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Abstract. A rarely exploited advantage of time-domain boundary integral equations compared to their frequency

counterparts is that they can be used to treat certain nonlinear problems. In this work we investigate the scattering
of acoustic waves by a bounded obstacle with a nonlinear impedance boundary condition. We describe a boundary

integral formulation of the problem and prove without any smoothness assumptions on the solution the convergence

of a full discretization: Galerkin in space and convolution quadrature in time. If the solution is sufficiently regular,
we prove that the discrete method converges at optimal rates. Numerical evidence in 3D supports the theory.

1. Introduction

We propose and analyse a discretization scheme for the linear wave equation subject to a nonlinear boundary
condition. The scheme is based on a boundary element method in space and convolution quadrature in time,
using either an implicit Euler or BDF2 scheme for its underlying time-discretization. The motivation for the
nonlinear boundary condition comes from nonlinear acoustic boundary conditions as investigated in [Gra12] and
from boundary conditions in electromagnetism obtained by asymptotic approximations of thin layers of nonlinear
materials [HJ02]. Another source of interesting nonlinear boundary conditions is the coupling with nonlinear circuits
[AFM+04]. Compared with these references, the nonlinear boundary condition that we use is simple. Nevertheless,
to the best of our knowledge there are currently no works in the literature analysing the use of time-domain boundary
integral equations for nonlinear problems and the nonlinear condition we consider is sufficiently interesting to require
a new theory upon which the analysis of more involved applications can be built.

The case of linear boundary conditions has gathered considerable interest in the recent years, and can be con-
sidered well understood [AJRT11, BHD86, BD86, BLS15b, BLM11, DD14, FMS12, LS09, LFS13]; see in particular
the recent book [Say16]. Much of the analysis available in the literature, starting with the groundbreaking work
of Bamberger and Ha Duong [BHD86], is based on estimates in the Laplace domain. In the nonlinear case these
are not available and the regularity of the solutions is not well understood. In order to deal with these difficulties
we develop an alternative approach based on an equivalent formulation as a partial differential equation posed in
exotic Hilbert spaces. Structurally, these problems are similar and are inspired by the exotic transmission problems
of Laliena and Sayas [LS09] formulated in the Laplace domain — by taking the Z-transform they indeed become
equivalent. A similar approach has recently been used to investigate the coupling of finite elements and convolution
quadrature based boundary elements for the Schrödinger equation in [MR17]. The focus on analysing the convo-
lution quadrature scheme in the time domain is also present in [BLS15a] and [DS13]. This reformulation allows
us to investigate stability and convergence using the tools from nonlinear semigroup theory. Due to the difficulty
regarding the regularity of the exact solution, most of the paper focuses on showing unconditional convergence for
low regularity solutions. In Section 5.4.1 we then also give a theorem which guarantees the full convergence rate
if the exact solution possesses sufficient regularity. The paper concludes with numerical experiments in 3D that
support and supplement the theoretical results.

2. Model problem and notation

We consider the wave equation with a nonlinear impedance boundary condition. Let Ω− ⊆ Rd be a bounded
Lipschitz domain and denote the exterior by Ω+ ∶= Rd ∖ Ω− and the boundary by Γ ∶= ∂Ω−. The respective trace
operators are denoted by γ± and the normal derivatives by ∂±n, where the normal vector n is taken in both cases as
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pointing out of Ω−. We define jumps and mean values as

JγuK ∶= γ+u − γ−u, J∂nuK ∶= ∂+nu − ∂−nu.
{{γu}} ∶= 1

2
(γ+u + γ−u) , {{∂nu}} ∶= 1

2
(∂+nu + ∂−nu) .

Given a function g ∶ R→ R, we consider the following model problem:

1

c2
ütot = ∆utot, in Ω+,(2.1)

∂+nutot = g(u̇tot), on Γ,(2.2)

together with the initial condition utot(t) = uinc(t) for all t ≤ 0, where uinc(t) is the incident wave satisfying the
wave equation

1

c2
üinc(x, t) = ∆uinc(x, t), ∀(x, t) ∈ Ω+ ×R.(2.3)

We assume that at time t = 0 the incident wave has not reached the scatterer and hence uinc(x, t) vanishes in a
neighborhood of Ω− for t ≤ 0. We further set uinc(x, t) ≡ 0 in Ω−, ∀ t ∈ R.

Remark 2.1. The definition uinc(x, t) ≡ 0 in Ω− is somewhat uncommon, but helps simplify later calculations.

We will make use of a number of standard function spaces. We start with the space of all smooth test functions
with compact support on an open set O, which will be denoted by C∞

0 (O). The usual Lebesgue and Sobolev
spaces on a set O which is either open in Rd or a relatively open subset of Γ will be denoted by Lp(O) and Hs(O)
respectively. By ⟨u, v⟩Γ we mean the continuous extension of the (complex) L2-product on Γ to H−1/2(Γ)×H1/2(Γ),
i.e. ⟨u, v⟩Γ ∶= ∫Γ uv for u, v ∈ L2(Γ). We also define the space H1

∆ (Rd ∖ Γ) ∶= {u ∈H1 (Rd ∖ Γ) ∶ ∆u ∈ L2(Rd ∖ Γ)},

where the Laplacian is meant in the sense of distributions for test functions in C∞
0 (Rd ∖ Γ), i.e. taken separately

in Ω+ and Ω−. The norm on this space is given by ∥u∥2
H1

∆
(Rd∖Γ) ∶= ∥u∥2

H1(Rd∖Γ) + ∥∆u∥2
L2(Rd∖Γ). It is common that

estimates depend on some generic constants, therefore we use the notation A ≲ B to mean that there exists a
constant C > 0 independent of the main quantities of interest like time or space discretization parameter, such that
A ≤ CB. We write A ∼ B for A ≲ B and B ≲ A.

Assumption 2.2. We will make the following assumptions on g:

(i) g ∈ C1(R),
(ii) g(0) = 0,

(iii) g(µ)µ ≥ 0, ∀µ ∈ R,
(iv) g′(µ) ≥ 0, ∀µ ∈ R,
(v) g satisfies the growth condition ∣g(µ)∣ ≤ C(1 + ∣µ∣p), where

⎧⎪⎪⎨⎪⎪⎩
1 < p <∞ d = 2,

1 < p ≤ d
d−2

d ≥ 3.

(vi) g is strictly monotone, i.e. there exists β > 0 such that

(g(λ) − g(µ)) (λ − µ) ≥ β ∣λ − µ∣2 , ∀λ,µ ∈ R.(2.4)

Remark 2.3. The growth condition is such that the operator η ↦ g(η) becomes a bounded operator, i.e. we have
the estimate ∥g(u)∥H−1/2(Ω) ≤ C(1 + ∥u∥p

H1/2(Γ)) as will be proved in Lemma 4.1.

Remark 2.4. Under the conditions posed on g, equation (2.1) is well-posed. This has been shown with more general
boundary conditions in [LT93] and [Gra12], but with slightly stricter growth conditions on g. The well-posedness of
the stated problem will follow as a special case of Theorem 5.5.

Remark 2.5. Assumption (vi) is needed to obtain explicit error bounds for the spatial discretization. As it may be
an overly restrictive condition in some cases of interest, in Section 5.5 we sketch what happens if this assumption
is dropped.
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3. Boundary integral equations and discretization

In order to discretize the problem, it is more convenient to work with homogeneous initial conditions u(0) =
u̇(0) = 0. Therefore, we make the decomposition ansatz utot = uinc + uscat. Since uinc satisfies the wave equation it
follows that uscat satisfies the wave equation with a homogeneous initial condition, i.e.

1

c2
üscat = ∆uscat, in Ω+(3.1)

∂+nuscat = g(u̇scat + u̇inc) − ∂+nuinc, on Γ(3.2)

uscat(t) = 0, in Rd for all t ≤ 0.(3.3)

For the rest of the paper, we assume c = 1 to simplify the notation. In order to reformulate the differential
equation in terms of integral equations on Γ, we will need the following integral operators, the properties of which
can be found in most books on boundary element methods, e.g. [SS11, Ste08, McL00, HW08].

Definition 3.1. For s ∈ C+ ∶= {s ∈ C ∶ Re(s) > 0}, the Green function associated with the differential operator ∆−s2

is given by:

Φ(z; s) ∶= ⎧⎪⎪⎨⎪⎪⎩
i
4
H

(1)
0 (is ∣z∣) , for d = 2,

e−s∣z∣
4π∣z∣ , for d = 3,

where H
(1)
0 denotes the Hankel function of the first kind and order zero. We define the single- and double-layer

potentials:

(S(s)ϕ) (x) ∶= ∫
Γ

Φ(x − y; s)ϕ(y) dy
(D(s)ψ) (x) ∶= ∫

Γ
∂n(y)Φ(x − y; s)ψ(y) dy.

For all u ∈H1
∆ (Rd ∖ Γ), with ∆u − s2u = 0, the representation formula

u(x) = −S(s)J∂nuK(x) +D(s)JγuK(x)
holds.

Finally, we define the corresponding boundary integral operators:

V (s) ∶ H−1/2(Γ)→H1/2(Γ), V (s) ∶= γ±S(s),(3.4a)

K(s) ∶ H1/2(Γ)→H1/2(Γ), K(s) ∶= {{γD(s)}} ,(3.4b)

Kt(s) ∶ H−1/2(Γ)→H−1/2(Γ), Kt(s) ∶= {{∂nS(s)}} ,(3.4c)

W (s) ∶ H1/2(Γ)→H−1/2(Γ), W (s) ∶= −∂±nD(s).(3.4d)

In order to solve the wave equation, we define the Calderón operators

B(s) ∶= ( sV (s) K(s)−Kt(s) s−1W (s)) ,(3.5)

Bimp(s) ∶= B(s) + ( 0 − 1
2
I

1
2
I 0

) .(3.6)

Definition 3.2. In this paper, we make use of the operational calculus notation as is common in the literature on
convolution quadrature [Lub94]. Note that the corresponding operational calculus dates back much further, see e.g.
[GM83] and [Yos84]. Let K(s) ∶ X → Y be a family of bounded linear operators analytic for Re(s) > 0, and let L
denote the Laplace transform and L −1 its inverse. We define

K(∂t)g ∶= L −1(K(⋅)L g),
where g ∈ dom (K(∂t)) is such, that the inverse Laplace transform exists, and the expression above is well defined.

This operation has the following important properties:

(i) For kernels K1(s) and K2(s), we have K1(∂t)K2(∂t) = (K1K2) (∂t) .
(ii) For K(s) ∶= s, we have: K(∂t)g(t) = g′(t), ∀g ∈ C1(R+), with g(0) = 0.

(iii) For K(s) ∶= s−1 we have: K(∂t)g(t) = ∫ t0 g(ξ)dξ, ∀g ∈ C(R+).

The last point motivates the notation ∂−1
t for the integral, which will be important when we introduce a corresponding

discrete version.
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Using the definition above, we can easily transfer the representation formula from the Laplace domain to the
time domain to get Kirchoff’s representation formula: If u ∈ C2 (R,H1

∆ (Rd ∖ Γ)) solves the wave equation in Rd ∖Γ
then it can be written as:

u = −S(∂t)J∂nuK +D(∂t)JγuK.(3.7)

This representation formula provides us with the connection between the PDE and the boundary integral formula-
tion, which we will use for our discretization. Namely, with

Bimp(∂t)(ϕψ) + ( 0
g(ψ + u̇inc)) = ( 0−∂+nuinc) ,(3.8)

the following equivalence holds.

(i) If u ∶= uscat solves (3.1), then (ϕ,ψ), with ϕ ∶= −∂+nu and ψ ∶= γ+u̇, solves (3.8).
(ii) If (ϕ,ψ) solves (3.8), then u ∶= S(∂t)ϕ + ∂−1

t D(∂t)ψ solves (3.1).

This statement follows from Kirchhoff’s representation formula for the wave equation (see [BLS15a] and the
references therein) and the definition of the boundary integral operators in Definition 3.1. We will not go into
details here, as we will not directly make use of this result. Instead we will later prove a discrete analogue in
Lemma 5.1.

We consider two closed sub-spaces Xh ⊆ H−1/2(Γ), Yh ⊆ H1/2(Γ) not necessarily finite dimensional and let

JYhΓ ∶ H1/2(Γ) → Yh denote a stable operator with “good” approximation properties. This can be the Scott-Zhang
operator in its variant based on pure element averaging, see for example [AFF+15, Lemma 3]. An alternative is
the L2-projection for low order piecewise polynomials, where the stability depends on the triangulation used with
quasiuniformity of the triangulation being a sufficient assumption; see [CT87, BY14] for other sufficient conditions.
The detailed approximation requirements for the projection operator and the discrete spaces can be found in
Assumption 5.27 or Lemma 5.30 respectively.

For the rest of the paper, we fix a time step size ∆t > 0 and use the abbreviation tn ∶= n∆t. For time discretization
we will use the two A-stable backward difference formulas BDF1 and BDF2. Applied to u̇ = f(t, u), with step-size
∆t, these give the recursion

1

∆t

k∑
j=0

αju
n−j = f(tn, un),

where k = 1 and α0 = 1, α1 = −1 for the one-step BDF1 and k = 2 and α0 = 1/2, α1 = −2, α2 = 3/2 for the two-step
BDF2 method. Apart from the A-stability we will also require the fact that these methods are G-stable as shown
by Dahlquist [Dah78]. In the following u(t) is assumed to be in a Hilbert space with an inner product ⟨⋅, ⋅⟩.
Proposition 3.3. The linear multistep methods BDF1 and BDF2 are G-stable. Namely there exists a positive
definite matrix G = (gij)i,j=1,...,k such that

Re ⟨ k∑
j=0

αju
n−j , un⟩ ≥ ∥Un∥2

G − ∥Un−1∥2
G,

where Un = (un, . . . , un−k+1)T and

∥Un∥2
G = k∑

i=1

k∑
j=1

gij⟨un−k+i, un−k+j⟩.
Proof. As BDF methods are equivalent to their corresponding one-leg methods, the result follows from [HW10,
Chapter V.6, Theorem 6.7] and its proof. �

Next, we give the discrete analogue to Definition 3.2; this is standard in the CQ literature(see[Lub88a, Lub88b,
Lub94]). To do this we require a standard result on multistep methods.

Proposition 3.4 ([HW10, Chapter V.1, Theorem 1.5]). As BDF1 and BDF2 are A-stable methods their generating

function δ(z) ∶= k∑
j=0

αjz
j satisifes Re δ(z) > 0 for ∣z∣ < 1.

Definition 3.5. Analogous to the Laplace transform L , we define the Z-transform Z of a sequence g = (gn)∞n=0

as the power series (Z g) ∶= ∞∑
n=0

gnz
n. We will also often use the shorthand ĝ ∶= Z (g).
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Let K(s) again be an analytic family of bounded linear operators in the right half plane. For a function u ∈ L∞(X)
with u(t) = 0 for all t ≤ 0 on some Banach space X, we define

[K(∂∆t
t )u]n ∶= n∑

j=0

Kju (tn − tj),
where the weights Kj are defined as the coefficients satisfying K ( δ(z)

∆t
) =∶ ∑∞n=0Knz

n.

Remark 3.6. We will use the same notation if u ∶= (un)n∈N is a sequence of values in X, by identifying u with the
piecewise constant function. The connection with Definition 3.2 can be seen by applying the Z transform to the
discrete convolution:

Z (K(∂∆t
t )u) =K (δ(z)

∆t
)Z (u).

This operational calculus then implies the convolution quadrature discretization of (3.8), by replacing B(∂t)
with B(∂∆t

t ) resulting in the following problem.

Problem 3.7. For all n ∈ N, find (ϕ,ψ) ∶= (ϕn, ψn)n∈N ⊆Xh × Yh such that:

⟨[Bimp(∂∆t
t )(ϕ

ψ
)]n ,(ξ

η
)⟩

Γ

+ ⟨g(ψn + JYhΓ u̇inc(tn)), η⟩Γ
= ⟨−∂+nuinc(tn), η⟩Γ

∀(ξ, η) ∈Xh × Yh.(3.9)

�

Since we will often be working with pairs (ϕ,ψ) ∈H−1/2(Γ) ×H1/2(Γ) we define the product norm

∣∣∣(ϕ,ψ)∣∣∣2Γ ∶= ∥ϕ∥2
H−1/2(Γ) + ∥ψ∥2

H1/2(Γ) .(3.10)

4. Well posedness

In this section, we investigate the existence and uniqueness of solutions to Problem 3.7. We start with some
basic properties of the operator induced by g and the operator Bimp.

Lemma 4.1. The operator g ∶H1/2(Γ)→H−1/2(Γ) is a bounded (nonlinear) operator, with

∥g(η)∥H−1/2(Γ) ≤ C (1 + ∥η∥p
H1/2(Γ)) ,

where p is the bound from Assumption 2.2(v) and the constant C > 0 depends on Γ and g.

Proof. We note that the following Sobolev embeddings hold (see [Ada75, Theorem 7.57]):

H1/2(Γ) ⊆ Lp′(Γ) ⎧⎪⎪⎨⎪⎪⎩
∀1 ≤ p′ <∞ for d = 2,∀1 ≤ p′ ≤ 2d−2

d−2
for d ≥ 3.

(4.1)

Let p be as in Assumption 2.2 (v). Fix p′, q′ such that 1/p′ + 1/q′ = 1 and both p′ and pq′ are in the admissible
range of the Sobolev embedding. The case d = 2 is clear. For d ≥ 3 we use p′ = 2d−2

d−2
, q′ ∶= 2d−2

d
.

For η, ξ ∈H1/2(Γ) we calculate:

∫
Γ
g(η)ξ ≤ ∥g(η)∥Lq′(Γ) ∥ξ∥Lp′(Γ) ≲ (1 + ∥η∥p

Lq′p(Γ)) ∥ξ∥H1/2(Γ)
≲ (1 + ∥η∥p

H1/2(Γ)) ∥ξ∥H1/2(Γ) .
�

The operator Bimp(s) is elliptic in the frequency domain:

Lemma 4.2. There exists a constant β > 0, depending only on Γ, such that

Re ⟨Bimp(s)(ϕψ) ,(ϕψ)⟩
Γ

≥ βmin(1, ∣s∣2)Re(s)
∣s∣2 ∣∣∣(ϕ,ψ)∣∣∣2Γ .(4.2)

Proof. The analogous estimate to (4.2) for the operator B(s) was shown in [BLS15b, Lemma 3.1]. Since the bilinear
form induced by Bimp(s) −B(s) is skew-hermitean, this implies (4.2). �

The solvability of the discrete system (3.9) will be based on the theory of monotone operators. We summarize
the main result in the following proposition
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Proposition 4.3 (Browder and Minty,[Sho97, Chapter II, Theorem 2.2]). Let X be a real separable and reflexive
Banach space and A ∶ X → X ′ be a bounded, continuous, coervice and monotone map from X to its dual space(not
necessarily linear), i.e., A satisfies:● A ∶X →X ′ is continuous,● the set A(M) is bounded in X ′ for all bounded sets M ⊆X,

● lim∥u∥→∞
⟨A(u), u⟩X′×X∥u∥ =∞,

● ⟨A(u) −A(v), u − v⟩X′×X ≥ 0 for all u, v ∈X.

Then the variational equation

⟨A(u), v⟩X′×X = ⟨f, v⟩X′×X , ∀v ∈X,
has at least one solution for all f ∈X ′. If the operator is strongly monotone, i.e., there exists β > 0 such that

⟨A(u) −A(v), u − v⟩X′×X ≥ β ∥u − v∥2
X for all u, v ∈X,

then the solution is unique.

Proof. The first part is just a slight reformulation of [Sho97, Theorem 2.2], based on some of the equivalences stated
in the same chapter. Uniqueness follows by considering two solutions u, v and applying the strong monotonicity to
conclude ∥u − v∥X = 0. �

Theorem 4.4. Let ∆t > 0 and (Xh, Yh) ⊆ H−1/2(Γ) ×H1/2(Γ) be closed subspaces. Then the discrete system of
equations (3.9) has a unique solution in the space Xh × Yh for all n ∈ N.

Proof. We prove this by induction on n. For n = 0 we are given the initial condition ϕ0 = ψ0 = 0. Assume we
have solved (3.9) up to the n − 1-st step. We denote the operators from the definition of Bimp(∂∆t

t ) as Bj , j ∈ N0,

dropping the subscript.We set ψ̃n ∶= ψn + JYhΓ u̇inc(tn) and bring all known terms to the right-hand side. Then, in
the n-th step the equation reads

⟨[B0 (ϕn
ψ̃n

)]n ,(ξ
η
)⟩

Γ

+ ⟨g(ψ̃n), η⟩
Γ
= ⟨fn,(ξ

η
)⟩

Γ

,(4.3)

with fn ∶= ( 0−∂+nuinc(tn))−
n−1∑
j=0

Bn−j (ϕjψj)+B0 ( 0

JYhΓ u̇inc(tn)). The right-hand side is a continuous linear functional

with respect to (ξ, η) due to the mapping properties of the operators Bj that are easily transfered from the
frequency-domain versions (3.4); see [Lub94].

In order to apply Proposition 4.3, we note that the operator B0 ∶ H−1/2(Γ) ×H1/2(Γ) → H1/2(Γ) ×H−1/2(Γ) is

the leading term of a power series, and therefore B0 = Bimp ( δ(0)
∆t

). This implies B0 is elliptic via Lemma 4.2. The

nonlinearity satisfies: ⟨g(η), η⟩Γ = ∫Γ g(η)η ≥ 0 by Assumption 2.2 (iii). This implies that the left-hand side in (4.3)
is coercive. For η1, η2, we apply the mean value theorem, to get:

⟨g(η1) − g(η2), η1 − η2⟩Γ = ∫
Γ
g′(s(x))(η1(x) − η2(x))2 dx ≥ 0,

since g′ ≥ 0 via Assumption 2.2(iv). Thus the left-hand side in (4.3) is also strongly monotone. We have already seen
boundedness in Lemma 4.1. The continuity is a consequence of Sobolev’s embedding theorem, with the detailed
proof given later in more generality as part of Lemma 5.15 (ii). �

5. Convergence analysis

In this section we are interested in the convergence of the method towards the exact solution. A straight forward
approach would be to use the positivity of Bimp and monotonicity of g to bound the error in terms of a residual.
Unfortunately, this approach necessitates strong assumptions on the regularity of the exact solution and seems only
to give estimates in a rather weak norm; see Appendix A for a sketch of this methodology. Instead of using the
integral equation, we will show convergence by analysing an equivalent problem based on the approximation of
the differential equation (2.1). This equivalence is spelled out in Lemma 5.1. We will then spend the rest of the
section analysing the discretization errors between this formulation and the exact solution.The construction of the
equivalent system is based on the idea of exotic transmission problems as introduced in [LS09].

For a space X ⊆ Y let the annihilator X○ ⊆ Y ′ be defined as

X○ ∶= {f ∈ Y ′ ∶ f(x) = 0 ∀x ∈X} .
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Lemma 5.1. Let ∆t > 0, and let Xh ⊆H−1/2(Γ), Yh ⊆H1/2(Γ) be closed subspaces. Let

Hh ∶= {u ∈H1 (Rd ∖ Γ) ∶ JγuK ∈ Yh, γ−u ∈X○
h}.(5.1)

Consider the sequence of problems: Find unie, v
n
ie ∈Hh for n = 0,1, . . . such that

1

∆t

k∑
j=0

αju
n−j
ie = vnie(5.2a)

1

∆t

k∑
j=0

αjv
n−j
ie = ∆unie(5.2b)

∂+nunie − g (JγvnieK + JYhΓ u̇inc(tn)) + ∂+nuinc(tn) ∈X○
h,(5.2c)

J∂nuieK ∈Xh,(5.2d)

where tn ∶= n∆t and u−jie = v−jie ∶= 0 for j ∈ N. Then the following two statements hold:

(i) If the sequences ϕn, ψn solve (3.9), then uie ∶= S(∂∆t
t )ϕ + (∂∆t

t )−1
D(∂∆t

t )ψ and vie ∶= ∂∆t
t uie solve (5.2).

(ii) If uie,vie solve (5.2), then traces ϕ ∶= −J∂nuieK, ψ ∶= JγvieK solve (3.9).

Note: the subindex “ie”, which stands for “integral equations”, is used to separate this sequence from the one
obtained by applying the multistep method to the semigroup, as defined in (5.14).

Proof. We first note that (5.2) has a solution in Hh.
We show this by induction on n. For n ≤ 0 we set unie ∶= vnie ∶= 0. For n ∈ N, we consider the weak formulation,

find unie ∈Hh, vnie ∈Hh, such that

1

∆t

k∑
j=0

αju
n−j
ie = vnie,(5.3a)

⎛⎝ 1

∆t

k∑
j=0

αjv
n−j
ie , zh

⎞⎠
L2(Rd∖Γ)

= − (∇unie,∇zh)L2(Rd∖Γ) − ⟨g (JγvnieK + JYhΓ u̇inc(tn)) − ∂+nuinc(tn), JγzhK⟩Γ
,(5.3b)

for all zh ∈ Hh. Multiplying the first equation by ∆t and collecting all the terms involving ujie and vjie for j < n in
Fn ∈ Hh, the condition becomes α0u

n
ie = ∆t vnie + Fn. After inserting this identity and combining all known terms

into a new right-hand side F̃n ∈H′
h, the second equation becomes

α0

∆t
(vnie, zh)L2(Rd∖Γ) + ∆t

α0
(∇vnie,∇zh)L2(Rd∖Γ) + ⟨g (JγvnieK + JYhΓ u̇inc(tn)) , JγzhK⟩Γ

= ⟨F̃n, zh⟩H′
h
×Hh .

Since Hh is a closed subspace of H1, this equation can be solved for all n ∈ N due to the monotonicity of the
operators involved and the Browder-Minty theorem; see Proposition 4.3 and also the proof of Theorem 4.4 for how
to treat the nonlinearity. With α0u

n
ie ∶= ∆t vnie + Fn, we have found a solution to (5.3).

What still needs to be shown is that J∂nunieK ∈ Xh. Note that it is sufficient to show J∂nûieK ∈ Xh for the
Z-transformed variable, as we can then express J∂nunieK as a Cauchy integral in Xh. The details of this argument
are given later.

It is easy to see that ∥unie∥H1
∆
(Rd∖Γ) ≤ C(∆t)∑n−1

j=0 ∥ujie∥H1
∆
(Rd∖Γ), where the constant may depend on ∆t, but not

on ujie, v
j
ie or n. This implies that the Z-transform ûie(z) is well defined for ∣z∣ sufficiently small.

To simplify notation, define Gn ∶= g(JγvnieK+JYhΓ u̇inc(tn))−∂nuinc(tn). Taking the Z-transform of (uie) and (vie)
a simple calculations shows that for zh ∈Hh

⎛⎝(δ(z)∆t
)2

ûie, zh
⎞⎠
L2(Rd∖Γ)

+ (∇ûie,∇zh)L2(Rd∖Γ) + ⟨Ĝ, JγzhK⟩Γ
= 0.

For zh ∈ C∞
0 (Rd ∖ Γ) this implies

−∆ûie + (δ(z)
∆t

)2

ûie = 0.

From zh ∈ Hh with zh∣Ω− = 0 we see ∂+nûie − Ĝ ∈ Y ○
h . Let ξ ∈ X○

h and zh is a lifting of ξ to H1 (Rd ∖ Γ), i.e.,
γ+zh = γ−zh = ξ, then we get by integration by parts:

⟨−∂+nûie, ξ⟩Γ + ⟨∂−nûie, ξ⟩Γ = 0,
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or J∂nûieK ∈ (X○
h)○ =Xh. We can use the Cauchy-integral formula to write:

J∂nunieK = 1

2πi
∫C J∂nûieKz−n−1 dz,

where the contour C ∶= {z ∈ C ∶ ∣z∣ = const} denotes a sufficiently small circle, such that all the Z-transforms exist.
Since we have shown that J∂nûieK ∈ Xh and we assumed that Xh is a closed space, this implies J∂nunK ∈ Xh. Thus
we have shown the existence of a solution to (5.2).

We can now show the equivalence of (i) and (ii). We start by showing that the traces of the solutions to (5.2)
solve the boundary integral equation. We have the following equation in the frequency domain:

−∆ûie + (δ(z)
∆t

)2

ûie = 0

∂+nûie − Ĝ ∈ Y ○
h .

The representation formula tells us that we can write ûie(z) = −S(z)J∂nûie(z)K+D(z)Jγûie(z)K. We set s∆t ∶= δ(z)
∆t

,

ψ̃(z) ∶= s∆tJγûieK = Jγv̂ieK and ϕ̃(z) ∶= −J∂nûieK. Multiplying the representation formula by s∆t gives s∆tûie(z) =
s∆tS(z)ϕ̃ +D(z)ψ̃. Taking the interior trace γ− and testing with a discrete function ξh ∈Xh gives

0 = ⟨s∆tγ−ûie, ξh⟩Γ
= ⟨s∆tV (s∆t)ϕ̃, ξh⟩Γ

+ ⟨(K(s∆t) − 1/2) ψ̃, ξh⟩Γ
.

Analogously, by starting from the original representation formula, taking the exterior normal derivative ∂+n, and
testing with ηh ∈ Yh we obtain that

⟨G,ηh⟩Γ = ⟨∂+nûie, ηh⟩Γ = ⟨(1/2 −Kt(s∆t)) ϕ̃, ηh⟩Γ
+ ⟨(s∆t)−1

W (s∆t)ψ̃, ηh⟩
Γ
.

Together, this is just the Z-transform of (3.9). By taking the inverse Z-transform, we conclude that the traces
JγuieK and J∂nvieK solve (3.9). By the uniqueness of the solution via Theorem 4.4, this implies ϕn = −J∂nunieK and
ψn = JγvnieK, which then shows (ii).

For (i), we observe that due to the uniqueness of solutions to Helmholtz transmission problems uie defined via
(5.2) and uie defined via potentials have the same Z-transform and therefore coincide also in the time domain. �

5.1. The continuous problem and semidiscretization in space. In this section we investigate the problem in
a time-continuous setting. We consider the case of discretization in space via a Galerkin method, inspired by the
spaces appearing in Lemma 5.1, and also show existence and uniqueness of (2.1) under the assumptions on g made
in Assumption 2.2. The continuous problem is treated as a special case of the space-semidiscrete problem, as it
allows a tighter presentation of arguments, instead of having to prove things twice. We also lay the foundation for
the later treatement of the discretization in time by introducing the right functional analytic setting in the language
of nonlinear semigroups.

5.1.1. Semigroups. We would like to use the large toolkit provided by the theory of (nonlinear) semigroups, a
summary of which can, for example, be found in [Sho97]. In order to do so, we will rewrite the wave equation (2.1)
as a first order system. We introduce the new variable v by setting v ∶= u̇ to get

(u̇
v̇
) = ( v

∆u
) ,

∂+nu = g(γ+v + u̇inc) − ∂+nuinc.
The following definition is at the centre of the used theory.

Definition 5.2. Let H be a Hilbert space and A ∶H →H be a (not necessarily linear or continuous) operator with
domain dom(A). We call A maximally monotone if it satisfies:

(i) (Ax −Ay, x − y)H ≤ 0 ∀x, y ∈ domA,
(ii) range (I −A) =H.

Remark 5.3. We follow the notation used in [Gra12]. Other authors, e.g. [Nev78] work with −A instead.

The following proposition summarizes the main existence result from the theory of nonlinear semigroups (we
focus on the case u0 ∈ dom(A)).
Proposition 5.4 (Kōmura-Kato, [Sho97, Proposition 3.1]). Let A be a maximally monotone operator on a Hilbert
space H with domain dom(A) ⊆H.

For each u0 ∈ dom(A) there exists a unique absolutely continuous function u ∶ [0,∞)→H, such that:

u̇ = Au and u(0) = u0
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almost everywhere in t. Further, u is Lipschitz with ∥u̇∥L∞((0,∞);H) ≤ ∥Au0∥H and u(t) ∈ dom(A) for all t ≥ 0.

Since we would like to use monotone operator techniques, we need an appropriate functional analytic setting.
We introduce the Beppo-Levi space [DL54]

BL1 ∶= {u ∈H1
loc(Rd ∖ Γ) ∶ ∥∇u∥L2(Rd∖Γ) <∞} /ker∇,(5.4)

equipped with the norm ∥u∥BL1 ∶= ∥∇u∥L2(Rd∖Γ) and the corresponding inner product. This space contains all

functions that are H1 on compact subsets up to, not necessarily the same, constants in the exterior and interior
domain with L2-gradient in Ω+ and Ω−.

The functional analytic setting for our problem is laid out in the next theorem. We formulate the problem so that
it covers the continuous in time/discrete in space case. To obtain the continous problem, we just set Xh ∶=H−1/2(Γ)
and Yh ∶=H1/2(Γ).
Theorem 5.5. Consider the space X ∶= BL1 ×L2(Rd) with the product norm and corresponding inner product and
the block operator

A ∶= ( 0 I
∆ 0

) ,(5.5)

dom(A) ∶= {(u, v) ∈ BL1 ×L2(Rd) ∶ ∆u ∈ L2(Rd ∖ Γ), v ∈Hh, J∂nuK ∈Xh, ∂
+
nu − g(JγvK) ∈ Y ○

h}.(5.6)

Then A is a maximally monotone operator on X and generates a strongly continuous semigroup that solves

(u̇
v̇
) = A(u

v
) , u(0) = u0, v(0) = v0,(5.7)

for all initial data (u0, v0) ∈ dom(A).
If additionally to v0 ∈Hh, also u0 ∈Hh, then the solution satisfies

(i) (u(t), v(t)) ∈ dom(A), as well as u(t) ∈Hh and v(t) ∈Hh for all t > 0.
(ii) u ∈ C1,1 ([0,∞),H1(Rd ∖ Γ)),

(iii) u̇ ∈ L∞ ((0,∞),H1 (Rd ∖ Γ)),

(iv) ü ∈ L∞ ((0,∞), L2(Rd)).

Since a-priori u is only fixed up to constants, (i)-(iv) are meant in the sense that there exists a representation which
satisfies these properties. From now on, we will not preoccupy ourselves with this distinction and always use this
representant.

Proof. We first show monotonicity. Let x1 = (u1, v1), x2 ∶= (u2, v2) in dom(A). Then

(Ax1 −Ax2, x1 − x2)BL1×L2 = (∇v1 −∇v2,∇u1 −∇u2)L2(Rd) + (∆u1 −∆u2, v1 − v2)L2(Rd)= ⟨∂−nu1 − ∂−nu2, γ
−v1 − γ−v2⟩Γ − ⟨∂+nu1 − ∂+nu2, γ

+v1 − γ+v2⟩Γ= − ⟨J∂nu1K − J∂nu2K, γ−(v1 − v2)⟩Γ − ⟨∂+nu1 − ∂+nu2, Jγ(v1 − v2)K⟩Γ= − ⟨g(Jγv1K) − g(Jγv2K), Jγ(v1 − v2)K⟩Γ≤ 0,

where in the last step, we used the definition of the domain of A, which contains the boundary conditions and the
fact that J∂nujK ∈Xh. The definition of Hh from (5.1) gives that Jγ(v1 − v2)K ∈ Yh.

Next we show range(I−A) = X , i.e., for (x, y) ∈ X we have to find U = (u, v) ∈ dom(A) such that U −AU = (x, y).
In order to do so, we first assume x ∈ H1

∆ (Rd ∖ Γ) (a dense subspace of BL1). From the first equation, we get
u − v = x, or u = v + x, which makes the second equation: v −∆v = y +∆x. For the boundary conditions this gives
us the requirements

γ−v ∈X○
h, JγvK ∈ Yh,

J∂nuK ∈Xh, ∂+nv − g(JγvK) + ∂+nx ∈ Y ○
h .

This can be solved analogously to the proof of Lemma 5.1. The weak formulation is: find v ∈Hh, such that for all
wh ∈Hh(v,wh)L2(Rd∖Γ) + (∇v,∇wh)L2(Rd∖Γ) + ⟨g(JγvK), JγwhK⟩Γ = (y,wh)L2(Rd∖Γ) − (∇x,∇wh)L2(Rd∖Γ) ∀wh ∈Hh.
Due to the monotonicity of the left-hand side this problem has a solution via Proposition 4.3. We then set u = v−x.
The fact that the the conditions on J∂nuK hold follow from the same argument as in Lemma 5.1, using (X○

h)○ =Xh.
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We therefore have (u, v) ∈ dom(A). For general X ∶= (x, y) ∈ X we argue via a density argument. Let Xn ∶= (xn, yn)
be a sequence in X ∩ (H1

∆ (Rd ∖ Γ) ×L2(Rd)) such that Xn → X. Let Un ∶= (un, vn) be the respective solutions to(I −A)Un = Xn. From the monotonicity of A, we easily see that for n,m ∈ N: ∥Un −Um∥X ≤ ∥Xn −Xm∥X , which
means (Un) is Cauchy and converges to some U =∶ (u, v). From the first equation un − vn = xn we get that vn → v
in H1 (Rd ∖ Γ). From the second equation vn − ∆un = ynwe get ∆un → ∆u in L2. Therefore we have un → u in

H1
∆ (Rd ∖ Γ), which implies J∂nunK → J∂nuK ∈ Xh. From Lemma 5.15 (i) we get ⟨g(un), ξ⟩Γ → ⟨g(u), ξ⟩Γ, which

implies ∂+nu − g(u) ∈ Y ○
h . The other trace conditions follow from the H1-convergence of vn. The existence of the

semigroup then follows from the Kōmura-Kato theorem; see Proposition 5.19.
In order to see that the additional assumption on the intial data implies u(t) ∈ Hh, we look at the differential

equation and integrate to obtain

u̇ = v ⇒ u(t) = ∫ t

0
v(s) ds + u(0).

Since Hh is a closed subspace and u0 = u(0) ∈Hh it follows that u(t) ∈Hh.
The regularity results can be directly seen from the differential equation. We remark that the statement u(t) ∈

H1 (Rd ∖ Γ) instead of BL1 is meant in the sense of “we can choose a representative in the equivalence class”. �

Remark 5.6. With the choice Xh ∶=H−1/2(Γ) and Yh ∶=H1/2(Γ), the semigroup of Lemma 5.5 represents the exact
solution for (2.1).

5.2. Approximation theory in Hh. In this section we investigate the properties of the spaces Hh and introduce
some projection/quasi-interpolation operators required in the analysis.

We start by defining an operator, which in some sense represents a “volume version” of JYhΓ ; see Lemma 5.8 (ii).

Definition 5.7. Let L ∶ H1/2(Γ) → H1 (Rd ∖ Γ) denote the continuous lifting operator, such that γ+Lv = v andLv = 0 in Ω−. Then we define the operator Π0 as

Π0 ∶ {u ∈H1 (Rd ∖ Γ) ∶ γ−u = 0}→ (Hh, ∥⋅∥H1(Rd∖Γ))
v ↦ v −L ((I − JYhΓ )γ+v) in Rd ∖ Γ.

Recall in the above that JYhΓ ∶H1/2(Γ)→ (Yh, ∥⋅∥1/2) denotes a stable operator.

In the next lemma, we collect some of the most important properties of Π0.

Lemma 5.8. The following statements hold:

(i) if JYhΓ is a projection, then Π0 is a projection,

(ii) JγΠ0uK = JYhΓ JγuK ,

(iii) Π0 is stable, with the constant depending only on Γ and ∥JYhΓ ∥
H1/2(Γ)→H1/2(Γ),

(iv) Π0 has the same approximation properties in the exterior domain as JYhΓ on Γ, i.e.

∥u −Π0u∥H1(Ω+) ≤ C ∥JγuK − JYhΓ JγuK∥
H1/2(Γ) .

Proof. All the statements are immediate consequences of the definition and the continuity of L and JYhΓ . �

In the analysis of time-stepping methods, the Ritz-projector plays a major role. For our functional-analytic
setting it takes the following form.

Definition 5.9. Let α > 0 be a fixed stabilization parameter. Define the Ritz-projector Π1 as

Π1 ∶H1
∆ (Rd ∖ Γ)→Hh,

where Π1u ∈Hh is the unique solution to

(∇Π1u,∇vh)L2(Rd∖Γ) + α (Π1u, vh)L2(Rd∖Γ) = (∇u,∇vh)L2(Rd∖Γ) + α (u, vh)L2(Rd∖Γ) + ⟨J∂nuK, γ−vh⟩Γ ∀vh ∈Hh.
Lemma 5.10. The operator Π1 has the following properties:

(i) Π1 is a stable projection onto the space Hh ∩ {u ∈H1
∆ (Rd ∖ Γ) ∶ J∂nuK ∈Xh} with respect to the H1 (Rd ∖ Γ)-

norm.
(ii) Π1 almost reproduces the exterior normal trace:

⟨∂+nΠ1u, ξ⟩Γ = ⟨∂+nu, ξ⟩Γ , ∀ξ ∈ Yh.
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(iii) Π1 has the following approximation property:

∥(I −Π1)u∥H1(Rd∖Γ) ≤ C ( inf
uh∈Hh ∥u − uh∥H1(Rd∖Γ) + inf

xh∈Xh ∥J∂nuK − xh∥H−1/2(Γ)) .
For u ∈H1(Rd ∖ Γ), with u∣Ω− = 0, this approximation problem can be reduced to the boundary spaces Xh, Yh:

∥(I −Π1)u∥H1(Rd∖Γ) ≤ C1 inf
yh∈Yh ∥γ+u − yh∥H1/2(Γ) +C2 inf

xh∈Xh ∥J∂nuK − xh∥H−1/2(Γ).
All the constants depend only on Γ and α.

Proof. This operator is well defined and stable as Hh is a closed subspace of H1(Rd ∖Γ) and the bilinear form used
is elliptic. The fact that Π1 reproduces the normal jump follows from testing with v ∈ C∞

0 (Rd) to get the partial
differential equation and then using an arbitrary v together with integration by parts. In order to see J∂nΠ1uK ∈Xh

we follow the same argument as in the proof of Lemma 5.1. For ξ ∈ X○
h we obtain by using a global H1-lifting and

integration by parts:

⟨J∂nΠ1uK, ξ⟩Γ = ⟨J∂nuK, ξ⟩Γ − ⟨J∂nuK, ξ⟩Γ = 0.

Thus J∂nΠ1uK ∈ (X○
h)○ = Xh and range(Π1) ⊆ Hh ∩ {u ∈H1

∆ (Rd ∖ Γ) ∶ J∂nuK ∈Xh}. The fact that it is a projection
follows from the fact that for u ∈Hh with J∂nuK ∈Xh, the term ⟨J∂nuK, γ−vh⟩Γ vanishes.

For any uh ∈Hh and xh ∈Xh

∥(I −Π1)u∥2
H1(Rd∖Γ) ≲ (∇(I −Π1)u,∇(I −Π1)u)L2(Rd∖Γ) + α ((I −Π1)u, (I −Π1)u)L2(Rd∖Γ)= (∇(I −Π1)u,∇u −∇uh)L2(Rd∖Γ) + α ((I −Π1)u,u − uh)L2(Rd∖Γ) + ⟨J∂nuK − xh, γ−Π1u − γ−uh⟩Γ≲ ∥(I −Π1)u∥H1(Rd∖Γ) ∥u − uh∥H1(Rd∖Γ)+ ∥J∂nuK − xh∥H−1/2(Γ) (∥u −Π1u∥H1(Rd∖Γ) + ∥u − uh∥H1(Rd∖Γ)) .

Young’s inequality concludes the proof.
For the second part, we need to estimate infuh∈Hh ∥u − uh∥H1(Rd∖Γ). Let yh ∈ Yh be arbitrary and let θ be a

continuous H1 lifting of γ+u − yh to Ω+. Define uh ≡ 0 in Ω− and uh ∶= u − θ in Ω+. Then we have by construction
JγuhK = yh ∈ Yh and therefore uh ∈Hh. For the norm we estimate:

∥u − uh∥H1(Rd∖Γ) = ∥θ∥H1(Ω+) ≤ C ∥γ+u − yh∥H1/2(Γ) .
�

Since we are interested in the case of low regularity, it is often not enough to have H1 stable projection operators.
For this special case we need to make an additional assumption on Yh.

Assumption 5.11. For all h > 0, there exist spaces Y Ω−
h ⊆ H1(Ω−) such that Yh ⊇ γ−Y Ω−

h and that there exists a

linear operator JYhΩ− ∶ L2(Ω−) → Y Ω−
h with the following properties: JYhΩ− is stable in the L2 and H1 norm and for

s = 0,1 satisfies the strong convergence

∥u − JYhΩ−u∥Hs(Ω−) → 0 for h→ 0, ∀u ∈Hs(Ω−).
This allows us to define our final operator.

Lemma 5.12. Let E± ∶ Hm (Ω±) → Hm(Rd) denote the Stein extension operator from [Ste70, Chap. VI.3], which
is stable for all m ∈ N0. Then we define a new operator

Π2 ∶ L2(Ω+)→Hh
u↦ u − E− ((I − JYhΩ− )E+u) in Ω+

and Π2u ∶= 0 in Ω−; i.e. in order to get a correction term similar to the one for Π0 we extend the function to the

interior,project/interpolate to Y Ω−
h and extend it back outwards.

This operator has the following nice properties:

(i) Π2 is stable in L2 and H1,

(ii) for s ∈ [0,1]: ∥u −Π2u∥Hs(Rd∖Γ) ≲ ∥(I − JYhΩ− )E+u∥Hs(Rd∖Γ),
(iii) Π2u→ u in H1 and L2 for h→ 0, without further regularity assumptions.
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Proof. In order to see that Π2u ∈Hh, we have to show γ+Π2u ∈ Yh. We calculate:

γ+Π2u = γ+u − γ+u + γ−JYhΩ−E+u ∈ Yh.
For the approximation properties, we use the continuity of the Stein extension:

∥u −Π2u∥Hs(Rd∖Γ) = ∥E− ((I − JYhΩ− )E+u)∥Hs(Rd∖Γ) ≲ ∥(I − JYhΩ− )E+u∥Hs(Rd∖Γ) .
The extension E+u has the same regularity as u, thus we end up with the correct convergence rates of Y Ω−

h . �

Remark 5.13. While Assumption 5.11 looks somewhat artificial, in most cases it is easily verified, as we can
construct a “virtual” triangulation of Ω− with piecewise polynomials. The projection operator JYhΩ− is then given by
the (volume averaging based) Scott-Zhang operator or for high order methods some quasi-interpolation operator (e.g.
[KM15]).

Remark 5.14. The use of a space on Ω− is arbitrary and made to reflect the fact that usually a natural triangulation
on Ω− is given. An artificial layer of triangles around Γ in Ω+ could have been used instead and would have allowed
us to drop the extension operator to the interior.

To conclude this section, we investigate the convergence property of the nonlinearity g.

Lemma 5.15. Let η ∈ H1/2(Γ) and ηh ∈ H1/2(Γ) be such that ηh converges to η weakly, i.e., ηh ⇀ η for h → 0.
Then the following statements hold:

(i) g(ηh)⇀ g(η) in H−1/2(Γ).

(ii) If ηh → η strongly in H1/2(Γ), then g(ηh) → g(η) in H−1/2(Γ), i.e., the operator g ∶ H1/2(Γ) → H−1/2(Γ) is
continuous.

(iii) Assume that ηh → η strongly in H1/2(Γ) and ∣g(µ)∣ ≤ C(1 + ∣µ∣p) with p < ∞ for d = 2 and p ≤ d−1
d−2

, then the

convergence is strong in L2:

∥g(η) − g(ηh)∥L2(Γ) → 0.

(iv) Assume ∣g′(s)∣ ≤ Cg′(1 + ∣s∣q), where q < ∞ is arbitrary for d = 2, and q ≤ 1 for d = 3. Then we have the
following estimates:

∥g(η) − g(ηh)∥L2(Γ) ≤ C(η)∥η − ηh∥L2+ε(Γ) for d = 2, ∀ε > 0,

∥g(η) − g(ηh)∥L2(Γ) ≤ C(η)∥η − ηh∥H1/2(Γ),
where the constant C(η) does not depend on h.

(v) Alternatively, if η ∈ L∞(Γ) and ∥ηh − η∥L∞ ≤ C∞ we have

∥g(η) − g(ηh)∥L2(Γ) ≤ C(∥η∥∞,C∞)∥η − ηh∥L2(Γ).
Proof. We focus on the case d ≥ 3, the case d = 2 follows along the same lines but is simpler since the Sobolev
embeddings hold for arbitrary p ∈ [1,∞).

Ad (i): Since weakly convergent sequences are bounded (see [Yos80, Theorem 1(ii), Chapter V.1]), we can apply

Lemma 4.1 to get that g(ηh) is uniformly bounded in H−1/2(Γ). By the Eberlein-Šmulian theorem, see [Yos80,
page 141], this implies that there exists a subsequence g(ηhj), j ∈ N, which converges weakly to some limit g̃ ∈
H−1/2(Γ). We need to identify the limit g̃ as g(η). By Rellich’s theorem, the sequence ηh converges to η in Hs(Γ)
for s < 1/2, and using Sobolev embeddings we get that ηhj → η in Lp

′(Γ) for p′ < 2d−2
d−2

. Standard results from
measure theory (e.g. [Bre83, Theorem IV.9]) then give (up to picking another subsequence) that ηhj → η pointwise

almost everywhere and there exists an upper bound ζ ∈ Lp′(Γ) such that ∣ηhj ∣ ≤ ∣ζ ∣ almost everywhere. The growth
conditions on g are such that C(1 + ∣ζ ∣p) is an integrable upper bound of g(ηh). By the continuity of g we also get
g(ηhj)→ g(η) almost everywhere. For test functions φ ∈ C∞(Γ), we get:

∫
Γ
g(ηhj)φ→ ∫

Γ
g(η)φ

by the dominated convergence theorem (note that φ is bounded). On the other hand, since C∞(Γ) ⊆ H1/2(Γ), we

get ⟨g(ηhj), φ⟩Γ
→ ⟨g̃, φ⟩Γ due to the weak convergence. Since C∞(Γ) is dense in H1/2(Γ), we get g(η) = g̃. This

proof can be repeated for every subsequence, thus the whole sequence must converge weakly to g(η).
Ad (ii): By the Sobolev embedding theorem, we have

∥g(η) − g(ηh)∥H−1/2(Γ) = sup
0≠v∈H1/2(Γ)

⟨g(η) − g(ηh), v⟩Γ∥v∥H1/2(Γ)≲ ∥g(η) − g(ηh)∥Lp′(Γ).
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for p′ ∶= (2d − 2)/d for d ≥ 3, and p′ > 1 for d = 2.

If ηh → η in H1/2(Γ), the Sobolev-embeddings give ηh → η in Lq(Γ) for q ≤ 2d−2
d−2

. Again by [Bre83, Theorem
IV.9], this implies that there exists a sub-sequence ηhj , which converges pointwise almost everywhere and there
exists a function ζ ∈ Lq(Γ) such that ∣ηh∣ ≤ ∣ζ ∣ almost everywhere. From the growth conditions on g, we get that(1 + ∣ζ ∣p) ∈ Lp′(Γ). Since g is continuous by assumption, g(ηhj) converges to g(η) pointwise almost everywhere.

By the dominated convergence theorem this implies ∫Γ ∣g(ηhj) − g(η)∣q′ → 0. The same argument can be applied to

show that every sub-sequence of g(ηh) has a sub-sequence that converges to g(η) in H−1/2(Γ). This is sufficient to
show that the whole sequence converges.

Ad (iii): Follows along the same lines as (ii). Instead of estimating the H−1/2-norm by the p′ norm via the duality
argument, we can directly work in L2. Due to our restrictions on g and the Sobolev embedding, we get an upper
bound C(1 + ∣ζ ∣p) in L2(Γ), which allows us to apply the same argument as before to get convergence.

Ad ( iv): Using the growth condition on g′ we estimate for fixed x ∈ Γ:

∣g(η(x)) − g(ηh(x))∣ = ∣∫ η(x)
ηh(x) g

′(ξ)dξ∣ ≤ ∣ηh(x) − η(x)∣ sup
ξ∈[ηh(x),η(x)] ∣g′(ξ)∣≤ ∣ηh(x) − η(x)∣C (1 +max (∣ηh(x)∣q, ∣η(x)∣q)) .(5.8)

In the case d = 3, we use the Cauchy-Schwarz inequality to estimate:

∥g(η) − g(ηh)∥2
L2(Γ) ≲ ∥ (1 +max(∣ηh∣q, ∣η∣q))2 ∥L2(Γ)∥ (η − ηh)2 ∥L2(Γ)

≲ (1 + ∥ηh∥2
L4q(Γ) + ∥η∥2

L4q(Γ)) ∥(η − ηh)∥2
L4(Γ)

≲ (1 + ∥ηh∥2
H1/2(Γ) + ∥η∥2

H1/2(Γ)) ∥(η − ηh)∥2
H1/2(Γ),

where in the last step we used the Sobolev embedding. Since weakly convergent sequences are bounded, the first
term can be uniformly bounded with respect to h, which shows (iv) for d ≥ 3.

In the case d = 2, we have by Sobolev’s embedding that ∥max(∣ηh∣, ∣η∣)∥Lp′(Γ) can be bounded independently of h

for arbitrary p′ > 1. Using (5.8) to estimate the difference and applying Hölders inequality then proves (iv) in the
case d = 2.

Ad (v): We just remark that, since g is assumed C1, we have that g′ is bounded on compact subsets of R.
Arguing as before, the supremum supξ(g′(ξ)) is therefore uniformly bounded, from which the stated result follows
by applying Hölder’s inequality and the Sobolev embedding. �

5.2.1. Convergence of the semidiscretization in space. We now focus on the discretization error, due to the spaces
Xh and Yh. In order to do so, we recast the semigroup solutions from Lemma 5.5 into a weak formulation.

Lemma 5.16. Let Hh be defined as in Lemma 5.1. Then the semigroup solution (5.7) denoted by (uh, vh)(t) solves

(∇u̇h(t),∇wh)L2(Rd∖Γ) = (∇vh(t),∇wh)L2(Rd∖Γ) ,(5.9a)

(v̇h(t), zh)L2(Rd∖Γ) = − (∇uh(t),∇zh)L2(Rd∖Γ) − ⟨g(JγvhK), JγzhK⟩Γ ,(5.9b)

for all (wh, zh) ∈ BL1 ×Hh and t > 0. The exact solution satisfies

(∇u̇(t),∇wh)L2(Rd∖Γ) = (∇v(t),∇wh)L2(Rd∖Γ) ,(5.10a)

(v̇(t), zh)L2(Rd∖Γ) = − (∇u(t),∇zh)L2(Rd∖Γ) − ⟨g(JγvK), JγzhK⟩Γ − ⟨J∂nuK, γ−zh⟩Γ ,(5.10b)

for all (wh, zh) ∈ BL1 ×Hh and t > 0.

Proof. This is a simple consequence of (5.2), the definition of dom(A) and integration by parts. We just note that
the last term in (5.10b), not there in a straight-forward weak formulation of the exterior problem (2.1), appears
because we replaced γ+zh with JγzhK in the boundary term containing the nonlinearity. The difference to (5.9) with
Xh and Yh as the full space, is because of the condition γ−zh ∈ X○

h, which would imply γ−zh = 0 for the full space
case. �

Now that we have developed the appropriate approximation theory in the space Hh, we are able to quantify the
convergence of the semidiscrete solution to the continuous one. This is the content of the next theorem.

Theorem 5.17. Assume that there exists an L2-stable projection Π2 onto Hh with ∥u −Π2u∥L2(Rd∖Γ) → 0 for h→ 0

as described in Lemma 5.12.
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Introducing the error functions

ρ(t) ∶= (ρu(t)
ρv(t)) ∶= (u −Π1u

v −Π2v
) ,

θ(t) ∶= g(JγvK(t)) − g(JγΠ2v(t)K),
the convergence rate can be quantified as

∥vh(t) − v(t)∥2
L2(Rd∖Γ) + ∥∇uh(t) −∇u(t)∥2

L2(Rd∖Γ) + β ∫ t

0
∥v(τ) − vh(τ)∥2

L2(Γ) dτ(5.11)

≲ ∥vh(0) − v(0)∥2
L2(Rd∖Γ) + ∥∇uh(0) −∇u(0)∥2

L2(Rd∖Γ) + T ∫ t

0
∥ρ̇(τ)∥2X dτ

+ T ∫ t

0
∥ρ(τ)∥2

L2(Rd∖Γ)×H1(Rd∖Γ) + β−1 ∥θ(τ)∥2
L2(Γ) dτ.

(5.12)

The implied constant depends only on the stabilization parameter α from Definition 5.9.
If the operator g ∶ H1/2(Γ) → L2(Γ) is continuous (see Lemma 5.15 (iii) for a sufficient condition), then the

right-hand side converges to 0 for h→ 0.

Proof. The additional error function

e(t) ∶= (eu(t)
ev(t)) ∶= (uh −Π1u

vh −Π2v
)

solves

(∇ėu,∇wh)L2(Rd∖Γ) = (∇ev,∇wh)L2(Rd∖Γ) − (∇ρv,∇wh)L2(Rd∖Γ) + (∇ρ̇u,∇wh)L2(Rd∖Γ)(ėv, zh)L2(Rd∖Γ) = − (∇eu, zh)L2(Rd∖Γ) − ⟨g(JγvhK) − g(JγΠ2vK), JγzhK⟩Γ+ (ρ̇v, zh)L2(Rd∖Γ) + ⟨θ, JγzhK⟩Γ + α (ρu, zh)L2(Rd∖Γ) ,
for all wh, zh ∈Hh. From the strict monotonicity of g, we obtain by testing with e

1

2

d

dt
∥e∥2X + β ∥JγevK∥2

L2(Γ) ≤ ∥∇ρv∥L2(Rd∖Γ) ∥∇eu∥L2(Rd∖Γ) + ∥∇ρ̇u∥L2(Rd∖Γ) ∥∇eu∥L2(Rd∖Γ)
+ ∥ρ̇v∥L2(Rd∖Γ) ∥ev∥L2(Rd∖Γ) + ∥θ∥L2(Γ) ∥JγevK∥L2(Γ)+ α ∥ρu∥L2(Rd∖Γ) ∥ev∥L2(Rd∖Γ) .

Young’s inequality and integrating then gives

∥e(t)∥2X + β ∫ t

0
∥JγevK(τ)∥2

Γ dτ ≲ ∥e(0)∥2X + T ∫ t

0
∥ρ̇(τ)∥2X dτ +max (1, α2)T ∫ T

0
∥ρ(τ)∥2

L2(Rd∖Γ)×H1(Rd∖Γ) dτ
+ Tβ−1 ∫ t

0
∥θ(τ)∥2

L2(Γ) dτ + β

T
∫ t

0
∥Jγev(τ)K∥2

L2(Γ) + ∥e(τ)∥2X dτ.

By Gronwall’s inequality, with α dependence absorbed into the generic constant,

∥e(t)∥2X + β ∫ t

0
∥JγevK(τ)∥2

Γ dτ ≲ ∥e(0)∥2X + T ∫ t

0
∥ρ̇(τ)∥2X + ∥ρ(τ)∥2

L2(Rd∖Γ)×H1(Rd∖Γ) + β−1 ∥θ(τ)∥2
L2(Γ) dτ.

By the triangle inequality ∥u − uh∥X ≤ ∥e∥X + ∥ρ∥X this gives (5.11). In order to see convergence, we need to

investigate the different error contributions. Since we have u, v ∈ L∞ ((0, T ),H1(Ω)), we get convergence of ∥ρ∥X →
0. We have v̇ ∈ L∞ (0, T,L2(Rd ∖ Γ)) which implies convergence of ρ̇v, since we chose Π2 as the projector from

Lemma 5.12. Since u̇ ∈ H1(Rd ∖ Γ), we also have ρ̇u → 0 for h → 0. This means, as long as the nonlinear term
converges, we obtain convergence of the fully discrete scheme. �

Remark 5.18. It might seem advantageous to use Ritz projector Π1 throughout the proof of Theorem 5.17 as this
choice eliminates the term ∥∇ρv∥L2(Rd∖Γ), but the Ritz projector is not defined for v̇ ∈ L2(Rd). Thus we have to

either assume additional regularity or use the projector Π2.

5.3. Time discretization analysis. In order to estimate the full error due to the discretization of the boundary
integral equation, we are interested in approximating the semigroup solution u via a multistep method. This
problem has been studied in the literature and the following proposition gives a summary of the results we will
need.
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Proposition 5.19. Let A be a maximally monotone operator on a separable Hilbert space H with domain dom(A) ⊆
H.

Let u denote the solution from Proposition 5.4 and define the approximation sequence un∆t by

1

∆t

k∑
j=0

αju
n−j
∆t = Aun∆t,(5.13)

where we assumed uj∆t = u(j∆t) for j = 0, . . . k. The αj originate from the implicit Euler or the BDF2 method.

Then un∆t is well-defined, i.e. (5.13) has a unique sequence of solutions, with un∆t ∈ dom(A). If u0
∆t, . . . , u

k
∆t ∈

dom(A), then the following estimate holds for N∆t ≤ T :

max
n=0,...,N

∥u(tn) − un∆t∥ ≤ C ∥Au0∥ [∆t + T 1/2(∆t)1/2 + (T + T 1/2) (∆t)1/3] .
Assume that u ∈ Cp+1([0, T ],H), where p is the order of the multistep method. Then

max
n=0,...,N

∥u(tn) − un∆t∥ ≤ CT∆tp.

Proof. The general convergence result was shown by Nevanlinna in [Nev78, Corollary 1]. The improved convergence
rate is shown in [HW10, Chapter V.8, Theorem 8.2] or follows directly by inserting the consistency error into the
stability theorem [Nev78, Theorem 1]. �

Remark 5.20. We will use a shifted version of the previous proposition, where we assume u−j∆t = u(−j∆t) for j ∈ N
and define all un∆t via (5.13) for all n ∈ N. This does not impact the stated results.

Now that we have specified the semigroup setting, we can write down the multistep approximation sequence(usg, vsg) ⊆ dom(A) of (2.1) via

1

∆t

k∑
j=0

αju
n−j
sg = vnsg,

1

∆t

k∑
j=0

αjv
n−j
sg = ∆unsg,

together with the initial conditions ujsg = uinc(j∆t), vjsg = u̇inc(j∆t) for j < 0; see Proposition 5.19.

Comparing this definition to (5.2), we see that due to the way we dealt with uinc, the approximation of the
semigroup does not coincide with the approximation induced by the boundary integral equations. The following
lemma shows that this error does not compromise the convergence rate.

Lemma 5.21. Let p > 0 denote the order of the multistep method, and assume

(uinc, u̇inc) ∈ Cα ((0, T ),X )
for α > 1. We consider the shifted version of uie, defined via ũie ∶= uie +Π1u

inc and ṽie ∶= ∂∆t
t uie +Π0u̇

inc; Π0 and
Π1 are defined as in Section 5.2. Then the following error estimate holds:

(∥vnsg − ṽnie∥2

L2(Rd∖Γ) + ∥∇usg −∇ũie∥2
L2(Rd∖Γ))1/2 ≤CT (∆t)min(p,α−1) ∥(uinc, u̇inc)∥

Cα((0,T ),X)
+C∆t

n∑
j=0

∥(I − JYhΓ )γ+u̇inc(tn)∥H1/2(Γ)
+C∆t

n∑
j=0

inf
xh∈Xh ∥∂+nu̇inc(tn) − xh∥H−1/2(Γ)

+C∆t
n∑
j=0

∥(I − JYhΓ )γ+üinc(tn)∥H1/2(Γ).
The same convergence rates hold if we use uinc, u̇inc instead of the projected versions on the left hand side. Thus
in practice we do not depend on the non-computable operators Π0 and Π1.

Proof. Inserting the definition of ũie and ṽie into the multistep method, using (5.2), we see that (ũie, ṽie) solves

1

∆t

k∑
j=0

αj ũ
n−j
ie = ṽnie + εn,

1

∆t

k∑
j=0

βj ṽ
n−j
ie = ∆ũnie + θn,
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with right-hand sides

εn ∶= 1

∆t

k∑
j=0

αjΠ1u
inc (tn−j) −Π0u̇

inc(tn),
θn ∶= 1

∆t

k∑
j=0

αjΠ0u̇
inc (tn−j) −∆Π1u

inc(tn).
We have shown that A is maximally monotone and that from the properties of Π0 and Π1 we have (ũnie, ṽnie) ∈
dom(A). Thus, we can apply [Nev78, Theorem 1] to get for the difference ũie − usg

(∥vnsg − ṽnie∥2

L2(Rd∖Γ) + ∥∇ũnie −∇unsg∥2

L2(Rd∖Γ))1/2 ≤ ∆t
n∑
j=0

(∥θn∥2
L2(Rd∖Γ) + ∥∇εn∥2

L2(Rd∖Γ))1/2
.

It remains to estimate the error terms ∥θn∥L2(Rd∖Γ) and ∥∇εn∥L2(Rd∖Γ). We start with εn and rewrite it as

εn = Π1

⎛⎝ 1

∆t

k∑
j=0

αju
inc (tn−j) − u̇inc(tn)⎞⎠ + (Π0 −Π1) (u̇inc(tn)) .

For the norms, this gives due to the stability of Π1 and the approximation properties of Π1 and Π0

∥∇εn∥L2(Rd∖Γ) ≲ XXXXXXXXXXX
1

∆t

k∑
j=0

αju
inc (tn−j) − u̇inc(tn)XXXXXXXXXXXH1(Rd∖Γ)

+ ∥(I − JYhΓ ) u̇inc(tn)∥H1/2(Γ) + inf
xh∈Xh ∥∂+nu̇inc(tn) − xh∥H−1/2(Γ)

The first term is O (∆tmin(p,α−1)) as the consistency error of a p-th order multistep method.
A similar argument can be employed for τn. Noticing that ∆Π1u = ∆u and arranging the terms as above gives

∥θn∥L2(Rd∖Γ) ≲ XXXXXXXXXXX
1

∆t

k∑
j=0

αj u̇
inc (tn−j) −∆uinc(tn)XXXXXXXXXXXL2(Rd∖Γ)

+ ∥(I −Π0)∆uinc(tn)∥L2(Rd∖Γ) .

Since we assumed that uinc solves the wave equation, we have that

∥θn∥L2(Rd∖Γ) ≤ O ((∆t)min(p,α−1)) +C k∑
j=0

∥(I −Π0)üinc(tn)∥L2(Rd∖Γ),

which concludes the proof. �

The following convergence result with respect to the time-discretization now follows.

Theorem 5.22. Assume for a moment that Xh = H−1/2 and Yh = H1/2(Γ). The discrete solutions, obtained by
uie ∶= S(∂∆t

t )ϕ + (∂∆t
t )−1D(∂∆t

t )ψ converge to the exact solution u of (5.7) with the rate

max
n=0,...,N

∥u(tn) − uie(tn) − uinc(tn)∥ ≲ T (∆t)1/3.
If we assume that the exact solution satisfies (u, u̇) ∈ Cp+1 ([0, T ],BL1 ×L2 (Rd ∖ Γ)), then we regain the full
convergence rate of the multistep method

max
n=0,...,N

∥u(tn) − uie(tn) − uinc(tn)∥ ≲ T (∆t)p.
For the fully discrete setting, the same rates in time hold, but with additional projection errors due to uinc; see
Lemma 5.21.

Proof. This statement is easily obtained by combining Proposition 5.19 with Lemma 5.21. �

5.4. Analysis of the fully discrete scheme. In this section, we can now combine the ideas and results from the
previous sections, to get convergence results for the fully discrete approximation to the semigroup, and therefore
also to the approximation obtained by solving the boundary integral equations (3.9) and using the representation
formula.

We start by combining the estimates from Sections 5.1 and 5.3, which immediately give a convergence result for
the full discretization:
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Corollary 5.23. Assume that the incoming wave satisfies (uinc, u̇inc) ∈ Cα ((0, T ),X ) for α > 1. Setting ũ∆t
ie (tn) ∶=

u∆t
ie + uinc(tn) and ṽ∆t

ie (tn) ∶= v∆t
ie + u̇inc(tn) the discretization error can be quantified by:

∥ũ∆t
ie (tn) − u(tn)∥BL1 + ∥ṽ∆t

ie (tn) − u̇(tn)∥L2(Rd) ≲ (∥Au(0)∥X + ∥(u, u̇)∥Cα((0,T ),X))T (∆t)min(α−1,1/3)

+∆t
n∑
j=0

∥(I − JYhΓ )γ+u̇inc(tn)∥H1/2(Γ)
+∆t

n∑
j=0

inf
xh∈Xh ∥∂+nu̇inc(tn) − xh∥H−1/2(Γ)

+∆t
n∑
j=0

∥(I − JYhΓ )γ+üinc(tn)∥H1/2(Γ).

+ T ∫ tn

0
∥ρ̇(τ)∥2X + ∥ρ(τ)∥2

L2(Rd∖Γ)×H1(Rd∖Γ) + β−1 ∥θ(τ)∥2
L2(Γ) dτ.

with the error terms

ρ(t) ∶= (ρu(t)
ρv(t)) ∶= (u −Π1u

v −Π2v
) ,

θ(t) ∶= g(JγvK) − g(JγΠ2vK).
Assuming ∣g(µ)∣ ≲ (1 + ∣µ∣ d−1

d−2 ) for d ≥ 3, this this gives strong convergence

u∆t
ie + uinc → u in L∞ ((0, T );BL1) ,

∂∆t
t u∆t

ie + u̇inc → u̇ in L∞ ((0, T );L2(Rd)) ,
with a rate in time of (∆t)1/3 and quasi-optimality in space.

Proof. We just collect all the estimates from the previous sections. The stronger growth condition on g is needed
to ensure that nonlinearity-error θ converges in L2(Γ) (see Lemma 5.15 (iii)) �

5.4.1. The case of higher regularity. Previously, we avoided assuming any regularity of the exact solution u. In
order to get the full convergence rates, we need to make these additional assumptions.

Assumption 5.24. Assume that the exact solution of (2.1) has the following regularity properties:

(i) u ∈ Cp+1 ((0, T );H1(Ω+)),

(ii) u̇ ∈ Cp+1 ((0, T );L2(Ω+)),
(iii) γ+u, γ+u̇ ∈ L∞ ((0, T ),Hm(Γ)),
(iv) ∂+nu, ∂+nu̇ ∈ L∞ ((0, T ),Hm−1(Γ)),
(v) ü ∈ L∞ ((0, T ),Hm(Ω−)),

(vi) γ+u̇ ∈ L∞ ((0, T ) × Γ),

for some m ≥ 1/2. Here p denotes the order of the multistep method that is used.

Remark 5.25. We need the strong requirement of γ+u̇ ∈ L∞ ((0, T ) × Γ) in order to be able to apply Lemma 5.15 (v).
If we make stronger growth assumptions on g′, we can drop this requirement.

Since we only made assumptions on the exact solution u(t), we cannot use the same procedure as for Theorem
5.17 of first considering semidiscretization in space and then treating the discretization in time separately, since this
would require knowledge of the regularity of uh(t). Instead, we will perform the discretization in space and time
simultaneously using a variation of Theorem 5.17 in the time discrete setting.

The G-stability of the linear multistep methods used allows us to analyse the convergence rate of the method,
given that the exact solution has sufficient regularity in space and time.

Lemma 5.26. Assume, that g is strictly monotone as defined in (2.4). Let unsg,h,vnsg,h denote the sequence of

approximations obtained by applying the BDF1 or BDF2 method to (5.7) in Hh and u the exact solution of (2.1),

with v ∶= u̇. We will use the finite difference operator D∆t ∶ `2 → `2 ∶ [D∆tu]n ∶= 1
∆t ∑kj=0 αju

n−j and with the same

notation for continuous u set [D∆tu]n ∶= 1
∆t ∑kj=0 αju(tn−j).
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We introduce the following error terms:

Θn
I ∶= Π1 ([D∆tu]n − u̇(tn))

Θn
II ∶= Π2 ([D∆tv]n − v̇(tn))

Θn
III ∶= (Π1 −Π2) v(tn)

Θn
IV ∶= (I −Π2) v̇(tn)

Θn
V ∶= g(Jγv(tn)K) − g(JγΠ2v(tn)K)

Θn
V I ∶= (I −Π1)u(tn).

Then

∥vnsg,h − v(tn)∥2

L2(Rd∖Γ) + ∥∇unsg,h −∇u(tn)∥2

L2(Rd∖Γ) + β∆t
n∑
j=0

∥rγ(vjsg,h − v(tj))z∥2

L2(Γ) ds(5.15)

≲ ∆t
n∑
j=0

∥∇Θj
I∥2

L2(Rd∖Γ) + ∥Θj
II∥2

L2(Rd∖Γ) + ∥∇Θj
III∥2

L2(Rd∖Γ) + ∥Θj
IV ∥2

L2(Rd∖Γ)(5.16)

+∆t
n∑
j=0

∥Θj
V ∥2

L2(Γ) + ∥Θj
V I∥2

L2(Rd∖Γ).(5.17)

The implied constant depends only on the parameter α in the definition of Π1.

Proof. The proof is fairly similar to the one of Lemma 5.21 and many of the similar terms appear. We define the
additional error sequence

en ∶= (enu
env

) ∶= (Π1u(tn) − unsg,h
Π2v(tn) − vnsg,h) .

The overall strategy of the proof is to substitute e in the defining equation for the multistep method and compute
the truncation terms. We then test with en in order to get discrete stability just as we did in Theorem 5.23. The
proof becomes technical, due to the many different error terms which appear.

The error en solves the following equation for all wh, zh ∈Hh, see (5.10),

(∇[D∆teu]n,∇wh)L2(Rd∖Γ) = (∇env ,∇wh)L2(Rd∖Γ) + (∇ (ΘI +ΘIII) ,∇wh)L2(Rd∖Γ)
([D∆tev]n, zh)L2(Rd∖Γ) = − (∇eu,∇zh)L2(Rd∖Γ) − ⟨g(qγvnsg,hy) − g(JγΠ2v(tn)K), JγzhK⟩Γ+ (ΘII +ΘIV + αΘV I , zh)L2(Rd∖Γ) + ⟨ΘV , JγzhK⟩Γ .

From the strict monotonicity of g, we obtain by testing with en that

⟨[D∆te]n, en⟩X + β ∥JγevK∥2
L2(Γ) ≤ (∇ (ΘI +ΘIII) ,∇enu)L2(Rd∖Γ) + ⟨ΘV , Jγenv K⟩Γ+ (ΘII +ΘIV + αΘV I , e

n
v )L2(Rd∖Γ) .

We write En ∶= (en, . . . , en−k)T and use Proposition 3.3 to obtain a lower bound on the left-hand side. Using the
Cauchy-Schwarz and Young inequalities on the right-hand side then gives

∥En∥2
G − ∥En−1∥2

G
+ β∆t ∥Jγenv K∥2

L2(Γ) ≲ ∆t ∥∇ΘI +∇ΘIII∥2
L2(Rd∖Γ) +∆t ∥ΘV ∥2

L2(Γ)+∆t ∥ΘII +ΘIV + αΘV I∥2
L2(Rd∖Γ) .

Summing over n and noting the equivalence of the G-induced-norm to the standard Rk norm gives the stated result.
�

Assumption 5.27. Assume that the spaces Xh, Yh and the operator JYhΓ satisfy the following approximation
properties

inf
xh∈Xh ∥ϕ − xh∥H−1/2(Γ) ≤ Ch1/2+min(m,q+1) ∥ϕ∥Hmpw(Γ) ∀ϕ ∈Hm

pw(Γ)),(5.18a)

∥ψ − JYhΓ ψ∥
H1/2(Γ) ≤ Chmin(m,q+1)−1/2 ∥ψ∥Hmpw(Γ) ∀ψ ∈Hm

pw(Γ),(5.18b)

for parameters h > 0 and q ∈ N, with constants that depend only on Γ and q. Assume further that the fictitious space
Ỹh and the operator JYhΩ− from Assumption 5.11 also satisfy

∥u − JYhΩ−u∥L2(Ω−) ≤ Chmin(q+1,m) ∥u∥Hm(Ω−) ∀u ∈Hm(Ω−).(5.19)
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Theorem 5.28. Assume that Assumptions 5.24 and 5.27 are satisfied and that we use BDF1(p = 1) or BDF2(p = 2)
discretization in time. Assume either ∣g′(s)∣ ≲ 1 + ∣s∣q with q ∈ N for d = 2 or q ≤ 1 for d = 3, or assume that∥Π2u̇∥L∞(Rd) ≤ C is uniformly bounded w.r.t. h. Then the following convergence result holds

∥vnsg − u̇(tn)∥2

L2(Rd∖Γ) + ∥∇unsg,h − u(tn)∥L2(Rd∖Γ) = O (T (hmin(q+1/2,m) +∆tp)) .
The constants involved depend only on Γ, g, α, and the constants implied in Assumptions 5.24 and Assumption
5.27.

Proof. We already have all the ingredients for the proof. We combine Theorem 5.26 with the approximation
properties of the operators from Section 5.2. ΘI and ΘII are the local truncation errors of the multistep method
and therefore O(∆t) (the operators Π1, Π2 are stable). To estimate ΘV , the assumptions on g or Π2 are such that
we can apply Lemma 5.15. �

Remark 5.29. The assumptions on the spaces Xh,Yh are true if we use standard piecewise polynomials of degree p
for Yh and p − 1 for Xh on some triangulation Th of Γ. See [SS11, Theorem 4.1.51, page 217] and [SS11, Theorem
4.3.20, page 260] for the proofs of the approximation properties. In this case, the approximation property (5.19)
holds via the construction from Lemma 5.12 using the Scott-Zhang projection and standard finite element theory.
The requirements on Π2u̇ can be fulfilled in numerous ways, e.g., in 2D and 3D it can be shown using standard
approximation and inverse estimates as in [Tho06, Lemma 13.3]. The same result can also be achieved by replacing
Π2 by some projector that allows L∞-estimates, e.g., nodal interpolation.

5.5. The case of more general g. In all the previous theorems we assumed that g was strictly monotone. In this
section, we sketch what happens if we drop this requirement. Most notably we lose all explicit error bounds and
also the strong convergence. What can be salvaged is a weaker convergence result.

We start with the weaker version of Theorem 5.17 telling us that the semidiscretization with regards to space
converges weakly.

Lemma 5.30. Assume the families of spaces (Xh)h>0 and (Yh)h>0 are dense in H−1/2(Γ) and H1/2(Γ) respectively.
Then the sequence of solutions uh(t), vh(t) of (5.9) weakly towards the solution of (5.10) for almost all t ∈ (0, T )
for h→ 0.

Proof. We fix t ∈ (0, T ]; all the arguments hold only almost everywhere w.r.t t, but that is sufficient in order to
prove the result. Since g(JγvhK)JγvhK ≥ 0, testing with wh = uh and zh = vh in (5.9) gives

∥uh(t), vh(t)∥X ≤ ∥uh(0), vh(0)∥X .
By the Eberlein-Šmulian theorem, see for example [Yos80, page 141], this gives a weakly convergent sub-sequence,
that we again denote by uh, vh — uniqueness of the solution will give convergence of the whole sequence anyway —
and write u, v for its weak limit. It is easy to see that u̇h ⇀ u̇ and v̇h ⇀ v̇ since the convergence is only with respect
to the spatial discretization.

From the estimate in Proposition 5.4, we get ∥u̇h(t), v̇h(t)∥X ≤ C (uinc), since (uinc(0), vinc(0)) ∈ Hh as the
incoming wave vanishes at the scatterer for t = 0. Since u̇h = vh, we have that ∥vh(t)∥H1(Rd∖Γ) is uniformly

bounded. This implies, up to a sub-sequence, that the trace also converges: Jγvh(t)K ⇀ Jγv(t)K in H1/2(Γ). What
remains to show is that g (Jγvh(t)K)⇀ g (Jγv(t)K). This was already done in Lemma 5.15 (i). �

The convergence of the time-discretization does not depend on the strong monotonicity of g. This insight
immediately gives the following corollary:

Corollary 5.31. Assume the families of spaces (Xh)h>0 and (Yh)h>0 are dense in H−1/2(Γ) and H1/2(Γ) re-

spectively and assume that the operator JYhΓ converges strongly, i.e. for y ∈ H1/2(Γ), JYhΓ y → y converges when
h→ 0.

Let ũ∆t
ie , ṽ∆t

ie denote the piecewise linear interpolant between the time-stepping approximations ũnie, ṽ
n
ie from

Lemma 5.21 at nodes n∆t. Then these approximations converge weakly towards the solution of (2.1) for almost all
t ∈ (0, T ) for ∆t→ 0 and h→ 0.

Proof. Inspecting the proof of Lemma 5.21 and Theorem 5.22, we didn’t require g to be strictly monotone, therefore
we get that ũ∆t

ie and ṽ∆t
ie converge (strongly) to uh and vh respectively. Then the result follows directly from

Lemma 5.30. �
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6. Numerical Results

In this section, we investigate the convergence of the numerical method via numerical experiments. We imple-
mented the algorithm using the BEM++ software library [ŚBA+15]. In order to solve the nonlinear equation (3.9),
we linearize g and performed a Newton iteration, i.e. at each Newton step, we solve

⟨Bimp (δ(0)
∆t

)(ϕn,k+1

ψn,k+1) ,(ξη)⟩
Γ

+ ⟨g′(ψn,k + JYhΓ u̇inc(tn))ψn,k+1, η⟩
Γ
= ⟨fn,(ξ

η
)⟩

Γ

+ ⟨gkn, η⟩Γ
,(6.1)

with fn ∶= −( 0
∂+nuinc(tn)) −

n−1∑
j=0

Bn−j (ϕjψj) and gkn ∶= −g (ψn,k + JYhΓ u̇inc(tn)) + g′ (ψn,k + JYhΓ u̇inc(tn))ψn,k.

For JYhΓ we used an L2 projection. As we can see, the right-hand side consists of two parts, where gkn has to
be recomputed in each Newton step but only involves local computations in time and space. The computationally
much more expensive part fn is the same for each Newton step and thus has only to be computed once. Therefore,
as long as the convergence of the Newton iteration is reasonably fast, the additional cost due to the nonlinearity
is small. This was already noted in [Ban15]. In order to efficiently solve these convolution equations, we employed
the recursive algorithm based on approximating the convolution weights with an FFT described in[Ban10].

For Xh we used piecewise polynomials of some fixed degree p on a triangulation of Γ and for Yh globally continuous
piecewise polynomials of degree p + 1.

In order to be able to compute an estimate of the error of the numerical method, we need to have a good
approximation to the exact solution. This was obtained by choosing a sufficiently small step size compared to the
numerical approximation and always use the second order BDF2-method; we used at least ∆tex ≤ ∆t

4
for the scalar

examples and ∆tex ≤ ∆t
2

for the full 3D problems.
Since it is difficult to compute the norms ∥u∥H1(Rd∖Γ) and ∥v∥L2(Rd∖Γ) from the representation formula, we will

instead compare the errors of the traces on the boundary. The convergence rate of these is the content of Lemma 6.2.
To prove this lemma, we first need the following simple result.

Lemma 6.1. Let f ∈ Cr(X), f̃ ∈ C(X) for some Banach space X, with 0 = f(0) = f ′(0) = ⋅ ⋅ ⋅ = f (r−1)(0) = f̃(0)
and r ≤ p. Then

∥∂−1
t f − (∂∆t

t )−1
f̃∥

X
≤ Ct [(∆t)r max

τ∈[0,t] ∥fr(τ)∥X + max
τ∈[0,t] ∥f(τ) − f̃(τ)∥X] .

Proof. We split the error into two terms by writing

∥∂−1
t f − (∂∆t

t )−1
f̃∥

X
≤ ∥∂−1

t f − (∂∆t
t )−1

f∥
X
+ ∥(∂∆t

t )−1 (f − f̃)∥
X
.

The stated estimate then follows from the standard theory of convolution quadrature; see [Lub88a, Theorem 3.1],
noting that ∂−1

t is a sectorial operator. �

This now allows us to prove convergence estimates for ψ and ϕ.

Lemma 6.2. Let u solve (5.7), write ũ(t) ∶= u(t) − uinc(t), and define the traces ψ(t) ∶= ∂tγ+ũ(t) and ϕ(t) ∶=−∂+nũ(t). Let uie, vie solve (5.2), with corresponding traces ϕie ∶= −J∂nuieK, ψie ∶= JγvieK. ThenRRRRRRRRRRRRRR
RRRRRRRRRRRRRR
RRRRRRRRRRRRRR
⎛⎜⎝
∂−1
t ψ(tn) − [(∂∆t

t )−1
ψie]n

∂−1
t ϕ(tn) − [(∂∆t

t )−1
ϕie]n

⎞⎟⎠
RRRRRRRRRRRRRR
RRRRRRRRRRRRRR
RRRRRRRRRRRRRRΓ
≲ ∥∇ũ(tj) −∇ujie∥L2(Rd∖Γ) + ∥ ˙̃u(tj) − vjie∥L2(Rd∖Γ) +O (∆tr) ,

holds for all n with n∆t ≤ T , with constants that depend only on Γ and the end time T , and where r is the minimal
regularity index of ψ(t) and ϕ(t).

Proof. From the definition of ψ and the properties of the operational calculus we have that

(∂∆t
t )−1

ψie = (∂∆t
t )−1

JγvieK = (∂∆t
t )−1

∂∆t
t JγuieK = JγuieK

and analogously ∂−1
t ψ = JγũK. The standard trace theorem then gives the estimate

∥∂−1
t ψ(tn) − [(∂∆t

t )−1
ψie]n∥

H1/2(Γ) ≤ C ∥ũ − uie∥H1(Rd∖Γ) .
We can further estimate the L2 contribution in the norm above by noting

∥ũ(tn) − unie∥L2(Rd∖Γ) = ∥∂−1
t

˙̃u(tn) − (∂∆t
t )−1

vnie∥
L2(Rd∖Γ)

and applying Lemma 6.1.
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Since uie solves (5.2) and ∆ is linear, for the second estimate we note that

∆ (∂∆t
t )−1

uie = (∂∆t
t )−1

∆uie = (∂∆t
t )−1

∂∆t
t vie = vie.

and analogously ∆ (∂−1
t ũ) = ˙̃u.

From the definition of ϕ and the stability of the normal trace operator in H1
∆ (Rd ∖ Γ) we have

∥∂−1
t ϕ(tn) − [(∂∆t

t )−1
ϕie]n∥

H−1/2(Γ) ≤ C ∥∂−1
t ũ(tn) − [(∂∆t

t )−1
uie]n∥

H1
∆
(Rd∖Γ)

≤ C [∥∂−1
t ũ(tn) − (∂∆t

t )−1
uie∥

H1(Rd∖Γ) + ∥ ˙̃u(tn) − vnie∥L2(Rd∖Γ)] .
We apply Lemma 6.1 twice to estimate the H1 term of the integral by the BL1 norm and the L2 norm of the
derivative up to higher order error terms. �

6.1. A scalar example. For the first example, we are only interested in convergence with respect to the time
discretization. As geometry Ω− we choose the unit sphere, the right-hand sides are chosen to be constant in space,
i.e. uinc(x, t) = uinc(t) and ∂+nuinc(x, t) = 0 on Γ; see [SV14] for this approach in the linear case. The constant
functions are eigenfunctions of the integral operators V (s),W (s),K(s),Kt(s) in the Laplace domain. We therefore
can replace the integral operators with λT (s)M where for T ∈ {V,W,K,Kt}, λT (s) denotes the respective eigenvalue
of T (s) and M is the mass matrix. It is also easy to see that ψ and ϕ are constant in space and (6.1) can be reduced
to a scalar problem which can be solved efficiently.

Example 6.3. Let g(µ) ∶= 1
2
µ+ ∣µ∣µ and uinc(t) = −2 e−10(t−t0)2

with t0 = π/2 and final time T = 3. The convergence

of the method with respect to time can be seen in Figure 6.1(b), where we plotted the error in approximating ∂−1
t ψn.

Since we only consider the scalar case, the error for ϕ is virtually indistinguishable. We see that for both the
implicit Euler and the BDF2 scheme, the full order of convergence is obtained. Investigating the solution, this is
somewhat surprising, as the second derivative of ψ has a discontinuity; see Figure 6.1(a). Thus the BDF2 method
performs better than predicted. Investigating the convergence of the Newton iteration, it appears on average that it
is sufficient to make 3−4 iterations to reduce the increment to 10−8, i.e., the additional cost due to the nonlinearity
is negligible compared to the computation of the history.

6.2. Scattering of a plane wave.

Example 6.4. In this example Ω− is the unit cube cube [0,1]3 and uinc(x, t) is a traveling wave given by

uinc(x, t) ∶= e−A(x⋅a−t−t0)2

,

where t0 = −2.5, A = 8.0, and a = (1,−1,0). We calculate the solution up to the end time T = 4 using a BDF2
scheme. For space discretization we use discontinuous piecewise linears for Xh with dim(Xh) = 7308 and continuous
piecewise quadratics with dim(Yh) = 2438. As an exact solution, we use the BDF2 approximation with ∆t = 4

256
and

the same spatial discretization. Figure 6.2 shows that we can observe the optimal convergence rates of the method.

6.3. Scattering from a nonconvex domain. In Section 5.4.1, we predicted optimal order of convergence, as long
as the exact solution is sufficiently smooth. This was the case of the numerical examples in Examples 6.3 and 6.4.
In order to see whether this assumption is indeed not always satisfied, we look at scattering from a more complex
domain Ω−.

Example 6.5. We choose Ω− the same as in [Ban10, Section 6.2.4], as a body with a cavity in which the wave can

be trapped; see Figure 6.3. We used g(µ) ∶= µ+ ∣µ∣µ and uinc(x, t) ∶= F (t−d ⋅x) with F (s) ∶= − cos(ωs) e−( s−Aσ )2

. The

parameters were ω ∶= π/2, σ = 0.5, A = 2.5 and d ∶= √
4
5
(1,0.5,0)T . For discretization we used a mesh of size h ∼ 0.05

with discontinuous piecewise constants for Xh and continous piecewise linears for Yh, This gives dim(Xh) = 15756
and dim(Yh) = 7880. In Figure 6.4, we see that we still get the full convergence rate O (∆t2).

Due to the computational effort involved, it is hard to say for which parameters a lowered convergence order
manifests and whether it is just due to some preasymptotic behavior. In order to better understand the behavior,
we consider the following model problem.

Example 6.6. We again consider the unit sphere, with an incoming wave that is constant in space. In order to
construct a model problem, which is difficult for the numerical method we consider the extreme case of a “completely
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Figure 6.1. Numerical results for Example 6.3
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Figure 6.3. Exact solution to Example 6.5 for t = 2
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Figure 6.4. Convergence of the BDF2 method for Example 6.5

trapping sphere”, i.e., the wave starts inside the sphere and has no way of escape, and investigate the convergence
behaviour. This means we solve the interior boundary integral problem:

(sV (s) −K − 1
2

1
2
+Kt s−1W (s))(ϕ

ψ
) + ( 0

g (ψ + u̇inc)) = (0
0
) .

We chose g(µ) ∶= µ
4
+ µ ∣µ∣ and uinc(t) ∶= cos(ωt)e−( t−Aσ )2

, with A = 2, σ = 0.5 and ω = 4π. In Figure 6.5, we see

that the BDF2 method no longer delivers the optimal convergence rate of ∆t2. For testing purposes, we also tried a
convolution quadrature method based on the 2-step RadauIIA Runge-Kutta method which has classical order 3 but
only delivers second order convergence. Note, however, that even in the linear case Runge-Kutta based CQ exhibits
order reduction [BLM11].
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Figure 6.5. Convergence for Example 6.6

Appendix A. Analysis based on integral equations and the Herglotz theorem

In this section, we would like to sketch a possible alternative approach to analysing the discretization scheme
introduced in Problem 3.7. As these techniques require more regularity than the semigroup approach, we only
consider the case of a smooth exact solution, analogous to Section 5.4.1.

The basis of the approach is formed by the following two propositions, the first of which was proved in [BLS15b].

Proposition A.1. For all σ > 0, T > 0, there exists a constant β > 0, only dependent on Γ, σ and T , such that

∫ T

0
e−σt ⟨Bimp(∂t)(ϕψ) ,(ϕψ)⟩

Γ

dt ≥ β ∫ T

0
e−σt ∣∣∣(∂−1

t ϕ,∂−1
t ψ)∣∣∣2

Γ
dt(A.1)

Analogously in the time discrete case, for all σ > 0, N ∈ N with T ∶= N∆t and ρ ∶= e−σT , there exists a constant
β > 0, only dependent on Γ, σ and T , such that

∆t
N∑
n=0

ρ2n ⟨Bimp(∂∆t
t )(ϕ

ψ
) ,(ϕ

ψ
)⟩

Γ

dt ≥ β∆t
N∑
n=0

ρ2n ∣∣∣((∂∆t
t )−1ϕ, (∂∆t

t )−1ψ)∣∣∣2
Γ
dt.(A.2)

We also need a continuity result for the boundary operator B(s).
Proposition A.2. There exists a constant C > 0, depending only on Γ, such that

∣∣∣Bimp(s)(ϕψ)∣∣∣
Γ

≤ C ∣s∣2 ∣∣∣(ϕ
ψ
)∣∣∣

Γ

.(A.3)

Proof. This inequality directly follows from the bounds shown in [LS09]. �

In order to formulate the next result, we need the following Sobolev spaces for r ≥ 0 and a Hilbert space X:

Hr
0((0, T ),X) ∶= {g∣(0,T ) ∶ g ∈Hr(R,X) with g ≡ 0 on (−∞,0)} .

We illustrate the approach and the difficulties it entails by focussing on the time discretization only.

Theorem A.3. Let u solve (5.7), write ũ(t) ∶= u(t) − uinc(t) and define the traces ψ(t) ∶= γ+ ˙̃u(t) and ϕ(t) ∶=−∂+nũ(t). Let Xh ∶= H−1/2(Γ) and Yh ∶= H1/2(Γ) be the full spaces and (ϕie, ψie) the time-discrete numerical

approximation defined by (3.9). Assume that (ϕ,ψ) ∈Hr+1
0 ((0, T ),H1/2(Γ) ×H−1/2(Γ)), for r > 5/2.

Then the following estimates holds

N∑
n=0

ρ2n

RRRRRRRRRRRRRR
RRRRRRRRRRRRRR
RRRRRRRRRRRRRR
⎛⎜⎝
∂−1
t ψ(tn) − [(∂∆t

t )−1
ψie]n

∂−1
t ϕ(tn) − [(∂∆t

t )−1
ϕie]n

⎞⎟⎠
RRRRRRRRRRRRRR
RRRRRRRRRRRRRR
RRRRRRRRRRRRRR
2

Γ

≲ (∆t)2 min((r−2) p
p+1 ,p) (∥ϕ∥2

Hr+1
0 ((0,T ),H−1/2) + ∥ψ∥2

Hr+1
0 ((0,T ),H1/2)) ,

for all N with N∆t ≤ T , with constants that depend only on Γ and the end time T .
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Proof. Since we want to make use of the monotonicity of of g, we start by shifting the Dirichlet traces by u̇inc.
Writing ψ̃ ∶= ψ+ u̇inc and ψ̃ie ∶= ψie + u̇inc. We also write Ξ ∶= (ϕ,ψ+ u̇inc) and Ξie ∶= (ϕie, ψie + u̇inc) for the pairs of
functions and E ∶= Ξ−Ξie for the discretization error. We calculate, using the positivity property of Proposition A.1:

N∑
n=0

ρ2n ∣∣∣[(∂∆t
t )−1E]n∣∣∣2

Γ
≲ N∑
n=0

ρ2n ⟨Bimp(∂∆t
t )E,E⟩

Γ
+ ⟨g(ψ̃) − g(ψ̃ie), ψ̃ − ψ̃ie⟩Γ

= N∑
n=0

ρ2n ⟨Bimp(∂t)Ξ −Bimp(∂∆t
t )Ξie,E⟩

Γ
+ ⟨g(ψ̃) − g(ψ̃ie), ψ̃ − ψ̃ie⟩Γ

+ ⟨Rn(Ξ),E⟩Γ
with the residual Rn(Ξ) ∶= [(Bimp(∂t) −Bimp(∂∆t

t ))Ξ] (tn). Since Ξ and Ξie solve (3.8) and (3.9) respectively, this
gives the estimate:

N∑
n=0

ρ2n ∣∣∣[(∂∆t
t )−1E]n∣∣∣2

Γ
≲ N∑
n=0

ρ2n ⟨Rn(Ξ),E⟩Γ = N∑
n=0

ρ2n ⟨∂∆t
t Rn(Ξ), (∂∆t

t )−1E⟩
Γ

(the second equality can be checked by using the Plancherel formula). The Cauchy-Schwarz inequality then gives
the final estimate

N∑
n=0

ρ2n ∣∣∣[(∂∆t
t )−1E]n∣∣∣2

Γ
≲ N∑
n=0

ρ2n ∣∣∣∂∆t
t Rn(Ξ)∣∣∣2

Γ
.

From the theory of convolution quadrature ([Lub94, Theorem 3.3]) the residual can be estimated by:

∣∣∣∂∆t
t Rn(Ξ)∣∣∣

Γ
≲ ∣∣∣∂∆t

t [(Bimp(∂t) −Bimp(∂∆t
t ))Ξ]n∣∣∣

Γ≲ ∣∣∣[(Bimp(∂t)∂t −Bimp(∂∆t
t )∂∆t

t )Ξ]n∣∣∣
Γ
+ ∣∣∣[(∂t − ∂∆t

t ) (Bimp(∂t) −Bimp(∂∆t
t ))Ξ]

n
∣∣∣

Γ

≲ (∆t)min((r−2) p
p+1 ,p) (∥ϕ∥Hr+1

0 ((0,T ),H−1/2) + ∥ψ̃∥
Hr+1

0 ((0,T ),H1/2)) ,
where in the last step we applied [Lub94, Theorem 3.3] and absorbed the second contribution as ∂t is of a lower
order of differentiation than B(∂t), see (A.3). �

Remark A.4. The fact that with this approach convergence can be proved more directly, at least for smooth so-
lutions, without resorting to the results about the approximation of semigroups [Nev78], is an advantage. On the
other hand, the requirements on the regularity of the exact solution is strictly larger than what is needed in Proposi-
tion 5.19 (p+ 4 instead of p+ 1 continuous derivatives for full convergence rates). If we do not make any additional
regularity assumptions, this new approach does not provide any predictions in regards to convergence. Additionally,
the dependence on the end-time T is much less clear (in general it will be some polynomial O(Tn), n ∈ N). Similarly,
when analysing the discretization error with regards to the spatial semidiscretization, we also require at least one
time derivative, due to the weak norm on the left hand-side that needs to be compensated by integration by parts.
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