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The interplay of π -flux and lattice geometry can yield full localization of quantum dynamics in lattice
systems, a striking interference phenomenon known as Aharonov-Bohm caging. At the single-particle level, this
full-localization effect is attributed to the collapse of Bloch bands into a set of perfectly flat (dispersionless)
bands. While interparticle interactions generally break the cages, not much is known regarding the fate
of Aharonov-Bohm caging in the presence of classical nonlinearities, as captured by a discrete nonlinear
Schrödinger equation. This scenario is relevant to recent experimental realizations of photonic Aharonov-Bohm
cages, using classical light propagating in arrays of coupled waveguides. In this article, we demonstrate that
caging always occurs in this nonlinear setting, as long as the nonlinearities remain local. As a central result,
we identify special caged solutions that are accompanied by a breathing dynamics of the field intensity that
we describe in terms of an effective two-mode model reminiscent of a bosonic Josephson junction. Also,
motivated by a formal similarity with the Gross-Pitaevskii equation describing interacting bosons, we explore
the quantum regime of Aharonov-Bohm caging using small ensembles of interacting particles, and reveal
quasicaged collapse-revival dynamics. The results stemming from this work open an interesting route towards
the characterization of nonlinear dynamics in interacting flat-band systems.
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I. INTRODUCTION

The realization of synthetic gauge fields in quantum-
engineered matter [1–3] and photonics [4,5] has revolution-
ized the realm of quantum simulation, by offering the possi-
bility of studying exotic states of matter in a well-controlled
environment. In lattice systems, this has led to the exploration
of topological phenomena reminiscent of the quantum Hall
effects and topological insulators [5–7] and to the study of
frustrated magnetism [8–10].

While arbitrary synthetic magnetic fluxes can be realized
in artificial lattices [11], such as optical lattices for ultracold
gases or photonics lattices for light, combining these artifi-
cial fields with strong interparticle interactions still remains
a fundamental challenge. An appealing strategy by which
interaction effects can be enhanced in lattice systems consists
in designing models that exhibit flat (dispersionless) Bloch
bands. In these situations, interactions indeed set the dominant
energy scale, hence potentially leading to intriguing strongly
correlated phenomena [12–14], examples of which include
the celebrated fractional quantum Hall effect [15,16] and
the recently discovered high-Tc superconductivity in twisted
bilayer graphene [17,18]. This highly motivates the imple-
mentation of a wide range of flat-band models in artificial
lattice systems [19–22].

Interestingly, specific lattice models exhibit a striking in-
terference phenomenon, called Aharonov-Bohm (AB) caging,
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by which the single-particle spectrum collapses into a set
of perfectly flat (dispersionless) Bloch bands [23]. This re-
markable effect can be found in the one-dimensional rhombic
lattice [24] or in the two-dimensional dice lattice [25,26], in
the presence of a magnetic π -flux (i.e., half a flux quantum)
per plaquette [23], and it can be attributed to destructive
interferences that fully localize any initially prepared wave
function. AB cages were first observed in networks of con-
ducting wires [27,28] and were recently realized in photonic
lattices [29,30].

The impact of interactions on AB cages has been investi-
gated in different regimes. At the two-body level, the char-
acteristic full-localization property of AB cages was shown
to be substantially altered by interactions, which couple dis-
tinct single-particle states localized at adjacent unit cells, and
hence introduce a mechanism by which the two-particle wave
function can spread over the entire lattice [31,32]. At the
many-body level, the new channels offered by the interactions
are responsible for the appearance of supersolidity at low fill-
ing [33] or pair condensation at commensurate filling [34,35];
see also Refs. [36–38]. However, not much is known regarding
the fate of AB cages in the presence of classical nonlinear-
ities, as captured by a nonlinear Schrödinger equation. This
scenario is particularly relevant to classical photonic systems,
e.g., arrays of coupled optical waveguides or exciton-polariton
pillars [39], where the nonlinearity of the medium becomes
significant at sufficiently high field intensity. Characterizing
the robustness of AB caging in the presence of nonlinearities
is particularly motivated by their recent realizations in pho-
tonics [29,30], where the propagation of intense light waves
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inside coupled-waveguide arrays can be accurately described
by a discrete nonlinear Schrödinger equation [40–42]. We
point out that quantum corrections to this classical descrip-
tion were discussed in Ref. [43], and we note that such
effects could be potentially enhanced in the presence of flat
bands.

In this article, we elucidate the fate of AB caging in the
presence of local nonlinearities, and we characterize the re-
sulting nonlinear dynamics that could be observed in photonic
realizations [29]. We demonstrate the generic survival of AB
caging in this setting and focus our study on specific solutions
so as to highlight a characteristic breathing dynamics of the
field intensity, which we describe using a simple effective
two-mode model analogous to a bosonic Josephson junction.
This analogy offers an intriguing link with the physics of
weakly interacting Bose-Einstein condensates in tilted dou-
ble wells [44]. Besides, motivated by the formal similarity
between the nonlinear Schrödinger equation for the propaga-
tion of classical-light fields and the Gross-Pitaevskii equation
describing weakly interacting bosons [45], we explore the
interplay of caging and interactions deep in the quantum
regime, by studying the dynamics of a small ensemble of in-
teracting bosons. These exact-diagonalization studies indicate
that quasicaged dynamics could be observed in interacting
quantum systems, such as superconducting circuits [46] and
ultracold atoms in optical lattices [47].

II. MODEL

We consider the dynamics of a classical field defined on a
one-dimensional rhombic (diamond) chain with nonvanishing
flux φ per plaquette and onsite nonlinearity (“interaction”) U ,
as described by the nonlinear Schrödinger equations [29,39]

i ∂t an = −J (bn−1 + cn−1 + eiφbn + cn) + U |an|2an,

i ∂t bn = −J (e−iφan−1 + an) + U |bn|2bn,

i ∂t cn = −J (an−1 + an) + U |cn|2cn. (1)

The quantities an(t ), bn(t ), and cn(t ) are the field amplitudes
for the sites An, Bn, and Cn in the nth unit cell; see Fig. 1(a)
for a definition of the sites indices. The parameter J denotes
the hopping amplitude between neighboring sites. For conve-
nience, a gauge choice is made in Eq. (1) such that the flux
within each plaquette φ enters the model through a single
Peierls phase factor [48] in each unit cell.

For a flux φ = π and negligible nonlinearity (U = 0),
the system displays three flat bands at energies ε± = ±2J
and ε0 = 0, a regime known as Aharonov-Bohm caging: the
spectrum displays only fully localized eigenstates [23]. The
corresponding eigenstates can be written as |v±〉 = |Bn−1〉 +
|Cn−1〉 ∓ 2|An〉 − |Bn〉 + |Cn〉 and |v0〉 = |Bn−1〉 + |Cn−1〉 +
|Bn〉 − |Cn〉, respectively. When φ �= π the zero-energy flat
band survives, but the upper and lower bands become
dispersive.

A. Caged solutions in the presence of nonlinearities

We henceforth focus on the caging limit φ = π . The full lo-
calization of the spectrum is expected to break in the presence
of interactions, since the latter couple distinct neighboring

(a)

(b)

FIG. 1. (a) Rhombic lattice with flux φ per plaquette. The gauge
choice for the Peierls phase factors in Eqs. (1) is represented by
arrows (see intracell A-B bonds). (b) Configuration used as the input
for nonlinear caging dynamics; here 0 � α � 1. In the noninteract-
ing limit, this configuration with α = ±1/2 corresponds to states in
the upper and lower bands, respectively. The normalization constant,
which depends on the total number of particles N , is shown.

localized states, thus introducing a mechanism for the spread-
ing of the wave function across the lattice; see Ref. [31] for
the two-body case, and Ref. [35] for the many-body case
and a discussion of the interaction terms arising among flat-
band states. In contrast, as it can be proven from Eq. (1),
caging still occurs in the presence of classical nonlinearities,
and the corresponding dynamics is robust with respect to
delocalization for any arbitrary initial state. A pivotal role
in this mechanism is played by the hub sites An, which
can block the spreading over time even in the presence of
nonlinearities. The resulting dynamics thus remains confined
(caged) between two A sites. Locality is a crucial ingredient
in this case, since long-range nonlinear terms would instead
break the cages. We have validated the previous statements
by using random initial configurations: while caged dynamics
is always observed in the presence of local or short-ranged
(nearest-neighbor) nonlinearities, it is already substantially
deteriorated in the case of (see Appendix).

For the sake of simplicity, we restrict ourselves to caged
solutions that are characterized by vanishing amplitudes at
the lattice sites An−1 and An+1 at all times, thus leav-
ing the dynamics confined in the intermediate five sites;
see Fig. 1(b). Setting an−1(t ) = an+1(t ) = 0 together with
ȧn−1(t ) = ȧn+1(t ) = 0 yields the conditions bn−1(t ) = cn−1(t )
and bn(t ) = −cn(t ). We decompose the three independent
complex numbers bn−1(t ), an(t ), and bn(t ) into amplitude
and phase, and we consider the case of a symmetric time
evolution |bn−1(t )| = |bn(t )|. After some algebra, one finds
that this ansatz for the dynamics fixes a condition for the
phases, namely, arg[bn(t )/bn−1(t )] = π unless |an(t )| = 0.
We therefore conclude that states of the form shown in
Fig. 1(b) are caged solutions to the nonlinear equations of
motion (1). We point out that this specific field configuration
actually shares the same phase profile as that of the lowest-
energy eigenstates |v−〉 associated with the single-particle
spectrum.
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Consequently, we are left with only two independent quan-
tities, which we parametrize as

an(t ) ≡
√

N − n(t )

2
eiθ (t ),

bn−1(t ) ≡
√

N + n(t )

8
eiϕ(t ), (2)

where we have defined the conserved total number of particles
in the cage N = |an|2 + 4|bn−1|2. The relevant degrees of
freedom are the fractional particle imbalance z(t ) ≡ n(t )/N ,
with −1 �z� 1, and the phase difference ξ (t ) ≡ θ (t ) − ϕ(t ),
which satisfy the following coupled nonlinear equations,

ż(t ) = −4J
√

1 − z(t )2 sin ξ (t ),

ξ̇ (t ) = 4J
z(t )√

1 − z(t )2
cos ξ (t ) + 5

8
gz(t ) − 3

8
g, (3)

where we have defined the nonlinear coupling g ≡ NU .
Interestingly, the coupled equations (3) can be obtained

from the classical Hamiltonian

H = −4J
√

1 − z2 cos ξ + 5

16
gz2 − 3

8
gz, (4)

by considering ξ as a generalized coordinate and z as its
canonically conjugate momentum. In this respect, Eqs. (3)
and (4) describe the dynamics of a nonrigid pendulum, and
H describes the conserved energy of the system. This shows
how restricting the dynamics to the solutions in Eq. (2), whose
equations of motion correspond to Eqs. (3), allows one to map
the initial problem onto a two-mode model for an amplitude
degree of freedom and a phase degree of freedom. This
mapping offers an intriguing reinterpretation of the nonlinear
AB-caging dynamics in terms of that associated with a weakly
interacting Bose condensate in a tilted double well [49,50] or
in two hyperfine states [51]. In other words, this nontrivial dy-
namics corresponds to that of a generalized bosonic Josephson
junction [44,52], which displays, for instance, macroscopic
self-trapping for high-energetic excitations [53] and “twist-
and-turn” spin squeezing [51].

Moreover, the ground state of H, occurring for ξ = 0 and
for values of z0 that depend on the ratio g/J , corresponds to
a stationary discrete soliton solution that can be continuously
connected to the single particle eigenstates when g/J → 0.
These solutions typically occur in flat-band systems, occupy
few sites, and have no exponential tail [42,54–57].

B. Time evolution of nonlinear caged states

We now focus on the time evolution in the presence of π -
flux, and we reveal that nonlinear caging is characterized by a
breathing dynamics of the field intensity inside the cage.

Based on the results presented in the previous paragraph,
we consider an initial state at t = 0 of the form bn−1(0) =
cn−1(0) = −bn(0) = cn(0) and an(0) �= 0, and we define the
parameter α = bn−1(0)/an(0). Furthermore, we fix the initial
phase difference to ξ (0) = 0 [see Fig. 1(b)], which amounts
to take a real valued α>0. Together with the “interaction”
parameter, g = NU , these parameters uniquely determine the
initial conditions of the problem. For simplicity, we will
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FIG. 2. (a) and (b) Time evolution of the normalized intensity
(particle density), I = |ψn|2/N , on a diamond chain with π -flux and
L = 13 sites, for g = 2.5J: (a) α = 0.1 and (b) α = 0.4. Here the
density is normalized with respect to the total number of particles N .
A breathing motion together with the caging of the total intensity is
observed. (c) and (d) Time evolution of the intensity IA, associated
with the central A site in Fig. 1(b), as obtained from the exact
nonlinear Schrödinger evolution (line) and from the effective two-
mode model (circles). All parameters are the same as in panels
(a) and (b).

consider units where U = J = 1 in the rest of the discus-
sion, which potentially corresponds to a regime of large
nonlinearities.

In Figs. 2(a) and 2(b) we show the resulting periodic
dynamics, for a nonlinear regime corresponding to g = 2.5J ,
and for two different initial conditions (α = 0.1 and α = 0.4).
In Figs. 2(c) and 2(d), we demonstrate that the full nonlinear
Schrödinger dynamics can be quantitatively described by the
two-mode dynamical equations (3). The dynamics that we
have presented so far corresponds to the case where one
prepares an initial state that is characterized by a nonvanishing
displacement z(0) �=0 with respect to the minimum (ground
state) of the classical Hamiltonian H in Eq. (4); see discussion
above on the stationary solutions of the equations of motion
and the white dashed line in Fig. 3(a). When z(0)≈z0, the
system is in the regime of small oscillations and one expects
purely harmonic dynamics, whereas the dynamics becomes
anharmonic when z(0) is sufficiently far from z0 (as revealed,
for instance, by the Fourier spectrum).

We have investigated caging in a large region of parameter
space, and we characterize the resulting periodic breathing
dynamics by representing its main (smallest) frequency ω in
Fig. 3, for both g>0 and g<0. The main frequency of these
oscillations displays a nonmonotonic behavior as a function
of g, and it is given by ω = 4J when g → 0, as expected from
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FIG. 3. (a) Main frequency of the breathing dynamics for (at-
tractive) g < 0 and (repulsive) g > 0 interactions. The white dashed
line corresponds to the minimum of the classical Hamiltonian H in
Eq. (4) occurring for ξ = 0, namely, a stationary discrete soliton
solution of the nonlinear Schrödinger equations. When g → 0, the
minimum reaches α → 1/2, which corresponds to the localized
states of the single-particle lowest energy band. (b) Cut in panel (a) at
α = 0.2.

the fact that the initial state overlaps with the upper and lower
flat bands of the single-particle spectrum in this limit. We note
that the periodicity of the oscillations at small negative g is in
agreement with the results of Ref. [58].

III. QUANTUM DYNAMICS

The classical regime explored in the previous section,
raises the question whether caged dynamics might also take
place in the quantum regime. It is known that quantum pro-
cesses couple neighboring unit cells through particle colli-
sions and that caging is therefore expected to break down in
the quantum regime [31,32,35]. Here we show that despite
pairs of particles can freely delocalize, states with larger
number of particles per site can have a short-time quasicaged
dynamics within reasonable timescales before full delocaliza-
tion takes place.

We have performed exact-diagonalization calculations
with N = 2, 3, 4, 5 particles in a rhombic chain with L = 13
sites [four complete rhombis; see Fig. 4(a)] using a Bose-
Hubbard model with onsite interactions described by the
Hamiltonian

Ĥ = −J
∑
〈i, j〉

(eiθi j ψ̂
†
i ψ̂ j + H.c.) + U

2

∑
i

n̂i(n̂i − 1), (5)

where the Peierls phases θi j are chosen such as to have a
π -flux per plaquette and the fields ψ̂i describe particles on
the A, B,C sites (when i = 3n, ψ̂3n ≡ ân, ψ̂3n+1 ≡ b̂n, and
ψ̂3n+2 ≡ ĉn). In direct analogy with the classical state in
Fig. 1(b) with α = 0, we have chosen an initial state with all
particles in the central A site,

|ψ (t = 0)〉 = 1√
N!

(â†
n)N |0〉, (6)

and explored several values of the onsite interaction U , keep-
ing the product g = NU fixed.
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FIG. 4. (a) Lattice with L = 13 sites and π -flux used for the
exact-diagonalization calculations in the quantum regime. The ar-
rows indicate the gauge choice used here and in the main text. The
shadowed region includes the sites forming the smallest cage in the
classical limit. (b) and (c) Normalized density time evolution of the
central A site for (b) g = 1.2 J and (c) g = 2.4 J with N = 2, 3, 4, 5
bosons. (d) and (e) Normalized total density inside the cage sites
highlighted in panel (a) with the same values of g as in (b) and (c).

In Figs. 4(b) and 4(c), we plot the short timescale evolution
of the density in the central A site for different values of N ,
which shows a clear damped oscillation. In Figs. 4(d) and 4(e),
we plot the density within the five cage sites of Fig. 4(a)
normalized with respect to the total number of particles N .
The number of leaked particles �N = N − Nc (shown in
Fig. 5) does not strongly depend on N for N > 3 and remains
bounded to �N � 0.5, such that most of the particles (≈90%)
remain in the cage sites after a time t ≈40h̄/J thus entering a
“quasicaged” regime.

The suppression of leaked density raises the question
whether quantum caged dynamics with well-defined proper-
ties already takes place with few particles per site. This is
not the case with N = 2 already at small g < J: after a few
damped oscillations the density completely spreads outside
the cage. However, when increasing the number of particles
one observes a peculiar evolution inside the cage that shows
collapse and revival features [see Figs. 6(a) and 6(b)] that
are reminiscent of collapse-revival dynamics occurring in

(a) (b)

FIG. 5. Leaked number of particles �N = N − Nc, where Nc is
the total number of particles in the cage at time t . Parameters chosen
as in Figs. 4(d) and 4(e) but with a longer timescale.
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(a) (b)

(c) (d)

FIG. 6. (a) and (b) Normalized density time evolution for N = 4
bosons and (a) g = 1.2 J and (b) g = 2.4 J showing collapse and
revival features (blue line). The dashed red line tracks the total
density inside the cage of Fig. 4(a). (c) and (d) Normalized density
time evolution of the full rhombic chain, parameters as in panels
(a) and (b).

coherent bosonic systems [45,59–61], whereas the leaked den-
sity remains small over several revival periods. In particular,
oscillations as in Fig. 6 have been identified in imbalanced
double wells in the quantum regime [59]. Moreover, we
have also observed in our simulation that the revival period
increases with N while keeping g constant, as discussed in
Ref. [59]. These facts suggest that the double-well picture
presented in Sec. II A in the classical case may be extended
to the quantum regime as well. Elucidating the possible
crossover from the quantum “quasicaged” to the classical
“caged” regimes explored in this work therefore appears as
an intriguing perspective.

IV. CONCLUSIONS AND EXPERIMENTAL
CONSIDERATIONS

We have shown that AB caging survives in a rhombic
lattice with π -flux in the presence of local (classical) nonlin-
earities independently of the strength of the latter. Similarly to
the linear (“single-particle”) situation [29], caging exists due
to the presence of hub sites An [see Fig. 1(a)], which block the
spreading of the wave function through phase interferences.
Here locality is essential in that long-range (i.e., at least
next-nearest-neighbor) nonlinearities are required to break the
cages. For onsite nonlinearities, and when the cage includes
a single site A, the corresponding breathing motion of the
density can be understood in terms of a simple two-mode the-
ory with a period of oscillation that displays a nonmonotonic
behavior.

Imperfections (e.g., the presence of disorder [62,63], de-
viations from the initial conditions or from the π -flux limit)
can potentially lead to instabilities in the dynamics, which
in turn will alter the interference processes and the resulting
time evolution. However, if the instabilities associated with
these modes are weak, namely, if the instability manifests
itself within a timescale τ such that ωτ >1, where ω is the
frequency of the expected oscillations, one should still be
able to observe the nonlinear dynamics associated with the

specific (ideal) initial conditions considered in this work. A
linear stability analysis performed on the state represented in
Fig. 1(b) would allow one to extract the relevant timescale
τ and thus identify the optimal set of parameters for a given
experimental setting; see also the discussion of stability in the
numerical study reported in Ref. [58].

Ultrafast-laser-fabricated waveguide arrays are a promising
platform to observe nonlinear caging dynamics, especially in
light of the recent experimental realizations [29,30]. In this
platform, the propagation of the electric field is described by a
nonlinear Schrödinger equation, where the nonlinear term de-
scribes the optical Kerr nonlinearity of the medium [5,39,41]
and the waveguide-propagation coordinate plays the role of
time. The largest “interaction” strength g that can be achieved
in coupled-waveguide arrays depends on the nonlinear re-
fractive index of the medium, on the effective area of the
waveguide mode, and on the wavelength and the power of the
incident light [40]. In order to provide an accurate estimation
of realistic nonlinearities, we have performed a preliminary
experimental analysis of these effects in a coupled-waveguide
array realized in a borosilicate glass substrate. Our measure-
ments indicate that one can reach values of the order of
|g/J|≈10, thus making the exploration of our results possible
in current experiments. Also, we note that the short-time
(t ∼4h̄/J ) dynamics is relatively easy to access experimen-
tally, which should allow one to observe the aforementioned
breathing motion and to measure the corresponding frequency
shift caused by nonlinearities. The possibility of detecting
long-time dynamics is strongly constrained by the relatively
small propagation distance of the waveguides (≈10 cm), a
limitation that can nevertheless be overcome through state-
recycling techniques [64]. Finally, the presence of losses,
which would decrease the total guided optical power during its
propagation, must be carefully optimized in any experimental
realization.

Cold atoms in optical lattices could offer another versatile
platform to observe flat-band phenomena [65,66]. Interac-
tions can be tuned in these settings [47], using Feshbach
resonances, and disorder (a source of instability) is typically
absent. These systems would allow one to investigate the
interplay of AB caging and interparticle interactions, deep in
the quantum regime.

Note added. Recently, we became aware of another
study dedicated to the impact of nonlinearities in photonic
Aharonov-Bohm cages [58].

ACKNOWLEDGMENTS

We thank G. Salerno and R. R. Thomson for helpful dis-
cussions. N.G. and M.D. acknowledge support from the ERC
Starting Grant TopoCold. S.M. thanks Université Libre de
Bruxelles (ULB) and Scottish Universities Physics Alliance
(SUPA) for hosting and funding through the Postgraduate,
Postdoctoral and Early Career Researcher Short-Term Visits
Programme-2018, respectively.

APPENDIX: DYNAMICS OF A RANDOM INITIAL STATE
WITH SHORT- AND LONG-RANGE NONLINEARITIES

The discrete nonlinear Schrödinger equations defined on
the rhombic chain (see main text) always lead to caged
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dynamics; the corresponding cage is specifically made of
sites that are bounded by two An sites, which therefore
play the role of a hub. This fact is a consequence of
the locality of nonlinearities (“interactions”) and can be
immediately understood if one considers the two relevant
cases:

(1) If a An site has a vanishing amplitude at time t and
is one of the boundary sites of the cage, the equations of
motion for the sites outside the cage will have no dynamics
because they are uncoupled from the cage, thus keeping a zero
amplitude over time;

(2) If a An site has a nonvanishing amplitude at time t and
there is no amplitude for m < n (or m > n), the dynamics
of the external Bn−1 and Cn−1 sites (or Bn and Cn) will be
symmetric in amplitude and in-phase (or out-of-phase), as for
the state considered in the main text. Therefore, destructive
interference will take place on the site An−1 (or An+1), which
becomes one of the hubs of the cage as in point (1).

The cases described above build on the locality of non-
linearities, which preserves the interference process that is
behind the caging phenomenon. A simple inspection of the
equations shows that even nearest-neighbor nonlinearities do
not change these conclusions. Indeed, the peripheral B and
C sites discussed above in (2) are nevertheless coupled to
the same An hub site and the symmetry properties of their
equations discussed in (2) is not affected.

(a) (b)

FIG. 7. (a) Classical time evolution of a random configuration
with onsite (U ) and nearest-neighbor (VNN ) nonlinearity showing
caged dynamics for U = VNN and g = 6. (b) Same as in panel (a) but
with next-nearest-neighbor nonlinearity VNNN showing loss of caging
and propagation of the field over the entire lattice.

Instead, when next-nearest-neighbor nonlinearities are in-
cluded, B and C sites in neighboring unit cells are directly
coupled. Therefore, a density imbalance or a random phase
difference between B and C sites in one unit cell will generate
an asymmetric dynamics in the neighboring unit cells. The
interference process required for caging cannot take place,
thus yielding the field to propagate across the entire lattice.

These conclusions have been tested using a random initial
configuration in the case of (1) onsite and nearest-neighbor
nonlinearities and (2) onsite and next-nearest-neighbor non-
linearities. In Figs. 7(a) and 7(b), it is shown that caging is
indeed preserved for (1) and lost for (2).
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