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ABSTRACT
This paper deals with a 6R single-loop overconstrained spatial mechanism that has two pairs of revolute joints

with intersecting axes and one pair of revolute joints with parallel axes. The 6R mechanism is first constructed
from an isosceles triangle and a pair of identical circles. The kinematic analysis of the 6R mechanism is then dealt
with using a dual quaternion approach. The analysis shows that the 6R mechanism usually has two solutions to the
kinematic analysis for a given input and may have two circuits (closure modes or branches) with one or two pairs of
full-turn revolute joints. In two configurations in each circuit of the 6R mechanism, the axes of four revolute joints
are coplanar, and the axes of the other two revolute joints are perpendicular to the plane defined by the above four
revolute joints. Considering that from one configuration of the 6R mechanism, one can obtain another configuration
of the mechanism by simply renumbering the joints, the concept of two-faced mechanism is introduced. The
formulas for the analysis of plane symmetric spatial triangle is also presented in this paper. These formulas will
be useful for the design and analysis of multi-loop overconstrained mechanisms involving plane symmetric spatial
RRR triads.

KEY WORDS Overconstrained Mechanism, Geometric Approach, Dual Quaternion, Two-faced Mechanism,
Plane Symmetric Spatial Triangle

1 Introduction
Fruitful results have been obtained in the past decades in the research on single degree-of-freedom (DOF) single-loop

overconstrained mechanisms [1–26]. Although the successful industrial applications of single-loop overconstrained mech-
anisms are quite limited, single-loop overconstrained mechanisms are being used in the development of parallel mecha-
nisms [27, 28], deployable structures [13, 29], mobile robots [30], multi-mode mechanisms [31–37] and other devices [38].

The methods for obtaining 6R mechanisms mainly include: geometric methods [1, 23, 26], construction approaches
[3, 4, 6, 13, 22], algebraic approaches [7, 11, 14–16, 19–21, 25, 39] and numerical methods [8]. For a comprehensive list of
6R mechanisms, refer to [14, 17, 25, 26]. Like in the type synthesis of translational parallel mechanisms or the analysis of
slide-crank mechanism [40], several earlier work on 6R mechanisms, such as [9, 24], have also been unfortunately ignored
for decades. In addition, several 6R mechanisms can be obtained using different approaches.

Searching for 6R mechanisms is still not fully solved. For example, 6R mechanisms that have either three pairs of
revolute (R) joints with intersecting axes [26] or three pairs of R joints with parallel axes [19, 22, 23] have been identified.
It is logical to identify 6R mechanisms that have two pairs of R joints with intersecting axes and one pair of R joints with
parallel axes. However, only one such mechanism, the Schatz’s 6R mechanism, has been presented so far. It is unclear

∗The original version of this paper was presented at the ASME 2017 International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference, DETC2017-67419, August 7–9, 2017, Cleveland, Ohio, USA
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whether there are any other 6R mechanisms that have two pairs of R joints with intersecting axes and one pair of R joints
with parallel axes.

Inspired by the geometric construction of Bricard 6R mechanisms [1,2] and the 6R mechanism that has three pairs of R
joints with intersecting axes [26], this paper aims at revealing a 6R mechanism that has two pairs of R joints with intersecting
axes and one pair of R joints with parallel axes. The Bricard’s trihedral 6R mechanism can be constructed from a triangle.
In the configuration of construction, the axes of its three R joints are on the plane defined by the triangle and those of the
remaining three R joints are perpendicular to the triangle. The Type III Bricard’s mobile octahedral 6R mechanism can be
constructed from a triangle with two concentric circles. In the configuration of construction, the axes of all the six R joints
are on the plane defined by the triangle. In [26], a 6R mechanism that has three pairs of R joints with intersecting axes is
constructed from a kite and a pair of identical circles.

This paper is organized as follows. A 6R mechanism that has two pairs of R joints with intersecting axes and one pair
of R joints with parallel axes will be constructed from an isosceles triangle and a pair of circles in Section 2. The kinematic
analysis of the 6R mechanism using a dual quaternion based approach will be presented in Section 3, where two example 6R
mechanisms with different number of full-turn R joints are given. In Section 4, the characteristics of the 6R mechanism will
be revealed and the concept of two-faced mechanism will be introduced. Finally, conclusions are drawn.

For simplicity reasons, sinθi and cosθi are denoted by Sθi and Cθi, respectively.

2 Description of a 6R mechanism that has two pairs of R joints with intersecting axes and one pair of R joints with
parallel axes
In this section, a 6R mechanism will be constructed from an isosceles triangle and a pair of identical circles. In the

configuration of construction, the axes of four R joints are on the plane determined by the triangle, while those of the
remaining two R joints are perpendicular to the triangle. The geometric construction of the 6R mechanism will be presented
first. The D-H (Denavit-Hartenberg) link parameters of the 6R mechanism will then be given.

2.1 Geometric construction of a 6R mechanism
A 6R mechanism can be constructed as follows (Fig. 1):

Step 1: Draw six lines for placing R (revolute) joints [Fig. 1(a)].
At first, draw (a) an isosceles triangle ABC where |AC| = |BC|, (b) one altitude CC′ of triangle ABC, and (c) two
identical circles of radius r (r ≤ |AC| = |BC|) with their centers at A and B respectively. Then, draw (a) lines AA′ and
BB′ that are perpendicular to the triangle ABC, (b) lines A1A′

1 and B1B′
1 on the same side of line CC′ that are tangent to

circles A and B at points A and B respectively, and (c) lines CA2 and CB2 that are tangent to circles A and B respectively
at points A2 and B2 such that tangent points A1 and A2 are on two sides of line AC and tangent points B1 and B2 are on
two sides of line BC. Lines A1A′

1, AA′, CA2, B1B′
1, BB′, and CB2 are the six lines required for placing six R joints.

Step 2: Construct a 6R mechanism using the six lines obtained in Step 1 [Fig. 1(b)].
Place six R joints 1, 2, · · ·, 6 along lines A1A′

1, AA′, CA2, CB2, BB′, and B1B′
1 respectively and connect them in the

sequence of 1-2-3-4-5-6-1. One then obtains a 6R mechanism 1-2-3-4-5-6-1.

A1

A0

1

B1

B0

1

C

A2

B2

A(A0) B(B0)

r

r

Circle A Circle B
C 0

(a) Step 1.

A1

A0

1

B1

B0

1

C

A2

B2

A(A0) B(B0)

(b) Step 2.

Fig. 1. Construction of a 6R mechanism that has two pairs of R joints with intersecting axes and one pair of R joints with parallel axes.

It is noted that ̸ ACB = ̸ A2CB2, |CA2|= |CB2|, |A1B1|= |AB|. Therefore
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|A1B1|= |AB|= 2
√

|CA2|2 + r2S(̸ A2CB2/2) (1)

2.2 Link parameters of the 6R mechanism
For clarity, the frame, link 6 connecting joints 6 and 1, of the 6R mechanism will be highlighted in blue throughout this

paper.
As in [26], coordinate frames in the 6R mechanism are attached to the links as follows (Fig. 2): Zi-axis is along the axis

of joint i. Xi-axis is along the common perpendicular between Zi−1- and Zi-axes. Oi is the intersection of Xi- and Zi-axes.
Yi-axis is defined by Xi- and Zi-axes through the right handed rule and omitted in Fig. 2. The joint variable, θi, is defined as
the angle between Xi- and Xi+1-axes measured from Xi-axis to Xi+1-axis about Zi-axis. The link parameters of link i are:

di: Distance between Xi- and Xi+1-axes measured from Xi-axis to Xi+1-axis along Zi-axis
αi: Twist angle between Zi- and Zi+1 axes measured from Zi-axis to Zi+1-axis about Xi+1-axis
li: Distance between Zi- and Zi+1-axes measured from Zi-axis to Zi+1-axis along Xi+1-axis

.

d4

α3

l4

l5

l1

l2

O5

O1

d3

O6

Z1

X2

O2

X3

Z3

O4

l6

Z4

Z6

Z5

1
2

3

4

5

6
X5

Fig. 2. D-H parameters of the 6R mechanism.

The link parameters of the 6R mechanism are:
d2 = d5 = 0, d6 =−d1, d4 =−d3,
α1 = α2 = α4 = α5 = π/2, α6 = 0, α3,
l3 = 0, l1 = l2 = l4 = l5, and l6.

From Fig. 1 and Eq. (1), we learn that the link parameters of the 6R mechanism satisfy:

l6 = 2
√

d2
3 + l2

1S(α3/2) (2)

2.3 The 6R mechanism as a special case of Wohlhart’s double-Goldberg-5R 6R mechanism
In this section, we will show that the proposed 6R mechanism is in fact a special case of the Wohlhart’s double-Goldberg-

5R 6R mechanism [6].

2.3.1 Construction of Wohlhart’s double-Goldberg-5R 6R mechanism
A Wohlhart’s double-Goldberg-5R 6R mechanism 1-2-3-4-5-6 [Fig. 3(a)] is obtained by merging two Goldberg 5R

mechanisms that have two common links, 1-2-8-5-6 and 2-3-4-5-8 [Fig. 3(b)], and then removing the two common links.
Each Goldberg 5R mechanism 2-3-4-5-8 is obtained by merging two Bennett linkages [Fig. 3(c)] sharing a common link,
2-3-9-8 and 9-4-5-8, removing the common link 8-9 and locking the angle between two links 3-9 and 9-4 adjacent to the
common link. All the links in the associated Bennett linkages [Fig. 3(c)] have the same Bennett ratio and fall into four groups
of links with identical link parameters: 2-3, 8-9 and 5-4; 1-2, 7-8 and 6-5; 7-1, 8-2 and 9-3; 6-7, 5-8 and 4-9.

2.3.2 A plane symmetric spatial triangle
Calculating the link parameters of a Goldberg-5R mechanism requires the analysis of a spatial triangle. The analysis of

a general spatial triangle has been presented in the literature (see [41] for example). Here the analysis of a plane symmetric
spatial triangle (Fig. 4) will be discussed. In the plane symmetric spatial triangle, the axes of R joints 2 and 3 are symmetric
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(a) Wohlhart’s 6R mechanism.
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(c) Bennett’s linkages associated
with Goldberg 5R mechanisms.

Fig. 3. Wohlhart’s double-Goldberg-5R 6R mechanism.

Z(Z1)
X

l

d

Z2

d

X2

l Z3

X1

θ=2

α2

X3

s2

s3

O3

(a) General case.

s2
s3

l l

l2

(b) Degenerate case.

Fig. 4. A plane symmetric spatial triangle.

about a plane passing through the axis of R joint 1. Let Z-axis coincide with Z1-axis and X-axis be located on the plane of
symmetry. For brevity, the twist angle between the axes of R joints 1 and 2 is denoted by α, and the joint variable of R joint
1 is denoted by θ.

Since point O3 is on the plane of symmetry, we have

−dC(θ/2)Sα+ lS(θ/2) = 0 (3)

In addition, s2 = {S(θ/2)Sα −C(θ/2)Sα Cα}T and s3 = {S(θ/2)Sα C(θ/2)Sα Cα}T . Then

s2 · s3 = S2(θ/2)S2α−C2(θ/2)S2α+C2α =Cα2 (4)

Equation (4) can be turned into the following form

S2(θ/2)S2α−C2(θ/2)S2α+(1−S2α) = 1−2S2(α2/2)

and then simplified as

C2(θ/2)S2α = S2(α2/2) (5)

Equations (3) and (5) lead to

l2S2(θ/2) = d2S2(α2/2) (6)
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From Eqs. (5) and (6) together with S2(θ/2)+C2(θ/2) = 1, we obtain

l2S2α = (d2S2α+ l2)S2(α2/2) (7)

i.e.,

l2 = (d2 + l2/S2α)S2(α2/2) (8)

If the axes of R joints 2 and 3 are parallel, we have

l2 = 2l (9)

and

d = 0 (10)

2.3.3 A special case of Wohlhart’s double-Goldberg-5R 6R mechanism
Now let us consider the following special case of the Wohlhart’s double-Goldberg-5R 6R mechanism [Fig. 5(a)]. In

its associated Bennett linkages [Fig. 5(c)], 2-3, 8-9, 5-4, 1-2, 7-8 and 6-5 are identical links with a twist angle of π/2. In
addition, the axes of R joints 3 and 4 (2 and 5; 1 and 6) are symmetric about a plane passing through the axis of R joint 9 (8;
7). In addition, R joint 7 is locked when links 1-7 and 7-6 are collinear [Fig. 5(b)].

1

2

3

4

5

6

(a) Wohlhart’s 6R mecha-
nism.

1

2

3

4

5

6

8

(b) Two compositional
Goldberg 5R mechanisms.

1

2

3

4

5

6

7

9

8

(c) Bennett’s linkages as-
sociated with Goldberg 5R
mechanisms.

Fig. 5. A special case of Wohlhart’s double-Goldberg-5R 6R mechanism.

Using Eq. (8), we obtain from the spatial triangle composed of the axes of R joints 4, 9 and 3 (Figs. 5(c)and 2)

l2 = [d3 + l2/S2(α/2)]S2(α3/2) (11)

Since all the links within the Bennett linkages associated with the Wohlhart’s double-Goldberg-5R 6R mechanism has the
same Bennett ratio, we have

l2
1 = l2/S2(α/2) (12)

Substitution of Eq. (12) into Eq. (11) yields

l2 = (d3 + l2
1)S

2(α3/2) (13)
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Using Eq. (9), we obtain from the spatial triangle composed of the axes of R joints 1, 7 and 6 (Figs. 5(c) and 2)

l6 = 2l (14)

Equations (13) and (14) lead to

l2
6 = 4(d2

3 + l2
1)S

2(α3/2) (15)

Equations (15) and (2) are in fact identical. Therefore, the 6R mechanism constructed in Section 2.1 is a special case of
the Wohlhart’s double-Goldberg-5R 6R mechanism. However, it is more concise to obtain this 6R mechanism using the
geometric construction method than the Goldberg 5R linkage based construction method.

3 Kinematic Analysis of the 6R mechanism
Although an approach to the kinematic analysis of Wohlhart’s double-Goldberg-5R 6R mechanism has been given in [6],

one needs to calculate the unknown link parameters of the Goldberg 5R mechanisms first. In this section, the kinematic
analysis of the 6R mechanism using the dual quaternion based approach (see [25, 37] for example) will be presented. Using
this approach, one does not need to calculate the unknown link parameters of the Goldberg 5R mechanisms. In addition, 6R
mechanisms with different numbers of full-turn R joints will also be given.

The displacement of a link can be represented using a dual quaternion as1

Q = e0 + e1i+ e2j+ e3k+ ε(g0 +g1i+g2j+g3k) (16)

where e0g0 + e1g1 + e2g2 + e3g3 = 0.
The dual quaternions representing translation about Xi-axis by li, translation about Zi-axis by di, rotation about Xi-axis

by αi, rotation about Zi-axis by θi, and no motion are

QTranXi = 1+ ε(li/2)i (17)

QTranZi = 1+ ε(di/2)k (18)

QRotXi =C(αi/2)+S(αi/2)i (19)

Q̌RotZi = ti +k (20)

where ti = cot(θi/2)

QE = 1 (21)

The product of two dual quaternions satisfies the following rules:

i2 = j2 = k2 = ijk =−1
ij = k =−ji
jk = i =−kj
ki = j =−ik
ε2 = 0 and ε ̸= 0

(22)

1There are several different notations for dual quaternions in the literature. For example, g = a0 + a1i+ a2 j + a3k+ ε(c0 + c1i+ c2 j + c3k) is used
in [42].
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A set of six equations in ti (i = 1,2, · · ·6) for the 6R mechanism is [37]



e1(t1, t2, · · · t6) = 0
e2(t1, t2, · · · t6) = 0
e3(t1, t2, · · · t6) = 0
g1(t1, t2, · · · t6) = 0
g2(t1, t2, · · · t6) = 0
g3(t1, t2, · · · t6) = 0

(23)

Equation (23) is in fact composed of the second, third, fourth, sixth, seventh and eighth scalar equations of Eq. (24).

6

∏
i=1

(Q̌RotZi QTranZi QTranXi QRotXi) = QE/
6

∏
i=1

S(θi/2) (24)

To exclude the extraneous solutions with ti =±I before solving Eq. (23) [25], one can introduce an extra variable v and
add the equation (t2

1 + 1)(t2
2 + 1) · · ·(t2

6 + 1)v− 1 = 0 to Eq. (23) and compute an elimination ideal that eliminates v with
the software Maple to obtain a new set of equations. By calculating the Gröbner basis of the ideal spanned by this set of
equations, one can obtain the input-output equation of the 6R mechanism.

3.1 Mechanism I: Mechanism with one pair of full-turn R joints
The link parameters of Mechanism I are:

d2 = d5 = 0, d6 =−d1 = 0, d4 =−d3 = 10
α1 = α2 = α4 = α5 = π/2, α6 = 0, α3 = π/2,
l3 = 0, l1 = l2 = l4 = l5 = 50, and l6 = 50

√
10 .

Here, l6 is calculated using Eq. (2).
In the following, the detailed kinematic analysis of Mechanism I will be presented.
Substituting the above link parameters into Eq. (24) and taking the second, third, fourth, sixth, seventh and eighth scalar

equations, we obtain the specific form of Eq. (23) for Mechanism I as



e1(t1, t2, · · · t6) =−t1t2t3t4t5t6 − t1t2t3t4 − t1t2t3t5 − t1t2t3t6
+t1t2t4t5 − t1t2t4t6 − t1t2t5t6 + t1t3t4t5 + t1t3t4t6 − t1t3t5t6 − t1t4t5t6
−t2t3t4t5 + t2t3t4t6 + t2t3t5t6 − t2t4t5t6 − t3t4t5t6 + t1t2 − t1t3 + t1t4 − t1t5
+t1t6 − t2t3 − t2t4 − t2t5 − t2t6 + t3t4 − t3t5 + t3t6 − t4t5 − t4t6 + t5t6 +1 = 0
e2(t1, t2, · · · t6) = t1t2t3t4t5 − t1t2t3t4t6 − t1t2t3t5t6 + t1t2t4t5t6
+t1t3t4t5t6 − t2t3t4t5t6 + t1t2t3 + t1t2t4 + t1t2t5 + t1t2t6 − t1t3t4 + t1t3t5
−t1t3t6 + t1t4t5 + t1t4t6 − t1t5t6 − t2t3t4 − t2t3t5 − t2t3t6 + t2t4t5 − t2t4t6 − t2t5t6
+t3t4t5 + t3t4t6 − t3t5t6 − t4t5t6 − t1 + t2 − t3 + t4 − t5 + t6 = 0
· · ·

(25)

Eliminating the solutions with ti = ±I to Eq. (25) by calculating the elimination ideal using the Maple command Elimina-
tionIdeal, one obtain the following set of 15 equations.


3t1t6 −2

√
10+7 = 0

−2
√

10t1t2 −7t1t2 +3t1t5 +3t2t3 −5t3t5 +4t3 −4t5 +2 = 0
· · ·
3t2t3 −5t2t4 −5t3t5 +3t4t5 +4t2 +4t3 −4t4 −4t5 +4 = 0

(26)

Calculating the Gröbner basis of the ideal spanned by Eq. (26) using Groebner:-Basis in lexicographic order with t6 > t5 >
t4 > t3 > t1 > t2, we obtain the input-output equation of Mechanism I as

9t2
1 t2

2 +
(
−12

√
10+24

)
t2
1 t2 +

(
−6

√
10+21

)
t2
1 +(

−28
√

10+89
)

t2
2 +

(
44
√

10−136
)

t2 −6
√

10+21 = 0 (27)
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Substituting ti = (1+Cθi)/Sθi (i = 1,2) into Eq. (27)2 into Eq. (36) and simplifying the resulted equation, we obtain

10Cθ1Cθ2 −20Cθ1Sθ2 +2
√

10Cθ2

−4
√

10Sθ2 +10Cθ1 +5
√

10 = 0 (28)

For a given set of θ1 and θ2, one can determine θi (i = 3,4, · · ·6) by calculating ti = cot(θi/2) using the following
equations.

t3 =−[(−2
√

10−7)t1t2
2 +(4

√
10+8)t1t2

−3t1 +10t2]/(3t2
2 +8t2 −3) (29)

t4 = (2t3 +1)/(t3 +2) (30)

t5 =−(2t2 +1)/(t2 −2) (31)

t6 = (2
√

10−7)/(3t1) (32)

The variation of θi (i = 2,3 · · ·6) with θ1 for Mechanism I is shown in Fig. 6. It is observed from Fig. 6 that Mechanism
I has two circuits represented in solid and dashed lines respectively and joints 3 and 4 are full-turn R joints. Figures 7 and 8
show the 6R Mechanism I at configurations A, B and C in circuit 1 and configurations D, E and F in circuit 2 respectively.
At two configurations in each circuit (see configurations A and C in circuit 1 and configurations D and F in circuit 2), the
axes of R joints 1, 3, 4 and 6 are coplanar and the axes of R joints 2 and 5 are perpendicular to the plane defined by the axes
of R joints 1, 3, 4 and 6.

From Eq. (28) and Fig. 6(a), we learn that to ensure θ2 has real solutions requires −2π ≤ θ1 ≤−θ1b, −θ1a ≤ θ1 ≤ θ1a,
or θ1b ≤ θ1 ≤ 2π. Here θ1a = arccos(−

√
10/8+3

√
2/8) and θ1b = π−arccos(

√
10/8+3

√
2/8). When plotting the θ6-θ1

curve in Fig. 6(e) using Eq. (32), we must limit θ1 to the above ranges.
Re-calculating the Gröbner basis of the ideal spanned by Eq. (26) using Groebner:-Basis in lexicographic order with

t6 > t5 > t4 > t2 > t1 > t3, t6 > t5 > t3 > t2 > t1 > t4 and t6 > t4 > t3 > t2 > t1 > t5, we can derive the explicit input-output
equations between θ3 (θ4 or θ5) and θ1 as

3t2
1 t2

3 +(−4
√

10+8)t1t2
3 −3t2

1 +(−4
√

10+8)t1t3
+(−2

√
10+7)t2

3 +(−4
√

10+8)t1 +2
√

10−7 = 0 (33)

3t2
1 t2

4 +(−4
√

10+8)t1t2
4 −3t2

1 +(4
√

10−8)t1t4
+(−2

√
10+7)t2

4 +(−4
√

10+8)t1 +2
√

10−7 = 0 (34)

3t2
1 t2

5 +(−4
√

10−8)t2
1 t5 +(2

√
10+7)t2

1 +3t2
5

+(4
√

10−8)t5 −2
√

10+7 = 0 (35)

2For some polynomial equations, we need to use ti =C(θi/2)/S(θi/2) in order to avoid extraneous curve θi = π.
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Fig. 6. Kinematic analysis of Mechanism I: (a) Plot of θ1-θ2, (b) Plot of θ1-θ3, (c) Plot of θ1-θ4, (d) Plot of θ1-θ5, (e) Plot of θ1-θ6.
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Fig. 7. Configurations of Mechanism I in Mode 1.

3.2 Mechanism II: Mechanism with two pairs of full-turn R joints
The link parameters of Mechanism II are:

d2 = d5 = 0, d6 =−d1 = 0, d4 =−d3 = 50,
α1 = α2 = α4 = α5 = π/2, α6 = 0, α3 = π/2,
l3 = 0, l1 = l2 = l4 = l5 = 120, and l6 = 130

√
2.
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(a) Configuration D: θ1 = 0.
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(b) Configuration E θ1 =−82.24◦.
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(c) Configuration F: θ1 = 0.

Fig. 8. Configurations of Mechanism I in Mode 2.

As in the case of Mechanism I detailed in Section 3.1, the input-output equation of Mechanism II is derived as

14161t2
1 t2

2 +(15470
√

2−28560)t2
1 t2 +(37128

√
2−54383)t2

1 +(−285168
√

2+403537)t2
2

+(134290
√

2−190800)t2 +37128
√

2−54383 = 0 (36)

Substituting ti = (1+Cθi)/Sθi (i = 1,2) into Eq.(36) and simplifying the resulted equation, we obtain

312Cθ1Cθ2 −130Cθ1Sθ2 +288
√

2Cθ2

−120
√

2Sθ2 +312Cθ1 +169
√

2 = 0 (37)

For a given set of θ1 and θ2, one can determine θi by calculating ti = cot(θi/2) using the following equations.

t3 = (312
√

2t1t2
2 −130

√
2t1t2 +457t1t2

2 −240t1t2
−119t1 −338t2)/(119t2

2 −240t2 −119) (38)

t4 = (5t3 +12)/(12t3 +5) (39)

t5 =−(5t2 +12)/(12t2 −5) (40)

t6 =−(1/119)(312
√

2−457)/t1 (41)

The variation of θ2 with respect to θ1 for Mechanism II is shown in Fig. 9. It is observed that Mechanism II has two
circuits shown in solid and dashed lines respectively and joints 1, 3, 4 and 6 are full-turn R joints. Figures 10 and 11
show Mechanism II at configurations A, B and C in circuit 1 and configurations D, E and F in circuit 2 respectively. Like
Mechanism I, at two configurations in each circuit (see configurations A and C in circuit 1 and configurations D and F in
circuit 2), the axes of R joints 1, 3, 4 and 6 of Mechanism II are coplanar and the axes of R joints 2 and 5 are perpendicular
to the plane defined by the axes of R joints 1, 3, 4 and 6.
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Fig. 9. Kinematic analysis of Mechanism II: (a) Plot of θ1-θ2, (b) Plot of θ1-θ3, (c) Plot of θ1-θ4, (d) Plot of θ1-θ5, (e) Plot of θ1-θ6.
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(a) Configuration A: θ1 = 0.
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(b) Configuration B: θ1 = π/2.
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(c) Configuration C: θ1 = π.

Fig. 10. Configurations of Mechanism II in Mode 1.

In addition, the explicit input-output equations between θ3 (θ4 or θ5) and θ1 are

119t2
1 t2

3 +(130
√

2−240)t1t2
3 −119t2

1 +(624
√

2−1152)t1t3
+(312

√
2−457)t2

3 +(130
√

2−240)t1 −312
√

2+457 = 0 (42)
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(a) Configuration D: θ1 = 0.
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(b) Configuration E: θ1 = π/2.
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(c) Configuration F: θ1 = π.

Fig. 11. Configurations of Mechanism II in Mode 2.

119t2
1 t2

4 +(130
√

2−240)t1t2
4 −119t2

1 +(−624
√

2+1152)t1t4
+(312

√
2−457)t2

4 +(130
√

2−240)t1 −312
√

2+457 = 0 (43)

119t2
1 t2

5 +(130
√

2+240)t2
1 t5 +(−312

√
2−457)t2

1 +119t2
5

+(−130
√

2+240)t5 +312
√

2−457 = 0 (44)

4 Discussion
From the construction and kinematic analysis of the 6R mechanism, one can observe that from one configuration

[Figs. 7(a), 10(a) and 11(a)] of the 6R mechanism, one can obtain another configuration [Figs. 8(c), 10(c) and 11(c)],
called a shadow configuration, of the mechanism by simply renumbering the joints from 1, 2, · · ·, 6 to 6, 5, · · ·, 1. Such
mechanisms are called two-faced mechanisms. In other words, the configurations of the mechanism appear in pairs and each
pair of configurations are identical after renumbering the joints. It is noted that a configuration and its shadow configuration
may be in the same circuit [Figs. 7(a) and 8(c)] or different circuits [Figs. 10(a) and 10(c); Figs. 11(a) and 11(c)].

As pointed out in section 2.3.3, this 6R mechanism can also be derived by merging two plane symmetric Goldberg-5R
mechanisms [Fig. 5(b)]. Although a plane symmetric Goldberg-5R mechanism can reach a plane symmetric configuration,
only the 6R mechanisms with two pairs of full-turn R joints can reach a plane symmetric configuration, while the 6R
mechanisms with one pair of full-turn R joints cannot.

The above results have been verified using several mechanism models built using 3D printing. Figure 12 shows the CAD
model and 3D-printed prototype of 6R Mechanism II in the configuration shown in Fig. 10(c). It is noted that joints 1 and 6
in this prototype are prevented from full-turn rotation due to interference between links 2 and 4 as well as links 1 and 5.

(a) CAD model.

1

2

3

4

5

6

(b) 3D-printed prototype.

Fig. 12. A prototype of 6R Mechanism II.
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It can be proved geometrically or algebraically that the axes of R joints 2 and 5 generally intersect with each other.
Therefore, the proposed 6R mechanism has two pairs of R joints with intersecting axes (3 and 4; 2 and 5) and one pair of R
joints with parallel axes (1 and 6). Unlike the Schatz’s 6R mechanism, it has one link with intersecting joint axes. In addition,
the proposed 6R mechanism can also be regarded as a variation of the 6R mechanism that has three pairs of R joints with
intersecting axes [26]. It is noted that the overconstrained 6R mechanism detailed in [26] is also a double-faced mechanism.

Like a double-crank planar four-bar mechanism, Mechanisms I and II can be used as double-crank mechanisms if link
3 is selected as the frame, while Mechanism II can also be used as a double-crank mechanism if link 6 selected as the frame.
The observation that joints 3 and 4 are always full-turn R joints is to be proved. Conditions under which joints 1 and 6
become full-turn R joints are still to be identified.

Unlike the mechanisms with certain symmetric characteristics, such as those in [42–44], that are symmetric in any
single configuration of the mechanisms, the double-faced mechanism is usually not symmetric at a single configuration of
the mechanism.

5 Conclusions
A 6R mechanism that has two pairs of R joints with intersecting axes and one pair of R joints with parallel axes has

been constructed from an isosceles triangle and a pair of identical circles. The kinematic analysis using a dual quaternion
based approach has shown that the 6R mechanism usually has two solutions to the kinematic analysis for a given input
and this type of mechanisms may have two circuits (or closure modes) with one or two pairs of full-turn R joints. In two
configurations in each circuit of the 6R mechanism, the axes of four R joints are coplanar, and the axes of the other two R
joints are perpendicular to the plane defined by the above four R joints. From one configuration of the 6R mechanism, one
can obtain another configuration of the mechanism by simply renumbering the joints. The concept of two-faced mechanism
has been introduced.

This work enriches the geometric approach for identifying 6R overconstrained mechanisms. The formulas for the
analysis of plane symmetric spatial triangle will also be useful for the design and analysis of multi-loop overconstrained
mechanisms involving plane symmetric spatial RRR triads [45].
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