ(e−α
1 × n + n × (e−α

2 × n)),

∂2n = n × ∂1n + κ(e−α
2 × n − n × (e−α

1 × n)). (3.16)

Therefore

∂21n + ∂22n = 2∂2n × ∂1n + κ(e−α
1 × ∂1n + e−α

2 × ∂2n)

+ κ(∂1n × (e−α
2 × n) + n × (e−α

2 × ∂1n) − ∂2n × (e−α
1 × n)) − n × (e−α

1 × ∂2n)).

(3.17)

Taking a cross product with n and noting

n × (e−α
i × ∂ jn) = −nα

i ∂ jn, (3.18)

we arrive at

n × �n = −κ(nα
1∂1 + nα

2∂2)n + κ(nα
1n × ∂2n − nα

2n × ∂1n). (3.19)
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Now we use the Bogomol’nyi equation again in the last term to conclude that

κ(nα
1n × ∂2n − nα

2n × ∂1n) = −κ(nα
1∂1 + nα

2∂2)n + κ2(1 − n3)e3 × n. (3.20)

Therefore

n × �n = −2κ(nα
1∂1 + nα

2∂2)n + κ2(1 − n3)e3 × n, (3.21)

which is the Eq. (2.19) obtained by variation. ��
As often in the O(3) sigma model or its gauged versions, the Bogomol’nyi equations

are best studied in complex, stereographic coordinates. We do this in the next section.

4. Magnetic Skyrmions in Complex Coordinates

4.1. The Bogomol’nyi equation in stereographic coordinates. We use stereographic
coordinates on the sphere defined by projection from the south pole. With the abbrevia-
tion

ν = n1 + in2, (4.1)

our stereographic coordinate is

w = ν

1 + n3
. (4.2)

When the magnetisation tends to the minimum of the potential term, n → (0, 0, 1)t ,
thenw → 0. Thismakesw a natural choice of coordinate, but in describing our solutions
we also need

v = 1

w
. (4.3)

For later use we also note the inverse relation

ν = 2w

1 + |w|2 , n3 = 1 − |w|2
1 + |w|2 . (4.4)

We introduce the complex coordinate z = x1 + i x2 in the plane, and use the standard
holomorphic and anti-holomorphic derivatives

∂z = 1

2
(∂1 − i∂2), ∂z̄ = 1

2
(∂1 + i∂2). (4.5)

Observing that, with the notation (2.3), eiαν = nα
1 + inα

2 , the DM interaction term
(2.4) can be written in stereographic coordinates as

κn · ∇−α × n = 2κIm(eiα(n3∂zν − ν∂zn3)) = 4κIm

(
eiα

∂zw + w2∂zw̄

(1 + |w|2)2
)

. (4.6)

The other terms in the energy functional have standard expressions in stereographic
coordinates, and so the energy (2.7) is

E[w] =
∫
R2

2|∇w|2 + 4κIm(eiα(∂zw + w2∂zw̄)) + 2κ2|w|4
(1 + |w|2)2 dx1dx2. (4.7)
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The integral (2.12) defining the degree is

Q[w] = i

2π

∫
R2

∂1w∂2w̄ − ∂2w∂1w̄

(1 + |w|2)2 dx1dx2, (4.8)

while the vorticity (2.14) is

ω = 2κIm(eiα∂zν) = 4κIm

(
eiα

∂zw − w2∂zw̄

(1 + |w|2)2
)

. (4.9)

The one-form 
 can be written as


 = κRe(e−iαν̄dz) = κ
2Re(e−iαw̄dz)

1 + |w|2 = κ
2Re(e−iαvdz)

1 + |v|2 . (4.10)

In the following we write ED[w], QD[w] and �D[w] for the integrals (2.15) over D ⊂
R
2 with the integrands expressed in terms of the complex field w. We can now state the

main result of this paper.

Theorem 4.1. The energy (2.15) associated with a compact subset D ⊂ R
2 can be

written as

ED[w] = 4π(QD[w] + �D[w]) +
∫
D
8
(∂z̄w − i

2κe
iαw2)(∂zw̄ + i

2κe
−iαw̄2)

(1 + |w|2)2 dx1dx2.

(4.11)

The equality

ED[w] = 4π(QD[w] + �D[w]) (4.12)

holds for all compact D ⊂ R
2 iff the field v defined in (4.3) satisfies the Bogomol’nyi

equation

∂z̄v = − i

2
κeiα. (4.13)

The general solution is

v = − i

2
κeiα z̄ + f (z), (4.14)

where f is an arbitrary holomorphic map from the plane to the Riemann sphere.

Proof. Using the standard identity

∂zw̄∂z̄w = 1

4

(
|∂1w|2 + |∂2w|2 − i(∂1w∂2w̄ − ∂2w∂1w̄)

)
. (4.15)

and the expression for the vorticity (4.9) in complex coordinates, we have the following
identities for the energy density

2|∇w|2 + 4κIm(eiα(∂zw + w2∂zw̄)) + 2κ2|w|4
(1 + |w|2)2

= ω +
2|∇w|2 + 8κIm(eiαw2∂zw̄) + 2κ2|w|4

(1 + |w|2)2
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= ω + 2i
∂1w∂2w̄ − ∂2w∂1w̄

(1 + |w|2)2 +
8∂zw̄∂̄w + 8κIm(eiαw2∂zw̄) + 2κ2|w|4

(1 + |w|2)2

= ω + 2i
∂1w∂2w̄ − ∂2w∂1w̄

(1 + |w|2)2 + 8
(∂z̄w − i

2κe
iαw2)(∂zw̄ + i

2κe
−iαw̄2)

(1 + |w|2)2 .

Integrating and using the expression (4.8) yields the claimed expression (4.11) for the
energy.

It follows immediately that the equality (4.12) holds for all compact D ⊂ R
2 iff

∂z̄w = i

2
κeiαw2, (4.16)

which is the Bogomol’nyi equation (3.9) in complex coordinates. With v as defined, this
is equivalent to

∂z̄v = − i

2
κeiα, (4.17)

whose general solution is v = − i
2κe

iα z̄ + f (z), where f is an arbitrary holomorphic
function, as claimed. Since f takes values in the Riemann sphere, it is allowed to take
the value ∞. ��

One checks the equation (4.13) is equivalent to the Bogomol’nyi equation (3.9), and
that it therefore implies the variational equation (2.19). For later use we note that the
energy density for configurations which satisfy the Bogomol’nyi equation is the vorticity
plus 4π times the integrand of the degree. This sum can be written as

ε(x1, x2) = 4
∂zw∂z̄w̄ − ∂z̄w∂zw̄ + κIm

(
eiα(∂zw − w2∂zw̄)

)

(1 + |w|2)2 . (4.18)

4.2. Degree and vorticity of magnetic skyrmions at critical coupling. Before discussing
the topology of the magnetic skyrmions defined by (4.14), it is worth revisiting the
simpler case of the standard O(3) sigma model in the plane, defined by the Dirichlet
energy functional [5,13]. The requirement of finite energy in that model leads to the
condition that fields tend to a constant at spatial infinity and may be extended to smooth
maps S2 → S2. The Bogomol’nyi equations are then equivalent to the map being either
holomorphic or anti-holomorphic. Considering the holomorphic case for definiteness,
the energy is proportional to the degree and for this to be finite, the configuration has to
be a rational map, i.e., of the form p(z)/q(z), where p and q are polynomials of degree
m and n. The topological degree of the map is simply max(m, n) in that case.

The DM term, which is a crucial feature of all models of magnetic skyrmions, is not
positive definite, and therefore the energy expression for magnetic skyrmions may be
finite even for configurations which do not tend to a constant value at spatial infinity.
As a result, even finite energy configurations do not necessarily extend to smooth maps
S2 → S2 and do not necessarily have a well-defined topological degree. Moreover,
it is not clear a priori if solutions of the Bogomol’nyi equation in our models have
well-defined total vortex strength and total energy.

We shall now illustrate these issues for our infinite family of solutions (4.14), and
show that, for rational holomorphic functions, the combination 4π(Q+�0) of degree and
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the regularised total vortex strength (2.18) nonetheless always yields a positive integer
multiple of 4π .

Before we enter a general discussion, it is illuminating to consider linear examples
of the form

v = − i

2
κeiα(z̄ + Aeiχ z), A ∈ R

≥0. (4.19)

As we shall see, this family captures the essence of the problems one encounters when
defining the degree and the total vortex strength.

The evaluation of the integral definingQ is elementary. Switching to polar coordinates
according to z = reiϕ , we find, after completing the radial integration,

Q[w] = 1

2π

∫ 2π

0

A2 − 1

1 + A2 + 2A cos(2ϕ + χ)
dϕ. (4.20)

The evaluation of the total vortex strength is more subtle. The one-form 
 for the
field (4.19) is


 = 4
(1 + A cos(2ϕ + χ))dϕ + A sin(2ϕ + χ)d ln r

r−2 + (1 + A2 + 2A cos(2ϕ + χ)
. (4.21)

When computing the total vortex strength, we need to integrate this form over a curve
along which r is large. The leading term is


 ∼ 4
(1 + A cos(2ϕ + χ))

1 + A2 + 2A cos(2ϕ + χ)
dϕ + 4

A sin(2ϕ + χ)

1 + A2 + 2A cos(2ϕ + χ)
d ln r. (4.22)

Clearly, the integral of the term proportional to dϕ gives the same answer for any simple
curve enclosing the origin. However, the integral of the term proportional to A d ln r
depends on the curve we choose, even in the limit of large radius. One can use the
ϕ-dependence to introduce arbitrary contributions by deforming the contour with an
outward bulge starting at some angle ϕ1 and ending at ϕ2 > ϕ1. We conclude that the
total vortex strength is not well-defined for configurations defined by (4.19)when A �= 0.

However, the integral of 
 along a large circle CR centred at the origin has a well-
defined limit as the radius tends to infinity, precisely because d ln r does not contribute
along such a circle. Thus, with the definition (2.18)

�0[w] = 1

2π

∫ 2π

0

2 + 2A cos(2ϕ + χ)

1 + A2 + 2A cos(2ϕ + χ)
dϕ. (4.23)

It is immediate that

Q[w] + �◦[w] = 1, (4.24)

regardless of the value of A. However, the contribution from the degree and the vortex
strength depends crucially on A. Since

Q[w] = 1

2π

∫ 2π

0

A2 − 1

1 + A2 + 2A cos(2ϕ + χ)
dϕ =

⎧⎪⎨
⎪⎩

1 if A > 1
0 if A = 1
−1 if A < 1,

(4.25)
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and

�◦[w] = 1

2π

∫ 2π

0

2 + 2A cos(2ϕ + χ)

1 + A2 + 2A cos(2ϕ + χ)
dϕ =

⎧⎪⎨
⎪⎩

0 if A > 1
1 if A = 1
2 if A < 1,

(4.26)

we see that a configuration dominated by the holomorphic part (A > 1) has degree 1
and vanishing vortex strength. A configuration dominated by the anti-holomorphic part
(A < 1) has degree -1 but vortex strength 2. In the intermediate case A = 1, the degree
comes out as 0 and the vortex strength contributes 1.

The deeper reason behind the ‘jumping’ of the degree of the map defined by (4.19)
lies in the extendibility of the map to one between spheres. An overall factor is irrelevant
for this discussion, so we consider

v = z̄ + Aeiχ z. (4.27)

Then w = 1/v has a pole when re−2iϕ = −Areiχ . This has no solution when A �= 1,
but is solved by the entire line

ϕ = −χ

2
± π

2
(4.28)

when A = 1. In particular, w therefore does not have a good limit for z → ∞ when
A = 1: the result is infinity along the direction (4.28) but zero otherwise. It therefore
does not extend to a smooth map between spheres in that case. When A �= 1 one checks,
by considering the map in terms of ζ = 1/z, that w does extend to a smooth map
between spheres. Our integrations confirm this analysis for A �= 1, but also show that
the combination of degree and vortex strength gives a stable result even when A = 1.

Our observations about the examples (4.19) generalise. In order to formulate this
generalisationwedefine the regularised energy of a solution of theBogomol’nyi equation
as

E◦[w] = 4π(Q[w] + �0[w]). (4.29)

Lemma 4.2. If p and q are polynomials in z of degree m and n and without common
factor, the integral defining the total energy of themagnetic skyrmion solution determined
via

v = − i

2
κeiα z̄ +

p(z)

q(z)
, (4.30)

is well-defined provided m �= n + 1, i.e., provided p/q does not grow linearly for large
z. The total energy is

E[w] = 4π max(m, n + 1) if m �= n + 1. (4.31)

When m = n + 1, the total energy is not well-defined but the regularised total energy is

E◦[w] = 4π m if m = n + 1. (4.32)
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Proof. It is clear that

f (z) = p(z)

q(z)
(4.33)

is a holomorphic map to the Riemann sphere, so (4.30) defines a magnetic skyrmion
satisfying the Bogomol’nyi equation. Written in terms of v, the energy density (4.18) is

ε(x1, x2) = 4
∂zv∂z̄ v̄ − ∂z̄v∂z v̄ + κIm

(
eiα(∂z v̄ − v̄2∂zv)

)
(1 + |v|2)2 . (4.34)

This expression shows in particular that the energy density is smooth at the poles of w

(zeros of v), so that any divergence in the energy integral must come from the behaviour
at infinity. We first show that there is no divergence when m �= n + 1.

For solutions of the form (4.30) andm−n > 1, the leading term in the energy density
for large r comes from

4κ
Im

(−eiαv̄2∂zv
)

(1 + |v|2)2 , (4.35)

leading to the asymptotic formula

|ε(r, ϕ)| = Cr−(m−n+1) +O
(
r−(m−n+2)

)
, for someC ∈ R. (4.36)

This is integrable with respect to the integration measure rdr dϕ for m − n > 1.
Whenm−n < 1, the leading large-r behaviour in the energy density is determined by

the linear anti-holomorphic term in v, so the the energy density behaves asymptotically
as

|ε(r, ϕ)| = Cr−4 +O
(
r−5

)
, for someC ∈ R. (4.37)

This is again integrable with respect to the integration measure rdr dϕ.
Next we turn to the evaluation of the energy integral. Our calculations will also show

that, for m = n + 1, the integral requires regularisation. Our strategy is as follows. For
any solution of the Bogomol’nyi equation we have ED[w] = 4π(QD[w] + �D[w])
for any compact subset D ⊂ R

2. In order to evaluate the energy integral, we turn the
integral defining the degree into boundary integrals and evaluate them together with the
boundary integral defining the total vortex strength. In the cases where the total energy
is well-defined, we will find that the boundary contribution from infinity is independent
of the choice of contour at infinity. In the case where p/q grows linearly at infinity, we
evaluate the boundary contribution on a circle at infinity, leading to our result for the
regularised energy.

We recall that the expression (2.12) for the degree is the integral of the pull-back of
the area form on S2, and that it can be written in terms of w and v as

4πQ[w] = 2i
∫
R2

dw ∧ dw̄

(1 + |w|2)2 = 2i
∫
R2

dv ∧ dv̄

(1 + |v|2)2 . (4.38)

Moreover, the integrand can be written as an exact form

2i
dv ∧ dv̄

(1 + |v|2)2 = d

(
i
vdv̄ − v̄dv

1 + |v|2
)

, (4.39)
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but the one-form in brackets is singular at the poles of v. We can make these singularities
explicit as follows.

With f of the given form, we note

v = g

q
, with g = − i

2
κeiα z̄q(z) + p(z). (4.40)

For any v of this form, one checks that

i
vdv̄ − v̄dv

1 + |v|2 = i
gdḡ − ḡdg + qdq̄ − q̄dq

|g|2 + |q|2 + i(d ln q − d ln q̄). (4.41)

The first term on the right hand side is manifestly smooth, but i(d ln q − d ln q̄) is
singular at the zeros of q. Thus, picking a compact region D ⊂ R

2 which contains open
neighbourhoods of the zeros of q, and denoting negatively oriented circles of radius ε

around each of the zeros of q (possibly repeated) by Cε
j , j = 1, . . . , n, we can write

2i
∫
D

dv ∧ dv̄

(1 + |v|2)2 = i lim
ε→0

n∑
i=1

∫
Cε

j

(d ln q − d ln q̄) + i
∫

∂D

vdv̄ − v̄dv

1 + |v|2

= 4πn + i
∫

∂D

vdv̄ − v̄dv

1 + |v|2 . (4.42)

Therefore, the degree and the total vortex strength associated with the region D can be
combined into

4π(QD[w] + �D[w]) = 4πn +
∫

∂D
β, (4.43)

where we introduced the one-form

β = ivdv̄ − i v̄dv + κe−iαvdz + κeiαv̄dz̄

1 + |v|2 , (4.44)

which combines the one-formwhose exterior derivative is the degree density (4.39) with
the form 
 (4.10) used in the definition of the total vortex strength.

Now, for solutions of the Bogomol’nyi equation,

dv = − i

2
κeiαdz̄ + d f. (4.45)

It follows that

β = ivd f̄ − i v̄d f + κ
2 e

−iαvdz + κ
2 e

iαv̄dz̄

1 + |v|2 . (4.46)

In order to evaluate the integral in (4.43) and its limit, we distinguish cases.
(i) m > n + 1. In this case the leading term in v for large r is azm−n for some complex
number a, and the leading term for f is also azm−n . Inserting these, we find

β ∼ i(m − n)(d ln z̄ − d ln z) = 2(m − n)dϕ. (4.47)

The integral of the asymptotic form of β around any simple curve enclosing the origin
is 4π(m − n), and we conclude

4π(Q[w] + �[w]) = 4π(n + (m − n)) = 4πm if m > n + 1. (4.48)
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(ii) m = n + 1. In this case we write the leading term in f as − i
2κe

iαAeiχ z for some
complex number Aeiχ , and so that the leading terms in v for large r are − i

2κe
iα(z̄ +

Aeiχ z). Then one checks, using essentially the calculation leading to (4.22), that the
leading terms in β are

β ∼ 2dϕ + 4
A sin(2ϕ + χ)

1 + A2 + 2A cos(2ϕ + χ)
d ln r. (4.49)

As already discussed in the paragraph following (4.22), the presence of the term pro-
portional to d ln r means that, for A �= 0, the integral of β cannot be given a meaning
independently of the curve, even in the limit of large radius. However, regularising by
insisting on circular integration paths we observe

lim
R→∞

∫
CR

β = 4π, (4.50)

and hence

4π(Q[w] + �◦[w]) = 4π(n + 1) if m = n + 1. (4.51)

(iii) m < n + 1. Now the leading term in v is − i
2κe

iα z̄ and the holomorphic term is
subleading for large r . The integration of β in the large r limit is therefore a special case
of the calculation in (ii), obtained by setting A = 0. This eliminates the term proportional
to d ln r in (4.49) and produces a limit independent of the chosen curve. We obtain

4π(Q[w] + �[w]) = 4π(n + 1) if m < n + 1, (4.52)

which completes the proof. ��
For the remainder of the paper we focus on rational solutions of the form (4.30) and

set

N = max(m, n + 1). (4.53)

A simple counting argument shows that there is a 4N (real-)dimensional moduli space of
rational maps of the form (4.33). For N = 1 (regularised energy 4π ), the 4-dimensional
family of solutions is conveniently written as

v1(z) = − i

2
κeiα (z̄ + az) + b a, b ∈ C. (4.54)

This includes the family (4.19) discussed in detail in the previous section for b = 0. For
N = 2 (energy or regularised energy 8π ), the 8-dimensional family of solutions can be
written as

v2(z) = − i

2
κeiα z̄ +

az2 + bz + c

dz + e
, a, b, c, d, e ∈ C, (a, b, c, d, e) ∼ λ(a, b, c, d, e), λ ∈ C

∗,

(4.55)

where the equivalence relation removes the redundant simultaneous rescaling of numer-
ator and denominator by the same non-zero complex number, and we need to require that
(i) a and d do not vanish simultaneously, (ii) d and e do not vanish simultaneously and
(iii) the resultant of (a, b, c, d, e) is non-vanishing to ensure that numerator and denom-
inator do no have common factors [5]. We will discuss the form and energy distribution
of some of these solutions in the next section.
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5. Solutions and Their Energy Density

The results obtained thus far add up to a simple recipe for constructing magnetisation
fields n which solve the Bogomol’nyi equation (and hence the variational equation
(2.19)) out of two complex polynomials p and q. Inserting these polynomials into the
expression (4.30) for the complex field v, and combining (4.3) and (4.4) to write the
magnetisation n as

n1 + in2 = 2v̄

|v|2 + 1
, n3 = |v|2 − 1

|v|2 + 1
, (5.1)

we obtain solutions of the Bogomol’nyi equation (3.9).
The simplest solutions are obtainedwhen the holomorphic contribution to v vanishes,

i.e., when f = 0. We use them to illustrate the translation from our coordinates into
the ones conventionally used in the discussion of magnetic skyrmions in the literature.
Translating v = − i

2κe
iα z̄ into the magnetisation field via (5.1), and comparing with the

hedgehog parametrisation (2.20), we deduce

θ = 2 tan−1
(

2

κr

)
. (5.2)

This yields the Bloch skyrmion for γ = π
2 (so α = 0) and the Néel skyrmion for γ = 0

(so α = π
2 ) in their standard form [2], but with a particularly simple profile function

interpolating between θ = π at r = 0 and θ = 0 at r = ∞. The solutions (5.2) agree
with the hedgehog solutions (2.26) of the variational equations when μ = κ .

For the remainder of this section we set κ = 1, and study some example solutions of
the Bogomol’nyi equation (3.9) in some detail. We adopt the convention, widely used in
the magnetic skyrmion literature, to refer to configurations of negative degree (like the
Bloch and Néel solutions) as skyrmions, and to the configurations of positive degree as
anti-skyrmions.

We have organised our discussion according to the integer N defined in (4.53), and
begin with the N = 1 family (4.54). Of the four real parameters in the two complex
numbers a and b, three can be understood in terms of the symmetry group of translations
and rotations (2.9). Rotations leave the basic skyrmion (a = b = 0) invariant, but
translations generate a shift in b. For the general configuration (4.54), rotations by σ act
by mapping

− i

2
κeiα (z̄ + az) + b �→ − i

2
κeiα

(
z̄ + e−2iσaz

)
+ e−iσ b, (5.3)

so can be used to adjust the phase of a.
This action has an elementary but interesting consequence when b = 0. Since a

rotation by some angle σ leaves the anti-holomorphic term invariant but rotates the phase
of the linear holomorphic term by−2σ , configurationswith a �= 0 and b = 0 aremapped
to themselves after a rotation by π . This clearly generalises to configurations with a
homogeneous holomorphic part proportional to zn , which are mapped to themselves
after a rotation by 2π/n.

The only parameter in the N = 1 family (4.54) which cannot be adjusted by a
symmetry transformation is the magnitude |a| of the complex coordinate a. Varying
it leads to the most interesting deformation in this family. We already know that for
a = 0 we have the basic hedgehog skyrmion. According to our formula (4.25), we have
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degree −1 configurations, i.e. skyrmions, for |a| < 1 and degree 1 configurations, i.e.
anti-skyrmions, for |a| > 1. The interpolation between the two necessarily involves the
case |a| = 1 where the degree is zero. As observed in the discussion after (4.25), the
stereographic coordinatew has a pole along an entire line in this case. Themagnetisation
takes the value n = (0, 0,−1)t and both the potential 1

2 (1−n3)2 and the energy density
(4.34) are maximal along this line. We therefore call N = 1 configurations with |a| = 1
line defects.

To sum up, as |a| increases from zero we deform a hedgehog skyrmion through a line
defect into an anti-skyrmion. In this process, the axisymmetric energy distribution of a
hedgehog skyrmion is first squeezed and stretched into an elliptical shape and then into a
line at |a| = 1. As |a| is increased further the energy distribution contracts again into an
elliptical shape and shrinks; it never recovers the axisymmetry of the original skyrmion.
In Fig. 1 we illustrate our discussion by showing the magnetisation of the basic Bloch

Fig. 1. Top from left to right: Bloch skyrmion v = − i
2 z̄ in the theory with α = 0 and Néel skyrmion v = 1

2 z̄

in the theory with α = π
2 . Bottom: anti-skyrmions in the theory with α = 0, with v = − i

2 (z̄ + 4z) shown on

the left and v = − i
2 (z̄ + 6i z) on the right. Note that the magnetisation of anti-skyrmions rotates oppositely

to that of the skyrmions when one traverses a positively oriented circle around the centre, where v = 0 or
n = (0, 0,−1)t . Note also the different scale of the anti-skyrmion plots. Size and orientation of anti-skyrmions
can be adjusted via the coefficient of z.



Magnetic Skyrmions at Critical Coupling

and Néel skyrmions in our model, and also the magnetisation of two anti-skyrmions in
the theory with α = 0.

Next we turn our attention to the family of solutions (4.55) with N = 2. We have not
fully explored the eight parameters in this family, of which three can again be accounted
for by the symmetry operations of translation and rotation. Here, we only exhibit two
interesting phenomena and fix α = 0 for definiteness. The first is the nonlinear super-
position of skyrmions and anti-skyrmions in this model. Configurations of the form

v = − i

2

(
z̄ − zn

Rn−1

)
, R ∈ R

>0, n ∈ Z
>1, (5.4)

have degree n, but the functions v have (n + 2) zeros: one at the origin and (n + 1) zeros
at

zk = Re
2πki
n+1 , k = 0, . . . , n. (5.5)

The magnetisation takes the value n = (0, 0,−1)t at the zeros, but inspection of the
winding shows that the configuration consists of a skyrmion at the origin surrounded
by (n + 1) anti-skyrmions at the locations (5.5). The energy density (4.34) is peaked
at the anti-skyrmion locations. Such superpositions of solitons and anti-solitons do not
solve the Bogomol’nyi equations of the pure O(3) sigma model, which require maps to
be either holomorphic or antiholomorphic. In our model they are possible, essentially
because the number of zeros for functions of the form (4.30) can exceed the absolute
value of the degree. In fact, determining the number of zeros of (4.30) (and hence
the number of skyrmions and anti-skyrmions counted without sign) is an interesting
mathematical problem, see [21] for rigorous bounds and also [22,23] for further results
and the application of this problem to gravitational lensing.

Continuing with α = 0, we observe that rational solutions of the form

v = − i

2

(
z̄ − R2

z

)
, R ∈ R

>0, (5.6)

look like skyrmion bags [11] or sacks [12]. These particular bags have degree Q = 0,
take the vacuum value n = (0, 0, 1)t at the origin and the value n = (0, 0,−1)t on a
circle of radius R centred at the origin. The energy density (4.34) is maximal on this
circle. The solutions (5.6) are axisymmetric and an example of what is sometimes called
skyrmionium in the literature. Clearly one can obtain more general bags by acting with
translations on (5.6). We note that the circles of zeros of functions like (5.6) also play a
special role in the context of gravitational lensing, where they are called Einstein rings
[23].

6. Conclusion

In this paper we introduced models for magnetic skyrmions in the plane for which an
infinite family of analytical solutions canbegiven explicitly. In our studyweconcentrated
on the family of magnetic skyrmions determined by a rational holomorphic function
according to (4.30). We showed that, with a suitable regularisation in the case of linear
growth in the holomorphic function at infinity, the total energy takes the quantised
values 4πN , where N is a positive integer which combines the degree with the (possibly
regularised) total vorticity of a configuration. This integer does not appear to have been
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studied in the literature on magnetic skyrmions, but our study suggests that it plays an
important role.

We also determined the collective coordinates or moduli of the solutions for given
N , and studied example configurations for low values of N . They include remarkable
deformations of Bloch and Néel skyrmions into line defects and anti-skyrmions. Finally,
we exhibited some of the bag and multi-anti-skyrmion configurations included in the
family (4.30).

Magnetic skyrmions are sometimes also called chiral skyrmions because the DM
interaction breaks reflection symmetry. This is evident in our solutions through the
mandatory and fixed anti-holomorphic part (of negative degree) but the optional holo-
morphic part (of positive degree). It is interesting and somewhat unexpected that our
models allows for nonlinear superpositions of skyrmions and anti-skyrmions in static
configurations. However, their roles are not symmetric. To obtain perfect mirrors of our
models one would need to replace the DM interaction with the one of opposite chirality
(2.11). One checks that this would lead to aBogomol’nyi equationwhich enforces a fixed
holomorphic part, but allows for an arbitrary anti-holomorphic part. This is consistent
with the criterion derived in [16] for the preference of skyrmions over anti-skyrmions
depending on the chirality.

The explicit family of solutions in our models and their chiral twins should be studied
further in order to obtain a systematic understanding of the types of defects they capture.
One would also like to understand how these defects relate to those observed in the
various phases of generic models for magnetic skyrmions as discussed for example in
[8].

Mathematically, one would like to understand more precisely the class of maps from
the plane to the sphere for which the integrals defining the degree, total energy and total
vortex strength are well-defined. It would also be important to ascertain if the energy
functional (2.7) is bounded below for a suitably defined class of configurations (not just
our solutions). In [19] it was shown that in a closely related model with a pure Zeeman
potential the total energy is bounded below by a multiple of the absolute value of the
degree. In our model, the energy is potentially unbounded below unless one imposes
suitable behaviour at spatial infinity.

The second order variational equation (2.19) and the Bogomol’nyi equation (4.13)
deserve further study. One would like to know, for example, if there are other finite-
energy solutions (possibly after suitable regularisation) of the variational equation, not
included in our rational family (4.30).

Finally, future work should include the study of time evolution and the effect of
external fields on the solutions in our model.

Note added While this paperwas under review, researchwas reported in the literature
which has implications for the definition of energy in our models. A modification of the
energy expression for magnetic skyrmions by a boundary term already proposed for
analytical reasons in [19] was generalised in [24] in the framework of gauged sigma
models. Applied to the models discussed here, this modification amounts to subtracting
the total vorticity�R2 (2.15) fromour energy (2.7) or, equivalently, to replacing n·∇−α×
n by (n−e3)·∇−α×n in (2.7). Themodification does not affect the variational equations
or the Bogomol’nyi equations studied here. The modified energy has the advantage of
being finite without regularisation for all rational solutions of the form (4.30). In fact,
for any such solution the modified energy is equal to 4πQ, where Q is the degree,
instead of the value 4πN for our energy (after regularisation if required). On the other
hand, the geometrical investigation reported in [25] shows that the integer N (4.53) can
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be interpreted as the equivariant degree of the rational solutions (4.30), suggesting that
the energy we used here is geometrically natural. It thus appears that there is a certain
tension between the energy expressions preferred from an analytical and a geometrical
point of view. Further work is required to resolve this.
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