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ABSTRACT 

 Lithium Orthosilicate (Li4SiO4) based sorbents have been reported to show relatively 

high CO2 capture capacity, high stability and require lower regeneration temperatures 

than other high-temperature sorbents. Based on these properties, a capture plant concept 

could be envisaged, aiming for achieving as low as possible CO2 capture penalties. 

Accordingly, this work presents a conceptual AspenPlus® process simulation study that 

evaluates the thermal integration of Li4SiO4-based looping systems into a Natural Gas 

Combined Cycle (NGCC) power plant with the addition of a secondary oxyfuel 

combustion system and a secondary steam cycle. Based on previously obtained 

experiment results, absorption and desorption temperatures of 525 and 700°C, 
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respectively, a sorbent fractional conversion of 0.2 in the absorber and a sorbent make 

up ratio of 0.01, were used in the model. The results show that implementation of a 

Li4SiO4-based high temperature carbon capture (HTCC) system into a NGCC power 

plant reduces the plant efficiency by 9.2% penalty points. This energy penalty is close 

to the one obtained from the integration of first-generation amine-based capture 

technologies, 8.4% penalty points, and lower than the one for CaO-based HTCC plants 

(12.5 % points), which were evaluated under the same assumptions as those used in this 

work. A sensitivity analysis on the impact of varying different process parameters on 

plant efficiency and integration penalties has been performed. Sorbent regeneration 

temperature was observed as the most affecting parameter. However, it was found to 

be constrained by upper and lower limits. In line with the current findings, using 

improved Li4SiO4 sorbents, could lead to further reduction in CO2 capture penalties.  

1. Introduction 

Limiting the global warming to 1.5°C is considered as one of the greatest worldwide 

challenges nowadays. To achieve such target, several pathways were proposed and 

developed to reduce greenhouse gases (GHGs) by controlling the increase of the 

atmospheric levels of Carbon dioxide (CO2) as CO2 is considered the main dominant 

factor of long-lived climate forcers (LLCFs)1. Carbon dioxide capture and storage 

(CCS) was found to be one of the promising solutions to achieve the global warming 

mitigation pathways 2-4. In CCS, the CO2 is captured from large flue gas sources, such 

as power plants, refineries and industrial plants, and followed by CO2 transportation to 

storage or injection locations. There are various technological methods for CO2 capture. 

The most extensively investigated ones are liquid solvents (especially amine-based), 

solid sorbents and membranes5. Although amine-based technology is considered the 
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closest to market, it suffers from a large energy penalty when integrated in power and 

industrial plants due to low working temperature and high regeneration energy 6-7. For 

example, Sanchez et al8, reported that the net plant efficiencies of coal and natural gas 

power plants have been decreased by 11.7 and 8.4 % points respectively when 

conventional amine based technologies are applied for CO2 capture. Also, oxyfuel 

combustion was frequently proposed as a solution for CO2 emissions from NGCC 

plants in a process called semi-close oxygen combustion combined (SCOC-CC) cycle. 

Such oxyfuel plants were reported to have efficiencies ranging from 36.7% 9 up to 

53.9% 10 for a 1400°C class oxyfuel gas turbine. However, these oxyfuel plants face 

several technical issues such as the high temperature at the turbine outlet, which needs 

an efficient cooling system for the gas turbine blades 11.  Also, from an operational point 

of view, the oxyfuel working conditions for the gas turbine combustor are significantly 

different from the air blown gas turbine combustor conditions 12 due to the different flue 

gas properties.   

As an alternative option, solid sorbents based processes have been investigated as an 

energy efficient separation technology for CO2 capture, especially for high temperature 

applications13-14 such as NGCC plants. Their main advantage is that they can capture 

CO2 at high (>400 ºC) working temperatures with no need to cool down the flue gas to 

ambient temperature. This will potentially help saving energy and improving the plant 

efficiency especially when utilizing the hot extracted CO2 stream inside the plant as a 

heat source 6, 15.   

In recent years, the utilization of regenerable lithium metal oxide sorbents as high 

temperature CO2 acceptors in the temperature range of 450-700°C was extensively 

investigated 16-20. Among the investigated sorbents lithium orthosilicate, Li4SiO4, is 

considered a promising material for high temperature CO2 capture applications due to 
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a good CO2 capture capacity, up to  36.7 wt. %19, and lower regeneration temperature 

(< 750°C) when compared to other high temperature sorbents such as CaO-based 

sorbents 16, 21-23. When Li4SiO4 is exposed to a CO2 stream at appropriate temperature, 

CO2 is absorbed by the sorbent through the following reversible chemical reaction:  

 

𝐿𝑖#𝑆𝑖𝑂# + 𝐶𝑂( ↔ 𝐿𝑖(𝑆𝑖𝑂* + 𝐿𝑖(𝐶𝑂*      R(1)    

                                 

Based on the stoichiometry of reaction R(1), the maximum CO2 absorption capacity 

of these sorbents is 36.7 wt.%., which is higher than the amine benchmark (8%)24. Even 

though there are numerous studies investigating the reactivity and stability of lithium-

based sorbents 25-29, both in powder and pellet forms, that prove their cyclic and thermal 

stability 27, 30, their potential to decrease the energy penalty of the capture system is yet 

to be established. To the best of authors’ knowledge, there are no comprehensive studies 

so far of the integration of Li-based capture systems into either power or industrial 

plants. These studies would enable the comparison to other capture technologies as well 

as to second-generation alkali-based materials and could provide useful guidance for 

the development and possible application of synthetic lithium-based sorbents. 

 

In this work, the process integration of a high temperature Li4SiO4-based CO2 capture 

system is investigated as a potential energy efficient solution. The process is performed 

through AspenPlus® software and the study aims to investigate the energy penalty due 

to the integration of the capture plant and it also evaluates how to achieve a reduction 

in the energy demand for regeneration. Hence, this work analyses the thermal 

integration of Li-based sorbents into a Natural Gas Combined Cycle (NGCC) power 

plant with the addition of a secondary oxyfuel combustion system and a secondary 
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steam cycle. The study focusses on the potential advantages of using Li-based sorbents, 

which regenerate at lower temperatures and show a higher stability than those sorbents 

used in calcium looping systems. Section 2 in this paper describes the principles of the 

capture technology based on solid sorbents, its energy requirements and summarizes 

the integration concepts that could be applied to Li–based sorbents based on what it has 

been developed in the past for the calcium looping process. Section 2 also covers 

modelling methodology and assumptions for the reference case with and without CO2 

capture. Section 3 discusses the integration results with respect to Plant efficiency and 

associated penalties. The results are then compared to other technologies including 

calcium looping, standard monoethanolamine (MEA) and more advanced amine-based 

solvents when integrated in the same plant. Section 3 also presents the impact of varying 

several process parameters, such as regeneration temperature, sorbent fractional 

conversion and make up ratio, on net plant efficiency and energy penalties along with 

possible future improvements. Obtained results could be used as guidance for future 

experimental and kinetic testing studies on the absorption and regeneration of Li-based 

sorbents so further improvements on net plant efficiencies could be achieved.  

 

The next step from this work is the technoeconomic assessment of the proposed 

integration of a Li-based High temperature looping CO2 capture system into NGCC 

plants. This technoeconomic assessment is outside the scope of this work and will be 

presented in a follow-up study.  

 

2. Modelling methodology and assumptions 

2.1 Cases process description  
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The process design for NGCC power plant was done as per European Benchmarking 

Task Force (EBTF) common frame work 31. The NGCC plant was modelled with and 

without capture to evaluate efficiency, power and electrical penalties associated with 

carbon capture. Model details and assumptions are discussed in section 2.2. Each case 

is described separately in the following sub sections.  

2.1.1 Base case  

The considered NGCC Power Plant, illustrated in Figure 1, is a state-of-the-art large-

scale power plant which consists of two large scale identical Gas Turbine (GT) 

generators.  

 

Figure 1. Process flow diagram of the 2x1 NGCC power plant base case. Only one GT 

and HRSG are illustrated in the figure. 

 

 Each unit has a single GT “F Class” and a three-pressure level Heat Recovery Steam 

Generator (HRSG) connected with a single steam turbine. In the current work, the plant 

configuration is denoted as 2x1, i.e., two gas turbines and a single steam turbine.  

As seen in figure 1, the air is being compressed in an air compressor, K-1, before being 

burned with the NG fuel in the GT combustor. The high-pressure hot flue gas resulted 

from the combustion is directed to the turbine K-2 to generate electricity.  
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The hot flue gas existing the turbine K-2 is passed to a HRSG unit for heat recovery.  

The HRSG generates steam at three different pressure levels: low pressure - purple 

color streams, medium pressure - blue color streams and high pressure - orange color 

streams. Each pressure stage has an economizer, which helps to reduce the energy 

consumption and preheat the water, boiler, which generates the steam at each stage, and 

superheater, to generate superheated steam.  

 

Since the plant with 2 x 1 design contains only one three pressure stage steam turbine, 

the steam generated from each pressure stage in each HRSG is combined before 

entering the relative pressure steam turbine.  In figure 1, K3, K4 & K4 represents high, 

intermediate and low-pressure steam turbines respectively.  

The HRSG has a single reheat for the intermediate pressure steam at which the 

intermediate pressure steam is reheated in IPS-1 & 2 to increase the temperature of the 

superheated intermediate steam before entering the intermediate steam turbine, K-4. 

Hot water is extracted from intermediate pressure section at V-4 in the HRSG to preheat 

the natural gas fuel to 160ºC, in E-2, before entering the combustor. The gas turbine 

air-to-fuel ratio is kept constant and simulations are carried out for full load operation. 

An inland location in central Europe and a cooling system based on cooling towers and 

considering the ISO standard for ambient conditions are assumed.  The LP steam exiting 

the LP steam turbine, K-5, is being cooled and condensed in the condenser, E-3, before 

being pumped to the deaerator drum, D-1, to remove any dissolved gases from the water 

before being circulated to the HRSG unit. On the other hand, the final flue gas stream, 

red stream, exits the HRSG low pressure stage to the stack.  

2.1.2 HTCC plant and possible heat integration  
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The Li4SiO4 / Li2CO3 HTCC conceptual plant design (Fig. 2) was chosen to be like 

the one previously envisaged for high temperature calcium looping (CaL) systems 

integrated in NGCC plants source15, 32-33.  

 

Figure 2. Conceptual design of a Li4SiO4-based HTCC Plant. 

As seen in Figure 2, in a Li4SiO4 / Li2CO3 HTCC looping system, the Li4SiO4/ Li2CO3 

solids are circulated between two reactors, absorber and regenerator without any heat 

recuperation between the two fluidized solids streams. The CO2 capture takes place in 

the absorber (C-1) following the reaction R(1) to the right direction. The sorbent is then 

regenerated at the required temperature in the regenerator (C-2) following the reverse 

reaction of R(1). Sorbent absorption and regeneration working temperatures of 525 and 

700 ºC, respectively, were chosen based on previously obtained experimental data on 

Li4SiO4 under NGCC flue gas conditions34. The best operating temperature for each 

reactor was selected after performing temperature programmed adsorption / desorption 

lab tests under the operational conditions of each reactor, respectively. For the 

absorption process, the temperature programmed absorption test was performed under 
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4% CO2 concentration and it was found that 525°C is the best absorption temperature 

at which the maximum CO2 uptake takes place. Similarly, for desorption process, 

temperature programmed desorption test was performed under 70% CO2 concentration, 

which is similar to oxyfuel combustion conditions. It was found that a desorption 

temperature higher than 660°C was required to achieve full regeneration. In line with 

the previous mentioned results, absorption and desorption temperatures of 525 and 

700°C, respectively, were chosen as the optimum cyclic operational temperatures for 

the HTCC unit.  

To integrate the HTCC looping system in a NGCC plant, the capture system should 

be placed downstream the GT outlet as can be seen from figure 3, which illustrates the 

process flow diagram of the NGCC power plant after the integration of HTCC unit. 

 

 

Figure 3. Conceptual integration of a Li4SiO4 based HTCC plant into the NGCC power 

plant base case. 
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 In such case, the temperature of the GT flue gas (T1) is normally around 600°C which 

is higher than the required absorption temperature of 525 ºC. The excess heat in the flue 

gas could be best utilized for electricity production in the primary energy recovery 

system heat exchanger (E-1), as shown in Figure 2. After E-1, flue gas containing the 

CO2 is contacted in the carbonator (C-1), at temperature = Tabs, with the lithium sorbents 

(Li4SiO4) coming from the regenerator (C-2). These sorbents enter the absorber at the 

regeneration temperature (Treg=700°C) and the carbonation reaction takes place at the 

absorption temperature (Tabs). Since the carbonation is highly exothermic (142 kJ/mol) 

30, a fluidized bed reactor with in-bed heat transfer equipment (E-2) was chosen, to 

allow for temperature control and heat recovery in the absorber. The design of the in-

bed heat transfer system , (E-2),  is similar to the design of the in-bed temperature 

cooling system followed in the 200kW fluidized bed pilot scale 35 at which two heat 

exchangers were added to the dense and lean region, respectively, to cool down the 

fluidized bed and control the temperature inside the fluidized bed.  

  During absorption, the sorbent is fluidized using the plant flue gas. This is similar 

to fluidized bed designs previously used in similar CaL systems 36.  

To regenerate the carbonated lithium sorbents and recover CO2 ready for storage or 

utilization, the fluidized sorbent is directed to the regenerator. To avoid dilution inside 

the regenerator, direct oxyfuel combustion is used where the oxyfuel combusted gas is 

acting as the fluidizing medium in the desorber. Heat is recovered from the hot CO2 

stream, leaving the desorber, to generate electricity through a secondary HRSG (E-4). 

A novel heat integration scheme has been proposed, where a fraction of the excess heat 

in the CO2 stream is used to pre-heat both the natural gas stream and the oxygen rich 

stream in (E-5) and (E-6) respectively before being supplied to the regeneration column. 

To overcome sorbent deactivation, fresh Li4SiO4 is added to the absorber with 
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possibility of preheating by using the CO2 hot stream coming from the desorber. The 

spent sorbent is extracted from the desorber.  

Integrating this HTCC design in a NGCC plant yields more flexibility in the plant 

modes of operation, since it allows for the primary steam cycle to operate with the 

capture unit turned on or off whenever needed. In addition to that, this configuration 

offers several sources for potential heat recovery, such as the exothermic reaction inside 

the absorber and hot CO2 stream exiting the desorber. From these sources, the heat can 

be recovered which results in reducing the energy penalties associated with the CO2 

capture process.   

 

2.1.3 Base case with HTCC plant  

   This case comprises a 2x1 combined cycle identical to the base case in which a 

Li4SiO4 based HTCC plant has been integrated. The capture unit configuration is based 

on the one previously presented in Fig. 2. The process flow diagram for the base case 

with the integrated HTCC plant is illustrated in Fig. 3. The conceptual design of the 

HTCC plant is done with the following assumptions:  

• The make-up flow rate is very small (0.01 Kg fresh Li4SiO4/ Kg circulated 

Li4SiO4), so there is no need to use heat exchangers with spent sorbent. That 

was decided based on the high stability of the sorbent observed during cyclic 

test of the sorbent under NGCC flue gas absorption condition and oxy-fuel 

combustion desorption condition as observed by M.T. Izquierdo et al 34. 

• The final CO2 stream before the compression train is by passed to another heat 

exchanger (E-9) to heat up the make-up stream before being fed to the 

absorber. That helps to improve the secondary steam cycle efficiency by 
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transferring part of the hot CO2 stream heat to the absorber through the sorbent 

make up flow which is being recover in turn in the in-bed heat exchangers.   

• Heat integration with the CO2 compression excess heat has not been 

considered. That was decided to have an equal comparison to other capture 

technologies applied to the same NGCC reference case as will be discussed 

in section 3.  

•   The absorption heat is supplied at constant temperature (525ºC) and is used 

to pre-heat the high-pressure feed water and generate superheated steam. That 

was assumed in line with the utilization of the in-bed heat exchangers to 

control the temperature inside the absorber as described in section 2.1.2.  

• Additional superheating of the steam is possible using the excess heat from 

the CO2 product stream and a single re-heat of the intermediate pressure steam 

is used to achieve suitable values of the dryness fraction (> 90%) at the low-

pressure steam turbine exhaust and improve steam cycle efficiency in the 

secondary HRSG.  

In Figure 3, the absorber C-1 was adjusted to achieve 90% CO2 capture at a sorbent 

fractional conversion of 0.2 and 525°C absorption temperature by adjusting the sorbent 

recirculation rates. On the other hand, the regenerator C-2 was considered to achieve 

full sorbent regeneration which is consistent on the sorbent regeneration results 

obtained from testing Li4SiO4 under NGCC flue gas absorption condition and oxy-fuel 

combustion desorption condition as described in 34. To provide the required heat for 

sorbent regeneration, an oxyfuel combustion takes place in the desorber at 700°C. A 

conventional air separation unit (ASU) with power consumption of 200 kWh/t O2 
32 is 

assumed to produce a 95% pure O2 stream required for combustion. 
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 The absorption heat and excess heat from the HTCC unit is recovered in a secondary 

high pressure (HP) HRSG with single reheat for steam generation as in the case of 

Berstad et al 32.  

The main advantage of having a second steam cycle is that it gives more flexibility 

from plant operational point of view. This flexibility enables to achieve full bypass to 

the HTCC system, in case of peak hours operation or maintenance shutdown, without 

affecting the primary steam cycle and electricity production from the original plant. In 

addition to that, the main equipment in the primary steam cycle, i.e. steam turbine and 

HRSG heat exchangers, have a design limitation with respect to turbine load and HRSG 

heat exchange area and any modification in this equipment would affect the plant 

integrity.  

Although, adding a secondary steam cycle is more favorable from a plant operational 

and integrity point of view, it is worth mentioning that it would lead to an increase in 

capital investment and operational cost as well which in turn affects the final price of 

electricity.  

For the secondary steam cycle, the heat is extracted from the absorber using two heat 

exchangers integrated inside the absorber to provide superheated steam at temperature 

of 518°C using the exothermic energy resulted from R(1). Dividing the extracted heat 

from the absorber between two heat exchangers helps to have a constant temperature 

distribution across the absorber so that the absorption process takes place at a fixed 

temperature equal to 525°C. The steam generated from the absorber heat exchangers is 

directed to a HP super heater for more superheating at 578°C. The pure CO2 stream 

exiting the regenerator at 700°C is passed through the secondary HRSG to generate 

steam and electricity before entering the compression and transportation train. As seen 
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in figure 3, the hot CO2 stream is used first to superheat the HP steam to 578°C before 

entering the HP turbine. The steam exits the HP turbine at temperature around 368°C 

and is passed through a two-stage single pressure reheat system using the hot CO2 

stream to generate intermediate pressure (IP) steam at temperature of 578°C. After the 

reheaters, the CO2 is used to preheat the HP boiler feed water to 483°C before entering 

the absorber in-bed heat exchangers.  

After the secondary HRSG, the final CO2 product stream, at 76°C, is cooled down to 

30°C before being compressed to 110 bars for transportation. The final compression 

pressure and compression pressure ratios for each compression stage are as per EBTF 

frame work recommendations 31. As shown in Figure 4, the compression train consists 

of 4 compression stages with intercooling to 30ºC after each stage based on the cooling 

system described in section 2.1.1 for the base case.   

 

Figure 4. Configuration of CO2 Compression train in modelling base case. KOD 

indicates a water knock-out drum. 

2.2 Modelling Assumption  

The modelling basis and assumptions for the NGCC power plant are as per European 

Benchmarking Task Force (EBTF) common frame work 31 and are available in the 
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supporting information to this article. AspenPlus® software has been used to build a 

rigorous steady state plant model and calculate heat and mass balances for all plant 

streams. The absorber was modelled using a stoichiometric reactor based on a fixed 

value of fractional conversion (0.2 on molar basis) which was considered similar to the 

one used for the integration of CaO sorbents in NGCC plants 32. The 0.2 molar basis 

fractional conversion was extracted from the lab Thermogravimetric Analysis (TGA) 

test results of the sorbent under NGCC flue gas absorption conditions (4% CO2 

concentration) and 525°C absorption temperature. A solid-gas contact time of 20 

minutes was assumed to achieve the 0.2 molar basis fractional conversion based on the 

lab results (Figure 5).  

 

Figure 5: Li4SiO4 sorbent fractional conversion under 4% CO2 concentration and 

525°C absorption temperature.  

High sorbent cyclic stability was assumed inside the absorber based on the sorbent 

cyclic test under NGCC flue gas absorption condition and oxy-fuel combustion 

desorption condition observed by M.T. Izquierdo et al 34. 

 The absorber unit was set to operate at 1 bar outlet pressure, absorption temperature 

of 525°C and a solid gas separator unit was added at the absorber exit to split the gas 

stream from any suspended solid particles with 100% assumed efficiency. The 

regenerator was modelled using a Gibbs reactor which is based on Gibbs free energy 
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minimization similar to calciner modelling assumptions followed in several studies in 

literature 37-40. It is set to operate at 1 bar pressure and regeneration temperature of 

700°C. ). A solid-gas separator unit is also added at the regenerator exit to split the gas 

stream from any suspended solid particles with 100% assumed efficiency. 

For oxyfuel combustion, the oxygen-to-natural gas ratio was adjusted to achieve 3% 

excess oxygen. The temperature of the oxyfuel combustion was moderated by dilution 

of the O2 stream of 95% purity with a fraction of the rich CO2 stream exiting the 

regenerator, to achieve 35% O2 purity (mol basis). A Polytropic CO2 compression train 

was modelled for CO2 compression and final CO2 transportation.  

 

2.3 Modelling evaluation parameters 

The following parameters are calculated to evaluate plant performance and associated 

penalties after the integration of HTCC unit including electricity power and electricity 

penalties. Thes parameters includes the net plant efficiency, which is a measure of the 

total plant fuel input energy converted into net power output, Specific Primary Energy 

consumption for CO2 avoided (SPECCA), Electricity Output Penalty (EOP), which 

show the energy and electricity penalties associated with the integration of HTCC into 

NGCC plant, and Marginal thermal efficiency of the oxyfuel combustion, which 

evaluates the thermal efficiency of the oxyfuel combustion used to regenerate the 

sorbent in the desrober.    

These parameters are also used to compare the Li4SiO4 HTCC integration results with 

other CO2 capture technologies. Based on the previously mentioned assumptions, the 

modelling evaluation parameters were calculated as following:  

Net Plant efficiency (h) was calculated as:  
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𝜂 = -./-0
(2./20)∙567

                                                                                                    Eq (1) 

 

In the formula above, W1 and W2 are the net power output of the primary and 

secondary steam cycles respectively (MW), obtained from the Aspen model after 

deducting ASU, CO2 compressors and other acillary power consumptions, m1 and m2 

are the natural gas mass flows (kg/s) to the gas turbine and the oxyfuel regenerator 

respectively, and LHV is the low heat value of the fuel in (MJ/kg).   

Specific Primary Energy consumption for CO2 avoided (SPECCA): The specific 

primary energy consumption for CO2 avoided (SPECCA) in GJ/tCO2 was calculated 

from the following formula 8:  

𝑆𝑃𝐸𝐶𝐶𝐴 = 6;<<=6;>?@
A>?@=A<<

= 	
*CDD	.( .

ƞ<<
= .
ƞ>?@

)

A>?@=A<<
                              Eq(2)  

Where 𝐻𝑅II  and 𝐻𝑅;AJ are the heat rate (kJ/kWh) for the plant with the capture unit 

and reference plant, i.e. before integrating the capture unit, respectively.	𝐻𝑅II  includes 

the energy from the primary GT and secondary oxyfuel combustion systems, whereas 

𝐻𝑅;AJ includes the energy from the primary GT combustion system only.  

𝐸II   and 𝐸;AJ are CO2 emissions rate in kg CO2/kWh for the plant with the capture 

unit and reference plant, respectively. hcc and href are the net plant efficiency (LHV) 

with and without the integration of capture unit, respectively.  

Electricity output penalty (EOP): as defined in 41, it is adopted here as the total net 

loss in plant power output, in kWh/tCO2, after integration of the CO2 capture unit, taking 

into consideration all power penalties resulted from ASU, CO2 compression and oxy-

combustion in desorber per unit mass flow of CO2 to pipeline transportation. It follows 

the formula:  

𝐸𝑂𝑃= 
K(2./20)∙567∗	MNOP	=	(Q./Q0)R∗SDDD	

2<T0
                                                   Eq(3) 
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Where,  href is the reference plant efficiency (58.3 % LHV), before integration of the 

capture unit , and mCO2 is the mass flow of CO2 to the pipeline (t/h).   

Marginal thermal efficiency of the oxyfuel regenerator: this parameter measures the 

thermal efficiency of the additional natural gas combustion as described in  42 and 

follows the formula: 

𝜂2UVW =
Q0

20∙567/X6N
                                        Eq (4) 

Where DHr is the overall heat of reaction in the absorber in (MW). DHr can be 

calculated from the following formula:  

D𝐻V=𝐻V * 𝑚;=5Z#[Z\#                                                        Eq(5)  

As 𝐻V is the molar heat of reaction of Li4SiO4 with CO2 in kJ/mol and 𝑚;=5Z#[Z\# is 

the sorbent recirculation rate between the absorber and desorber in kmol/s.  

3. Results and discussion 

In this section, the results of the simulation are presented and discussed covering the 

modelling of base case without capture, base case with capture and sensitivity analysis.  

The net plant efficiency and energy demand of the HTCC plant are evaluated for each 

model. The impact of the HTCC integration on power plant’s efficiency is subsequently 

analyzed for selected values of fractional conversion, make up ratio and regeneration 

temperature and compared to other capture technologies. Finally, possible 

improvements to the model are described for consideration in subsequent studies. 

 

3.1 HTCC integration into NGCC power plant 

3.1.1 Evaluation of efficiency performance  

Table 1 summarizes modelling results for the base case with and without capture 

based on 525 °C and 700 °C absorption and desorption temperatures, respectively. 
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Performance evaluation parameters include the gross power output from the overall 

plant, gas turbine, primary and secondary HRSGs, and net power output from the plant 

after deducting the power consumed by plant auxiliaries and ancillaries such as CO2 

compressors, ASU and cooling pumps. Table 1 also shows net plant efficiency, CO2 

emissions, EOP and SPECCA. All these parameters are used to compare the simulation 

results with other technologies. For CO2 purity and final flue gas composition, table 2 

illustrates the composition of the Gas Turbine (GT) flue gas, before and after CO2 

capture, and final CO2 stream composition before entering transport pipeline.  

Table 1. Summary of simulation results for base case (NGCC plant without capture) 

and NGCC plant with an integrated HTCC unit operating at 700°C regeneration 

temperature, 0.2 fractional conversion and 0.01 make up.  

Parameter Unit 
NGCC 
base 
case 

NGCC 
with 
capture 

Gross power output MW 837.3 1104 

Gas turbine output (x1) MW 274.6 275 

Primary Steam turbine output MW 288.1 287.7 

Secondary steam turbine power 
output MW NA 266.3 

ASU Power consumption  MW NA 38 

Auxiliaries for main power plant MW 7.4 7.4 

Auxiliaries for secondary steam 
cycle  MW NA 7.4 

CO2 compression power 
consumption  MW NA 49.6 

Net power output MW 829.9 1001.6 

Fuel thermal Input MWth(LHV) 1423.0 2039.7 

Net Plant efficiency %LHV 58.3 49.1 
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CO2 emissions kg/MWh 351.6 30.7 

Penalty points % - 9.2 

EOP kWh/tCO2 - 455.6 

SPECCA GJ/tCO2 - 3.6 

 

Table 2. GT flue gas and final CO2 Streams. Process conditions and composition 

Stream G T P Composition Mol % 

(Kg/S) (ºC) (Bar) CO2 N2 H2O O2 CH4 CO 

GT Flue Gas 
at GT exit  

665.3 608 1.04 3.9 75.3 8.3 12.5 0 2.619 
e-05 

GT Flue gas 
before being 
released to 
atmosphere 

628.8 85 1.04 0.4 78.1 8.6 12.9 0 2.714 
e-05 

Final CO2 
stream before 
entering 
transportation 
pipeline 

57.3 54 110 92 3.6 0.2 4.2 0 1.254e-
8 

 

From table 1, The net plant efficiency for the NGCC power plant case with CO2 

capture is 49.1%, i.e.  there is a 9.2 % points reduction in efficiency when compared to 

the base case simulation without capture, 58.3%. Also, after integrating the HTCC 

plant, EOP of 455.6 kWh/tCO2 and SPECCA of 3.6 GJ/tCO2 were obtained. On the 

other hand, the CO2 emissions were reduced from 351.6 to 30.7 kg/MWh achieving 

90% emissions reduction after capture. In line with the net plant efficiency drop due to 

the HTCC integration, it was found that there is a slight drop in the primary steam cycle 

electricity output by 0.4 MW due to the extraction of CO2 from the gas turbine flue gas. 

Further details about the integration impact are discussed in the next sub section. 
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With regards to the main energy consumers inside the plant after the HTCC 

integration, it was found that the largest contributor to the efficiency penalty was the 

fuel penalty incurred when the combustion of natural gas takes place in the regenerator 

and not in the gas turbine, as shown in the EOP breakdown in Fig. 6.  

 

 

Figure 6. EOP breakdown in kWh/tCO2. 

  With respect to power, CO2 compression train and ASU are the most power 

consuming units inside the plant, compared to the rest of the ancillaries such as pumps 

and blowers. This can be observed from the breakdown of the power consumption 

inside the plant after the integration of the HTCC unit as shown in table 1. As per table 

1, the CO2 compressors are the main power consumer inside the plant as they consume 

49.6 MW followed by the ASU which consumes 38MW.  

For ASU power consumption, if an ASU with a power consumption lower than 200 

kWh/t O2 can be used, similar to the case of an ASU with 159 kWh/tO2 power 

consumption reported in 43-45, then the ancillary power consumption could be reduced 

and in turn, the integration penalty. For better understanding of the effect of improving 
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ASU power consumption, the result of a modelling case with lower ASU power 

consumption will be presented and discussed in the future improvement section. With 

regards to the power consumption in the final CO2 compression train, it could also be 

optimized and reduced by implementing a compression scheme where lower inter-

cooling temperatures, below the critical point of the final CO2 stream (25.5°C at 84.3 

bar), could be used to liquify the final CO2 stream entering the last compression train. 

Such CO2 compression can be done using sea water cooling option to liquify the final 

CO2 stream after the third compression train before pumping it through the 

transportation pipeline. This option is subjected to the availability of sea water close to 

the plant location.  

With respect to the oxyfuel combustion in the desorber, table 2 shows the effect of 

capturing CO2 from the GT flue gas steam. That can be observed from the lower CO2 

concentration obtained after the integration of HTCC unit as 90% reduction in the flue 

gas CO2 concentration has been achieved. Regarding the use of an ASU with 95% O2 

purity,  the results in table 2 shows that using an ASU with 95% O2 purity will lead to 

final CO2 stream with 92 mol % purity which is within the accepted transportation limits 

mentioned in EBTF common frame work 31. In case there is a specific requirement to 

increase the CO2 concentration in the final CO2 transportation pipeline, several options 

can be applied to increase the CO2 concentration such as adding a high pressure CO2 

distillation46-47 unit which could achieve up to 99% final CO2 purity. Also, using an 

ASU which can produce O2 purity higher than 95%, as the one which is reported to 

produce 99% O2 purity, could improve the final CO2 purity in the transportation 

pipeline. Such high O2 purity will lead to reduce the inert gases concentrations in the 

final pipeline and hence increase the final CO2 concentration. However, these options 
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are outside the scope of this paper since the final CO2 purity obtained from the current 

study is within the EBTF common frame work 31 transportation limits.   

3.1.2 Technical feasibility of HTCC integration into NGCC power plant 

The technical feasibility of integrating the capture plant into the NGCC power plant 

is subject to several aspects such as thermodynamic, equipment modification and final 

cost impacts. In this section, the thermodynamic and equipment modification impacts 

are discussed briefly to give an indication about the feasibility of applying the proposed 

thermodynamic integration into NGCC Plants.  

The integration concept evaluated in this work (Figure 3) requires the extraction of 

the flue gas from an intermediate section in the main HRSG, where the flue gas 

temperature is as closed as possible to the absorption temperature (525ºC). After CO2 

capture the flue gas is re-conducted to the main HRSG for heat recovery. As a result, 

the flue gas mass flow is reduced, due to CO2 removal and its heat capacity is slightly 

changed.  

Figure 7 illustrates T-Q curves of the primary HRSG before (a) and after (b) the 

integration of the carbon capture unit into the NGCC plant. From Figure 7, it can be 

observed that the slope of the TQ curve of the flue gas (red line) has slightly changed 

after the capture unit integration (Figure 7-b), as the flue gas stream, exiting the 

absorber, has a lower specific heat capacity due to the extraction of CO2 in the carbon 

capture unit. In addition, the pinch points for most of the pressure levels have changed 

and decreased. However, from the thermodynamic perspective, those changes are minor 

and have a negligible impact on the performance of the main HRSG.  

From a mechanical and equipment modification point of view, as a conceptual design, 

there are several options to mechanically integrate the capture unit inside the NGCC 

plant as following:   
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For newly-built NGCC plants with carbon capture, the design of the primary HRSG 

could consist of two modules with the capture unit in between so that the temperature 

of flue gas (600°C) can be used to super heat / reheat the steam in the primary HRSG 

before the CO2 absorption process, which takes place at 525°C. That gives a flexibility 

to the plant operation since 100% CO2 capture unit bypass can be achieved in case of 

peak electricity production or capture unit shutdown due to maintenance.  

To retrofit the same design within an existing NGCC plant, either the existing primary 

HRSG is modified to accommodate the absorber and desorber columns, which might 

prove challenging due to limited space, or, alternatively, the GT flue gas will need to 

be cooled from 600°C to the absorption temperature (525°C), before being directed to 

the absorber. This can be done by using the GT hot stream in superheating high-pressure 

steam generated from the secondary HRSG. For the latter case, the CO2-lean flue gas 

exiting the absorber at 525°C needs to be reheated to 600°C so it can enter the primary 

HRSG at the same temperature as per the base case design without capture. This heating 

could be achieved by exchanging heat with the hot CO2 stream leaving the desorber at 

(700°C). The latter option needs no modifications in the primary HRSG but needs 

mechanical modification in the GT exhaust bypass system to divert the flue gas to the 

capture unit and there will be also an energy penalty due to cooling and heating of the 

flue gas before the primary HRSG. This option is considered less flexible from 

operational point of view as 100% CO2 capture unit bypass is not possible with no 

energy penalties due to the mechanical modification in the GT bypass system.  
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Figure 7. a) TQ curves for primary HRSG for NGCC plant base case without capture. 

b) TQ curves for primary HRSG for NGCC plant base case with capture unit integrated. 

Based on previous discussion in this section, the retrofitting option of HTCC unit in 

NGCC is not recommended due to mechanical modification limitations and to avoid 

the disturbance of the integrity of the equipment in the original plant. Thus, the 

proposed process design of an NGCC with HTCC integrated is recommended to be 

applied for newly built plants.  

3.2 Comparison to other capture technologies 

This section compares the results of this work with data from other existing capture 

technologies. Table 3 shows the comparison with two amine-based capture 

technologies (MEA and CESAR-1, a blend of two amines) and the CaCO3 technology 

when integrated into NGCC power plants. The table compares the gross power output 

with power breakdown, net power output, net plant efficiency, CO2 emissions, 

SPECCA and EOP for each technology. Both, MEA and CESAR-1 cases, have been 

implemented into the same base case adopted here. However, due to the addition of 

electricity produced from the secondary HRSG, the power output of the Li4SiO4-based 
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HTCC integration case is significantly higher (1001.6 MW) compared to base case 

without capture (729.9 MW), MEA case (709.9 MW) and CESAR-1 case (722.6 MW). 

The CaCO3 integration case also follows the EBTF guidelines but it is based on a 1x1 

(one gas turbine and one steam turbine) arrangement rather than on a 2x1 arrangement 

as in the other cases. Hence, that is the reason the net power output (559.5 MW) for this 

case is lower than in other cases.  

As seen in Table 3, based on the assumptions followed in this work, the Li4SiO4-

based HTCC technology achieved lower net efficiency penalty, energy and electricity 

penalties (9.2 % point reduction, 3.6 GJ/tCO2 and 455.6 kWh/tCO2, respectively) than 

the calcium looping technology (12.5 % point reduction, 5.4 GJ/tCO2 and 660 

kWh/tCO2 respectively). The higher energy penalty of the calcium looping technology 

is mainly due to the low residual sorption capacity of CaO after undergoing a significant 

number of carbonation / calcination cycles and the higher regeneration temperature 

compared to Li4SiO4 as explained earlier in section 2 with reference to the obtained lab 

test results from 34. If Li-sorbents can be manufactured with the stability characteristics 

reported so far at laboratory scale, it is possible to foresee a design where the optimum 

regeneration energy corresponds to a situation with nearly zero make-up 15. In such 

case, the gains with respect to lower penalties are indicated by the results of this work. 

It should be noted that lower penalty points are possible with both the CaO and Li4SiO4 

technologies by including a recuperator between the solid’s streams leaving and 

entering the absorber and regeneration columns. This is similar to the design proposed 

by David Berstad et al 15 which was not considered in our model.  

When compared to amine-based cases, the net plant efficiency penalty points and 

energy penalty achieved by Li4SiO4 HTCC technology are slightly higher than those 

reported for MEA (8.4 % points reduction and 3.4 GJ/tCO2 respectively), but a lower 
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electricity penalty (455.6 kWh/tCO2 versus 456.9 kWh/tCO2 for the MEA case) was 

found. The obvious improvement in EOP, compared to MEA case, is due to absence of 

steam extraction in Li-based sorbent case.  However, even though both, MEA and 

CESAR-1, cases show lower energy penalties than the Li4SiO4 case, they may present 

significant issues with respect to solvent and degradation products emissions that could 

pose a potential environmental hazard. Also, comparable or improved results to those 

reported for amine-based technologies could be obtained if data from modified Li4SiO4 

sorbents, i.e. better kinetics and lower regeneration temperatures, are used. Therefore, 

the sorbent technology could be an attractive alternative. 

Table 3. Comparison of integration results into NGCC plant for different capture 

technologies. 

Parameter Unit Base case MEA CESAR-1 CaCO3 Li4SiO4 

Reference [-] 8 32 
This 
work 

Gross power output MW 837.3 759.9 770.7 627.6 1104.0 

Gas turbine (x1) MW 274.6 272.1 272.1 270.2 275 

Steam turbine MW 288.1 215.7 226.5 135.0 287.7 

2nd Steam turbine MW NA NA NA 222.4 266.3 

Net power output MW 829.9 709.9 722.6 559.5 1001.6 

Net Plant efficiency %LHV 58.3 49.9 50.8 45.6 49.1 

CO2 removal efficiency  %  - 90  90 90.3 90 

CO2 emissions kg/MWh 351.6 41.1 40.4 30.6 30.7 

Penalty points % -  8.4 7.6 12.5 9.2 

SPECCA GJ/tCO2 -  3.4 2.9 5.4 3.6 

EOP kWh/tCO2 -  456.9 408.6 659.7 455.6 
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With respect to technology readiness, amine solvent systems have been demonstrated 

already at medium to large scale (ca. 150 MW 48) and calcium looping is being scaled 

up to 2MW scale. Li-based sorbents have only been tested at small laboratory scale. 

However, based on the knowledge already existing for CaCO3 technologies, Li-sorbent 

capture units could see a fast development to application following similar steps to the 

CaO technology. Another important aspect of the comparison is, obviously, the cost. 

Although the economic evaluation of the Li-sorbent based capture technology is outside 

the scope of this paper, it is worth mentioning that the sorbent material is anticipated to 

be more expensive than CaCO3. However, its higher stability and lower energy penalty 

could balance the solid inventory costs. 

3.3 Exergy, energy demand and sensitivity analysis  

The integration of the Li4SiO4 based HTCC plant into the reference case described in 

section 3 requires not only the availability of the necessary energy for regeneration, but 

also the recovery of the CO2-lean (from the absorber) and hot CO2 stream (from the 

desorber) excess heat for electricity production. The energy supplied for regeneration 

needs to provide the heat required to reverse the carbonation reaction R(1) and the 

sensible heat necessary to bring the solids and the gaseous streams entering the 

regeneration column up to the required temperature.  

Since the efficiency of CO2 capture inside the absorber is assumed to be fixed at 90% 

of the CO2 in the flue gas on molar basis, the amount of CO2 capture is assumed to be 

constant and consequently, the endothermic heat required to reverse reaction R(1) is 

fixed as well during the regeneration process. Additional regeneration energy 

requirements include the sensible heat required to bring the solids and unburned O2-

CO2 mixture to the regeneration temperature. The sensible heat can be described by the 

following equation:  
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𝑄^_`^ = 𝑚	𝐶a	∆𝑇                                                                                                   Eq (6) 

For sorbents, m is the sorbent solids flow rate, 𝐶a is the specific heat for the solids 

and  ∆𝑇  is the difference between the absorption and desorption temperature. For the 

oxyfuel gas mixture, m is the unburned O2-CO2 mixture flow rate, 𝐶a is the specific 

heat of the gas mixture, ∆𝑇 is the difference between the regeneration temperature and 

temperature of gases entering the desorber.  

Based on equation (6), there are two main factors affecting the energy demand in the 

desorber which are the regeneration temperature and sorbent flow rate. Any change in 

these two factors will lead to a change in fuel consumption which is in turn affecting 

the amount of O2-CO2 mixture entering the desorber, and hence affecting the sensible 

heat required to bring the gas mixture to the regeneration temperature, and overall gas 

stream leaving the desorber.  

A parametric sensitivity analysis was then conducted to evaluate how variations on 

regeneration temperature as well as on sorbent fractional conversion in the absorber, 

solids make up ratio and excess O2 would affect the performance of the integrated plant. 

The sensitivity analysis was conducted by varying one single parameter at a time. For 

sorbent fractional conversion, a variation of ±25% (i.e., 0.15, 0.2, 0.25) with respect to 

the integrated base case model was considered. For regeneration temperature and 

sorbents make up ratio variations of ±2% (i.e., 685, 700, 715°C) and ±50% (i.e., 0.05, 

0.01, 0.015) with respect to base case model values were investigated, respectively. The 

sensitivity range for the desorber temperature is so low due to the restrictions imposed 

by observed minimum and maximum limiting regeneration temperature values, which 

were obtained from relevant testing experiments, as will be explained below.  

For the excess O2 in the desorber oxyfuel combustion, a variation of ±33% (i.e., 2%, 

3%, 4%) was investigated as well.  
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Figures 8, 9 and 10 show the results from the sensitivity analysis on net plant 

efficiency, specific regeneration requirements and SPECCA, respectively.   

 

 

Figure 8. Effect of changing HTCC plant parameters on Net plant efficiency. 

 

 

Figure 9. Effect of changing HTCC plant parameters on sorbent specific regeneration 

energy demand in GJ/tCO2.  
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Figure 10. Effect of changing HTCC plant parameters on Specific Primary Energy 

Consumption for CO2 Avoided (SPECCA).  
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larger limits for variation and improvements and at the same time it achieved a notable 

impact on plant efficiency and regeneration energy consumption.  

For regeneration temperature, a reduction of only 2% on the regeneration temperature 

will change the net plant efficiency, sorbent specific energy demand and SPECCA by 

+0.6, -3.4 and -3.4 %, respectively. This finding is consistent with the earlier discussion 

in this section. A reduction in regeneration temperature results in reducing the term ∆𝑇 

in equation (6), hence reducing the required sensible heat and regeneration energy 

demand inside the desorber. Moreover, reducing the 𝑇V_W  leads to lower fuel 

consumption in the desorber which leads to an overall improvement in the net plant 

efficiency. Lowering the fuel consumption and the regeneration energy requirement 

results, in turn, in reducing the energy penalty from the integration of the HTCC unit 

as can be observed from the SPECCA results.  

For the fractional conversion, variations of +25% will change the net plant efficiency, 

sorbent specific energy demand and SPECCA by +1.2, -7.5 and -7.2%, respectively. In 

the model, the molar amount of CO2 required to be captured inside the absorber is set 

to be 90% of the CO2 entering the absorber; hence, sorbents with higher conversion 

values will require less sorbent inventory (i.e., lower sorbent flowrate) than sorbents 

with lower conversion. Therefore, an increasing sorbent conversion leads to reduce the 

sorbent recirculation rates and overall inventory, which leads to reduce the heat 

regeneration requirements inside the desorber, save more energy, achieve higher plant 

efficiency and lower overall energy consumption.    

Reducing the oxyfuel combustion excess O2 by 33.3% was found to change the net 

plant efficiency, sorbent specific energy demand and SPECCA by +0.3, -1.3 and -2%, 

respectively. Looking at the power consumption prospective, the lower excess O2 , the 

lower power consumption in ASU due to reducing the production rate of the pure 
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oxygen stream. Since the ASU was selected to provide 95% O2 purity, there are some 

inert gases, such as nitrogen, produced in the pure oxygen stream. Such inert 

incondensable gases lead to higher CO2 compression duties 15, 32 . Hence, reducing the 

amount of excess O2, result also in lower CO2 compression duties. The reduction in 

ASU and CO2 compression power consumption leads, in turn, in improving the net 

plant efficiency and reducing the specific primary energy consumption for CO2 avoided, 

SPECCA. With respect to the sorbent regeneration energy and referring to earlier 

discussion about equation (6), the lower mas of O2-CO2 gases entering the absorber, the 

lower energy required to heat up the gas mixture to the desorber working temperature. 

That explained the reduction in the specific regeneration energy requirement when the 

amount of excess O2 is reduced.     

For sorbent make-up ratio, increasing the make-up ratio by 50% will result in a lower 

net plant efficiency by 0.3%, a higher sorbent specific demand by 0.08% and a higher 

SPECCA by 1.9%. These results are due to the higher energy and fuel consumption 

required to heat up the increased amount of fresh sorbent entering the absorber. That 

leads to fuel and energy penalty inside the desorber and hence reduce the overall net 

plant efficiency. At this point, it is worth mentioning that the initial base case value of 

the make-up ratio, 0.01, is considered relatively low, due to sorbent high cyclic stability, 

and hence have minimum effect on improving the sorbent conversion inside the reactor. 

That is why the sorbent conversion inside the reactor was considered fixed while 

varying the sorbent make up ratio.  

The abovementioned results indicate that changing sorbent make up ratio was found 

to have the lowest impact on net plant efficiency and the specific regeneration duty 

compared to sorbent fractional conversion, desorption temperature and excess O2 since 
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the sorbent has high cyclic durability, as explained earlier, and the expected amount of 

sorbent make up flow is relatively low.  

 

3.4 Possible future improvements 

As described previously, sorbent fractional conversion and sorbent regeneration 

temperature have the greatest impact on the energy penalty associated with the 

integration of the HTCC unit in the plant. If latest improvements and modifications on 

Li4SiO4 sorbents kinetics and performance 19, 49-51 were considered in the model, further 

improvements could be achieved in terms of energy savings and higher net efficiencies 

could be obtained for the integrated plant.  

Additionally, further degrees of heat integration inside the HTCC plant can be 

achieved by introducing new heat exchange concepts such as solid – solid heat 

recuperators or solid – steam heat exchangers inside the HTCC. Also, with respect to 

reducing power consumption inside the secondary combustion system, more power can 

be saved, as discussed earlier, in case of using an ASU with lower power consumption 

such as that with 159kWh/tO2.  

These three options were modelled separately based on the base case with the 

integrated HTCC unit and results showed a better net plant efficiency for both cases 

when compared with the base case. Table 4 illustrates the modelling results for the 

proposed configurations and models.  

 

Table 4. Comparison of integration results into NGCC plant for different HTCC 

configurations and advanced low power ASU.  

Parameter Unit 
Base 
case 

Base case 
with 

Base case 
with Solid 

Base 
case with 

Base case 
with 
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HTCC 
integrated 

Heat 
recuperator 

solid 
steam 
HE 

advanced 
low power 
ASU  

Gross 
power 
output MW 

837.3 1104.0 1015.3 1100.5 1104.0 

Gas turbine 
(x1) MW 274.6 275 275 275 275 

Steam 
turbine MW 288.1 287.7 287.7 287.7 287.7 

2nd Steam 
turbine MW - 266.3 177.6 262.9 266.3 

Net power 
output MW 829.9 1001.6 933.2 998.7 1009.4 

Net Plant 
efficiency %LHV 58.3 49.1 50.9 49.3 49.5 

Penalty 
points % - 9.2 7.4 9 8.8 

 

The model with a solid-solid heat recuperator achieved the highest net plant 

efficiency, 50.9 %, which is even better than the efficiency obtained when advanced 

amine systems, CESAR-1, are used (50.8 %) for the same reference case. Although, the 

model with a solid-solid heat recuperator generates less net power output compared to 

the base case without solid-solid heat recuperator, the overall achieved efficiency was 

higher by 1.8% points. The reason behind such high efficiency is due to that heat 

integration between the circulated solid’s steams between the absorber and desorber. 

Such heat integration lead to increase the temperature of the circulated CO2 saturated 

sorbent before entering the desorber for regeneration. That, in turn, results in reducing 

the energy required to bring the sorbent to the regeneration temperature, 700°C, which 

resulted in lower fuel and O2 consumption in the oxyfuel combustion inside the 

desorber. The lower O2 consumption lead to lower ASU power duty as there is a need 
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to generate less quantity of O2. The lower fuel and O2 consumptions lead as well to 

lower CO2 compression power consumption as the CO2 resulted from the oxyfuel 

combustion will have less flow rate and less inert gases to compress as discussed in the 

sensitivity analysis section. All these power and fuel savings lead to higher overall net 

plant efficiency in case of solid-solid heat recuperator.   

For the option with solid steam HE, it  achieves a net plant efficiency of 49.3% which 

is very close to that achieved by basic amine solvents (49.9%) for the same reference 

case and higher than that obtained for the same base case without solid steam HE, 

49.1%. The reason behind the efficiency improvement in this case is that using part of 

heat from the hot 700°C Li4SiO4 regenerated sorbent stream, exiting the desorber, to 

superheat the steam generated from the absorber in-bed boilers to a temperature of 

572°C before entering the final steam superheater prior to entering the HP steam 

turbine. The previous two options achieved relatively better net plant efficiency and 

lower penalties; however, these two heat exchange technologies need to be proven for 

large scale practical applications with lithium orthosilicate material.   

With respect to the model with an advanced low power ASU and as seen in table 

4, the model with lower ASU power consumption, 159 kWh/tO2, achieved better net 

plant efficiency, 49.5%, compared to the original model with higher power 

consumption ASU. That can be observed from the net plant electricity output as it has 

been increased from 1001.6 MW, in the base case without an advanced ASU, to 1009.4 

MW due to the power consumption reduction in the ASU since the ASU power 

consumption was reduced from 38MW to 30.2 MW resulting in higher net plant 

efficiency, 49.5%.  

Further improvements could be also obtained from different sorbent regeneration 

strategies in the regenerator. For instance, many options were studied in literature to 
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replace the direct oxyfuel heating with indirect heating options. These options consider 

the heat transfer between the main power plant combustor and the regenerator 52, heat 

transfer between the hot regenerated solids leaving the regenerator and the colder solids 

leaving the absorber 53-54 and the use of a double looping system to transfer heat 

indirectly to the regenerator 55. These strategies are still at the conceptual formulation 

stage and would need to be further developed and demonstrated prior to their 

implementation. Also, utilizing the compression heat, from ASU and CO2 transport 

train, in the secondary steam cycle, could reduce the overall power consumption and 

improve the net plant efficiency 56-57. 

Proving the abovementioned technologies and solutions could create new horizons 

for Li-based solid sorbents utilization as an energy efficient solution for CO2 capture at 

high temperatures.  

 

4. Conclusion 

CO2 capture based on high temperature solid sorbents is an important option to abate 

CO2 emissions in exhaust gases from combustion and other industrial processes. A key 

advantage of this technology is its capacity to capture CO2 at the temperature of exhaust 

gases, avoiding the need to quench or cool gases and the high potential for heat 

integration from the HTCC unit. This work evaluates the integration of a novel sorbent 

technology based on lithium orthosilicate into NGCC power plants. Due to the high 

stability exhibited by Li-based solids, it is foreseen that a design could be achieved 

where the make-up flow is very small and only needed to cover the physical degradation 

of the solids through attrition.  

A steady-state model has been developed for a NGCC power plant where a Li-based 

sorbent HTCC plant has been integrated. The modelling basis and assumptions for the 
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NGCC power plant are as per European Benchmarking Task Force (EBTF) common 

framework. Absorption and regeneration temperatures of 525 °C and 700 ºC, 

respectively, a fractional conversion of 0.2 and sorbent make up ratio of 0.01 have been 

used in the model. The results indicate a reduction in power plant efficiency of 9.2% 

penalty points due to the integration of the HTCC plant. This penalty is slightly higher 

than the one for a MEA-based system (8.4% penalty points), evaluated under the same 

conditions and reference plant, and lower than the penalty incurred by a CaCO3 sorbent-

based system (12.5% penalty points), which also followed the same evaluation 

guidelines.  

Sensitivity analysis on the impact of the regeneration temperature, sorbent fractional 

conversion, oxyfuel excess O2 and sorbent make-up ratio on net plant efficiency, 

specific regeneration energy demand and SPECCA has been performed. Results 

showed that by decreasing the regeneration temperature by only 2 %, significant 

savings in regeneration energy consumption could be achieved, which resulted in a 0.6 

% higher net plant efficiency. Likewise, an increase in sorbent conversion by 25% leads 

to 1.2% increase in the net plant efficiency, mainly due to lower sorbent circulation 

requirements. Varying the make-up ratio showed the lowest impact on net plant 

efficiency and power penalties as reducing the make-up ratio by 50% led to only 0.2% 

points increase in net plant efficiency. According to these results, future improvements 

on high temperature capture technologies that make use of Li-based sorbents should 

pursue further efforts on reducing the sorbent regeneration temperature and increasing 

their fractional conversion to achieve lower energy penalties and higher net plant 

efficiencies.  

From the heat integration viewpoint, further improvements can be achieved by 

incorporating a solid – solid heat recuperator or solid-steam heat exchangers in HTCC 
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unit or by applying indirect heating options inside the desorber, but these options are 

subjected to the demonstration and availability of those technologies for large scale 

applications. Future work should also focus on conducting a full technoeconomic 

evaluation for the integrated plant to prove the feasibility of the process and technology.  
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Tabs : absorption temperature 

Treg : regeneration temperature 

𝜂 :  net plant efficiency  

W1: net power output of the primary steam cycle (MW) 

W2: net power output of the secondary steam cycle (MW) 

m1: natural gas mass flow to the gas turbine (Kg/s) 

m2: natural gas mass flow to the oxyfuel generator (Kg/s) 

𝐻𝑅II  : the heat rate for the plant with the capture unit (kJ/kWh) 

𝐻𝑅;AJ : the heat rate for the reference plant (kJ/kWh)  
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𝐸II  : CO2 emissions rate for the plant with the capture unit  (kg CO2/kWh) 

𝐸;AJ : CO2 emissions rate for the reference plant (kg CO2/kWh) 

hcc : the net plant efficiency with nd without the integration of capture unit 

href : the net plant efficiency without the integration of capture unit 

mCO2 : the mass flow of CO2 to the pipeline (t/h) 

𝜂2UVW : marginal thermal efficiency of the oxyfuel regenerator 

DHr :  the heat of reaction in absorber (MW) 

𝑄^_`^ : sensible heat 

𝑚 :  mass flow rate    

𝐶a : the specific heat  

∆𝑇 :  the difference between the absorption and desorption temperature                                                                                               
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