

Received 18 October 2019 Accepted 5 November 2019

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; xanthate; zinc(II); 2,2'-bipyridine; Hirshfeld surface.

CCDC reference: 1424075

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of a zinc xanthate complex containing the 2,2'-bipyridine ligand

Adnan M. Qadir,^a Sevgi Kansiz,^b* Georgina M. Rosair,^c Necmi Dege^b and Inna S. Safyanova^d*

^aDepartment of Chemistry, College of Science, Salahaddin University, Erbil, Iraq, ^bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139, Kurupelit, Samsun, Turkey, ^cInstitute of Chemical Sciences, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK, and ^dDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64, Vladimirska Str., Kiev 01601, Ukraine. *Correspondence e-mail: sevgi.kansiz85@gmail.com

In the title compound, (2,2'-bipyridine- $\kappa^2 N, N'$)bis(2-methoxyethyl xanthato- κS)zinc(II), [Zn(C₄H₇O₂S₂)₂(C₁₀H₈N₂)], the Zn^{II} ion is coordinated to two N atoms of the 2,2'-bipyridine ligand and two S atoms from two 2-methoxyethyl xanthate ligands. The Zn^{II} ion lies on a crystallographic twofold rotation axis and has distorted tetrahedral coordination geometry. In the crystal, molecules are linked by weak C-H···O hydrogen bonds, forming supramolecular chains propagating along the *a*-axis direction. Weak intramolecular C-H···S hydrogen bonds are also observed. The intermolecular contacts in the crystal were further analysed using Hirshfield surface analysis, which indicates that the most significant contacts are H···H (36.3%), followed by S···H/H···S (24.7%), C···H/H···C (15.1%), O···H/H···O (14.4%), N···H/H···N (4.1%) and C···C (2.9%).

1. Chemical context

Xanthates (dithiocarbonates, $ROCS_2^{-}$) have attracted the attention of scientific groups of researchers due to their diverse applications. Metal xanthates have been used as singlesource precursors to metal sulfide materials (Kociok-Köhn et al., 2015). It was reported that metal xanthates have cytotoxic activity on human cancer cells (Efrima et al., 2003; Friebolin et al., 2005). Cellulose xanthate have been used for the column separation of alcohols by chromatographic methods (Friebolin et al., 2004). Zinc(II) xanthate complexes have a tetrahedral geometry, while zinc(II) xanthate complexes with neutral bidentate nitrogen donor ligands are either strongly distorted octahedral or tetrahedral. In our previous work, Zn^{II} 2-methoxyethylxanthate with N, N, N', N'-tetramethylethylenediamine was synthesized, structurally characterized and studied by density functional theory (Qadir et al., 2019). The complex showed a tetrahedral environment around metal center and the HOMO-LUMO band gap was 3.9 eV. Aromatic heterocyclic nitrogen donor ligands have been used by researchers to prepare mixed-ligand complexes of transition metals with supramoleculer architectures. In this work, the synthesis and crystal structure of a zinc(II) 2-methoxyethyl xanthate involving 2,2'-bipyridine is reported. Hirshfeld surface analysis was used to further investigate the intermolecular interactions.

research communications

Table 1Selected geometric parameters (Å, °).

Zn1-S1	2.2954 (18)	Zn1-N1	2.083 (5)
$\begin{array}{c} S1^{i}-Zn1-S1\\ N1^{i}-Zn1-S1 \end{array}$	126.64 (10)	N1 - Zn1 - S1	100.54 (15)
	120.78 (15)	$N1 - Zn1 - N1^{i}$	78.7 (3)

Symmetry code: (i) $-x + 1, y, -z + \frac{1}{2}$.

3. Supramolecular features

The crystal packing of the title compound (Fig. 2) features intermolecular $C8-H8\cdots O5^{ii}$ hydrogen bonds (Table 2), which connect the molecules into supramolecular chains propagating along the *a*-axis direction. Weak intramolecular $C-H\cdots S$ hydrogen bonds are also observed.

2. Structural commentary

The title complex (Fig. 1) comprises one Zn^{II} ion, one 2,2'bipyridine ligand and two 2-methoxyethyl xanthate ligands. The Zn^{II} ion is coordinated to two N atoms of the 2,2'-bipyridine ligand and two S atoms from two 2-methoxyethyl xanthate ligands in a distorted tetrahedral environment and lies on a crystallographic twofold rotation axis. The Zn-N and Zn-S bond lengths are 2.083 (5) and 2.295 (2) Å, respectively, whereas the bond angles around the central Zn^{II} ion are in the range 78.7 (3)–126.64 $(10)^{\circ}$ (Table 1). The bond lengths and angles of the ZnN₂S₂ coordination units correspond to those in the structures of mixed-ligand Zn^{II} coordination compounds (see; *Database Survey*). The C-O bond lengths range from 1.346 (8) to 1.453 (8) Å although all of the C-O bonds show single-bond character. In the {S₂C} part of the xanthate ligands, the C1–S1 distance is 1.727 (7) Å, which is typical of a single bond whereas the C1-S2 distance of 1.652 (7) Å is typical of a carbon-to-sulfur double bond. The C-N and C-C bond lengths in 2,2'-bipyridine are normal for 2-substituted pyridine derivatives (Strotmeyer et al., 2003; Iskenderov et al., 2009; Golenva et al., 2012).

Figure 1

The molecular structure of the title complex, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: (i) 1 - x, y, $\frac{1}{2} - z$.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis and the associated twodimensional fingerprint plots were performed with Crystal-Explorer17.5 (Turner et al., 2017). The Hirshfeld surface of the title complex is shown in Fig. 3a and 3b. The intermolecular interactions are represented using different colours, red indicating distances closer than the sum of the van der Waals radii, white indicating distances near the van der Waals radii separation, and blue indicating distances longer than the van der Waals radii (McKinnon *et al.*, 2007). The weak $C-H \cdots O$ and $C-H \cdot \cdot \cdot S$ hydrogen bonding in the crystal of the title complex are represented as red spots on d_{norm} . Selected twodimensional fingerprint plots are shown in Fig. 4 for all contacts as well as those delineated into $H \cdots H$, $S \cdots H/H \cdots S$ and $C \cdots H/H \cdots C$ contacts, whose percentage contribution is also given. $H \cdot \cdot \cdot H$ intermolecular contacts make the highest percentage contribution (36.3%), a result of the prevalence of hydrogen from the organic ligands. The $S \cdots H/H \cdots S$ and $O \cdots H/H \cdots O$ intermolecular contacts are due to the attractive $C-H \cdots S$ and $C-H \cdots O$ hydrogen-bonding interactions and make percentage contributions of 24.7 and 14.4%, respectively, indicating these to be the dominant stabilizing interactions in this crystal. In addition, $C \cdots H/H \cdots C$ contacts contribute 15.1% to the Hirshfeld surface. The small percentage contributions from the other different interatomic contacts to the Hirshfeld surfaces are as follows: $N \cdots H/H \cdots N$ $(4.1\%), C \cdots C (2.9\%), S \cdots S (1.1\%), S \cdots O/O \cdots S (0.8\%)$ and $S \cdots C/C \cdots S$ (0.3%).

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C8-H8\cdots O5^i$	0.95	2.51	3.246 (9)	134
$C7-H7\cdots S2^{ii}$	0.95	2.90	3.552 (7)	127

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) $-x + 1, y, -z + \frac{1}{2}$.

Figure 2

A view of the crystal packing of the title complex. Dashed lines denote the intermolecular hydrogen bonds (Table 2). Symmetry codes: (i) $\frac{1}{2} + x$, $\frac{3}{2} - y$, $\frac{1}{2} + z$, (ii) 1 - x, y, $\frac{1}{2} - z$, (iii) $\frac{1}{2} - x$, $\frac{3}{2} - y$, -z.

5. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update of February 2019; Groom *et al.*, 2016) for compounds related to the title complex revealed five hits: (2,2'-dipyridyl)bis(butylxanthato)zinc(II) (DIFBOK; Klevtsova *et al.*, 2006), $(2,2'-bipyridine)(O-n-propyldithiocarbonato-<math>\kappa^2 S, S'$)(O-n-propyldithiocarbonato-S)zinc(II) (IGUGUO; Jeremias *et al.*, 2014), (2,2'-bipyridine)-bis(O-isoptropylxanthato)zinc(II) and (2,2'-bipyridine)bis(O-isobutylxanthato)-zinc(II) (with refcodes MUJJOQ and MUJJUW, respectively; Klevtsova *et al.*, 2002) and (2,2'-bipyridyl)bis(ethylxanthato)zinc(II) (WITLAM; Glinskaya *et al.*, 2000). All of these complexes except IGUGUO have tetrahedral environments around the metal center. The Zn-N and Zn-S bond lengths

Figure 3

The Hirshfeld surfaces mapped over d_{norm} in the range -0.1353 to +1.0127 (arbitrary units) for visualizing the weak intermolecular (a) C-H···O and (b) C-H···S hydrogen bonding.

range from 2.065 to 2.147 Å and 2.284 to 2.341 Å, respectively. The Zn-N and Zn-S bond lengths in the title complex [2.083 (5) and 2.295 (2) Å, respectively] fall within these limits.

Figure 4

Hirshfeld surface fingerprint plots for the H···H, S···H/H···S, C···H/H···S, C···H/H···S, C···H/H···N contacts of the title complex.

research communications

Table 3Experimental details.

Crystal data	
Chemical formula	$[Zn(C_4H_7O_2S_2)_2(C_{10}H_8N_2)]$
M _r	523.98
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	100
a, b, c (Å)	22.869 (4), 8.3212 (12),
	12.5627 (19)
β (°)	115.348 (4)
$V(\text{\AA}^3)$	2160.5 (6)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	1.55
Crystal size (mm)	$0.42 \times 0.36 \times 0.04$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2009)
T_{\min}, T_{\max}	0.599, 0.745
No. of measured, independent and	11173, 2119, 1954
observed $[I > 2\sigma(I)]$ reflections	, ,
R _{int}	0.061
$(\sin \theta/\lambda)_{\rm max}$ (Å ⁻¹)	0.618
(con contribution of the c	
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.087, 0.155, 1.43
No of reflections	2119
No. of parameters	134
No. of restraints	6
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\text{min}} \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.551.00
$-r \max$, $-r \min (-r r)$, 1.00

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

The structure with refcode IGUGUO has a distorted trigonalbipyramidal coordination environment.

6. Synthesis and crystallization

To a hot solution of $Zn(CH_3CO_2)$. $2H_2O$ (10 mmol, 2.20 g) in 2-methoxyethanol, was added a hot solution of 2,2'-bipy (10 mmol, 1.56 g) in 2-methoxyethanol. A hot solution of potassium 2-methoxyethylxanthate (20 mmol, 3.81 g) in 2-methoxyethanol was added under stirring. Colourless crystals were formed after 30 minutes. The crystals were washed with small amounts of 2-methoxyethanol and water and airdried.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The C-bound H atoms were

positioned geometrically and refined using a riding model, with C-H = 0.95, 0.98 and 0.99 Å with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ otherwise. The crystal was a weak diffractor (I/σ at 0.81 resolution was 5.1) and refined as a two-component twin with HKLF 4 data (twin law -10000 - 1000 - 1) but this had little effect. The anisotropy of N1 was restrained with ISOR 0.01 0.02 in *SHELXL* (Sheldrick, 2015).

Funding information

We would like to thank the EPSRC for an equipment grant, which funded the diffractometer at Heriot-Watt University.

References

- Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Efrima, S. & Pradhan, N. (2003). C. R. Chim. 6, 1035-1045.
- Friebolin, W., Schilling, G., Zöller, M. & Amtmann, E. (2004). J. Med. Chem. 47, 2256–2263.
- Friebolin, W., Schilling, G., Zöller, M. & Amtmann, E. (2005). J. Med. Chem. 48, 7925–7931.
- Glinskaya, L. A., Klevtsova, R. F., Leonova, T. G. & Larionov, S. V. (2000). J. Struct. Chem. 41, 161–165.
- Golenya, I. A., Gumienna-Kontecka, E., Boyko, A. N., Haukka, M. & Fritsky, I. O. (2012). *Inorg. Chem.* **51**, 6221–6227.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Iskenderov, T. S., Golenya, I. A., Gumienna-Kontecka, E., Fritsky, I. O. & Prisyazhnaya, E. V. (2009). Acta Cryst. E65, 02123–02124.
- Jeremias, L., Demo, G., Kubát, V., Trávníček, Z. & Novosad, J. (2014). Phosphorus Sulfur Silicon, 189, 1475–1488.
- Klevtsova, R. F., Glinskaya, L. A., Leonova, T. G. & Larionov, S. V. (2002). J. Struct. Chem. 43, 125–132.
- Klevtsova, R. F., Leonova, T. G., Glinskaya, L. A. & Larionov, S. V. (2006). J. Struct. Chem. 47, 504–512.
- Kociok-Köhn, G., Molloy, K. C. & Sudlow, A. L. (2015). *Main Group Met. Chem.* 38, 61–67.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). *Chem. Commun.* pp. 3814–3816.
- Qadir, A. M., Kansiz, S., Dege, N., Rosair, G. M. & Fritsky, I. O. (2019). Acta Cryst. E75, 1582–1585.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547.
- Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17.5*. University of Western Australia. http:// hirshfeldsurface.net.

supporting information

Acta Cryst. (2019). E75, 1857-1860 [https://doi.org/10.1107/S2056989019014968]

Crystal structure and Hirshfeld surface analysis of a zinc xanthate complex containing the 2,2'-bipyridine ligand

Adnan M. Qadir, Sevgi Kansiz, Georgina M. Rosair, Necmi Dege and Inna S. Safyanova

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

(2,2'-Bipyridine-κ²N,N')bis(2-methoxyethyl xanthato-κS)zinc(II)

Crystal data	
$[Zn(C_4H_7O_2S_2)_2(C_{10}H_8N_2)]$	F(000) = 1080
$M_r = 523.98$	$D_{\rm x} = 1.611 {\rm Mg m^{-3}}$
Monoclinic, $C2/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 22.869 (4) Å	Cell parameters from 2844 reflections
b = 8.3212 (12) Å	$\theta = 3.0 - 25.4^{\circ}$
c = 12.5627 (19) Å	$\mu = 1.55 \text{ mm}^{-1}$
$\beta = 115.348 \ (4)^{\circ}$	T = 100 K
V = 2160.5 (6) Å ³	Plate, colourless
Z = 4	$0.42 \times 0.36 \times 0.04 \text{ mm}$
Data collection	
Bruker APEXII CCD	2119 independent reflections
diffractometer	1954 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.061$
Absorption correction: multi-scan	$\theta_{\text{max}} = 26.1^{\circ}, \theta_{\text{min}} = 2.6^{\circ}$
(SADABS; Bruker, 2009)	$h = -28 \rightarrow 28$
$T_{\min} = 0.599, \ T_{\max} = 0.745$	$k = -9 \rightarrow 10$
11173 measured reflections	$l = -14 \rightarrow 15$
Refinement	
Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.087$	Hydrogen site location: inferred from
$wR(F^2) = 0.155$	neighbouring sites
<i>S</i> = 1.43	H-atom parameters constrained
2119 reflections	$w = 1/[\sigma^2(F_o^2) + 39.0236P]$
134 parameters	where $P = (F_o^2 + 2F_c^2)/3$
6 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
	$\Delta ho_{ m max} = 0.55$ e Å ⁻³
	$\Delta \rho_{\rm min} = -1.00 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Zn1	0.5000	0.63086 (13)	0.2500	0.0085 (3)
S1	0.44329 (8)	0.5070 (2)	0.33978 (16)	0.0164 (4)
S2	0.36008 (9)	0.4541 (2)	0.08028 (17)	0.0208 (4)
O2	0.3340 (2)	0.3748 (7)	0.2598 (4)	0.0203 (11)
O5	0.2155 (2)	0.4123 (6)	0.2833 (4)	0.0193 (11)
N1	0.5396 (3)	0.8245 (6)	0.3634 (5)	0.0101 (11)
C1	0.3750 (3)	0.4405 (8)	0.2208 (6)	0.0153 (15)
C3	0.2717 (3)	0.3151 (9)	0.1750 (6)	0.0186 (16)
H3A	0.2775	0.2208	0.1325	0.022*
H3B	0.2481	0.3996	0.1169	0.022*
C4	0.2350 (4)	0.2688 (9)	0.2455 (7)	0.0192 (16)
H4A	0.1966	0.2038	0.1964	0.023*
H4B	0.2630	0.2037	0.3146	0.023*
C6	0.1815 (4)	0.3775 (11)	0.3521 (7)	0.0289 (19)
H6A	0.1441	0.3094	0.3067	0.043*
H6B	0.1666	0.4780	0.3731	0.043*
H6C	0.2102	0.3211	0.4240	0.043*
C7	0.5764 (3)	0.8146 (9)	0.4798 (6)	0.0165 (15)
H7	0.5905	0.7116	0.5138	0.020*
C8	0.5948 (4)	0.9481 (9)	0.5521 (6)	0.0191 (16)
H8	0.6204	0.9372	0.6345	0.023*
C9	0.5751 (4)	1.0972 (9)	0.5021 (7)	0.0214 (17)
H9	0.5874	1.1913	0.5494	0.026*
C10	0.5371 (3)	1.1084 (8)	0.3815 (7)	0.0189 (16)
H10	0.5229	1.2103	0.3455	0.023*
C11	0.5204 (3)	0.9708 (8)	0.3151 (6)	0.0113 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Znl	0.0137 (6)	0.0030 (5)	0.0118 (6)	0.000	0.0084 (4)	0.000
S1	0.0169 (9)	0.0160 (9)	0.0181 (9)	-0.0021 (7)	0.0091 (7)	0.0031 (7)
S2	0.0285 (10)	0.0198 (10)	0.0198 (10)	-0.0027 (8)	0.0158 (8)	-0.0026 (8)
O2	0.018 (3)	0.022 (3)	0.023 (3)	-0.002(2)	0.011 (2)	0.003 (2)
05	0.022 (3)	0.016 (3)	0.023 (3)	-0.001(2)	0.013 (2)	0.002 (2)
N1	0.016 (3)	0.003 (3)	0.017 (3)	-0.004 (2)	0.011 (2)	-0.004 (2)
C1	0.019 (4)	0.007 (3)	0.022 (4)	0.004 (3)	0.011 (3)	0.004 (3)
C3	0.020 (4)	0.019 (4)	0.017 (4)	-0.006 (3)	0.008 (3)	-0.005 (3)

supporting information

C4	0.020 (4)	0.014(4)	0.023 (4)	-0.005 (3)	0.000(3)	-0.001(3)
04	0.020(4)	0.014(4)	0.023(4)	0.003(3)	0.009(3)	0.001(3)
0	0.028 (4)	0.029 (4)	0.038 (5)	0.009 (4)	0.022 (4)	0.015 (4)
C'/	0.017 (4)	0.018 (4)	0.020 (4)	-0.002(3)	0.013 (3)	-0.003(3)
C8	0.025 (4)	0.021 (4)	0.016 (4)	-0.006(3)	0.013 (3)	-0.003(3)
C9	0.021 (4)	0.018 (4)	0.030 (4)	-0.008(3)	0.015 (3)	-0.014 (3)
C10	0.020 (4)	0.006 (3)	0.032 (4)	-0.002 (3)	0.013 (3)	-0.005 (3)
C11	0.012 (3)	0.004 (3)	0.021 (4)	-0.002 (3)	0.011 (3)	-0.002 (3)

Geometric parameters (Å, °)

Zn1—S1	2.2954 (18)	C4—H4A	0.9900
Zn1—S1 ⁱ	2.2954 (18)	C4—H4B	0.9900
Zn1—N1 ⁱ	2.083 (5)	С6—Н6А	0.9800
Zn1—N1	2.083 (5)	С6—Н6В	0.9800
S1—C1	1.727 (7)	С6—Н6С	0.9800
S2—C1	1.652 (7)	С7—Н7	0.9500
O2—C1	1.346 (8)	C7—C8	1.382 (10)
O2—C3	1.453 (8)	C8—H8	0.9500
O5—C4	1.426 (9)	C8—C9	1.377 (11)
O5—C6	1.418 (8)	С9—Н9	0.9500
N1—C7	1.342 (9)	C9—C10	1.390 (11)
N1—C11	1.347 (8)	C10—H10	0.9500
С3—НЗА	0.9900	C10-C11	1.371 (9)
С3—Н3В	0.9900	C11—C11 ⁱ	1.497 (13)
C3—C4	1.506 (10)		
$S1^{i}$ $Zn1$ $S1$	126 64 (10)	С3—С4—Н4А	110.0
$N1^{i}$ Zn1 S1	120.78 (15)	C3—C4—H4B	110.0
$N1$ — $Zn1$ — $S1^{i}$	120.78 (15)	H4A—C4—H4B	108.4
N1—Zn1—S1	100.54 (15)	О5—С6—Н6А	109.5
$N1^{i}$ — $Zn1$ — $S1^{i}$	100.54 (15)	O5—C6—H6B	109.5
N1—Zn1—N1 ⁱ	78.7 (3)	O5—C6—H6C	109.5
C1—S1—Zn1	102.2 (2)	H6A—C6—H6B	109.5
C1—O2—C3	119.3 (5)	H6A—C6—H6C	109.5
C6—O5—C4	111.4 (6)	H6B—C6—H6C	109.5
C7—N1—Zn1	125.7 (5)	N1—C7—H7	118.7
C7—N1—C11	118.5 (6)	N1	122.7 (7)
C11—N1—Zn1	115.4 (4)	С8—С7—Н7	118.7
S2—C1—S1	126.8 (4)	С7—С8—Н8	120.8
O2—C1—S1	109.1 (5)	C9—C8—C7	118.4 (7)
O2—C1—S2	124.0 (5)	С9—С8—Н8	120.8
O2—C3—H3A	110.5	С8—С9—Н9	120.4
O2—C3—H3B	110.5	C8—C9—C10	119.2 (7)
O2—C3—C4	105.9 (6)	С10—С9—Н9	120.4
НЗА—СЗ—НЗВ	108.7	С9—С10—Н10	120.4
С4—С3—Н3А	110.5	C11—C10—C9	119.2 (7)
С4—С3—Н3В	110.5	C11—C10—H10	120.4
O5—C4—C3	108.3 (6)	N1-C11-C10	121.9 (6)

supporting information

O5—C4—H4A	110.0	N1—C11—C11 ⁱ	115.0 (4)
O5—C4—H4B	110.0	C10—C11—C11 ⁱ	123.1 (4)
Zn1—S1—C1—S2	4.2 (5)	C3-02-C1-S2	-1.8 (9)
Zn1—S1—C1—O2	-175.3 (4)	C6-05-C4-C3	-179.0 (6)
Zn1—N1—C7—C8	-172.1 (5)	C7-N1-C11-C10	-0.5 (9)
Zn1—N1—C11—C10	173.2 (5)	C7-N1-C11-C11 ⁱ	179.9 (6)
Zn1—N1—C11—C11 ⁱ	-6.4 (9)	C7-C8-C9-C10	0.7 (10)
O2—C3—C4—O5	73.0 (7)	C8-C9-C10-C11	-0.3 (10)
N1—C7—C8—C9	-0.9 (10)	C9-C10-C11-N1	0.2 (10)
C1—O2—C3—C4	-173.4 (6)	C9-C10-C11-C11 ⁱ	179.8 (7)
C3—O2—C1—S1	177.8 (5)	C11—N1—C7—C8	0.8 (10)

Symmetry code: (i) -x+1, *y*, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
С8—Н8…О5 ^{іі}	0.95	2.51	3.246 (9)	134
C7—H7····S2 ⁱ	0.95	2.90	3.552 (7)	127

Symmetry codes: (i) -*x*+1, *y*, -*z*+1/2; (ii) *x*+1/2, -*y*+3/2, *z*+1/2.