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Prymnesium parvum is a toxin-producing microalga that causes harmful algal blooms
globally, which often result in large-scale fish kills that have severe ecological and eco-
nomic implications. Although many toxins have previously been isolated from P. parvum,
ambiguity still surrounds the responsible ichthyotoxins in P. parvum blooms and the
biotic and abiotic factors that promote bloom toxicity. A major fish kill attributed to
P. parvum occurred in Spring 2015 on the Norfolk Broads, a low-lying set of channels
and lakes (Broads) found on the East of England. Here, we discuss how water samples
taken during this bloom have led to diverse scientific advances ranging from toxin ana-
lysis to discovery of a new lytic virus of P. parvum, P. parvum DNA virus (PpDNAV-BW1).
Taking recent literature into account, we propose key roles for sialic acids in this type of
viral infection. Finally, we discuss recent practical detection and management strategies
for controlling these devastating blooms.

Introduction
Harmful algal blooms (HABs) are rapid expansions of phytoplankton populations, which represent a
major threat to the health of diverse coastal and freshwater aquatic ecosystems [1]. Commonly, these
algal blooms are dominated by one or a few phytoplankton species, and damage to the surrounding
ecosystem can occur via several different mechanisms. Eutrophication, which is probably the best
known cause of HABs, leads to water hypoxia through the bacterial-mediated decomposition of dead
algal blooms. However, mechanical gill damage and production of algal toxins represent two further
mechanisms through which aquatic life can suffer [2]. The frequency of HABs appears to have
increased in recent years, perhaps due to climate change [3]; as a consequence, there has been an
increased focus from both scientists and regulatory authorities to combat the negative effects of HABs.
While regulators have focused on practical mitigation or management strategies, scientists have sought
to learn more about what promotes HABs and the toxin-producing species that cause them [4].
Prymnesium parvum is one such toxin-producing microalga that causes HABs globally, resulting in
large-scale fish mortalities that have negative effects on ecosystems and the economy of the affected
areas [5]. Research into P. parvum has been ongoing since blooms by this organism were first reported
in the Netherlands by Liebert and Deerns in 1920 [6]. Since then, blooms of P. parvum have been
reported worldwide, with examples of mass fish kills found in Scotland [7], Norway [8], Germany [9],
Finland [10], China [11], and the U.S.A. [12], where it is of particular concern to the aquaculture
industry [13]. Edvardsen and Paasche [14] have also commented on blooms of P. parvum in Israel,
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former USSR, Bulgaria, Spain, Denmark, Sweden, and Australia. However, our major interest in P. parvum was
galvanized by the effects of repeated blooms of this microalga in our area in the Norfolk Broads in the East of
England [15].
The Norfolk Broads are a low-lying area of interconnected rivers, channels, and lakes (Broads) that are a

popular tourist destination for angling and boating activities. Originally excavated for peat and fuel prior to the
14th century, the Broads and their surrounding marshland now house a plethora of rare wildlife and represent
Britain’s largest protected wetland [16]. Up until the 1960s, much of the Broads were dominated by a healthy
charophyte-based algal community [15]. Hickling Broad, in particular, then underwent a change to a
phytoplankton-dominated community through the 1960s and 1970s. While charophytes have returned and are
a factor in the Broads being a Designated Special Area of Conservation, Hickling and the surrounding Broads
still suffer from almost annual occurrences of P. parvum blooms [17]. These toxic blooms frequently lead to
mass fish mortalities that threaten the ecosystem of this national park and the estimated £550 million of annual
revenue it generates through tourism [16].
Although significant effort has gone into researching the bloom dynamics of P. parvum [5], this new knowl-

edge has not yet translated into feasible, practical solutions for bloom prevention or management. Here, we
discuss recent advances in both the scientific understanding, and control and management, of P. parvum
blooms on the Norfolk Broads. Facilitated by a major bloom of P. parvum in Spring 2015, scientists and gov-
erning bodies across Norfolk collaborated to tackle the issue head on.

P. parvum and its toxins
Commonly referred to as a golden alga due to the fucoxanthin pigments found in its chloroplasts [18], P.
parvum is a unicellular microalga belonging to the Prymnesiaceae of the phylum Haptophyta [19]. Two long
flagella permit movement and stir the boundary layer around the cells to aid nutrient uptake, while a shorter
haptonema is used for attachment to prey in the phagocytic process, helping P. parvum perform as a successful
mixotroph [20,21] (Figure 1). Like other members of the Prymnesiales, P. parvum has organic scales covering
the outer cell membrane that are often used for phylogenetic analysis due to their unique appearance [22]
(Figure 1C). Its success as a cosmopolitan organism is, in part, due to the euryhaline and eurythermal nature
of the organism, tolerating salinities ranging from 3 PSU ( just above freshwater) to 30 PSU (sea water) [23,24],
and temperatures from 2 to 30°C [24,25].
Toxins reported to be produced by P. parvum are diverse and include lipopolysaccharide-like compounds

[26], proteolipid [27], galactoglycerolipids [28], fatty acid amides [29,30], fatty acids [31], and the ladder-frame
polyether prymnesins [32–34]. First isolated and characterized in two forms (prymnesin-1 and -2) in 1995 by
Igarashi et al. [32,33,35], the diversity of these potent nanomolar ichthyotoxins has recently expanded to
include prymnesin-B1 and others with slight variations in structure to the originally isolated compounds [34]
(Figure 2). However, because of the minute amounts of these toxins produced by the organism, detection of
these compounds represents a major challenge [34,36]. The current ambiguity on the responsible toxins in
Prymnesium-associated fish mortality has meant that toxins have been proposed to be both intra- and extracel-
lular. However, Remmel and Hambright [37] suggested that toxins are intracellular, and only released through
contact with prey or physical stress.

Open questions about P. parvum bloom toxicity
• First, although it is generally accepted that the ladder-frame polyether prymnesins are responsible for fish

mortality, the lack of detection of these toxins in environmental water samples has put their significance
into question. As a result, it is currently unclear whether these toxins are the primary ichthyotoxins in
P. parvum blooms.

• Second, although significant research has focused on how a range of abiotic factors affect the production
and toxicity of P. parvum blooms, there have been few clear links in natural waterways that attribute a spe-
cific abiotic factor (nutrients, temperature and pH) to increased bloom toxicity (reviewed by Manning and
La Claire [5]). Therefore, does an unknown environmental factor trigger bloom toxicity?

• Third, because of the ambiguity in the responsible toxins, it is currently unknown whether P. parvum toxins
are intra- or extracellular toxins. If they are intracellular, how are they released into the waterways?
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Figure 1. Fine morphology of P. parvum.

(A) P. parvum (CCAP 946/6) cell observed by SEM (background digitally removed). Note the presence of two long flagella and

the shorter central haptonema. (B) Three P. parvum cells observed by optical microscopy using a Leica DM6000 fitted with a

100× objective. Cells show the golden colour typically associated with blooms of the organism. (C) Scales of P. parvum

observed by transmission electron microscopy (TEM). Scale bar represents 100 nm.

Figure 2. Structures of ladder-frame polyether prymnesins-1, -2, and -B1.

(A) Structure of prymnesin-1 and -2 first reported by Igarashi et al. [35], incorporating amended structural information by Sasaki

et al. [38]. (B) Structure of prymnesin-B1 (notice the lack of rings H and I) recently reported by Rasmussen et al. [34], with areas

of the backbone highlighted red that differ from prymnesin-1 and -2.
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Detection of P. parvum toxins
Ladder-frame polyether prymnesins-1 and -2 were first isolated and had their structures elucidated in the
1990s by Igarashi et al. [32,33,35] and later Sasaki et al. [38]. Despite this, there was at least a 10-year gap
before other researchers reported the detection of these toxins in laboratory cultures of P. parvum. This gap led
to much speculation about the significance of the ladder-frame polyether prymnesins, with researchers looking
elsewhere for responsible ichthyotoxins [30]. In 2013, Manning et al. reported a detailed extraction and a LC–
MS protocol for the detection of prymnesin-1 and -2 from laboratory cultures [36], but detection of the toxins
in environmental water samples still had not been reported, despite recurring worldwide blooms of P. parvum
in this period. Most recently, in 2016, Rasmussen et al. [34] reported a previously unknown structural diversity
of the prymnesins isolated from different strains of P. parvum. They proposed that this structural diversity had
meant that researchers were looking for the wrong metabolic fingerprints when analyzing water samples.
A toxic bloom of P. parvum in Hickling Broad in Spring 2015 allowed us to follow the extraction and LC–

MS methods outlined by Manning and La Claire [36] for the detection of these toxins. However, neither
prymnesin-1 nor -2 could be observed in water samples collected during this bloom event (unpublished obser-
vations). However, a more thorough analysis of our LC–MS data, combined with the details of the new prym-
nesin toxins reported by Rasmussen et al. [34], has led to our detecting the ladder-frame polyether prymnesins
in Broads water samples for the first time (manuscript in preparation). These findings suggest that the previous
inability to detect the ladder-frame polyether prymnesin toxins was not because of the low amounts in natural
waters, but rather due to the fact that researchers were previously looking for a narrow (and often incorrect)
window of metabolic fingerprints in many instances, as previously proposed by Rasmussen et al. [34].

Discovery of a lytic virus of P. parvum
The last two decades have seen an increase in the study of algal viruses and the role that they play in the regu-
lation of algal bloom dynamics [39]. Typically 100–220 nm in diameter, and with genomes up to 560 kb [40],
dsDNA algal viruses such as the Phycodnaviridae have also been shown to contribute significantly to global
biogeochemical cycles [41,42]. Much less studied, however, is the role that viruses play in the regulation of algal
blooms by toxin-producing species. During the toxic P. parvum bloom on Hickling Broad in 2015, optical
microscopy of the native population of P. parvum suggested that it was infected by a virus (Figure 3A). This

Figure 3. Viral infection of natural P. parvum and discovery of PpDNAV-BW1.

(A) A natural P. parvum cell taken from water samples from Hickling Broad during a toxic bloom in Spring 2015. Light

microscopy was used to capture images over a 4-h period and show (from left to right) a non-motile cell filled with putative

virus-like particles (VLPs) undergoing membrane blebbing before bursting and releasing intracellular contents. Scale bars

represent 10 mm. (B) TEM images of P. parvum DNA virus (PpDNAV-BW1). Scale bar represents 500 nm.
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subsequently led to the isolation of a new lytic virus from Hickling Broad that infects P. parvum, P. parvum
DNA virus (PpDNAV-BW1) [43] (Figure 3B). The host range of this virus was screened against 15 strains of
Prymnesium and found to infect 5 out of the 15. A narrow host range is typical for algal viruses but not always
the case as shown and discussed by Johannessen et al. [44], and this specificity may suggest intricate molecular
mechanisms behind viral infection of these algae. Electron microscopy showed that the average capsid diameter
size was 221 nm, and an initial genome assembly (ongoing investigation) suggests that it has a genome size of
∼500 kb and belongs to the algal Megaviridae family.
Previously, mechanical breakdown of cells by biotic factors, such as grazers and viruses, have been proposed

to be a potential exit route of intracellular algal toxins [37]. Although viruses infecting toxin-producing micro-
algae have been discovered previously [45–47], P. parvum and its associated virus represent the first system
where the toxins produced by the host alga are fully characterized and detectable in laboratory cultures. This
P. parvum : PpDNAV-BW1 system may therefore provide a platform to answer fundamental questions sur-
rounding the effect of viral infection on toxin production and release in microalgae.

Insights into the molecular basis for viral recognition and
infection of P. parvum by PpDNAV-BW1
Recent work has highlighted sialic acids as mediators of viral infection of the haptophyte Emiliania huxleyi
[48,49] (Figure 4). Sialic acids are acidic, nine-carbon carbohydrates that are found in several kingdoms, includ-
ing on the surface of all vertebrate cells [50]. Most often, sialic acids occupy the terminal residue of a glycan on
a cell surface, meaning that they are exposed to a range of host–pathogen interactions [51]. Sialic acid involve-
ment in viral infections of other organisms is not unknown; probably, the best studied example is the binding
of the human or avian influenza viruses to sialic acids on epithelial cells of its host [52]. We have previously
exploited this highly specific molecular interaction to develop novel diagnostics that distinguish between
human and avian influenza viruses [53].
The production of sialic acids by algae was undocumented prior to the recent work on E. huxleyi by Rose

et al. [48]. We therefore sought to investigate the presence or otherwise of sialic acids in P. parvum and algae
more broadly. One way of analyzing sialic acids in a host is using sialic acid-binding proteins (SIGLECs) [54].
Although these assays are relatively cheap and simple to perform, they are often specific for a given type and
sugar-linkage of sialic acid. More detailed glycan analysis is often performed using a range of mass spectrom-
etry techniques (reviewed by Mulloy et al. [55]), although these are more labour-intensive and -expensive.
Profiling of the nucleotide-activated sugars inside the cell can give detailed insights into the sugars an organism
is capable of producing [56], although this does not confirm the final destination of the sugar, which can range
from natural products through to glycans, glycoproteins, polysaccharides, or glycolipids. Finally, analysis of
carbohydrate active enzyme (CAZyme) sequence information can often allude to the types of sugars produced,
and in many cases, the glycan structures produced [57]. We have previously applied all these techniques to
look for sialic acids and other sugars in the green alga Euglena gracilis [58] and are now applying these techni-
ques to investigate sialic acid production in P. parvum, with a view to deciphering its importance in viral infec-
tion by PpDNAV-BW1. Preliminary results suggest that P. parvum produces a sialic acid, and that sialic acid
production is more widespread among algae than previously thought (ongoing investigation).

Figure 4. Tentative structure of a sialic acid-containing sphingolipid from the haptophyte E. huxleyi.

A novel sphingolipid isolated from E. huxleyi with a polar head group containing the deaminated sialic acid,

2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN). Structure redrawn from Fulton et al. [49].
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Future management of P. parvum blooms
The occurrence of HABs poses a severe threat to ecosystems, economies, and in some cases human and animal
health. Therefore, there is a great need to develop practical detection, mitigation, and management strategies
for HABs.
For the detection and monitoring of algal populations, governing bodies typically rely on optical microscopy.

In such diverse phytoplankton communities, optical microscopy can be challenging for even the most skilled
phycologist. Furthermore, these methods are often time-consuming and less accurate than alternative molecular
methods. For the detection of algal toxins, animal bioassays are frequently employed, although these are asso-
ciated with both technical and ethical issues that must be overcome. Additionally, animal bioassays are fre-
quently not fast enough: by the time toxins are detected, fish populations are often already devastated.
The last decade has seen an increase in the number of molecular methods developed for monitoring algal

abundance in natural waterways. One such method is quantitative real-time polymerase chain reaction
(qRT-PCR), which comes with an unrivalled sensitivity and specificity. qRT-PCR has previously been used suc-
cessfully to monitor blooms of P. parvum [59,60], and we have now begun to incorporate qRT-PCR as a
regular monitoring application of P. parvum on Hickling Broad. Furthermore, sequence data from the
PpDNAV-BW1 genome have provided us with the tools needed to monitor viral abundance alongside algal
abundance (ongoing investigation), which will allow us to understand more about P. parvum bloom dynamics.
Current management methods for HABs range from the use of clay flocculants [61], algaecides [62], and

even the manual relocation of affected fish to safer waterways. The local Environment Agency and volunteers
were able to successfully save ∼230 000 fish through relocation during the P. parvum bloom on Hickling in
2015 [63]. However, this strategy is used as a last resort and is extremely time-consuming and labour-intensive.
One alternative is the use of hydrogen peroxide as a chemical algaecide. Although hydrogen peroxide has not
previously been used to tackle blooms of P. parvum, it has been used to effectively treat blooms of cyanobac-
teria [64] and toxin-producing dinoflagellates [65]. We are now working closely with local governing bodies to
introduce hydrogen peroxide as a strategy in the management of P. parvum blooms (ongoing work).

Concluding remarks
It is clear that P. parvum poses a major threat to ecosystems and the economies of the affected areas worldwide.
These issues are only likely to increase in a warming climate. Despite this, there are still fundamental gaps in
knowledge surrounding bloom dynamics of this alga. The discovery of a novel lytic virus that infects this
organism has opened doors to answering questions about how viruses impact toxic HABs. Furthermore, the
recent establishment of protocols for the detection of the ladder-frame polyether prymnesins means that
P. parvum and PpDNAV-BW1 can now be used as a novel algae–virus system to answer a previously
unanswerable question: how does viral infection affect toxin production and release in harmful algae?
As HABs increase in frequency, there is an even greater need for practical solutions. While carrying out this

fundamental research, we have explored the use of qRT-PCR as a means for detecting P. parvum and its lytic
virus, PpDNAV-BW1, which may ultimately be used as an early warning system for P. parvum blooms.
Providing waterways lie close to arable land and are vulnerable to nutrient run-off, HABs are likely to occur.
Therefore, we are now exploring the use of hydrogen peroxide as a cheap and effective management strategy.

Abbreviations
HAB, harmful algal bloom; PpDNAV-BW1, Prymnesium parvum DNA virus; PSU, practical salinity units; SEM,
scanning electron microscopy; TEM, transmission electron microscopy.
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