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Abstract 

Transcription factors such as MYB have previously been associated with the plant response 

to drought. In this work, studies on the function of the barley (Hordeum vulgare L.) 

transcription factor HvMYB1 show that gene expression is upregulated in wildtype barley 

roots and leaves under drought and osmotic stress. Transgenic barley plants that 

overexpress HvMYB1 were found to be more resistant to drought, showing enhanced 

relative water content and reduced water loss rate and stomatal conductance as compared 

to control plants. Levels of the osmolyte proline were enhanced as was expression of 

dehydrin HvDNH6 in the transgenic lines under drought conditions. The levels of the 

reactive oxygen species H2O2 were enhanced in wildtype roots and leaves by drought, but 

less so in the HvMYB1 overexpressing lines. Enzyme activity of the low affinity H2O2 

degrading enzyme catalase (EC 1.11.1.6) was also lower in droughted HvMYB1 

overexpressing lines. Gene expression of the high affinity ROS scavengers ASCORBATE 

PEROXIDASE and GLUTATHIONE PEROXIDASE was found to be constitutively high in the 

overexpressing lines, whereas CATALASE gene expression was similar to the control plants. 

These results suggest a role for HvMYB1 in protecting plants against drought in the 

vegetative plant by acting as a mediator of abscisic acid action. 

 

Highlights 

• Expression of the gene for the barley MYB transcription factor HvMYB1 is 

upregulated in roots and leaves by drought and osmotic stress 

• Constitutive overexpression of HvMYB1 in transgenic barley plants results in plants 

with enhanced drought tolerance  

• HvMYB1 overexpression plants show reduced stomatal conductance, enhanced 

proline content, and reduced ROS levels and catalase activity under drought 

conditions 

• The gene expression of the ROS scavenger enzymes ASCORBATE  PEROXIDASE and 

GLUTATHIONE PEROXIDASE is constitutively enhanced in HvMYB1 overexpresser 

plants 
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• The HvMYB1 overexpression phenotype is consistent with a role for this 

transcription factor in promoting the action of abscisic acid in the established plant 

 

Keywords: ABA, barley, drought, MYB, oxidative stress, proline, reactive oxygen species 

 

Abbreviations: ABA, abscisic acid. PEG, polyethylene glycol. qRT-PCR, quantitative reverse 

transcriptase polymerase chain reaction. 
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1. Introduction 

Drought stress is caused by limited water supply to roots, and is compounded by elevated 

transpiration rates due to high temperatures. Drought results in loss of turgor and reduction 

in photosynthetic capacity causing impaired plant growth, reduced yield and quality of the 

harvested product. Another important aspect of drought is the enhanced production in the 

plant of reactive oxygen species, leading to oxidative stress (de Carvalho, 2008; Gill and 

Tuteja, 2010; Noctor et al., 2014).  Plants have various adaptive mechanism to cope with 

drought stress which act at the molecular, cellular, morphological and whole plant 

physiology level, and numerous studies have set out to elucidate how these complex 

pathways and control mechanisms operate (e.g. Golldack et al., 2014; Todaka et al., 2015).   

In particular, large scale gene expression studies have identified a number of the genes 

regulated in response to drought (Seki et al., 2001; Zhang et al., 2017; Cantalapiedra et al., 

2017). Among those genes are a number that encode transcription factors. These 

transcription factors have been found to belong to many different families including bZIP, 

NAC, WRKY, MYC, zinc finger and MYB (Yamaguchi-Shinozaki and Shinozaki, 2006; Abe et al., 

2003). 

 

MYB proteins are eukaryotic transcription factors first identified in avian myeloblastoma 

virus (Klempnauer et al., 1982) and subsequently in vertebrates (Weston, 1998) and in 

plants, such as barley (Marocco et al., 1989). MYB proteins are characterised by conserved 

N-terminal MYB DNA binding domains; different classes of MYB protein have different 

numbers of MYB domains, and in plants the majority of the MYB proteins have two such 

domains and are referred to as R2R3 MYB proteins. The R2R3 MYBS are encoded by 

multigene families; Arabidopsis has up to 190 R2R3 encoding genes (Yanhui et al., 2006), 

maize has 157 MYB R2R3 genes (Du et al., 2012) and barley has at least 51 R2R3 MYB genes 

(Tombuloglu et al., 2013). The plant R2R3 Myb proteins have been associated with a 

number of different processes in plants, including primary and secondary metabolism, cell 

differentiation and development but also responses to biotic and abiotic stress (reviewed 

Ambawat et al., 2013; Roy, 2016). A number of studies have shown that MYB gene 

expression in cereals is associated with abiotic stress. Determination of function for MYB 

proteins has largely been inferred through analysis of MYB gene expression patterns or by 

overexpression expression in the model plant species Arabidopsis and tobacco. Gene 

expression studies indicate that many wheat, rice or barley R2R3 MYB genes are 

differentially expressed by abiotic stresses such as salt, cold, heat, boron or abscisic acid 

(ABA) treatment (Katiyar et al., 2012; Zhang et al., 2012; Tombuloglu et al., 2013; Zhao et 

al., 2017). Further, overexpression of some of these MYB genes in Arabidopsis or tobacco 

can confer abiotic stress tolerance (Zhang et al., 2014; He et al., 2012; Zhao et al., 2017; Wei 

et al., 2017a). 

 

Relatively few studies have looked at the effects of modulating MYB gene expression in crop 

plants such as barley. In this work the role of the first barley MYB gene to be described, 

HvMYB1 (originally termed MYBHv1), (Marocco et al., 1989; Wissenbach et al., 1993) has 

been investigated. A wheat homologue, TaMYB1, was previously shown to be upregulated 

by hypoxia and salt stress (Lee et al., 2007), and another wheat orthologue (TaMYB1D) can 

enhance drought and oxidative stress when expressed in the dicot tobacco (Wei et al., 

2017b). In this work the expression of HvMYB1 in barley plants (Hordeum vulgare L.), and 
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the effects of modifying its gene expression levels in transgenic barley plants on drought 

stress were investigated.  

 

 

2. Materials and methods  

2.1. Barley cultivar and growth conditions 

The barley cultivar Golden Promise was used to provide immature embryos for 

transformation. Plants for donor embryos and for drought stress tests were grown in an 

environmentally controlled growth chamber at 18 ◦C with a 16 h photoperiod (light level of 

450 µE m−2 s−1), and a relaHve humidity between 60–80%. The seeds were planted in 8 cm 

pots.  At the time of planting, 1 g of slow release fertiliser (Osmocoat N:P:K = 14:13:13) was 

put onto the surface of the soil. Fourteen-day-old transgenic and wildtype plants grown as 

above in triplicate were subjected to drought stress by continuous water deprivation for 

14 days (mean loss of 78.5% weight from soil at field capacity), watering in alternate days in 

the case of controls. Root and leaf tissues were harvested, frozen in liquid nitrogen and 

stored at −80 ◦C until further analysis.   

 

2.2 Hydroponic treatments  

Wildtype Golden Promise grains were transferred to moistened filter paper for stratification 

at 4°C for 24 hr and then placed in in an environmentally controlled growth chamber to 

germinate. 5 day old uniform seedlings were then transplanted into a hydroponic system in 

a modified Hoagland solution based on Hoffmann et al., (2012). 14 days after transplanting, 

100 µM ABA, or  20 % (w/v) polyethylene glycol 6000 (PEG) were added to induce stress 

(Cardi et al., 2011; Liu et al., 2008).  A salt treatment was performed according to Cao et al., 

(2016) with a final concentration of 150 mM NaCl added. A supplement of 3.8 mM CaCl2 

was added to the nutrient solution to maintain free Ca2+ levels for salt treated plants. For 

all treatments, root and leaf tissues were harvested after 2 and 7 days, frozen in liquid 

nitrogen and stored at −80 ◦C until further analysis. The solutions were continuously aerated 

with an air pump. The pH in each container was adjusted once a day with 1 M HCl or NaOH 

as required. 

2.3. Plasmid construction and transformation 

A full-length open reading frame  for HvMYB1 (Genebank accession number X70877) was  

PCR-amplified from Golden Promise  with primers HvMYB1-F  

(AGCTCTAGACCATCTAAAGCGATGG) and HvMYB1-R (AGCTCTAGATGCTCATTTCATCTCGATG) 

(introduced Xba1 sites are underlined) using cDNA from Golden Promise leaves as template 

and cloned in the sense and antisense orientation into the Xba1 site between an actin 

promoter and OCS terminator contained within the binary vector pWBVec8 which harbours 

a hygromycin resistance gene cassette (Wang et al., 1997; Abass and Morris, 2013). Clones 

were checked by sequencing before introducing the constructs into Agrobacterium 

tumefaciens strain EHA105. For transformation the method described by  Tingay et al., 

(1997) was followed. Two weeks after pollination spikes of healthy plants were collected, 

immature embryos were excised and inoculated with A. tumefaciens. Callus induction and 

regeneration of barley plants was performed under hygromycin selection. 
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For intracellular localisation studies, the open reading frame of HvMYB1 was translationally 

fused to the 3’ end of GFP from pCambia 1302, between the CaMV 35S promoter and the 

Nos 

terminator, introduced into Agrobacterium tumefaciens and used for transient 

transformation of onion epidermal cells (Sun et al., 2007). 

 

2.4. RNA extraction and mRNA expression  

Total RNA was isolated from leaves and roots using TRIzol Reagent (Life Technologies, 

Rockville, MD). DNA was removed with RQ1 DNase (Promega). Two μg of total RNA was 

used to make cDNA using I script cDNA Synthesis Kit (BioRad) as per the manufacturer’s 

instructions. Following synthesis, cDNA was diluted to 1/10. qRT-PCRs were performed in 

triplicate with Absolute SYBR green mix (ThermoFisher scientific) in a StepOnePlus™ Real-

Time PCR System (Applied Biosystems). The expression of the genes HvMYB1, HvA1, 

CATALASE1 (HvCAT1), CATALASE2 (HvCAT2), ASCORBATE PEROXIDASE1 (HvAPX1), 

ASCORBATE PEROXIDASE2 (HvAPX2), GLUTATHIONE PEROXIDASE1 (HvGPX1), GLUTATHIONE 

PEROXIDASE2 (HvGPX2), DEHYDRIN RESPONSE ELEMENT 1 (HvDREB1), ABA RESPONSIVE 

BINDING FACTOR 2 (HvABF2), DEHYDRIN 6 (HvDHN6),  and  ABSCISIC ACID INSENSITIVE 5 

(HvABI5)   was measured.  Oligonucleotides were designed using Primer3plus (Untergasser 

et al., 2007) other than for HvDHN6 (Qian et al., 2008) and are shown in Table 1. Standard 

cycling conditions were 10 min at 95 °C followed by 40 cycles of 15 s at 95 °C and 1 min at 

60 °C; then the melting curve profiles were determined. Gene expression values were 

normalized to HvADP due to its stability of expression under drought conditions (Ferdous et 

al., 2015) and gene expression values under drought stress relative to control well-watered 

conditions were calculated using the 2
−ΔΔCT

 (Schmittgen and Livak, 2008). 

 

2.5. Physiological measurements 

For Relative Water Content (RWC), leaves and roots were harvested and the fresh weight 

(FW) of each was measured.  Plant material was then placed in 50 ml tubes filled with 

water, and kept overnight in darkness at 5°C.  The turgid weight (TW) was then measured. 

The plant material was then dried at 80°C for 48 h and the dry weight (DW) measured. RWC 

was calculated using the following formula: RWC = FW-DW/TW-DW x 100  

For leaf Water Loss Rate (WLR), leaves were removed from unstressed barley seedlings, 

weighed and placed on filter paper in a Petri dish at room temperature (21°C). Leaves were 

weighed every 60 minutes until the decrease in weight stopped or slowed significantly (up 

to a total of 360 min). Samples were dried at 80°C for 48 h and the dry weight measured. 

LWR in g/h per g dry weight was calculated using the following formula: WLR = (FWT1 − 

FWT2)/[DW × (T2 − T1)]. FWT1 is leaf fresh mass at Hme T1, FWT2 is leaf fresh mass at Hme 

T2, DW is leaf dry weight, T1 is time for FWT1, and T2 is time for FWT2. Stomatal 

conductance was measured using an AP4 cycling porometer (Delta-T Devices Ltd, 

Cambridge, UK) based on the methods described by Prats et al., (2006). Leaf measurements 

were taken from 3 plants of each line, under both control and drought conditions described 

above. Measurement of free proline content was carried out according to Bates et al., 

(1973). Catalase activity (EC 1.11.1.6) was assayed according to the methods described by 

Roy et al., (2009). Hydrogen peroxide was measured as described by Jana and Choudhuri, 

(1982). Data was analysed for statistical significance by ANOVA and post-hoc Tukey’s test for 

multiple comparisons. 
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3. Results 

3.1. HvMYB1 gene expression and protein localisation  

Expression of HvMYB1 and the drought-induced gene HvA1 (Hong et al., 1992) was 

measured in roots and leaves of wildtype barley plants grown for 14 days and exposed to a 

further 14 days of drought. Control plants were grown for 28 days under well-watered 

conditions.  Elevated HvMYB1 transcript levels were observed in both roots and leaves after 

drought, in a similar manner as seen for HvA1, with higher levels observed in roots 

compared to leaves (Fig. 1A). Transient expression in onion epidermal cells of HvMYB1 

translationally fused to GFP showed the fusion protein to be both cytosolic and nuclear 

located (Fig. 1B), which is consistent with the score of 5 for a nuclear localisation signal 

when using the cNLS Mapper tool (Kosugi et al., 2009). To further characterise HvMYB1 

gene expression, wildtype barley plants were grown in hydroponic solution and stressed by  

the addition of ABA, NaCl or polyethylene glycol. Little change in gene expression for 

HvMYB1 or for HvA1 was seen after 2 days (Fig 1C) and after 7 days ABA and NaCl had a 

minor effect on HvMYB1 expression, however PEG treatment was most effective in 

stimulating HvMYB1 expression (13-fold relative to the unstressed controls). By contrast, 

HvA1 expression was strongly enhanced by ABA, NaCl and polyethylene glycol (Fig 1D).  

 

To test whether HvMYB1 can influence tolerance to drought stress, overexpression and 

antisense constructs with the HvMYB1 coding region under the control of the actin 

promoter were introduced into barley cv. Golden Promise.  8 independent primary 

overexpresser and 3 antisense lines were recovered, based on hygromycin selection and 

PCR analysis of primary transformants. The antisense lines did not flourish, produced non-

viable seed, and were not studied further. Three HvMYB1 overexpresser lines were then 

chosen for biochemical and physiological measurements of drought tolerance. HvMYB1 

expression levels in these lines was measured in homozygous plants grown under well-

watered conditions, and also in a transgenic empty vector line.  The overexpresser lines 

OX1, OX2 and OX3 showed enhanced expression of mRNA for HvMYB1 15 to 20 times more 

abundant compared to the wildtype and empty vector control plants (Fig. 1E). Using 

PlantCARE software (http://bioinformatics.psb.ugent.be/webtools/plant care/html/), the 

promotor region (1000bp upstream of the 5’UTR) of HvMYB1 was searched for consensus 

sequences for transcription factor binding; an ABA response element (ABRE) is present 740 

bp upstream from the transcription start point. 

 

3.2. Drought stress resistance  

To test the drought response in HvMYB1 overexpresser lines, homozygous plants from three 

lines were grown for 14 days under well-watered conditions, then water withheld for a 

further period of 14 days. Control plants were grown for 28 days under well-watered 

conditions. The wildtype plants had begun wilting and turning yellow after the 14 day 

drought period, whilst the overexpresser lines were more robust and showed no yellow 

colouring or wilting. Control and drought plants were assayed for RWC which was close to 

90% in the roots and leaves of all the control (both wildtype and transgenic) plants. There 

was a drop in the RWC for both roots and leaves in the wildtype and overexpresser lines 

following drought, however the reduction was less in the overexpresser lines compared to 
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the wildtype (Fig. 2 A and B). Consistent with the higher leaf RWC observed in the 

overexpresser lines, leaf water loss rate was lower in overexpressor lines compared to the 

wildtype plants (Fig. 2 C).  The effect of HvMYB1 overexpression on stomatal conductance 

was then measured. Following 14 days of drought, stomatal conductance was significantly 

lower in all of the transgenic overexpresser lines compared to the wildtype Golden Promise 

(Fig. 2D). No differences in stomatal conductance were found between any of the lines 

under well-watered conditions, and there was no significant difference between 

overexpresser lines1-3 and the wildtype in stomatal density (stomata per mm
2 

and standard 

deviation: WT 58.5 ± 12.26, OX1 55.5 ± 11.17, OX2 44 ± 8.44, OX3 47.5 ± 16.2). 

 

Plants were assayed for key biochemical parameters associated with plant drought. The 

osmolyte proline content was measured in both roots and leaves. Under the control well-

watered conditions there was no difference in proline content between the wildtype and 

overexpresser lines in either roots or leaves. In wildtype plants, drought caused proline 

levels to increase in both roots and leaves but not with any statistical significance. In 

contrast there was a significant increase in proline content observed in the overexpresser 

lines in comparison to the wildtype (Fig. 3 A and B).  

 

Levels of the reactive oxygen species hydrogen peroxide (H2O2) in wildtype and 

overexpresser lines were very similar in roots and leaves prior to drought stress. In leaf 

material of the wildtype plants there was a significant increase after 14 days of drought. 

There was also an increase observed in the overexpresser lines, but this was significantly 

less in lines 1 and 2 than for the wildtype. A similar trend was seen in the roots of the plants 

(Fig. 4 A and B). Activity of catalase, an enzyme responsible for regulating levels of reactive 

oxygen species by breaking down H2O2, was also measured. Catalase activity (EC 1.11.1.6) 

was similar for the wildtype and overexpresser lines in roots prior to the imposition of 

drought, but was constitutively lower in leaves. There was a significant increase in catalase 

activity in the leaves of control plants following drought, but this was not observed in the 

overexpresser lines. In roots, catalase activity increased by almost 100-fold in the control 

plants while no significant increase was detected in the overexpresser lines (Fig. 4 C and D).  

 

3.3. Abiotic stress gene expression 

A number of abiotic stress responsive genes were chosen for further analysis of the role of 

HvMYB1 in drought stress. HvDREB1 is a transcription factor induced by abiotic stress and 

ABA (Xu et al., 2009), HvABI5 is a transcription factor that is a key component of ABA 

signalling (Casaretto and Ho, 2003), as is HvABF2 (Choi et al., 2000). HvDHN6 is a dehydrin 

LEA protein that is upregulated in response to ABA  (Kosová et al., 2014). Gene expression in 

leaves before and after drought imposition was determined by qRT-PCR analysis of RNA 

from leaves.  Prior to drought imposition, leaf HvDREB1 expression was slightly lower in the 

HvMYB1 overexpressing lines as was HvABF2. HvABI5 and HvDHN6 expression was notably 

lower in the HvMYB1 overexpressing lines (Fig 5A). Expression of the three transcription 

factor genes was strongly enhanced by drought in both wildtype and transgenic lines, as was 

HvDHN6 expression, however this was higher in the HvMYB1 overexpressing lines than in 

the wildtype (Fig. 5B). The promotor regions (1000 bp upstream of the 5’UTR) of all genes  

were analysed for the presence of MYB  binding cis- elements, which revealed that the 

promoters of all four genes contain multiple MYB recognition and binding sites. 
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3.4. ROS scavenger gene expression  

Gene expression for two catalase genes, for two ascorbate peroxidase genes and for two 

glutathione peroxidase genes was measured in well-watered and in droughted leaves of 

wildtype and the three HvMYB1 overexpresser lines. These enzymes are involved in the 

breakdown of hydrogen peroxide at different degrees of oxidative stress. Prior to drought 

imposition, CAT1 and CAT2 gene expression did not differ between control and transgenic 

lines, however all three HvMYB1 overexpresser lines had constitutively higher levels of 

APX1, APX2, GPX1 and GPX2, under non-stress conditions (Fig. 6A). The levels of ROS 

scavenger gene expression in droughted HvMYB1 overexpresser  lines were closer to the 

levels seen in the wildtype after drought, with the exception of GPX2 in line OX1 (Fig. 6B). 

Promoter sequence analysis revealed that the promoters of all six genes contain multiple 

MYB recognition and binding sites. 

 

4. Discussion 

Gene expression patterns for the barley HvMYB1 gene were initially analysed in transgenic 

tobacco plants using promoter-GUS gene fusions, from which it was inferred that this 

transcription factor was involved as a regulator of meristematic activity (Wissenbach et al., 

1993). Later studies on the wheat orthologue TaMYB1 showed that this gene is upregulated 

by abiotic stress in wheat roots (Lee et al., 2007), and that overexpression of the wheat 

paralogue TaMYB1D in tobacco enhanced drought and oxidative stress resistance (Wei et 

al., 2017b). The data presented here also indicates that HvMYB1 is involved in regulating 

abiotic stress, as expression levels of HVMYB1 were enhanced after imposition of drought in 

both roots and leaves in a similar manner to a previously characterised drought-induced 

barley gene (HvA1). Osmotic stress (PEG) also induced HVMYB1 expression but both salt 

stress and ABA were less effective in doing so. In order to investigate the role of barley 

HvMYB1 in the native background, transgenic barley plants were produced and analysed. 

Antisense lines did not produce viable grains, thus it was not possible to analyse these 

further, but does suggest a critical role of HvMYB1 in plant growth and fertility.  

 

Overexpression lines with up to twenty-fold enhanced expression of HvMYB1 were viable 

and homozygous lines were identified and studied for their response to drought. When 

compared to wildtype barley, the overexpresser lines showed clear physiological traits for 

drought tolerance; relative water content of roots and leaves was enhanced under drought 

conditions, water loss rates were reduced and stomatal conductance was lower under 

drought, indicating that the overexpressers were more able to retain water and thus 

mitigate against the effects of drought. HvMYB1 overexpressers also displayed a molecular 

phenotype consistent with constitutive drought stress tolerance. Dehydrins are late 

embryogenesis abundant proteins thought to play a protective function in abiotic stress, 

and under control conditions, HvDHN6 was downregulated by HvMYB1 overexpression, but 

strongly upregulated relative to wildtype plants under drought conditions.   

 

The function of HvMYB1 resembles that of Arabidopsis AtMYB44. This gene is upregulated 

by abiotic stress and overexpression results in enhanced drought tolerance and reduced 

water loss (Jung et al., 2008). AtMYB44 has been demonstrated to interact with the 
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cytosolic and nuclear located ABA receptor RCAR1/PYL9, however it is not clear how the 

reported competition of AtMYB44 with ABI1 for binding to RCAR1/PYL9 would lead to the 

drought tolerance phenotype seen in the AtMYB44 overexpression lines (Li et al., 2014), 

since the RCAR1/PYL9 – ABI1 interaction is known to inhibit the phosphatase activity of ABI1 

and thus promote SNRK2 activation of ABA responsive gene expression (Raghavendra et al., 

2010).   In contrast to both HvMYB1 and AtMYB44, Arabidopsis AtMYB60 is a negative 

regulator of stomatal opening and gene expression. It has been shown to be downregulated 

by drought, and exogenous ABA and null mutants are more drought resistant (Cominelli et 

al., 2005). HvMYB1 may therefore have an opposite function to AtMYB60, since many of the 

traits for overexpression of HvMYB1 are similar to those for loss of function AtMYB60.  

 

MYB transcription factors are also involved in other aspects of ABA signalling, for example  

gene expression of the transcription factor ABI5, one of the main regulators of ABA-induced 

gene expression particularly during germination and seedling growth, is itself regulated by 

MYB proteins. AtMYB96 is a positive regulator and AtMYB7 is a negative regulator of ABI5 

gene expression in Arabidopsis (reviewed Skubacz et al., 2016).  The data shown here 

indicates that HvMYB1 acts as a negative regulator of HvABI5 expression, suggesting that 

HvMYB1 may be primarily involved in stress responses at the post-germination stage.  

 

Water can be conserved in the plant by preventing loss through the stomata, but also by 

physically retaining water by enhancing the levels of cellular osmolytes such as proline. 

Proline synthesis is thought to be driven by the ABA-regulated enzyme P5CS (Bandurska et 

al., 2017). The HvMYB1 overexpresser lines had significantly higher levels of proline under 

drought conditions, which would contribute to their drought tolerant phenotype, and is 

consistent with a phenotype that suggest an upregulated response to ABA. 

 

Drought damage to plants is caused in part by oxidative stress; photorespiration occurs in 

C3 plants due to reduced CO2 in the leaf results in the production of reactive oxygen species 

(ROS) such as hydrogen peroxide. Reduced ROS levels under stress are associated with 

drought tolerance in barley (Marok et al., 2013). Plants mitigate against oxidative stress by 

breaking down ROS through enzymes such as ascorbate peroxidase and glutathione 

peroxidase, which are in the first line of defence against ROS. Higher levels of ROS are 

removed by catalase; higher activity levels of catalase under stress conditions are associated 

with drought tolerance (Simova-Stoilova et al., 2008). Both leaves and roots of the 

overexpresser lines under drought stress did not increase hydrogen peroxide levels to the 

same degree as the wildtype, and this was reflected by the lower catalase activity of the 

plants., catalase activity was strongly enhanced by drought in both leaves and roots of 

wildtype plants, but not in the overexpresser plants, possibly a consequence of the lower 

levels of ROS in the overexpressers. The wheat MYB TaODERANT1, by contrast, when 

overexpressed in tobacco, gave higher levels of catalase enzyme activity after drought 

treatment (Wei et al., 2017a). 

 

CAT gene expression in unstressed HvMYB1 overexpressor plants was not notably different 

from that of wildtype plants however the expression levels of APX and for GPX was 

constitutively higher in unstressed HvMYB1 overexpresser plants. Catalase, which has a 

lower affinity for H2O2 than APX, plays a major role in severe drought stress, whereas the 

ascorbate and glutathione cycle are of more importance during moderate stress, with GPX 
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and APX considered as a first line of defence against ROS (reviewed de Carvalho, 2008; Gill 

and Tuteja, 2010). Expression of ROS scavenging enzymes are thought to be regulated by 

ROS production (Guan et al., 2000). Thus, the constitutively high levels of APX and GPX in 

the overexpresser HvMYB1 plants may be sufficient to hold drought stress in check such 

that enhanced CAT levels are not required. After imposing drought stress, ROS scavenging 

gene expression levels were more in line with the wildtype levels, again indicative of a 

protective role for pre-emptive ROS scavenging gene expression.  

 

The evidence presented here is consistent with a primary role for HvMYB1 in regulating 

drought stress in barley; the gene is upregulated by drought stress in both roots and leaves, 

overexpression of HvMYB1 results in plants that show enhanced water retention under 

drought stress through a combination of reduced stomatal conductance and enhanced 

proline production, and oxidative stress-causing ROS accumulation is reduced through 

constitutively higher levels of the ROS scavengers such as APX and GPX.   
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Figure legends  

 

Figure 1. (A) Quantitative reverse transcription-polymerase chain reaction (qRT-PCR)  

analysis of HvMYB1 and HvA1 in leaves and roots of wildtype Golden Promise after 2 weeks 

of drought. Transcript levels were normalised with respect to the reference gene HvADP and 

are presented relative to control well-watered conditions. (B)  Transient expression in onion 

epidermal cells. (i) free GFP brightfield, (ii) free GFP, (iii) HvMYB1-GFP brightfield, (iv) 

HvMYB-GFP. The size bar indicates 50 µm. (C) qRT-PCR analysis of HvMYB1 and HvA1 

transcripts in response to abiotic stress (100 µM abscisic acid (ABA), 150 mM NaCl, 20% w/v 

polyethylene glycol (PEG))  in hydroponic culture after 2 days and (D) 7 days. (E) qRT-PCR 

analysis of HvMYB1 transcript expression in wildtype and transgenic (empty vector, 

overexpresser OX1, OX2 and OX3) barley lines. Transcript levels are presented relative to 

the reference gene HvADP.  Values are mean ± SD of three replicates. 

 

Figure 2. The effect of HvMYB1 overexpression on water loss and retention under control 

conditions  or 14 days drought. (A and B), relative water content of leaves and roots 

respectively of wildtype (GP) and overexpressing (OX1, OX2 and OX3) barley lines. (C) Leaf 

water loss rate of wildtype (GP) and overexpressing (OX1, OX2 and OX3) barley lines. (D), 

Effect of HvMYB1 overexpression (OX1, OX2 and OX3) on stomatal conductance after 14 

days drought.  Values are means ±SD. **** P<0.0001, ***P < 0.001, **P < 0.01, *P < 0.05, 

and ns no significance 

 

Figure 3. The effect of HvMYB1 over-expression on proline content under control conditions 

or 14 days drought. Proline content in leaves (A) and roots (B) of wildtype (GP) and 

transgenic over expressing (OX1, OX2 and OX3) barley lines. Values are means ±SD.  **** 

P<0.0001, ***P < 0.001, *P < 0.05, and ns no significance 

 

Figure 4.  (A) The effect of HvMYB1 over-expression (OX) on barley reactive oxygen systems 

under control or 14 days drought.  Hydrogen peroxide levels in wildtype (GP) and transgenic 

barley (OX1, OX2 and OX3) leaves (A) and roots (B).  Catalase enzyme activity levels in 

control and transgenic barley leaves (C) and roots (D). Values are means ±SD. **** 

P<0.0001, ***P < 0.001, **P < 0.01, *P < 0.05, and ns no significance 

 

Figure 5. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR)  analysis of 

abiotic stress induced genes (HvDREB1, HvABI5, HvABF2, HvDHN6) in leaves of wildtype and 

HVMYB1 overexpressing (OX1, OX2 and OX3) barley lines grown under (A) control 

conditions for 14 days and (B) imposition of a further 14 days drought. Transcript levels 

were normalised with respect to the reference gene HvADP. Values are mean ± SD of three 

replicates. 

 

Figure 6. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR)  analysis of 

oxidative stress associated genes (APX1, APX2, GPX1, GPX2, CAT1, CAT2) in leaves of 

wildtype and HVMYB1 overexpressing (OX1, OX2 and OX3) barley lines grown under (A) 

control conditions for 14 days and (B) imposition of a further 14 days drought. Transcript 

levels were normalised with respect to the reference gene HvADP. Values are mean ± SD of 

three replicates. 
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Table 1. QPCR Primers  
Gene Name Forward Reverse Amplicon bp Genbank 

HvCAT1 CCCGTCTGGAACAACAAC CCCCGTGCATGAACAAC 134 U20777 

HvCAT2 CGACGACAAGATGCTGCAGT TGGTTGTTCTTGAAGCCGC 122
 
 U20778 

HvAPX1 CGGAGCTTTTGAGTGGTGACA CCGCAGCATATTTCTCCACAA 107
 
 AJ006358 

HvAPX2 CGCCGAGAAGAACTGC GCCGGTCTTGGTGGC 82 AF411228 

HvGPX1 AACGGCAACAATGTTTCTCC ACAACGTGACCCTCCTTGTC 119 AJ238745 

HvGPX2 ACGTGAATGGCAACAATGCT ATGACATGCCCCTCTTTGTC 124 AJ238744 

HvMYB1 ACCACGTGGACCACCATCAC  TGCACAGGTCCAGGTTCAGG  98 X70879 

HvA1 ACAAGCAGTCGATCCATTCC CTCAAACAAACACGAACTGGAA 83 AK358283 
HvADP GCTCTCCAACAACATTGC GAGACATCCAGCATCATTCATTCC 77 AJ508228 

HvDREB1 TGTCTCAAATGCGCCAACAG TTTCACCTTATGCGCCACAG 88 DQ012941 

HvABI5 AGGAGTCAACATCGACATTCCG AGCAGCACGAGAAAGGAAAC 122 AK373571 

HvABF2 AGAGGCGCATGATCAAGAAC AGTTTTGCTACCTCGGCTTC 94 AK363330   

HvDHN6 TTTTACCGTGTGATAGATGTTGCA TGCAAACCGACCAGACAAACT 72 AF043091 
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Highlights 

• Expression of the gene for the barley MYB transcription factor HvMYB1 is 

upregulated in roots and leaves by drought and osmotic stress 

• Constitutive overexpression of HvMYB1 in transgenic barley plants results in plants 

with enhanced drought tolerance  

• HvMYB1 overexpression plants show reduced stomatal conductance, enhanced 

proline content, and reduced ROS levels and catalase activity under drought 

conditions 

• The gene expression of the ROS scavenger enzymes ASCORBATE  PEROXIDASE and 

GLUTATHIONE PEROXIDASE is constitutively enhanced in HvMYB1 overexpresser 

plants 

• The HvMYB1 overexpression phenotype is consistent with a role for this 

transcription factor in promoting the action of abscisic acid in the established plant 
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The barley transcription factor MYBHv1 is a positive regulator of drought tolerance 
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