1	Genome sequence of <i>Oceanicola</i> sp. strain MCTG156(1a) isolated		
2	from a Scottish coastal phytoplankton net sample		
3			
4	Tony Gutierrez, ^a William B. Whitman, ^b Marcel Huntemann, ^c Alex Copeland, ^c Amy		
5	Chen, ^c Neha Vargese, ^c Nikos C. Kyrpides, ^c Manoj Pillay, ^c Natalia Ivanova, ^c Natalia		
6	Mikhailova, ^c Supratim Mukherjee, ^c Dimitrios Stamatis, ^c T.B.K. Reddy, ^c Chew Yee		
7	Ngan, ^c Mansi Chovatia, ^c Chris Daum, ^c Nicole Shapiro, ^c Tanja Woyke ^c		
8			
9	^a School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh,		
10	UK;		
11	^b Department of Microbiology, University of Georgia, Athens, Georgia, USA;		
12	^c DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598-1698,		
13	USA.		
14			
15	*Correspondence:		
16	Dr. Tony Gutierrez		
17	School of Engineering and Physical Sciences		
18	Heriot-Watt University		
19	Edinburgh EH14 4AS, U.K.		
20	tony.gutierrez@hw.ac.uk		
21			
22	Running title: Genome sequence of a Oceanicola species		
23			
24			

25

26	Abstract
27	Oceanicola sp. strain MCTG156(1a) was isolated from a phytoplankton net sample
28	collected on the west coast of Scotland and selected based on its ability to degrade
29	hydrocarbons. Here, we present the genome sequence of this strain, which is
30	3,881,122 bp with 3,949 genes and an average G+C content of 62.7%.
31	
32	
33	Oceanicola sp. strain MCTG156(1a) was isolated from a phytoplankton net sample
34	that was trawled in 2009 at a sampling station designated LY1 located on the west
35	coast of Scotland near Oban, Argyll. The strain was isolated by enrichment with
36	phenanthrene in Zobell's 2216 marine medium at 10-fold dilution. Colonies on agar
37	plates sprayed with phenanthrene produced distinct halos that indicated the strain's
38	ability to degrade the hydrocarbon. Based on 16S rRNA gene sequence identity, the
39	closest type species was Oceanicola pacificus strain W11-2B ^T , which had been
40	isolated from a pyrene-degrading consortium that was enriched from sediment from
41	the Pacific Ocean (1).
42	Here, we report the genome sequence of Oceanicola sp. strain MCTG156(1a).
43	Genomic DNA was sequenced through the DOE Joint Genome Institute 2014
44	Genomic Encyclopedia of Type Strains, Phase III study (2) using the Pacific
45	Biosciences (PacBio) technology. A Pacbio SMRTbellTM library was constructed
46	and sequenced on the PacBio RS platform, which generated 239,103 filtered subreads
47	totaling 750.9 Mbp. All general aspects of library construction and sequencing
48	performed at the JGI can be found at http://www.jgi.doe.gov. The raw reads were
49	assembled using HGAP (version: 2.1.1) (3). The final draft assembly produced 5

scaffolds containing 5 contigs totaling 3.9 Mbp in size and input read coverage of217.9X.

52	Project information is available in the Genomes OnLine Database (4). Genes
53	were identified using Prodigal (5), as part of the JGI's microbial annotation pipeline
54	(6). The predicted coding sequences (CDSs) were translated and used to search the
55	National Center for Biotechnology Information (NCBI) nonredundant database,
56	UniProt, TIGRFam, Pfam, KEGG, COG, and InterPro databases. The tRNAScanSE
57	tool (7) was used to find tRNA genes, whereas ribosomal RNA genes were found by
58	searches against models of the ribosomal RNA genes built from SILVA (8). Other
59	noncoding RNAs, such as the RNA components of the protein secretion complex and
60	RNase P, were identified by searching the genome for the corresponding Rfam
61	profiles using INFERNAL (http://infernal.janelia.org). Additional analysis and
62	manual functional annotation was performed within the Integrated Microbial
63	Genomes-Expert Review (IMG ER) platform (<u>http://img.jpi.doe.gov</u>) developed by
64	the Joint Genome Institute, Walnut Creek, CA, USA (9).
65	The complete genome sequence length was 3,881,122 bp with a G+C content
66	of 62.7%. The genome contained 3,949 genes (3,881 protein-coding genes) with
67	functional predictions for 3,226 of them. A total of 68 RNA genes were detected.
68	Other genes, characteristic for the genus, are given in the IMG database (10).
69	Nucleotide sequence accession number. The draft genome sequence of
70	Oceanicola sp. strain MCTG156(1a) obtained in this study was deposited in GenBank
71	as part of BioProject no. PRJNA224116, with individual genome sequences submitted
72	as whole-genome shotgun projects under the accession no. JQMY00000000.
73	

75 ACKNOWLEDGMENT

76	T.G. was supported by a Marie Curie International Outgoing Fellowship (PIOF-GA-					
77	2008-220129) within the 7th European Community Framework Program. Partial					
78	support was also provided from the European Union's Horizon 2020 research and					
79	innov	innovation programme under grant agreement No. 635340.				
80		The work was conducted by the U.S. Department of Energy Joint Genome				
81	Institute, a DOE Office of Science User Facility, which is supported by the Office of					
82	Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.					
83						
84	REFERENCES					
85	1.	Yuan J, Lai Q, Wang B, Sun F, Liu X, Du Y, Li G, Gu L, Zheng T, Shao Z.				
86		2009. Oceanicola pacificus sp. nov., isolated from a deep-sea pyrene-degrading				
87		consortium. Int J Syst Evol Microbiol 59:1158-1161.				
88	2.	Whitman WB, Woyke T, Klenk HP, Zhou Y, Lilburn TG, Beck BJ, De Vos P,				
89		Vandamme P, Eisen JA, Garrity G, Hugenholtz P, Kyrpides NC. 2015.				
90		Genomic Encyclopedia of Bacterial and Archaeal Type Strains, Phase III: the				
91		genomes of soil and plant-associated and newly described type strains.				
92		Standards Genomic Sci 10:26.				
93	3.	Chin C, Alexander D, Marks P, Klammer A, Drake J, Heiner C, Clum A,				
94		Copeland A, Huddleston J, Eichler E, Turner S, Korlach J. 2013. Nonhybrid,				
95		finished microbial genome assemblies from long-read SMRT sequencing data.				
96		Nat Methods 10:563-569.				
97	4.	Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Verezemska O, Isbandi				

98 M, Thomas A, Ali RS, Kyrpides NC, and Reddy TBK. 2017. Genomes OnLine

Commented [TG1]: I need to add this to the final version when accepted.

99		Database (GOLD) v.6: Data updates and feature enhancements. Nucleic Acids
100		Res. 45(D1):D446-D456.
101	5.	Hyatt D, Chen GL, Lacascio PF, Land ML, Larimer FW, Hauser LJ. 2010.
102		Prodigal: prokaryotic gene recognition and translation initiation site
103		identification. BMC Bioinformatics 11:119.
104	6.	Huntemann M, Ivanova NN, Mavromatis K, Tripp HJ, Paez-Espino D,
105		Palaniappan K, Szeto E, Pillay M, Chen IM-A, Pati A, Nielsen T, Markowitz
106		VM, Kyrpides NC. 2015. The Standard Operating Procedure of the DOE-JGI
107		Microbial Genome Annotation Pipeline (MGAP v.4) Stand Genom Sci. 2015,
108		10:86.
109	7.	Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of
110		transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955-964.
111	8.	Pruesse E, Quast C, Knittel, Fuchs B, Ludwig W, Peplies J, Glckner FO. 2007.
112		SILVA: a comprehensive online resource for quality checked and aligned
113		ribosomal RNA sequence data compatible with ARB. Nuc Acids Res 35: 2188-
114		7196.
115	9.	Markowitz VM, Mavromatis K, Ivanova NN, Chen IMA, Chu K, Kyrpides NC.
116		2009. IMG ER: a system for microbial genome annotation expert review and
117		curation. Bioinformatics 25:2271–2278.
118	10.	Chen IA, Markowitz VM, Chu K, Palaniappan K, Szeto E, Pillay M, Ratner A,
119		Huang J, Andersen E, Huntemann M, Varghese N, Hadjithomas M, Tennessen
120		K, Nielsen T, Ivanova NN, Kyrpides NC. 2017. IMG/M: integrated genome and
121		metagenome comparative data analysis system. Nucleic Acids Res.
122		45(D1):D507-D516.