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Multiphase flow in permeable media is a complex pore-scale phenomenon, which is important in many
natural and industrial processes. To understand the pore-scale dynamics of multiphase flow, we acquired
time-series synchrotron X-ray micro-tomographic data at a voxel-resolution of 3.28 μm and time-resolution
of 38 s during drainage and imbibition in a carbonate rock, under a capillary-dominated flow regime at
elevated pressure. The time-series data library contains 496 tomographic images (gray-scale and
segmented) for the complete drainage process, and 416 tomographic images (gray-scale and segmented)
for the complete imbibition process. These datasets have been uploaded on the publicly accessible British
Geological Survey repository, with the objective that the time-series information can be used by other
groups to validate pore-scale displacement models such as direct simulations, pore-network and neural
network models, as well as to investigate flow mechanisms related to the displacement and trapping of the
non-wetting phase in the pore space. These datasets can also be used for improving segmentation
algorithms for tomographic data with limited projections.

Design Type(s) image analysis objective • time series design • image processing objective

Measurement Type(s) fluid flow rate

Technology Type(s) micro-computed tomography

Factor Type(s) fluid • experimental stage

Sample Characteristic(s) sedimentary rock
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Background & Summary
Understanding the dynamics of multiphase fluid flow in permeable media is important in many processes
such as water infiltration in soils, oil recovery from reservoir rocks, geo-sequestration of supercritical CO2

to address global climate change, and subsurface non-aqueous phase liquid contaminant transport1–6.
These processes have been studied for decades in two dimensions using micro-models and microfluidic
devices7–11, which do not provide a complete picture of the dynamics of multiphase flow in a complex
realistic permeable medium. In three dimensions, previous studies have used lab-based X-ray micro-
tomography to visualize immiscible fluids in porous media at end states12–16, i.e., before and after fluid
injection, which provide detailed information on the static distribution of fluids but do not describe the
dynamics of their transport mechanisms. Time-resolved imaging in lab-based instruments is restricted
due to a low photon flux, which results in a time resolution of the order of hours. To obtain a higher
photon flux, several studies have used synchrotron X-ray imaging to investigate drainage (displacement
of a wetting fluid by a non-wetting fluid) and imbibition (displacement of a non-wetting by a wetting fluid)
processes in glass beads and natural porous media (carbonates and sandstones)4,5,17–24.

We conducted a high-resolution fast synchrotron X-ray micro-tomographic imaging study of the
displacement of immiscible fluids during drainage and imbibition in a carbonate rock sample under a
capillary-controlled flow regime at elevated pressure conditions22. The dynamic flow displacement
experiments were conducted in a 3.8 mm diameter and 10 mm long Ketton limestone sample. The sample
was first saturated with brine. The system was then pressurized to 10MPa, followed by injection of oil (a
drainage process for water-wet porous media) from the top of the sample by establishing a pressure
gradient of 50 kPa across the sample. When there was no longer any visible change in the oil and brine
saturation, the flow was reversed by raising the pressure in the brine pump and establishing a pressure
gradient of 22 kPa to start brine injection (an imbibition process for a water-wet porous medium) from
the base of the sample. The sample was imaged continuously during drainage and imbibition, with a
voxel size of 3.28 μm and acquisition speed of 38 s for each image.

A complete three-dimensional time-resolved image sequence of drainage and imbibition is available
online (Data Citation 1 and Data Citation 2). The residual oil at the end of imbibition contains a number
of disconnected oil ganglia, these images are also available online (Data Citation 3). These datasets were
collected with the aim of investigating pore-scale processes during immiscible fluid displacement under a
capillary-dominated flow regime22. The time-dependent information can be used to validate models of
pore-scale displacement, such as direct simulations25–27, pore-network27,28 and neural network
models29–31. Furthermore, the data can be used to quantify how the balance of viscous and capillary
forces control the exact nature of trapping, and to further analyze the complex pore-scale processes
during immiscible fluid flow in permeable media. In addition, these datasets can be used for improving
segmentation algorithms for tomographic data with limited projections.

The time-resolved synchrotron X-ray micro-tomographic images are hosted at the British Geological
Survey (BGS) repository, the details of which are provided in the Data Records and Data Citations
sections.

Methods
In this section, we first provide the details of our experimental protocol, followed by synchrotron imaging
and image processing. These descriptions overlap with the experimental details provided in Singh, et al.22.

Experimental methodology
The experiments were conducted in a Hassler-type flow cell made of carbon fiber that is nearly
transparent to X-rays14. A 3.8 mm diameter and 10 mm long cylindrical sample of the Ketton limestone
rock (from the Ketton quarry, Rutland, UK, which contains >99% calcite with the remaining fraction
being quartz14,32), which was cleaned with methanol using a Soxhlet extraction apparatus for 24 h
followed by drying in a vacuum oven at 100 °C for 24 h, was placed on the top of a low-permeability
water-wet Aluminum-silicate ceramic porous plate (3.8 mm diameter and ~ 4 mm long) with a
breakthrough pressure of 1.5 MPa (Weatherford Laboratories, Stavanger, Norway) in a Viton sleeve. The
Viton sleeve was attached to a metal end piece at the base, which was connected to a high-pressure
syringe pump (ISCO-100D, TELEDYNE, U.S.A.) with PEEK tubing (Kinesis, U.K.). A PEEK spacer, with
an outer and inner diameter of 4 mm and 2mm respectively, was placed on the top of the sample, which
allowed monitoring of the brine-oil interface while the system was pressurized and prior to oil injection
in the water saturated sample. The rock was imaged before starting oil and brine injection (hereafter
called the dry reference scan).

The flow loop of the experimental apparatus is shown in Singh, et al.22. After acquiring a dry reference
scan, CO2 was injected in the sample to displace air. The brine (1.8 M solution of potassium iodide,
puriss, 99.5%, Sigma-Aldrich, U.K.) was injected through the sample from the base at 0.1-0.2 mL/min. A
total of 80-100 pore volumes of brine was injected to remove both gaseous and dissolved CO2 in brine,
ensuring 100% brine saturation. This concentration of the salt solution was pre-selected to obtain an
effective X-ray contrast between brine and oil.

The oil (decane, ReagentPlus, ≥ 99%, Sigma-Aldrich, U.K.) was filtered four times through a column
of aluminum oxide powder to remove surface active impurities and to obtain a stable brine-oil interfacial
tension33. The oil was then loaded into the pump and pushed through the flow lines to the upper metal
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end piece. The metal end piece was then carefully attached to the upper part of the Viton sleeve (on the
top of the brine-filled PEEK spacer), avoiding air entrapment during assembly. In this way, the brine-oil
interface was established near the top of the PEEK spacer. The core holder was then mounted on the
rotation stage of the beamline. The sample was aligned to the X-ray beam. The pressure in the brine, oil
and the confining fluid (deionized water) was then raised step-wise to 10MPa and 11.2 MPa respectively.
A higher confining pressure was used to confine the Viton sleeve in which the sample was placed, to
avoid any fluid bypassing along the walls of the sample. The brine-oil interface in the PEEK spacer was
carefully monitored during pressurizing the fluids. All the pumps were previously calibrated and tested
for pressure difference by interconnecting and pressuring them. All the experiments were conducted at
ambient temperature (20 °C).

For oil flooding, the pressure of the oil pump was raised by 50 kPa, which resulted in the migration of
water-oil interface from the top of the sample. The water-wet porous plate prevented the non-wetting
phase (oil) to pass through at the pressure drop used in this experiment, therefore, removing the dead
volume during brine flooding as the oil-brine interface was established just at the base of the core sample
after drainage. The sample was continuously imaged during drainage. When there was no visible change
in the oil and brine phases (found by subtracting the projection data of consecutive tomographic images),
the flow was reversed by raising the pressure in the brine pump and establishing a pressure gradient of 22
kPa to start brine injection from the base of the sample. The low-permeability porous plate at the base of
the core sample provided low flow rates, which was important to acquire distortion free time-resolved
tomographic images. A flow rate of 44.75 nL/min was achieved during imbibition, leading to a Darcy
velocity of 3.94 μm/min and a capillary number (Nc = νμ/γ, where ν is the Darcy velocity of the invading
fluid, μ is the viscosity of the invading fluid, and γ is the brine-oil interfacial tension) of 1.26 × 10−9, using
an interfacial tension of 52.33 ± 0.04 mN/m34), representing a capillary-flow regime. The sample was
continuously imaged during imbibition.

Synchrotron imaging and image processing
The time-resolved X-ray micro-tomography was performed at the Diamond Light Source (UK), Beamline
I13, using a pink beam with energies in the range of 6 to 30 keV. The low energy X-rays were filtered by
placing a set of 0.2 mm pyrolitic graphite, 2.2 mm aluminum, and 0.1 mm gold filters in the beam. This
reduced the relative intensity of low-energy X-ray in the polychromatic X-ray spectrum, controlling
sample heating. The sample was rotated by 180° during the acquisition of the projection data. It was then
brought back to the initial position for the next tomographic image. The X-rays that passed through the
sample were converted to visible light by a 250 μm thick CdWO4 scintillator; which was then recorded by
a PCO Edge camera with 2 × objective.

Tomographic images with a size of 20003 voxels were acquired at a voxel size of 1.64 μm, which were
then binned (2 × 2 × 2) to obtain images of 10003 voxels with a voxel size of 3.28 μm. The binning was
used to decrease the size of the final image. The binning also helped improve the signal-to-noise ratio. A
total of 3000 projections with an exposure time of 0.06 s was acquired over 180° rotation for the dry
reference scan of the sample (without any fluids). For time-resolved imaging during drainage and
imbibition, we collected 800 projections with an exposure time of 0.02 s for each tomographic image. The
total acquisition time for each time-resolved tomographic image was 24 s (16 s for acquisition and 8 s for
triggering). The real time-step between each image was 38 s. This also included 14 s for repositioning the
rotation stage to its initial position and transferring the data to a storage disk. During the complete
drainage and imbibition processes, we acquired a total of 496 and 416 tomographic images respectively.
The images were reconstructed using a filtered back-projection algorithm35. A cylindrical mask
equivalent to the diameter of the rock sample was applied on the reconstructed data to remove unwanted
regions including the Viton sleeve, followed by its conversion from 32-bit to 16-bit to reduce the size,
using ImageJ software (https://imagej.net). Hereafter, all the image-processing steps were performed
using Avizo-9 software (https://www.fei.com/software/amira-avizo/).

First, the dry reference scan (Fig. 1a) was filtered with a non-local means edge preserving filter36,37

(Fig. 1b) (Data Citation 4). Figure 1c shows the intensity profiles of the original raw and filtered images.
Clearly, the filtering process enhances the contrast between air and rock, indicated by two separate peaks
in the filtered image. We also compared the interphase signal-to-noise ratio (ISNR) of the original and
filtered images. The ISNR was obtained by calculating the means, mr and mp, and standard deviation, σr
and σp, of the gray-scale values within the rock and the pore space38.

Interphase signal - to - noise ratio ¼ mr -mp

�� ��
1
2 σr þ σp
� �

The value of the ISNR increased from 2.8 (for the original image) to 8.8 (for the filtered image), indicating
a significant enhancement of signal (or reduction of noise) in the image.

The filtered dry reference scan was then segmented (binarized) into two phases (pore and solid) with a
seeded watershed algorithm based on the gray-scale gradient and gray-scale intensity of each voxel39

(Fig. 1d) (Data Citation 4). Here, the rock and pore space are shown in gray and black respectively. All
the filtered time-series images were then registered to the filtered dry reference scan using normalized
mutual information and resampled onto the same voxel grid as the dry reference scan. Each time-series
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Figure 1. Image processing and segmentation. Two-dimensional horizontal cross-sections of the original

raw (a) and filtered (b) dry reference scans. Here, light gray and dark gray represent rock and pore space

respectively. (c) Histogram showing intensity profiles of the raw and filtered images. (d) The filtered image was

segmented into two phases (rock and air) using a seeded watershed algorithm based on the gray-scale gradient

and gray-scale intensity of each voxel. Here gray and black represent rock and pore (air) respectively. (e) Two-

dimensional horizontal cross-section of a three-phase filtered tomographic image. (f) Two-dimensional

horizontal cross-section of the brine saturated tomographic image, which was acquired before injecting oil in

the sample. (g) The image (e) was subtracted from the brine saturated image (f) and filtered with a non-local

means filter. (h) The image was segmented for oil phase using an intensity-based thresholding method. (i)

Two-dimensional horizontal cross-section showing the segmented oil from (h) superimposed on the three-

phase filtered tomographic image from (e). (j) A zoomed-in two-dimensional cross-section of an original raw

image showing various phases. (k) The same image after the application of a non-local means filter. (l) The oil

segmented data is superimposed on the filtered image to show the quality of segmentation at the pore-scale.
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filtered tomographic image containing three phases (Fig. 1e) (Data Citation 4) was then subtracted from
the brine-saturated image (Fig. 1f) (Data Citation 4). The image subtraction not only helped in enhancing
the contrast between oil and the other phases, but also canceled out the effect of phase-contrast
represented by dark spots in the images (e.g., Fig. 1f). These subtracted images were then again filtered
using a non-local means filter to increase the signal-to-noise ratio (Fig. 1g). The filtered images were
segmented for the oil phase using intensity-based thresholding (Fig. 1h) (Data Citation 4). Figure 1i
shows the segmented oil superimposed on the three-phase filtered image (Fig. 1e), which shows the
effective segmentation based on the subtracted images. The quality of non-local means filtering and
segmentation was also inspected at the pore scale. Figure 1j shows a zoomed-in image of the original raw
scan containing three phases. Figure 1k shows the same location after applying non-local means filter,
indicating that the filtering improves the signal-to-noise ratio significantly while keeping the phase
boundaries preserved. Figure 1l shows the segmented oil superimposed on the filtered image (Fig. 1k),
which indicates that segmentation process based on subtracted images captured the oil phase boundary
effectively. The oil-segmented datasets were used by Singh, et al.22 for curvature and capillary
pressure analysis during oil snap-off at the pore scale. The three-phase segmented image can be
obtained by combining the segmented oil image (Fig. 1h) and the segmented dry reference scan (Fig. 1d).

Data Records
The data for this manuscript are available on the British Geological Survey (BGS) repository (Data
Citation 4), which comprises a dry scan of the rock sample without fluids (unfiltered gray-scale, filtered
gray-scale and segmented images), a scan of the rock saturated with brine (unfiltered and filtered gray-
scale images), 496 time-series tomographic images of drainage (unfiltered gray-scale, filtered gray-scale
and segmented images), and 416 time-series tomographic images of imbibition (unfiltered gray-scale,
filtered gray-scale and segmented images). Table 1 shows the details of the tomographic images. It should
be noted that the datasets (i) Drainage_time_series_unfiltered (ii) Drainage_time_series_filtered (iii)

File name No. of scans Image size (XYZ) Voxel size (μm) Image type

Dry_reference_scan_unfiltered 1 1189 × 1163 × 1000 3.28 16-bit gray-scale

Dry_reference_scan_filtered 1 1189 × 1163 × 1000 3.28 16-bit gray-scale

Dry_reference_scan_segmented 1 1189 × 1163 × 1000 3.28 8-bit binary

Brine_saturated_unfiltered 1 1189 × 1163 × 1000 3.28 16-bit gray-scale

Brine_saturated_filtered 1 1189 × 1163 × 1000 3.28 16-bit gray-scale

Drainage_time_series_unfiltered 496 1189 × 1163 × 1000 3.28 16-bit gray-scale

Drainage_time_series_filtered 496 1189 × 1163 × 1000 3.28 16-bit gray-scale

Drainage_time_series_oil_seged* 496 1189 × 1163 × 1000 3.28 8-bit binary

Imbibition_time_series_unfiltered 416 1189 × 1163 × 1000 3.28 16-bit gray-scale

Imbibition_time_series_filtered 416 1189 × 1163 × 1000 3.28 16-bit gray-scale

Imbibition_time_series_oil_seged* 416 1189 × 1163 × 1000 3.28 8-bit binary

Outer_mask_file 1 1189 × 1163 × 1000 3.28 8-bit binary

Table 1. Data files and parameters.

File name Phase information

Dry_reference_scan_unfiltered Pore space – dark-gray; and rock – light-gray.

Dry_reference_scan_filtered Pore space – dark-gray; and rock – light-gray.

Dry_reference_scan_segmented Pore space – 0; and rock – 1.

Brine_saturated_unfiltered Brine – dark-gray; and rock – light-gray.

Brine_saturated_filtered Brine – dark-gray; and rock – light-gray.

Drainage_time_series_unfiltered Oil – black; brine – dark-gray; and rock – light-gray.

Drainage_time_series_filtered Oil – black; brine – dark-gray; and rock – light-gray.

Drainage_time_series_oil_seged* Oil – 1; and rest – 0.

Imbibition_time_series_unfiltered Oil – black; brine – dark-gray; and rock – light-gray.

Imbibition_time_series_filtered Oil – black; brine – dark-gray; and rock – light-gray.

Imbibition_time_series_oil_seged* Oil – 1; and rest – 0.

Outer_mask_file Outer mask – 0; and rest – 1.

Table 2. Phase information. *In Table 1 and Table 2, ‘seged’ refers to ‘segmented’.
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Imbibition_time_series_unfiltered and (iv) Imbibition_time_series_filtered are not available for down-
loading from the BGS repository due to their large file sizes. These datasets can be obtained by sending a
request to the BGS. Further details are provided in the section Access the dataset (file name: Accessing
Data.docx) in Data Citation 4. The rest of the datasets are available for downloading.

Table 2 shows the phase information. Table 3 and Table 4 show the time-step between consecutive
time-series tomographic images for drainage and imbibition respectively. In general, images were
acquired with a time-step of 38 s. However, the acquisition during imbibition was stopped after scan
number 58, 307, 350 and 378 (Table 4) due to failure of the camera control software. Note that the brine
injection was not interrupted during rebooting of the camera software. When there was no significant
change in oil saturation, we acquired images with a time-step of 950 s (after scan 410 in Table 4) except
for the last scan which was acquired with a time-step of 722 s (Table 4).

Drainage time-series data Time step (s)

001 to 496 38

Table 3. Time steps between consecutive tomographic images for drainage.

Imbibition time-series data Time step (s)

001 to 058 38

058 to 059 76

059 to 307 38

307 to 308 76

308 to 350 38

350 to 351 720

351 to 378 38

378 to 379 3120

379 to 410 38

410 to 415 950

415 to 416 722

Table 4. Time steps between consecutive tomographic images for imbibition.

b c
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Figure 2. Focusing of the detector. (a) Line profiles across the edge of the knife (black in b–g). The focusing

distance between each dataset (data 1 to data 11) is 0.35 mm. (b) to (g) show the edge of the knife for data 1 to

data 6 respectively. The image shifts from blurry to sharp from data 1 (b) to data 6 (g), and then again to blurry

afterwards from data 7 to data 11 (not shown here).

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180265 | DOI: 10.1038/sdata.2018.265 6



Technical Validation
The detector at the beamline I13 (Diamond Light Source) was focused with a high precision 1 mm thick
knife edge (JJ X-ray). Multiple images of the knife edge were acquired at different focusing distances,
using a PCO Edge camera with a 2 × objective, which were then corrected for dark and flat fields.
Figure 2 shows line profiles across the edge of the knife for different focusing distances. Focusing was
tuned in steps of 0.05 mm (only larger steps of 0.35 mm are shown in Fig. 2), until a sharp interface was
obtained (Fig. 2g corresponding to data 6 in Fig. 2a).

The sample rotation stage was aligned perpendicular to the X-ray beam (pitch alignment) and the
rows of the detector within an angular precision of 200 μrad. The axial run-out of the rotation stage is 50
nm and the angular tilt is 0.1 μrad.

Usage Notes
The tomographic data can be loaded as .raw files using an open source software ‘ImageJ’ (http://imagej.
nih.gov/ij). ImageJ has many available plugins for image processing and analysis. For the details of using
Imagej for cropping, resizing, adjusting brightness/contrast, readers are referred to Rowe, et al.40. For
three-dimensional visualization, the data can be loaded on an open source software ‘Drishti’ (https://
github.com/nci/drishti/wiki).

The data can also be loaded and processed on a commercial software ‘Avizo’ (https://www.fei.com/
software/amira-avizo/), which is a powerful tool for data processing, segmentation and analysis. It also
has an option of loading and visualizing the complete time-series data. The datasets can also be loaded to
any other commercial image processing software.
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