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Enhanced FMEA: An integrative approach of Fuzzy Logic-based 

FMEA and collective process capability analysis 

The aim of this study is to modify and enhance the quantitative/mathematical 

features of both computational and analytical aspects of the process failure modes 

and effects analysis (FMEA). For this purpose, a hybrid approach including the 

Fuzzy Logic-based FMEA (FFMEA) and collective process capability analysis 

(CPCA) has been developed in three phases. First, failure modes have been defined 

based on lack of quality in quality characteristics under investigation, and then, 

they have been prioritised using FFMEA. Second, the most critical failure has been 

selected for statistical analysis using CPCA, leading to the corrective actions in the 

third phase. The proposed approach was investigated in an electrical-equipment-

manufacturing company. Findings indicated that the diameter deviation in 

Insulator A was the most critical failure effect caused by a rightward mean shift of 

0.32 centimetre. In addition, Cpk has been improved from 0.41 to 1.12, and 

defective products have been reduced from 115,083.09 to 336.98 parts per million. 

Keywords: quality improvement; Six Sigma; Fuzzy Inference System (FIS); fuzzy 

FMEA; process capability; Voice of Customer (VOC) 

1. Introduction 

Industrial processes usually deal with many failures. However, removing all the failures 

relevant to a process, simultaneously, seems difficult. That is why application of a failure-

ranking method such as Failure Modes and Effects Analysis (FMEA) is highly 

advantageous. 

FMEA has been applied in a wide range of industries since its introduction. FMEA 

endeavours can be divided into design FMEA, process FMEA, system FMEA and service 

FMEA (Abbasgholizadeh Rahimi et al, 2015). Addressing the failures occurring in some 

stages/functions of a process, the present study focuses only on process FMEA. 

In FMEA, the failure occurrence, severity and detection (risk factors) scores, 

determined by experts, are used to calculate Risk Priority Number (RPN). The RPN 

values are utilised to rank failures. These scoring and calculation steps are attributable to 
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the FMEA computational aspect. Besides, the FMEA analytical aspect entails 

investigating failure causes and effects, current controls and recommended corrective 

actions. The aim of this study is to modify and enhance both aspects, 

quantitatively/mathematically.  

The following are some limitations of the FMEA computational aspect: i) 

questionable calculation of RPN, i.e. multiplication of risk factors; ii) uncertainty in 

determination of risk factors; and iii) possibility of allocating the same relative 

importance weights to risk factors. A comprehensive list of FMEA shortfalls can be found 

in Liu et al (2013).  

The literature-review article of Liu et al (2013) indicated that Artificial 

Intelligence (AI), with a 40.00% share of all the papers reviewed, was the most popular 

methodology amongst those devoted to resolve the mentioned shortcomings. More 

precise is that Fuzzy Logic-based FMEA (FFMEA) was addressed as the most popular 

methodology in AI. This fact led the authors of the present research to modify FMEA 

using Fuzzy Logic, resulting in an enhanced FMEA computational aspect.  

Fuzzy Logic/Fuzzy Inference System (FIS) was, first, applied in Failure Mode, 

Effects and Criticality Analysis (FMECA) (Bowles and Peláez, 1995; Moss and 

Woodhouse, 1999), with riskiness and risk factors represented by linguistic variables. 

Crisp inputs were fuzzified, combined, inferred and finally converted into crisp values. 

Xu et al (2002) utilised FFMEA for failure analysis of a diesel-engine turbocharger 

system. They used FIS to explore interdependencies amongst different failures and to 

facilitate knowledge sharing amongst experts of different disciplines by incorporating 

their knowledge in the fuzzy rule base. Sharma et al (2005) used FFMEA in a paper-mill 

case, with integration of Mean Time between Failures (MTBF) data and expert experience 

to calculate occurrence. Chin et al (2007) proposed an expert product development system 
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employing FFMEA to determine risks of design materials/components. The risk scores 

were combined with the reliability and cost scores to determine the best alternative. Nepal 

et al (2008) focused on component interaction failures and used FFMEA to analyse them 

in product architecture. Jong et al (2013) applied FFMEA in the food/agriculture industry 

to systematically analyse failures of Edible Bird Nest (EBN) production. Yeh and Chen 

(2014) calculated severity and detection via fuzzy linguistic variables, and occurrence 

using failure times or process capability (Cpk) in semiconductor wafer-manufacturing 

processes. Their approach outperformed traditional RPN, simple sort RPN and two-factor 

sort RPN. The subsidence-risk analysis of metro tunnels was another application of 

FFMEA in which severity and detection were calculated using FIS, and occurrence was 

computed by means of Artificial Neural Network (ANN) (Rafie and Namin, 2015). 

Mariajayaprakash et al (2015) used the basic and fuzzy FMEA methodologies to 

determine the most critical failures of a sugar-mill-boiler process. Next, the most 

important parameters were optimised using the Taguchi method. Moreover, they were 

further optimised using Genetic Algorithm (GA). Geramian et al (2017) comparatively 

utilised the traditional and fuzzy FMEA methodologies to analyse failures of some 

manufacturing processes of a car-part producer. Recently, the Taguchi’s Robust 

Parameter Design (RPD) was applied to design the Fuzzy Logic operators in such a way 

that the defuzzified fuzzy RPN became robust against groupthink in group/team decision-

making (Geramian et al, 2018). 

It appears that the reviewed studies – except for two of them – did not include the 

ratio (and interval) scale of measurement in FMEA, whilst it is the richest/highest scale 

with more permissible statistical calculations amongst the four measurement scales of 

nominal, ordinal, interval and ratio types (Stevens, 1946). Strictly speaking, to the best of 

our knowledge, the literature addressed only the failure modes and effects of a nominal 
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scale. Nevertheless, Yeh and Chen (2014) calculated occurrence more accurately, i.e. 

through failure times of the processes that they studied. Moreover, considering the quality 

characteristic-related failure modes, Geramian et al (2017) calculated failure frequencies 

accurately via dividing the out-of-tolerance items by total items or based on equation

USL)xP(LSL1(NCR)RateConformingNon      (Kotz and Johnson, 2002) – with

USLLSLx  and  , denoting the quality characteristic, lower and upper specification limits, 

respectively. However, there is still no direct indication of the opportunity of including 

the ratio (and interval) scale in FMEA. 

Inspired by the Geramian et al (2017) research, the authors of the present study 

define failure modes based on different types of lack of quality which usually occur for 

quality characteristics during the relevant process. Accordingly, failure effects are quality 

characteristic deviations, which are statistically caused by mean shifts and/or standard 

deviations (Phadke, 1995). Therefore, data of quality characteristics and the two statistical 

causes, which are continuous – versus discrete data (Park, 2003) – and of ratio/interval 

scales, are included in FFMEA. As a result, FFMEA are enhanced from the aspect of 

failure effect investigation. Moreover, similar to the research of Geramian et al (2017), 

this study computes occurrence rates based on NCRs, leading to reflection of Voce of 

Customer (VOC) in FMEA and FFMEA through the path below: 

VOC (represented by USL and LSL values, defined by customer(s)) → NCRs → 

occurrence rates → occurrence scores → RPNs and Fuzzy RPNs. 

As the continuous data included are typically the inputs for Process Capability 

Analysis (PCA), two extra layers of statistical calculation can be added to FMEA and 

FFMEA, including the PCA and Collective PCA (CPCA, detailed in Subsection 4.2). The 

former layer is useful for controlling the process quality condition/capability (Section 3) 

based on the most critical failure mode identified by FFMEA. Hence, it enhances FFMEA 
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from the current control viewpoint. The latter layer is beneficial to unravelling the twisted 

threads of the two statistical causes mentioned (Subsection 4.2). Therefore, it contributes 

to FFMEA in terms of failure cause investigation. 

Moreover, based on the CPCA approach (Palmer and Tsui, 1999), some statistical 

guidelines for corrective actions are given in Subsection 4.3, which improve FFMEA 

from the aspect of recommended corrective action. Further, the following illuminates the 

other path through which VOC is included in the proposed hybrid approach: 

VOC (represented by USL and LSL) → Cp, Cpk and k indices (detailed later) → FFMEA-

CPCA. 

The present study, thus, contributes to the FMEA analytical and computational 

dimensions and facilitates the data utilisation and analysis that ratio-scale data of a 

process deserve. Additionally, the following are the contributions made by using the 

FFMEA part in the proposed approach: 

i) experts’ judgment uncertainty – in scoring the risk factors – is tackled using the fuzzy 

approach (Ghorbani et al, 2013; Shahin et al, 2017); ii) the Fuzzy Logic relationship-

mapping capability is used for valid computation of RPN (Geramian et al, 2017); iii) the 

rule-designing capability is beneficial to weighting the risk factors (Geramian et al, 2017); 

iv) the weighting capability has a remarkable impact on resolving an FMEA problem, i.e. 

computation of the same RPN for different combinations of risk factors (Geramian et al, 

2017); and v) the FFMEA risk indicator (Fuzzy RPN) is continuous and free of the RPN 

problem, i.e. having many holes (Liu et al, 2013). 

Once failure modes have been prioritised using FFMEA, the most critical failure 

is analysed using PCA and CPCA. Finally, statistical corrective actions are proposed. All 

these phases are illustrated in Figure 1.  
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2. Basic FMEA 

In FMEA, risk priorities are determined using RPN, as the product of the three risk factor 

scores (Equation 1) with a scale of 1-10 such as what is addressed in Table 1.  

 DetectionSeverityOccurrenceRPN   (1) 

Table 1. Descriptions and scales of risk factors (Sharma et al, 2005; Geramian et al, 2017) 

Score Occurrence Severity Detection rate (%) 

10 > 0.1 A failure that would seriously affect the 

ability to complete the task or cause damage, 

serious injuries or death 

 

0-5 

9 0.05-0.1 6-15 

8 0.02-0.05 A failure that causes deterioration in system 

performance and/or leads to minor injuries 

 

16-25 

7 0.01-0.02 26-35 

6 0.005-0.01 A failure that would cause high degree of 

operator dissatisfaction, or that causes 

noticeable but slight deterioration in system 

performance 

 

36-45 

5 0.002-0.005 46-55 

4 0.001-0.002 56-65 

3 0.0005-0.001 A failure that would cause slight annoyance 

to the operator, but would cause no 

deterioration to the system 

 

66-75 

2 0.0001-0.0005 76-85 

1  0.00001 A failure that has no effect on the system 

performance and the operator probably will 

not notice 

86-100 

Although severity and detection scores are determined based on experience of 

expert-teams, occurrence can be computed based on NCR (Geramian et al, 2017). The 

larger the RPN, the more critical the failure. 

3. Process capability analysis 

In 1986, Motorola described its quality-improving and defect-measuring approaches 

using the new phrase Six Sigma (Arumugam et al, 2016). Regarding a process mean shift 

by 1.5 sigma, Six Sigma aims to achieve 3.4 Defects per Million Opportunities (DPMO) 

(Antony et al, 2008). Besides DPMO, other Six Sigma measures are Process Capability 

Indices (PCIs), used to compare a stable process performance with the specified tolerance. 

Juran (1962) proposed the idea of comparing the width of natural control limits to that of 
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the tolerance limits. Later, the idea was utilised in the introduction of a ratio directly 

indicating the process capability (Juran and Gryna, 1980). An inverse form of the ratio is 

known as Cp (Equation 2). 

 
.6

LSLUSL
Cp


  (2) 

Where depicts the standard deviation (Std). Cp values are useful for 

interpretation of process quality conditions. In fact, processes with

2 and 267.1,67.133.1,33.11,168.0,68.0  CpCpCpCpCpCp  

are considered as poor, inadequate, capable, satisfactory, excellent and super excellent, 

respectively (Tsai and Chen, 2006). Since Cp does not reflect the process mean shift, the 

Cpk and k indices were developed (Palmer and Tsui, 1999): 
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where μ and M denote the process mean and 2/)( LSLUSLmidpoint  , respectively. 

Index k indicates the process mean location with respect to the midpoint.   and are 

estimated by  ˆ and ˆ , respectively. The main focus of this study is on the collective 

analysis of kCpkCp  and  ,  (explained in Subsection 4.2). 

4. New approach: integration of FFMEA and CPCA 

The hybrid approach FFMEA-CPCA consists of three phases (Figure 1), detailed in 

Subsections 4.1 to 4.3. 

“Insert Figure 1 here” 
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Figure 1. FFMEA-CPCA framework 

4.1. Failure ranking using FFMEA 

First, failure modes are defined based on typical items of lack of quality which occur for 

quality characteristics during a process. Then they are prioritised using FFMEA, with a 

Mamdani type FIS (Pourjavad and Shahin, 2018) of Multiple Inputs and Single Output 

(MISO). The reason is that FMEA has three inputs, one output together with an unknown 

inputs-to-output relationship. The FFMEA steps (Geramian et al, 2017) are described in 

subsections below: 

4.1.1. Fuzzification 

Membership degrees of crisp inputs (risk factor scores) in their relevant Membership 

Functions (MFs) are determined in the fuzzification step. MFs are fuzzy sets 

corresponding to linguistic variables (Wang et al, 2016), such as very low, low, etc., 

which are useful to computing with words (Shahin et al, 2017). Each linguistic variable 

corresponds to a fuzzy number with a trapezoidal shape, triangular shape, etc. Equations 

(5) to (7) indicate risk factor vectors (Geramian et al, 2017). 
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Where DSO  and  , denote the variables occurrence, severity and detection 
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changeable in the discrete range of 10,2,1  . For DSOi  and  , , the general set 

of linguistic variables is iiiii VHHMLVL ,,,, , standing for very low, low, 

medium, high and very high, respectively. Regarding the crisp values, dsoc  and  , , the 

general set of membership degrees is           cVHicHicMicLicVLi  ,,,, . The Fuzzy 

RPN (FRPN) vector (Equation 8) has similar components except for FRPN, which is 

changeable in the discrete range of 10,1,0   and has the crisp rpn value. 
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The MFs designed in this study are illustrated in Figure 3. 

4.1.2. Fuzzy rule base 

A rule base consists of several rules, with an If-Then structure, in which the If/antecedent 

part results in the Then/consequent part. The antecedent is obtained by conjunction of 

input MFs, e.g. )  ( and )  ( and )  ( SSO LisDVLisSVLisO . The conjunction operator is a t-

norm (Geramian et al, 2017) or an AND method (Ries and Beullens, 2015). The 

consequent is a linguistic output such as )FRPNVLFRPN   is ( . Antecedent-consequent 

relationships are determined based on expert knowledge. If risk factors have

DSO nnn  and  , MFs, the full number of rules are, potentially, DSO nnn  . However, some 

of them are negligible or not logical in real-life applications (Geramian et al, 2017). 

4.1.3. Fuzzy inference and aggregation 

Once the fuzzy rule base was designed, the fuzzy inference engine is fed with inputs. Each 

rule is fired/activated to a particular extent based on the received inputs and is implicated 

using operators such as Minimum:  
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where j is the conjunction result for the
thj rule antecedent, and jMFoutput
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thj

rule output MF, for DSO nnnj  ,2,1 . Next, the )( jR values are aggregated 

using an or operator such as Maximum (Lu and Antony, 2002): 
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4.1.4. Defuzzification 

In this step,
FRPN

 is defuzzified to be perceptible by experts. Amongst various 

defuzzification methods, Centroid (Equation 11) is of high popularity (Rafie and Namin, 

2015). Hence, it was applied in this study. 

 


















inf

inf

)(

inf

inf

)(

  

dyy
FRPN

dyyy
FRPN

RPNCrispEstimated





 (11) 

Where y denotes the input of the aggregated MFs. 

4.2. Collective process capability analysis 

Having determined via FFMEA, the most critical failure mode was analysed, further, 

using the kCpkCp  and  , indices (both separately and collectively). The CPCA, specifying 

how much deviation is caused by mean shift and/or how much by Std, is explained below 

(the comprehensive details of CPCA can be found in Palmer and Tsui, 1999): 

a) compare Cp and Cpk: 
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a.1) if CpCpk  , then the process has no mean shift from the target 

a.2) if CpCpk  , then the process suffers from a mean shift 

b) compare Cp and 1.0: 

b.1) if 0.1Cp , then the process Std is acceptable 

b.2) if 0.1Cp , then Std is not acceptable 

4.3. Statistical guidelines for corrective actions 

Regarding the CPCA conditions, including ),2.( and )1.( ),2.( ),1.( bbaa four main scenarios 

are conceivable, )2.2.( and )1.2.( ),2.1.( ),1.1.( babababa  , namely. These scenarios 

along with the following statistical guidelines for correction are mentioned below based 

on the instructions made by Palmer and Tsui (1999):  

 in )1.1.( ba  , engineers face the best scenario. However, the process Std could be 

reduced more to achieve higher Cp values.  

 in )2.1.( ba  , the process Std should be reduced in order for Cp to be higher than 

or equal to one.  

For the other scenarios, comprising the )2.(a condition, both )2.2.( and )1.2.( aa steps 

should be investigated (Palmer and Tsui, 1999): 

(a.2.1) if 0k , the process mean has shifted to left side of the target  

(a.2.2) if 0k , the process mean has shifted to the right side of the target 

Thus, it is more accurate to split scenario )1.2.( ba  into )1.2.2.( and )1.1.2.( baba  , 

and scenario )2.2.( ba  into )2.2.2.( and )2.1.2.( baba  : 

 in )1.1.2.( ba  , the process mean should be increased until it is adjusted on the 
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target, or CpCpk  .  

 in )2.1.2.( ba  , first, Std should be reduced in order for Cp to be higher than or 

equal to 1.0; then the process mean should be increased until it is adjusted on the 

target, or CpCpk  .  

 in )1.2.2.( ba  , the process mean should be decreased until it is adjusted on the 

target, or CpCpk  . 

 in )2.2.2.( ba  , first, Std should be reduced in order for Cp to be higher than or 

equal to 1.0; then the process mean should be decreased until it is adjusted on the 

target, or CpCpk  . 

5. Case study and findings 

An electrical-equipment-manufacturing company, producing insulators and bushings, 

was selected as the case study. Manufactured insulators are used in electric networks to 

bear weight of and to insulate distribution-line conductors. Bushings are both an insulator 

for environment and an electric conductor through which electrical flow is passed. 

Insulators and bushings are produced through the same production process with five 

specific steps, including material preparation, mold-injection preparation, heat curing, 

quality control and post curing. 

Material preparation refers to combination of materials forming the main body of 

each insulator/bushing based on a specific chemical formula. Each product has its specific 

mold, equipped with thermal elements and vacuum pumps. Mold-injection preparation 

refers to vacuuming molds before the material injection. The high pressure made by the 

vacuum pump brings about suction of the combined material within the mold. Next, the 

chemical mixture is hardened under a specific heat and time, technically called heat 

curing. Afterwards, removed from the mold is a solid product which is ready to be tested 
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in the quality control section. In this case study, the quality of produced insulators and 

bushings are investigated based on the height, weight and diameter quality characteristics. 

In the process, it is only non-defective products which pass another curing process called 

post curing, under a specific time to be hardened more. 

An expert team was formed. Interviews with the team along with statistical figures 

resulted in identification of four product types (Table 2) that caused most customer 

dissatisfaction. Beyond these initial diagnostic endeavours, this study adopted an 

approach similar to the Six Sigma methodology, in which a subset of Critical-to-Quality 

(CTQ) items, called Critical-to-Customer (CTC), was selected to be further analysed and 

improved (for more details on Six Sigma see Park, 2003, p. 34).  

Table 2. Technical specifications for the studied quality characteristics 

Product 

Quality characteristic 

Height (centimetre) Weight (gram) Diameter (centimetre) 

LSL T USL LSL T USL LSL T USL 

Insulator A 7.50 8.00 8.50 595 600 605 7.50 8.00 8.50 

Insulator B 8.00 8.50 9.00 460 470 480 5.50 6.50 7.50 

Insulator C 20.50 21.00 21.50 105 110 115 7.00 8.00 9.00 

Bushing A 14.40 15.00 15.60 693 700 707 9.00 10.00 11.00 

Strictly speaking, the application of Six Sigma in manufacturing is based on the 

Define, Measure, Analyse, Improve and Control (DMAIC) strategy. In the Define phase, 

CTQs are identified. Considering the four products with the three quality characteristics, 

this study dealt with 12 CTQs. Nonetheless, due to time and budget limitations and 

according to Six Sigma, they were ranked and narrowed down to the most critical failure 

via FMEA (Table 3) and FFMEA (Table 4). 

Sampling and data collection are necessary to calculate NCR – or, finally, 

occurrence – and to conduct CPCA. The total number of each of the four product types 

produced during one month (the statistical population unit) was around 1300. Thus, the 

appropriate sample size for each type was computed around 300 (Krejcie and Morgan, 
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1970). Each sampling was conducted through 60 subgroups of size five, each 

)( 300560  , and by Systematic Random Sampling. Regarding the NCRs calculated in 

the samples, the relevant Occurrence (O) scores were obtained. These scores together 

with those of the other two risk factors – S and D – were utilised to calculate RPN values 

(Table 3). 

Table 3. FMEA for the studied failures* 

Process 

function 

Failure 

mode 

Potential failure 

effect(s) 

Statistical 

failure 

cause(s) 

S O D RPN Priority 

Material 

preparation 

Lack of 

weight 

quality in 

Insulator A 

Weight 

deviation of 

Insulator A

)( )( AIW  

Mean shift 

and/or Std 

2 6 2 24 9 

Lack of 

weight 

quality in 

Insulator B 

Weight 

deviation of 

Insulator B

)( )(BIW  

Mean shift 

and/or Std 

3 3 2 18 10 

Lack of 

weight 

quality in 

Insulator C 

Weight 

deviation of 

Insulator C

)( )(CIW  

Mean shift 

and/or Std 

1 3 2 6 11 

Lack of 

weight 

quality in 

Bushing A 

Weight 

variability of 

Bushing A

)( )( ABW  

Mean shift 

and/or Std 

1 4 1 4 12 

Mold 

injection 

Lack of 

diameter 

quality in 

Insulator A 

Diameter 

deviation of 

Insulator A

)( )( AID  

Mean shift 

and/or Std 

6 10 3 180 1 

Lack of 

diameter 

quality in 

Insulator B 

Diameter 

deviation of 

Insulator B

)( )(BID  

Mean shift 

and/o Std 

6 6 3 108 4 

Lack of 

diameter 

quality in 

Insulator C 

Diameter 

deviation of 

Insulator C

)( )(CID  

Mean shift 

and/or Std 

6 7 3 126 3 

Lack of 

diameter 

quality in 

Bushing A 

Diameter 

deviation of 

Bushing A

)( )( ABD  

Mean shift 

and/or Std 

6 5 1 30 8 

Lack of 

height 

Height deviation 

of Insulator A

Mean shift 

and/or Std 

7 7 2 98 5 
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quality in  

Insulator A 
)( )( AIH  

 

Lack of 

height 

quality in  

Insulator B 

Height deviation 

of Insulator B

)( )(BIH  

 

Mean shift 

and/or Std 

7 10 2 140 2 

Lack of 

height 

quality in  

Insulator C 

Height deviation 

of Insulator C

)( )(CIH  

 

Mean shift 

and/or Std 

7 6 2 84 6 

Lack of 

height 

quality in  

Bushing A 

Height deviation 

of Bushing A

)( )( ABH   

Mean shift 

and/or Std 

7 5 1 35 7 

* almost similar to the ASQ’s FMEA template (http://asq.org/learn-about-quality/quality-tools.html) 

Therefore, FMEA resulted in the following prioritisation order (For 

simplification, each failure mode will, hereafter, be represented by its only failure effect 

– e.g. I(A)D  represents the lack of diameter quality in Insulator A.): 

.W

WWWDHHHDDHD

B(A)

I(C)I(B)I(A)B(A)B(A)I(C)I(A)I(B)I(C)I(B)I(A)




 

However, it is questionable due to the following three problems: 

(a) I(C)D with )3,6,7(),,( DSO  has almost the same occurrence and detection as

I(A)H with )2,7,7(),,( DSO . However, it is known more critical than I(A)H , even 

with a less severity )76(  . 

(b) I(B)D with )3,6,6(),,( DSO is known more critical than I(A)H with

)2,7,7(),,( DSO , even with less occurrence and severity )76 and 76(  and 

almost the same detection. 

(c) I(B)D with )3,6,6(),,( DSO  has nearly the same occurrence and detection as I(C)H

with )2,7,6(),,( DSO . However, I(B)D is known more critical than I(C)H , even 

with a less severity )76(  . 

With regard to these problems, discussed in Section 6, application of FFMEA is 
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necessary. The main part of FFMEA calculations was made using MATLAB software, 

with a general architecture shown in Figure 2. 

“Insert Figure 2 here” 

Figure 2. FFMEA architecture of the present study 

According to the expert team’s opinion and the data of Table 1, each fuzzy input 

was designed using five MFs of Very Low (VL), Low (L), Medium (M), High (H) and 

Very High (VH). The fuzzy output, however, was designed with two more MFs, i.e. 

Extremely Low (EL) and Extremely High (EH) (Figure 3). 

“Insert Figure 3 here” 

Figure 3. Designed fuzzy inputs and output 

The three inputs, with the five MFs, resulted in  125)=5×5×(5 125 potential 

rules, many of which were not necessarily applicable in the case study. Therefore, they 

were reduced to 40 appropriate rules covering the crisp inputs (Geramian et al, 2017), 

such as: 

EL) is (FRPN then VL) is (Detection and VL) is(Severity  and L) is e(Occurrenc if :40 Rule

VL) is (FRPN then L) is (Detection and VL) is(Severity  and  M)is e(Occurrenc if :29 Rule

VH) is (FRPN then VL) is (Detection and H) is(Severity  and VH) is e(Occurrenc if :4 Rule

EH) is (FRPN then L) is (Detection and VH) is(Severity  and VH) is e(Occurrenc if :1 Rule

 

Derived from the designed FIS are the three-dimension plots illustrated in Figure 4. 

“Insert Figure 4 here” 

Figure 4. FRPN surface plots relative to occurrence-severity, detection-occurrence and 

detection-severity 

The plots show ascending trends of FRPN relative to the inputs. Once the FIS 

received the crisp inputs, the rules were fired, implicated, aggregated and defuzzified, 

leading to the FFMEA prioritisation (Table 4). 
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Table 4. FFMEA prioritisation 

Failure mode Defuzzified FRPN Defuzzified FRPN-based priority 

HI(A) 6.84 3 

WI(A) 2.25 9 

DI(A) 7.98 1 

HI(B) 7.87 2 

WI(B) 1.97 10 

DI(B) 5.81 6 

HI(C) 6.21 5 

WI(C) 1.35 11 

DI(C) 6.81 4 

HB(A) 5.26 7 

WB(A) 0.82 12 

DB(A) 4.09 8 

Therefore, FFMEA resulted in the following prioritisation order: 

.W

WWWDHDHDHHD

B(A)

I(C)I(B)I(A)B(A)B(A)I(B)I(C)I(C)I(A)I(B)I(A)




 

It is important to note that I(A)H received more priority than I(B)I(C) D and D through 

FFMEA, while it wrongly received less priority via FMEA. Moreover, in contrast to 

FMEA, FFMEA ranked I(C)H as more critical than I(B)D . The first phase was finished at this 

point. 

According to the specific requirement of the case study, only the most critical 

failure, ,DI(A) was selected for analysis in the second phase. A CPCA technique, using 

Equations (2) and (3), has three data prerequisites including stability, normality and 

symmetry (Palmer and Tsui, 1999). The Capability Sixpack option of Minitab software 

was used to analyse the sample data collected from I(A)D (Figure 5). In Figure 5, Xbar 

Chart, R Chart and the run chart of the last 25 Subgroups indicate the stability of the 

subgroups. In addition, Normal Probability Plot indicates observations are distributed 

almost normally, with an Anderson-Darling p-value of 0.206. Being almost normal, the 

data are almost symmetric. Thus, it can be analysed by the CPCA technique. 

Based on Capability Plot of Figure 5, for within-subgroup Std of 0.1446, PCIs are
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41.0 and 15.1  CpkCp  for I(A)D . Therefore, it is capable according to Cp, but poor on 

the basis of Cpk. Moreover, the process mean-location index is .65.0k  As

0 and 1,  kCpCpCpk , the )1.2.2.( ba  scenario occurred, indicating that the 

process suffered from a remarkable mean shift to the right. The shift can be seen also 

through Capability Histogram and Capability Plot of Figure 5. The process pre-

improvement statistical indices are summarised in Table 5. The second phase was finished 

at this point. 

Interviews with the expert team outlined that diameter failures are usually caused 

by i) mold deformation, bringing about insulators with shorter diameters than the target; 

and ii) erosion of mold internal wall due to thermal stresses during casting operation, 

causing insulators with longer diameters than the target. Shifting to the right, the I(A)D

diameter mean was larger than its target, indicating that the second cause was occurred to 

the mold. An eroded mold could either be repaired or replaced depending on the erosion 

intensity. In this case study, the former was adopted. Repairing had three steps including 

sintering (coating the mold internal wall with a specific tin alloy), polishing the mold 

internal wall and hard Chrome plating. According to the third phase, since the )1.2.2.( ba 

scenario happened, the mold internal diameter should be reduced exactly by

8.00)8.32mμ(  0.32 ˆ centimetres. 

Once the failure cause was resolved, 300 extra samples were collected from .D I(A)

The pre and post indices of process improvement are summarised in Table 5. 

“Insert Figure 5 here” 

Figure 5. Capability Sixpack chart for DI(A) 

Table 5. Six Sigma pre- and post-improvement indices for I(A)D   

Improvement stage Cp Cpk K Sigma level  DPMO 
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Pre stage 1.15 0.41 0.65 2.73 115,083.09 

Post stage 1.18 1.12 0.05 4.86 336.98 

Improvement (%)  2.61 173.17 0.60 78.02 114,746.11  

The sigma quality levels (long run) were calculated through:

5.1  Cpk3levelSigma (Park, 2003). The DPMOs – with one defect opportunity – 

were calculated based on the table of relationship between defective items and sigma 

levels (Breyfogle et al, 2001). The Third phase was finished at this point. 

6. Discussion 

The FMEA computational aspect limitations, mentioned in Section 1, were resolved by 

i) calculating RPNs via the 40 rules designed by experts, not through Equation (1); ii) 

designing the fuzzy inputs, which tackled the uncertainty in the determination of risk 

factors; and iii) considering different risk factor weights through the fuzzy rules. Despite 

the weight ignorance in FMEA, by means of FFMEA the severity factor was considered 

more important than occurrence and detection, which seems reasonable (Geramian et al, 

2017). The weight ignorance is the main reason behind the FMEA limitations indicated 

by the (a), (b) and (c) problems mentioned in Section 5. More precisely, the 

 ],D and [H I(C)I(A)  ] Dand [H I(B)I(A) and ] Dand [H I(B)I(C) failure pairs, which were wrongly 

ranked via FMEA, were ranked correctly through FFMEA by considering the risk factor 

weights. That is why the order of the third to sixth priorities in FMEA – 

I(C)I(A)I(B)I(C) HHDD   – were inconsistent with those in FFMEA – 

I(B)I(C)I(C)I(A) DHDH  . Hence, the FMEA computational aspect was enhanced 

using FIS. 

In Figure 4, the ascending trends of FRPN relative to the inputs indicated that a 

valid logic was considered in the rule definition: the higher the risk factors, the higher the 

FRPN. 

On the one hand, the proposed approach is limited to the new definitions of the 
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failure mode and failure effect, mentioned earlier in the Introduction section. On the other 

hand, the definitions are of significant contributions, mentioned in the section. For 

example, by defining the failure mode as the lack of diameter quality in Insulator A, 

FFMEA was enhanced by inclusion of the continuous data from the )( AID effect. It was 

also enriched by inclusion of the ratio-scale data from the rightwards mean shift of 0.32 

(the statistical cause). More precisely, it is of a derived-type ratio scale because of being 

a mathematical function of length (diameter, here), which in turn is a fundamental 

magnitude with a ratio scale (Stevens, 1946). The definition also facilitated obtaining the 

occurrence score 10 via the NCR relationship, leading to reflection of VOC in RPNs and, 

finally, in Fuzzy RPNs through the mentioned path. The definition, further, facilitated 

completing the FFMEA results with the analyses, VOC reflection and corrective action 

provided by means of PCA and CPCA. Accordingly, it appears that the advantages gained 

by the specific definition of failures modes considerably outweigh the limitation imposed 

by it. 

Furthermore, the limitation can be alleviated by inclusion of other failures and 

effects, e.g. those with the nominal measurement scale. Important to note is that the 

second and third phases of the methodology are not applicable for those other types. 

Mean shift was the only cause of the )( AID effect. However, if it is combined with 

the other type of cause, Std, diagnosing the sources of deviation or share of these two in 

deviation will be difficult. That is where the genuine value of the added CPCA layer in 

unravelling the twisted threads of the two statistical causes is understood. 

It was assumed in this study that there is no interaction/interdependency amongst 

the failures. In fact, the relevant production knowledge indicated that height and diameter 

deviations were caused by mold deformations in the height and diameter directions. The 

weight deviations, however, were caused by erroneous mixing of materials. Moreover, 
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since each mold was filled with a fixed amount of material, there was no interaction 

between weight and the other two deviations. However, some inverse interdependencies 

were possible between height and diameter, which was small and negligible. 

Nonetheless, failure interactions may be significant in future applications of the 

approach and, thus, should be taken into consideration. A suggestion may be the adoption 

of an approach similar to that of Xu et al (2002) in which interdependencies of failure 

modes and effects are considered using the fuzzy rule base approach. 

The effectiveness of the methodology, demonstrated through comparing the pre- 

and post-improvement PCIs in Table 5, indicated that the proposed methodology strongly 

contributed to an important task of a well-established FMEA, i.e. the failure occurrence 

elimination/reduction (Xu et al, 2002). Furthermore, the weight ignorance problem of 

FMEA, addressed in many studies such as Liu et al (2013), was resolved in the present 

research. Similar to Sharma et al (2005) and Geramian et al (2017), FMEA and FFMEA 

were analysed comparatively. Moreover, as with Jong et al (2013), designing valid rules 

and FRPNs was emphasised in this study. Additionally, similar to Geramian et al (2017), 

occurrence was determined based on NCR. 

Before the application of Equations (2) and (3), the stability, normality and 

symmetry of collected samples should be investigated. Also, as with Geramian et al 

(2017), this study included only the MFs covering the problem crisp inputs. Therefore, 

the reduced rules must be readjusted by variation of the crisp values from one problem to 

another. Additionally, the validity of defined rules should be investigated using surface 

plots (such as Figure 4). An accurate rule base generates ascending trends for FRPN 

relative to risk factors; otherwise, rules must be revised. 

Moreover, in the )2.2.2.( and )2.1.2.( baba  scenarios, Std reduction precedes 

mean adjustment. This is because under the quadratic loss function interpretation of 
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capability indices, variability reduction is a more important and challenging matter than 

process location adjustment (Palmer and Tsui,1999). 

FFMEA-CPCA calculations were performed using MATLAB and Minitab 

software. However, it can be done simply by Minitab if the FFMEA ranking precedes the 

Capability Analysis and Capability Sixpack options of this software. Therefore, as a 

suggestion, the two mentioned options of Minitab software – located in Stat Menu → 

Quality tools – can be replaced/enhanced by two new options of i) Fuzzy FMEA-

Capability Analysis; and ii) Fuzzy FMEA-Capability Sixpack, respectively. It would be 

advantageous also because the capability analysis would be conducted with respect to 

failure priorities, not randomly. 

7. Managerial and practical implications 

If accurately deployed, the FFMEA-CPCA approach not only can cut the scrap, rework 

and tool costs pertaining to the most critical failure mode, but also can reduce the 

customer complaints arising from it. Therefore, the approach can significantly lead to 

more profitability and customer satisfaction. In this regard, this case study illustrated a 

114,746.11 reduction in the DPMO. 

Besides cross-functional expert teams, customers can be involved in improvement 

endeavours by the use of the approach – indirectly through the reflection of VOC. In the 

studied case, for instance, an expert team was involved thanks to the rule base design 

capability used in the methodology. In addition, the customers’ standpoint was considered 

through the statistical pathways presented earlier. Hence, the approach can pave the way 

for more involvement of organisational talents and external customers in quality decision-

making processes, which is typically of the utmost importance to top management. 

Further, not only the hybrid approach of FFMEA-CPCA benefits from the 

synergistic effect of its isolated ingredients (FMEA, FIS, PCA and CPCA, namely), but 
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also its analyses are based on multiple sources – ranging from qualitative expert 

knowledge to quantitative process data. Thus, it is a streamlined, enhanced approach. 

In essence, the approach is more precise because provides more technical details 

for corrective actions – e.g., the statistical root cause(s) and its (their) intensity. Moreover, 

it is more efficient since it focuses capability analysis efforts only on the most critical 

failure. It is also more customer-oriented in the sense that it reflects VOC in failure 

analysis. 

This study illuminated how the approach was helpful to a manufacturing 

company. However, it is possible to use it successfully in service provision or other 

manufacturing processes. Nonetheless, those managers adopting the methodology may 

confront the following challenges: 

 lack of the knowledge essential for successful adoption of the 

statistical/engineering aspects of the approach; 

 absence of accurate definitions of CTQs or, in this study, the failure modes, as 

well as failure effects; 

 resistance to the changes necessary for non-stop progress of implementation of 

the approach; 

 lack of indication of suppliers’ viewpoints in FFMEA-CPCA. 

As there are significant commonalities of concepts, tools and techniques between 

FFMEA-CPCA and Six Sigma, i.e. CTQ/CTC, VOC, FMEA and PCA, borrowing the 

Six Sigma belt system – including the White Belt, Yellow Belt, Black Belt, Master Black 

Belt and Six Sigma Champion roles – seems logical for the training purpose (for more 

information in this regard see Laureani and Antony [2011] and Antony and Karaminas 

[2016]). Also, to define CTQs, failure modes and effects accurately, clear understanding 
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of customer complaints, business processes, process functions and characteristics is 

necessary. Additionally, the resistance challenge could be responded to via the solution 

to the same challenge in Six Sigma implementation: the business units/functions/divisions 

accepting the new initiative had better be involved prior to those that may resist (Park, 

2003, p. 155). It may also be tackled through developing a viable coordination and 

communication system clearly informing the relevant expert team about achievements 

and shortcomings of the approach implementation. Finally, while FFMEA-CPCA has a 

built-in mechanism for customer participation, it lacks such an inherent component for 

supplier participation. Despite this, managers should not ignore the important role which 

suppliers may play in quality improvement. 

8. Conclusions 

Some of the issues resolved by the hybrid approach of FFMEA-CPCA were the 

questionable calculation of RPN, the uncertainty in determination of risk factor scores 

and the ignored risk factor weights. Therefore, it enhanced the computational aspect of 

FMEA. Moreover, as it improved the investigation of the failure cause and effect, current 

control and recommended corrective action, it quantitatively/mathematically enhanced 

the FMEA analytical aspect too. Additionally, it reflected the VOC considerations in 

FFMEA. 

The key message of this study is that by appropriate definitions of failure modes 

and failure effects, FFMEA results can be analysed further via PCA and CPCA. Using 

this idea, the present study improved Cpk and sigma level by 173.17% and 78.02%, 

respectively. It also reduced DPMO by 114,746.11. 

There were some limitations in this study. More precisely, i) FFMEA-CPCA is 

applicable only for normally distributed data; ii) risk factors as well as failure modes were 
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assumed independent; and iii) PCA, CPCA and statistical improvement were conducted 

only for the most critical failure mode. 

Hence, the focus of future studies can be on i) developing a FFMEA-CPCA 

approach with distribution-free PCIs (in this regard, see, e.g., Kotz and Johnson, 2002); 

ii) considering possible interdependencies amongst risk factors and amongst failure 

modes (the latter type of interactions were explained in the Discussion section); and iii) 

conducting CPA, CPCA, and statistical improvement for all of ranked failures, 

sequentially and with respect to their priorities. 

Finally, as almost all FMEA endeavours deal with decision-making of cross 

functional expert teams, they would be susceptible to groupthink – a dysfunctional aspect 

of group/team decision-making. Therefore, the FFMEA-CPCA methodology can be 

enhanced further via the approach of Geramian et al (2018). 
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