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Abstract 

The adsorption of proteins at surfaces and interfaces is important in a wide range of 

industries. Understanding and controlling the conformation of adsorbed proteins at 

surfaces is critical to stability and function in many technological applications including 

foods and biomedical testing kits or sensors. Studying adsorbed protein conformation 

is difficult experimentally and so over the past few decades researchers have turned 

to computer simulation methods to give information at the atomic level on this 

important area. In this review we summarize some of the significant simulation work 

over the past four years at both fluid (liquid-liquid and gas-liquid interfaces) and solid-

liquid interfaces. Of particular significance is the work on surfactant proteins such as 

fungal hydrophobins, ranspumin-2 from the túngara frog and the bacteria protein BslA. 

These have evolved unique structures impart very high surface-active properties to 

the molecules. A highlight is the elucidation of the clam-shell unhinging mechanism of 

ranspumin-2 adsorption to the gas-liquid interface that is responsible for its adsorption 

to and stabilization of the air bubbles in túngara frog foam nests. 

Keywords: Molecular dynamics; protein adsorption; fluid interfaces; solid-
water interfaces  
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1. Introduction 

The adsorption of proteins to interfaces, both fluid and solid, is an important 

phenomenon in many technological processes across a wide range of industry 

sectors. For example, in foods proteins are used to form oil-water and air-water fluid 

interfaces in emulsion and foam products, and provide stability against coalescence 

and disproportionation in food and beverage foams [1]. Proteins will also adsorb to a 

solid surface during food processing and form a foulant layer that can reduce efficiency 

of heat transfer, or can support microbial growth [2]. Protein adsorption to solid 

surfaces is also important in biomedicine. Protein adsorption to surgical instruments, 

and how these can be cleaned efficiently or adsorption prevented in the first place, is 

a significant concern [3]. The promotion of protein adsorption to surgical implants 

(such as joint replacements) is essential to facilitate integration with bone and tissues 

in the body [4]. Similarly, many modern medical (and other) diagnostic tests are based 

around the adsorption of a sensing molecule (often an enzyme) to a silicon chip (so-

called lab on a chip devices) [5]. With these, maintaining the tertiary structure of the 

adsorbed protein is essential, as this structure enables the biological activity required 

for sensing. 

With all of these applications, an understanding of the changes in the conformation of 

proteins as they adsorb to interface is key to controlling the conformational stability of 

the protein, which is a key factor in functionality. Computer modelling is finding an 

increasing role in these investigations, since it is able to give detailed molecular level 

information at a scale that is difficult to study experimentally. In this review, we will 

cover the advances in molecular modelling of protein adsorption at fluid and solid 

interfaces over the past 3-4 years, whilst also including some earlier references where 
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relevant. For detailed information on earlier modelling efforts reference should be 

made to previous reviews of the subject matter [6]. 

 

2. Modelling of Protein Adsorption at Fluid Interface 

The majority of simulation studies on protein adsorption have been on compact, 

globular proteins, with surprisingly few studies on unstructured intrinsically disordered 

proteins. This may be because globular proteins display a richer conformational 

behaviour, with perturbations in these easily followed using molecular dynamics (MD) 

simulation. McGrath and co-workers [7, 8] elucidated the adsorption mechanisms for 

the bovine whey protein β-lactoglobulin (β-lac) at an oil-water interface (decane) and 

the effect of varying the oil phase hydrophilicity on adsorbed conformation. Various 

starting orientations of the β-lac molecule were modelled, but in each case, the 

orientation upon adsorption and the amino acid residues in contact with the surface 

were similar. Lysine residues in positions 14 and 77 formed initial contacts with the 

surface in nearly all simulations. The β-lac molecule did not form a stable adsorbed 

conformation immediately upon contacting the surface, but diffused across the surface 

before finally adsorbing. As adsorption progressed, residues in the N-terminal region 

and residues 70-123 where there are significant proportions of hydrophobic amino 

acids show a high probability of contacting the surface. The conformation of β-lac does 

not change on contact with the surface, but unfolds with time after a stable adsorbed 

state forms, eventually allowing around 80-90 residues to interact with the decane 

layer. Unfolding of the tertiary fold of the β-lac is not accompanied by loss of secondary 

structure, suggesting the latter is highly stable. 
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There is evidence that the mechanism of adsorption varies for different interfaces. 

After adsorption, the orientation of β-lac at the triolein interface varies little, whilst 

fluctuations occur at the decane and octanol surfaces. Additionally, the mechanism of 

adsorption differs. At the decane surface, a small number of interactions are made 

initially, followed by a rapid increase as the adsorption process completes. β-lac 

adsorbing to an octanol surface also starts with a small number of interactions, but is 

then followed by sequences of rapid, slow and no increase in interactions. At the 

triolein interface, β-lac has a different behaviour where there is a gradual increase in 

surface interaction over 10’s of ns after initial adsorption. 

Cheung [9*, 10*] has used replica exchange MD to probe the adsorption at an octane-

water interface of myoglobin peptides, lysozyme and α-lactalbumin, demonstrating the 

importance of intra-protein interactions in adsorbed conformations. These proteins 

display differing structural stability – myoglobin lacks disulphide bonds unlike lysozyme 

and α-lactalbumin, and is more flexible at the interface, and so these make ideal model 

proteins for interfacial studies. Two myoglobin peptides comprising amino acids 1-55 

and 56-131 have been simulated [10*] and the results compared to experimental 

information on the adsorbed conformation of the two [11, 12]. The peptides share 

structural similarities, such as a similar proportion of hydrophobic amino acid side 

chains and α-helical character, but display differing adsorption behaviour. Multiple 

simulation runs suggested that the more flexible 1-55 peptide adopts three 

conformations at the interface, one compact and two extended, with one of the 

extended conformations preferred (Figure 1), with the two extended states 

corresponding to differing orientations of helices at the interface. Peptide 56-131 on 

the other hand prefers a compact native-like conformation at the interface. 

Interestingly, the two peptides also show differing emulsifying and foaming activity, 
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with peptide 1-55 being a good emulsifier and foamer whilst peptide 56-131 is poor at 

emulsification and foaming [11] suggesting link between adsorbed conformation and 

these properties. 

The same group [9*] has shown that lysozyme and α-lactalbumin also adopt a range 

of conformations at the octane-water interface, with compact globular states being 

more common for both proteins, and extended states rarer. Differences in adsorption 

are observed, despite the similarity of the two proteins, in that lysozyme adsorption 

appears to be non-specific, whereas α-lactalbumin adsorption seems to be mediated 

through two amphipathic α-helices. To understand further the factors controlling the 

interfacial conformations, the free energy differences between native and adsorbed 

states was calculated. This was decomposed into terms described protein-interface 

interactions (ΔFp-i), protein-protein intra molecular interactions (ΔFp-p) and a partition 

term (ΔFpart). The balance between these terms determines the degree of unfolding, 

with ΔFp-I favouring extended conformations and ΔFp-p compact conformations. 

Lysozyme and α-lactalbumin were found predominantly in compact conformations, 

indicating that intra-molecular interactions dominate over protein-surface interactions. 

A further difference in the behaviour of the two proteins is in the interactions between 

the protein and the octane phase. Protein-oil interaction was more favourable in the 

extended state of α-lactalbumin compared to the compact state, whilst this interaction 

was not significantly different for lysozyme between the two states. This would suggest 

that the hydrophobic phase influence on protein conformation would differ between 

proteins. The behaviour of lysozyme and α-lactalbumin is in contrast to myoglobin 

where extended conformations are favoured. This reflects weaker intra-peptide 

interactions in myoglobin, mainly from the lack of disulphide bonds in the structure. 
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Another protein whose adsorption to fluid interfaces has been widely studied is barley 

lipid transfer protein (LTP). LTP is one of main proteins responsible for the foaming 

properties of beer. In its native state LTP is stabilized by four disulphide bonds that 

impart high conformational stability [13]. During the wort boiling stage of the brewing 

process LTP is partially denatured, glycosylated and disulphide bonds are broken [14]. 

These changes improve the foaming ability. Early studies of LTP adsorption at air-

water and decane-water interface [15-17] highlighted the different conformations 

adopted at the two interfaces. LTP adsorbed to the air-water interface shows only 

minor perturbations from the native tertiary conformation. At the decane interface, on 

the other hand the LTP molecule penetrates into the decane layer and undergoes 

significant surface denaturation [15]. Euston et al. [16] and Zhao & Cieplak [18] have 

determined the effect of reducing disulphide bonds on the conformation of LTP at the 

air-water interface. Euston et al. [16] using an all-atom MD model report that reduction 

of all four disulphide bonds leads to an increase in the conformational entropy of the 

protein which opposes the adsorption of the LTP. The coarse-grained model of LTP 

adsorption used by Zhao & Cieplak [18] contradict this and shows that fully reduced 

LTP adopts a flatter conformation at the interface than the non-reduced LTP. It should 

be noted that the timescales of the simulations in these two studies are very different. 

The all-atom simulation was limited to a few 10’s of ns and this may not have been 

long enough for an extended conformation to form. It is possible that the increase in 

conformational entropy from removing the disulphide bonds increases the energy 

barrier to initial adsorption. The shorter all-atom simulations cannot overcome this 

barrier, but the coarse-grained simulations are run over a long enough timescale for 

extended conformations to occur. Once the LTP starts to spread at the air-water 
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interface, the extra surface-protein interactions are sufficient to compensate for the 

increased conformational entropy.  

Zhao & Cieplak [18] have also used their coarse-grained model to compare the 

adsorption behaviour at both air-water and oil-water interfaces of five proteins of 

differing size, tryptophan cage (20 amino acids), streptococcal protein G (56 amino 

acids), hydrophobin HFBI (72 amino acids), LTP1 (91 amino acids) and hen egg-white 

lysozyme (129 amino acids). They found that all proteins spread at the interface, and 

that adsorption was stronger to the oil-water than the air-water interface. Diffusion of 

proteins across the surface was slower at the oil-water than air-water interface and 

there was higher probability of desorption form the air-water interface. Earlier 

simulations of LTP [15] and lattice proteins [19] had noted that the protein molecule 

penetrates further into an oil-phase than an air phase. This may explain the larger 

adsorption energy at the oil-interface and the slower diffusion. The more viscous oil 

phase would create a greater drag on the protein diffusional motion than would an air 

phase. 

Surfactant proteins are a second group of proteins the adsorption behaviour of which 

has been widely simulated. These are highly surface-active proteins produced by living 

organisms and have specific surface chemical functions. The most widely known and 

studied are the hydrophobins. These are small, hydrophobic proteins expressed by 

filamentous fungi [20]. There function is to facilitate sporulation by reducing the surface 

tension at the water surface so that hyphae can push through the surface to release 

spores into the air. Two general types of hydrophobin have been identified, class I and 

class II. There is little sequence homology between hydrophobins apart from a set of 

8 conserved cysteine residues that form 4 disulphide bonds and impart a high 

conformational stability [20]. Additionally, the distribution of hydrophobic amino acids 



9 
 

is similar within each class and leads to a hydrophobic patch that is important in 

surface adsorption [21]. Class II hydrophobins show a greater degree of sequence 

homology between the conserved cysteine residues than do class I hydrophobins [20]. 

Euston [22**] has simulated the self–association of the class II hydrophobin HFBI from 

Trichoderma reesei, showing that two molecules associate through interaction 

between their respective hydrophobic patches. Simulated adsorption of HFBI at air-

water, decane-water and diphospatidylcholine (DPPC) bilayer-water interfaces 

allowed the role of the hydrophobic patch in adsorption to be elucidated [22**]. HFB1 

adsorbs with the hydrophobic patch parallel to both the air-water and decane water 

interfaces, but normal to the DPPC interface (Figure 2), probably reflecting the 

presence of the hydrophilic phosphatidyl choline group at the interface with the water. 

The tertiary structure of HFBI is only slightly perturbed at the air-water surface, slightly 

more at the DPPC-water and substantially unfolded at the decane-water interface. 

Raffaini et al. [23] have confirmed the high conformational stability of HFBII at the air-

water interface and the importance of the hydrophobic patch in the adsorption process. 

Cheung has used a coarse-grained model for the adsorption of HFBII and HFBI, 

another class II hydrophobin from T. reesei, at the octane-water interface [24] and has 

used this to show that HFBI and HFBII adsorb essentially irreversibly to the interface. 

The simulated free energy of adsorption is in the range 80-100 kBT, which is 

considerably more than for most biomolecule surfactants. 

Bacteria also produce surfactant proteins that are similar in function to the fungal 

hydrophobins. One of these, BslA, produced by B. subtilis has no sequence similarity 

with fungal hydrophobins, but does share the characteristic hydrophobic patch [25**]. 

The function of BslA is to coat the surface of bacterial biofilm, with the hydrophobic 

patch pointed outwards to form a protective, non-wetting hydrophobic interface. 
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Interestingly, BslA does not have the conserved 8 cysteine motif, which forms the four 

disulphide bonds that stabilize hydrophobins and allows the hydrophobic patch to 

remain on the outside of the molecule. This raises the question as to how the surface 

hydrophobic patch observed in the X-ray structure in BslA is stabilised in aqueous 

systems in the absence of the structural disulphides, a mechanism that allows BslA to 

be soluble and monomeric in solution, unlike hydrophobins. Bromley et al. [25**] have 

carried out experimental and coarse-grained MD simulations that have shown that in 

solution the hydrophobic patch amino acids adopt a random coil conformation that 

protects them from exposure to the aqueous environment. When BslA adsorbs to an 

interface, the hydrophobic patch amino acids insert into the non-aqueous phase, and 

refold into three beta sheets. This reforms the hydrophobic patch, and allows the BslA 

to self-associate at the interface through inter-molecular hydrophobic interactions 

forming a rigid stabilising adsorbed protein film. Evidence for this includes a small 

energy barrier to adsorption, elucidated through coarse-grained MD simulations, that 

suggests a conformation upon surface adsorption. Brandani et al. [26**] have 

extended the coarse-grained simulations on BslA and in doing so have highlighted the 

biotechnological potential of the molecule. The structure of BslA, where there is a clear 

partitioning between hydrophobic and hydrophilic ends of the molecule is reminiscent 

of amphiphilic Janus colloids. These are particles with distinct hydrophilic and 

hydrophobic faces. When Janus colloids adsorb to interfaces, they are known to be 

switchable, i.e. they can adopt conformations where the hydrophilic or hydrophobic 

regions are presented to the aqueous phase depending on environmental conditions. 

Brandani et al [26**] noted that the crystal structure of BslA [27] shows two main forms 

and that these adopt different conformations at the cyclohexane-water interface. One 

adsorbed conformation sees the BslA upright and presenting the hydrophobic patch 



11 
 

to the water, and the second tilts at the interface and exposes more of the hydrophilic 

part of the molecule to the oil phase. MD simulations revealed that the energy 

difference between the two conformations is relatively small, which suggests the 

possibility of BslA possessing a conformational switch that can be exploited to alter 

the conformation and interfacial properties of the BslA adsorbed film, although as the 

authors point out a practical solution to controlling switching will need to be found. 

A further surfactant protein that undergoes an unsual conformational change upon 

adsorption is ranspumin-2 (rsn-2), the protein responsible for formation and stability of 

the foam nests of the túngara frog (Engystomops pustulosus) [28]. The structure of 

rsn-2 has no obvious amphiphilic structure, with the hydrophobic amino acids 

predominantly localised in a hydrophobic core. To explain the interfacial activity, this 

led Mackenzie et al. [29] to hypothesize what they termed a clam-shell transition for 

rsn-2 adsorbing to a hydrophobic interface, where two halves of the molecule opened 

up to expose the hydrophobic core to the interface. Somewhat surprisingly for such a 

significant change in the tertiary structure, the secondary structure is unaffected [29]. 

MD simulation has revealed a two-state adsorption mechanism [30, 31] at the air-water 

and cyclohexane-water interfaces. First, the flexible, random coil N-terminal end of the 

rsn-2, which contains a high proportion of hydrophobic amino acids, contacts the oil-

surface and recruits the protein to the interface. This is followed by adsorption of the 

globular part of rsn-2 and conformational unfolding. This mechanism has been 

confirmed using variants of rsn-2. The influence of the N-terminal on adsorption was 

probed using two mutant proteins, one with the first three amino acids (Δ1-3), and a 

second with amino acids 1-15 (Δ1-15) from the N- terminal deleted. Similarly, two 

mutants at the C-terminal end (Δ96) and (Δ89-96) were constructed. A further variant 

was used, where two disulphide bonds are introduced to prevent the clam-shell 
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unhinging of the globular part of the protein. The N-terminal deletions slowed the 

kinetics of adsorption to the interface. This was also observed for the Δ89-96 C-

terminal deletant under some conditions. These results confirmed the importance of 

the N-terminal amino acids in rsn-2 adsorption and also suggests that the C-terminal 

end plays a role, possibly in ensuring the correct orientation of rsn-2 for adsorption. 

Furthermore, the rsn-2 with additional cysteine bridges adsorbed as quickly as the 

native structure, but occupied a smaller area at the surface, again supporting the view 

that consolidation of the rsn-2 adsorption is through a clam-shell like unhinging at the 

surface [30, 31**]. 

3. Modelling of Protein Adsorption at Solid Surfaces 

Early computational studies of protein adsorption at solid surfaces have been reviewed 

elsewhere [32-34], and here we concentrate on more recent studies over the past few 

years. The mechanism of adsorption and in particular the interactions involved and the 

driving force for adsorption will differ between a fluid and a solid interface. Hydrophobic 

interactions will predominate at uncharged fluid interfaces, whereas a combination of 

hydrophobic and electrostatic interactions is more important at charged surfaces. 

Several simulation studies have demonstrated the importance of the adsorption driving 

force. Ding et al. [35**] have investigated serum protein adsorption on nanoparticle 

surface and its effect on cellular delivery of nanoparticle through dissipative particle 

dynamics (DPD) coarse-grained simulations. The negatively charged HSA did not 

adsorb spontaneously to hydrophilic or negatively charged nanoparticle surfaces, but 

could adsorb onto the charged and hydrophobic surface to form a protein corona. 

Furthermore, the protein corona changed the way in which hydrophobic and cationic 

nanoparticles interact with model cell membranes, and in particular enhanced the 

phagocytosis (movement through the membrane) of cationic nanoparticles. 
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The adsorption of proteins and peptides to uncharged surfaces will proceed 

independently of electrostatic interactions. In this case, Penna et al. [36] have 

demonstrated the importance of a layer of water with orientational order at the solid 

surface (one layer tightly bound to the surface, the second more loosely associated 

with the first layer). Adsorption of a small peptide was shown to proceed through three 

stages, diffusion of the peptide toward the surface; interaction of the peptide with the 

outer of the two surface bound water layers; and irreversible adsorption surface 

through adsorption of amino acid residues to the solid surface. The rate of diffusion to 

the interface for the peptide was found to faster than expected from simple diffusion. 

Penna et al. [36] attribute this to the orientational ordering of the water in the two layers 

adjacent to the surface. The orientation of the water dipole in the water layer is such 

that the surface acquires a charge, and long range electrostatic interactions between 

the peptide and surface bias the diffusion of the peptide towards the surface. Once the 

peptide reaches the ordered water layer adjacent to the surface polar groups on the 

peptide form hydrogen bonds with the first water layer, and reversibly anchor the 

peptide adjacent to the surface. This is followed by a slower insertion of the peptide 

into the more strongly bound inner water layer. Once the peptide has inserted into this 

layer it is more strongly bound to the interface and a gradual consolidation of surface 

binding occurs as further amino acid residues penetrate into the adsorbed water layer 

and contact the surface. Although Penna et al. [36] simulations were for a small 

peptide at a non-specific solid surface, there is no reason to expect that the same or 

similar mechanism does not contribute to the adsorption of larger proteins at 

uncharged and possibly charged interfaces. 

The adsorption of peptides to silica nanoparticles offers a possible route to designing 

new drug delivery systems and thus has a great potential for future therapeutics. 
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Kubiak-Ossowska et al. [37] have followed how a spontaneous membrane-

translocating peptide (SMTP), known to directly penetrate cell membranes, adsorbs 

to silica surfaces. MD simulation results showed the adsorbed SMTP flattens onto the 

interface irrespective of surface charge density (siloxide-rich surfaces with an electric 

field across the water/peptide space, hydroxylated silica surfaces with no electric field, 

and a mixture of sites and a weaker electric field to mimic silica nanoparticles). 

Screening of surface charge by addition of salt does not result in desorption, 

suggesting non-electrostatic forces also contribute to the final adsorbed conformation. 

In addition, they found that two polar residues in the peptide, Arg6 and Arg9, form 

favourable electrostatic interactions with surface, agreeing with several studies 

identifying arginine as an important residue for anchoring peptides to surfaces. 

In another study, Kubiak-Ossowska et al. [38] probed the mechanism of adsorption of 

human fibronectin adhesion synergy region in repeat 9 (FNIII9) domain adsorption onto 

various model surfaces, finding that adsorption was rapid and driven by electrostatics. 

A similar conclusion was drawn when the same group simulated the adsorption of Hen 

Egg White Lysozyme (HEWL) on a silica surface [39]. The MD simulations indicated 

that at pH7 the adsorption is strong and rapid, and that the main adsorption driving 

force is electrostatics, supplemented by weaker hydrophobic forces. Lysozyme and 

bovine serum albumin (BSA) are popular model proteins for studying adsorption to 

various solid surfaces [40-45]. In particular, MD simulations have been employed to 

study how the negatively charged BSA adsorb to a model silica surface that is also 

negatively charged [40]. During the simulation, BSA rotates to present its IIB 

subdomain toward the silica surface, which orientates the negatively charged domains 

away from the surface. Positively charged Lys residues extend their side chains 

toward the surface, driven by electrostatic interaction between positively charged side 
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chains on Lys and the negatively charged surface. In this orientation, the side chains 

of Lys are able to penetrate both hydration water layers above the surface and form 

strong interactions with the surface, creating a stable adsorbed state [40]. The 

adsorption occurs despite the protein and surface both having the same net charge, 

supported by the effects of screening ions, the surface water layers and hydrophobic 

forces [41**]. Additionally, 8 H-bonds form between the protein and the surface 

hydration water layers, further strengthening adsorption and reducing the chance of 

desorption. The adsorbed BSA maintains its secondary and tertiary structure, so that 

its functionality may well be preserved. 

In addition to silicon surfaces, carbon surface such as graphene-water or graphite-

water, or carbon nanotube-water interfaces are now receiving increasing attention. 

Vilhena et al. [42] have used computational simulations to study the difference 

between free and forced adsorption of BSA on graphene. Free adsorption occurred 

with little structural rearrangements, and even if the adsorption was forced, they 

observed that the BSA was able to preserve the structural properties of the majority of 

its binding sites. In another study, Mücksch et al. [43] modelled the adsorption and 

forced desorption of BSA and lysozyme on a graphite surface, using MD simulations. 

Lysozyme retains much of its secondary structure during adsorption, whereas BSA 

loses it almost completely and also becomes almost fully unfolded during pull-off, in 

contrast to what is observed at the silicon dioxide surface. Lysozyme adsorption on 

different surfaces was also studied by Yu et al. [46**] with coarse-grained MD (CGMD) 

simulations. An important finding was that the conformation change of lysozyme on 

the hydrophobic surface was larger than on any other studied surfaces. Significant 

structural changes ensuing from the non-covalent absorption of bovine beta-

lactoglobulin (BLG) on the hydrophobic surface of polystyrene nanoparticles was also 
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observed by Miriani et al. [47]. Simulation resulted in very quick induction of unfolding 

events, that were essentially complete within just 5 ns of simulated time.  

The surface topography effects in protein adsorption on single-walled carbon 

nanotubes (SWNT) was studied by Raffaini et al. [48]. MD simulations showed that 

proteins favourably interact with the hydrophobic surfaces irrespective of their 

secondary structure. Moreover, the adsorption strength depends on the surface 

topography of SWNT; it is slightly weaker on the outer convex surfaces of SWNT, but 

enhanced on the inner concave surface, whilst being intermediate for flat graphene. 

Several simulation studies have demonstrated also the importance of the orientation 

of proteins on their adsorption at surfaces. Liu et al. [49**] have studied the orientation 

of a prototype and mutated protein G B1 adsorbed on positively and negatively 

charged self-assembled monolayers by using Monte Carlo and all-atom MDs, 

considering that the orientation of an antibody plays a key role in the development of 

immunosensors. Simulation results showed that both proteins adsorb on charged 

surfaces with preferred orientations. Moreover, the mutant demonstrates narrower 

orientation distributions than does the prototype, which was caused by the stronger 

dipole of the mutant [49**]. In addition, protein adsorption was induced by the 

competition of electrostatic and vdW interactions, with the electrostatic interaction 

energy displaying distinctly higher values. Yu et al. [46**] have also found that the 

active sites of lysozyme face the hydrophobic surface with a “top end-on” orientation 

and they are exposed to the liquid phase on the hydrophilic surface with a “back-on” 

orientation.  

The orientation and adsorption mechanism of candida antarctica lipase B (CalB), on 

four different nanomaterial surfaces has been explored by a combination of parallel 

tempering Monte Carlo (PTMC) and MD simulations by Zhao et al. [50*]. CalB is a 
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biocatalyst for hydrolysis and esterification that plays an important role in the 

production of biodiesel. They found that lipase adsorbs strongly onto the hydrophobic 

graphite surface by forming favourable π-π contacts and hydrophobic interactions, 

and the active site orients toward the solution. On the other hand, adsorption of lipase 

onto the hydrophilic TiO2 surface was weak because of the two strongly adhered water 

layers, allowing the lipase to reorient and desorb. On positively and negatively charged 

surfaces, the orientation distributions of lipase were narrow and opposite. For the 

positive surface, the interaction between CalB and the surface was weak, unstable 

and the protein adsorbed and then desorbed, without the protein's orientation 

changing much. The negative charge of lipase promoted its binding to the positive 

surface with a strong interaction, also with no change in the protein orientation. A 

similar computational approach has been used by this group to investigate the 

adsorption of hydrophobin (HFBI) on four different self-assembled monolayers [51**], 

finding that the orientation of HFBI adsorbed on neutral surfaces is dominated by a 

hydrophobic dipole. The hydrophobic patch of HFBI adsorbs on the hydrophobic 

surface by adopting a nearly vertical hydrophobic dipole relative to the surface, and it 

is nearly horizontal when adsorbed on the hydrophilic surface, while for the charged 

surfaces HFBI adopts a nearly vertical electric dipole (Figure 4). These results mirror 

those found for fluid interfaces by Euston [22**] where the hydrophobic patch is parallel 

to the surface (vertical dipole) at air- and decane-water interfaces, but normal to the 

interface (horizontal hydrophobic dipole) at the more hydrophilic DPPC-water surface. 

The unique structure and surface activity of hydrophobins has also led to the 

investigation of the adsorption of other hydrophobins at solid surfaces. Ley et al. [52] 

have employed all-atom MDs to study initial stages of the spontaneous adsorption of 

a monomeric class I hydrophobin EAS on fully hydroxylated silica. They found two 
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possible binding motifs for EAS hydrophobin; the unfolded Cys7-Cys8 loop is possible 

when hydrophobin adsorbs through residues 20–24 and 38–42 of the Cys3-Cys4 loop. 

In addition, the presence of areas void of water allows the penetration of hydrophobic 

side chains, and the interactions with the interfacial water layer allows the formation 

of both intermittent and long-lasting interactions with this layer, bringing the protein 

closer to the surface and promoting the protein surface adhesion. 

 

Conclusions 

The molecular simulation of protein adsorption at fluid and solid surfaces highlights a 

number of important differences between the two interfaces. The driving force for 

proteins to adsorb at fluid and solid surfaces differs between the interfaces. At air-

water and oil-water surfaces, there is a lack of long-range electrostatic interactions 

and contact with the surface is through simple diffusion. Ordering of water close to 

solids surfaces leads to the water dipole allowing longer ranged electrostatic 

interactions between the partial charges of the water dipole and charged groups of the 

protein leading to biased diffusion of the protein to the surface. Similarly, contact 

between the protein and interface is controlled differently. At solid surface, interaction 

is initially between charged amino acid side-chains and the ordered hydration water 

layer, followed by electrostatic surface-protein interactions. At fluid interface, the 

principle interactions are hydrophobic and arise form unfolding of the protein and 

exposure of the hydrophobic core. With this insight, it may be possible to better select 

or design proteins to more efficiently form and stabilise interfaces in systems such as 

food emulsions and foams, or to promote adsorption to solid surface and 

conformational stability in medical devices. 
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Of particular interest are some of the unique mechanisms for adsorption and 

conformational change in surfactant proteins such as hydrophobin, BslA and rsn-2. 

With further computational work and insight, one day we may be able to design 

proteins so they mimic these mechanisms giving the possibility of producing interfacial 

stabilisers with controlled and tuned properties such as the switchable interfacial 

properties of BslA. 

One word of caution should be attached to the simulation results discussed in this 

review, and which is of particular significance to fluid interface. All of these simulations 

have involved the adsorption of a single molecule at an interface, and ignore any effect 

other adsorbed proteins may have on the conformation. Lateral electrostatic 

interactions and steric interactions between adsorbed protein molecules will modify 

the adsorbed conformation. At liquid-liquid or gas-liquid interfaces electrostatic 

interactions play a more significant role than for solid-liquid interfaces because of the 

much lower dielectric permittivity and larger electrical double-layer thickness. As a 

result, the protein molecules interact with each other over longer distances, which 

influence not only conformational unfolding, but also can induce protein aggregation.  

The effect of these crowding effects in the protein adsorbed layer are ignored in most 

MD simulations of adsorbed proteins. In future, it would be informative to extend 

simulations to study such effects. 
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Figure 1 - Two-dimensional probability distribution for the most probable adsorbed 

conformations of (a) myoglobin peptide 1-55 and (b) peptide 56-113. The most probable 

conformation (highest peak in probability distribution) is extended for peptide 1-55 and 

compact for peptide 56-131. Reprinted with permission from Cheung, D.L., 2016. 

Conformations of Myoglobin-Derived Peptides at the Air–Water Interface. Langmuir, 32(18), 

4405-4414. Copyright 2016 American Chemical Society. 
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Figure 2 – Adsorbed conformations of hydrophobin HFBII at (a) vacuum-water, (b) DPPC-

bilayer-water, (c) decane-water interfaces. The hydrophobic patch amino acids of HFBII are 

highlighted in black line representation. The hydrophobic patch aligns parallel to the vacuum-

water and decane-water interface, but perpendicular to the DPPC-water interface. Reprinted 

from Food Hydrocolloids, 42, S.R.Euston, Molecular simulation of adsorption of hydrophobin 

HFBI to the air–water, DPPC–water and decane–water interfaces, 66-74. Copyright (2014), 

with permission from Elsevier. 
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Figure 3 - Schematics of the coarse-graining (CG) from the all-atom NMR structure (AA), and 

typical rsn-2 configuration at different adsorption stages: in bulk (state 0, corresponding to the 

native structure); with the flexible N-terminal region adsorbed at the interface (state 1); and 

fully adsorbed and partially unfolded in side-view (top) and top-view (bottom) (state 2). The N-

terminal tail is shown in blue, and the C-terminal tail (89–96) are in gray. The interface is 

represented by the black wavy line. For the coarse-grained structures only the Cα beads are 

shown and not the side chains. Reprinted from Biophysical Journal, 111(4), Morris, R.J., 

Brandani, G.B., Desai, V., Smith, B.O., Schor, M. and MacPhee, C.E., The conformation of 

interfacially adsorbed ranaspumin-2 is an arrested state on the unfolding pathway, 732-742. 

Copyright 2016, with permission from Elsevier. 
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Figure 4 - Snapshots of HFBI adsorbed on four SAM surfaces from MD simulations: (a) from 

O1, O2, and O3 for HFBI on the CH3-SAM; (b) from O4 for HFBI on the CH3-SAM; (c) from 

O1 for HFBI on the OH-SAM; (d) from O3 and O4 for HFBI on the OH-SAM; (e) for HFBI on 

the 7.5% dissociated COOH-SAM; (f) for HFBI on the 15% dissociated COOH-SAM; (g) for 

HFBI on the 7.5% dissociated NH2-SAM; (h) for HFBI on the 15% dissociated NH2-SAM. The 

black and the red arrow represent the directions of the electric and hydrophobic dipole, 

respectively. The protein is represented in cartoon mode; the white and transparent area 

represents the hydrophobic patch. The positively charged residues are coloured in blue and 

the negatively charged residues are coloured in red. The SAM surfaces are shown in licorice 

mode. Residues within 3.5 Å from the surface are shown in licorice mode. Water and ions are 

not shown for clarity. Source: Reprinted with permission from Peng et al. [51**]. Copyright 

(2014) American Chemical Society. 
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