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ABSTRACT

New generations of imaging devices aim to produce high resolution and high dynamic range images. In this
context, the associated high dimensional inverse problems can become extremely challenging from an algorithmic
view point. Moreover, the imaging procedure can be affected by unknown calibration kernels. This leads to the
need of performing joint image reconstruction and calibration, and thus of solving non-convex blind deconvolution
problems. In this work, we focus on the case where the observed object is affected by smooth calibration kernels
in the context of radio astronomy, and we leverage a block-coordinate forward-backward algorithm, specifically
designed to minimize non-smooth non-convex and high dimensional objective functions.

Keywords: Non-convex optimization, inverse problem, blind deconvolution, radio interferometric imaging.

1. INTRODUCTION

In the context of image processing, the objective is to find an estimation of an original unknown image x ∈ R
N

from degraded observations y ∈ CM obtained from an imaging device. More formally, these observations can be
formulated as an inverse problem, given by

y = A(x) +w, (1)

where A : RN → CM is the measurement operator and w ∈ CM is a realization of an additive noise. In
the theoretical case when A is perfectly known, problem (1) can be solved efficiently using convex optimization
techniques.1 Indeed, a common approach to solve (1) consists in defining the estimate x⋆ of x as a minimizer of an
objective function corresponding to the sum of two terms: the data fidelity term related to the data model, and the
regularization term incorporating prior information on the target image. During the last decade, several proximal
algorithms have been developed to tackle this minimization problem in a large dimensional context. Among them,
we can cite e.g. the forward-backward algorithm (also known as proximal gradient method, or ISTA)2–4 and
primal-dual approaches.5–8 Nevertheless, in many image processing areas (e.g. astronomical imaging,9, 10 medical
imaging,11 etc.) the measurement operator A is only partially known or completely unknown, leading to the
need for calibration methods.

In this work, we focus on the astronomical radio-interferometry (RI) calibration and imaging problem. A
radio-interferometer consists of an array of na antennas, measuring the radio emission from a given area of the
sky. More precisely, the complex noisy measurements y are related to an undersampled selection of the Fourier
coefficients of the intensity image x degraded by antenna gains. These gains, related to each antenna of the
interferometer, are classified as direction-independent and dependent effects (DIEs and DDEs, respectively). On
the one hand, DDEs are time-variable complex gains, different for each antenna and varying across the field of
view. They correspond to a multiplication in the image domain, and hence a convolution in the Fourier domain.
On the other hand, DIEs stand for a particular case of the DDEs, when the spatial dependency can be ignored
at each instant of the integration (i.e. only a scalar complex gain factor is considered for each antenna). Note
however that traditionally, the calibration process focusses on calibration of DIEs only.

When the antenna gains are assumed to have been pre-calibrated, performing calibration transfer to obtain
normalized DIEs, the imaging problem relies on solving an inverse problem of the form of (1), where A is
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assumed to be approximately known . To this aim, several efficient methods have been developed since the
early 1970s, starting with the celebrated CLEAN algorithm.12–14 However, these pioneering methods are no
longer adapted to the next generation of radio telescopes, such as LOw Frequency ARray (LOFAR)∗, Meer
Karoo Array Telescope (MeerKAT)†, and the future Square Kilometre Array (SKA)†, which are envisaged to
produce giga-pixel images and achieve a dynamic range of six or seven orders of magnitude. On the one hand,
the number of new methods has significantly increased the last decade to scale the large dimensional problem
involved in RI. Mainly these approaches are either based on variants of CLEAN algorithm (e.g. Multi-Scale
CLEAN15 and Adaptive Scale Pixel-CLEAN16), or leverage compressive sensing and optimization theories17–23

by exploiting the fact that many images of the sky are sparse in some dictionary (e.g. image domain, possibly
redundant wavelet basis,24 gradient domain,25, 26 etc.). On the other hand, to achieve higher dynamic range and
to match the imaging capabilities of the new generation radio telescopes, estimating only the DIEs is no longer
sufficient and the DDEs must be incorporated in the calibration process. Therefore, new calibration techniques
accounting for the DDEs have been developed recently. In particular, the Source Peeling and Atmospheric
Modeling (SPAM) method has been proposed27 to iteratively solve and correct for ionospheric phase errors.
Basically, SPAM solves for complex gains towards a number of bright sources, then approximates the DDEs by
a sum of low-order Zernike polynomials, fitting the phase component of the solutions. Furthermore, traditional
DIE calibration methods have been improved by the SAGE algorithm,28, 29 while another general framework
has been developed solving for the associated non-linear Least Squares (LS) problem,30 considering the complex
Jacobian formalism. In addition, a different approach based on non-linear Kalman filter has been developed.31

Finally, a new calibration scheme based on facet calibration, has been developed in the last years.30, 32, 33 To
apply this method, it is assumed that the DDEs are piece-wise constant in the image domain. Therefore, the sky
is partitioned into facets, with the facet center determined by the brightest source or the approximate center of a
source group. At each step, the calibration solutions are obtained for the facet center, which is then applied over
the whole facet. It is worth mentioning that, to the best of our knowledge, this method has only been applied
to point sources models of the sky, which at most include few extended sources. Also note that, when this DDE
calibration method is combined with an imaging method, the obtained global reconstruction algorithm does not
benefit from any global convergence guarantee.

In our recent work10 we proposed a new RI method to estimate jointly the image and the DDEs. Our
approach is inspired by both the imaging techniques using optimization and compressive sensing theories. It aims
to minimize a regularized non-linear LS criterion, with respect to both the image and the DDEs. Note that the
DDE calibration part can be seen as a generalization of the alternating DIE calibration method StEFCal.34, 35

On the one hand, concerning the DDEs, we assume that they are smooth functions across the field of view,
i.e. spatially band-limited. Therefore we propose to estimate only the non-zero Fourier coefficients of the
DDEs within a known fixed support. Then, this assumption not only provides a strong regularization for the
estimation of the DDEs but also allows to reduce drastically the dimension of the problem. On the other hand,
concerning the intensity image, we use a hybrid regularization term relying on a positivity constraint and an ℓ1
regularization term to promote the sparsity of the image (or its sparsity in a given dictionary). Therefore, an
algorithm has been designed based on recent non-convex optimization techniques.36–38 It consists in alternating
between the estimation of the image and the DDEs, using forward-backward iterations (i.e. a gradient step
followed by a proximity step). One of the main advantage of our method is that it benefits from convergence
guarantees, in particular that the sequence of iterates generated by the algorithm converges to a critical point
of the global objective function. Moreover it works globally on the whole image and in an automatic manner,
without any requirement of partitioning the sky into different directions. Furthermore, it is adapted not only to
point sources images, but also to reconstruct images with extended and complex structures. Finally, the results
of our preliminary simulations presented in10, 39, 40 suggest that using our method to jointly estimate the DDEs
and the image leads to large improvement of the dynamic range, that is by orders of magnitude compared to
accounting for DIEs only.

Nevertheless, in our previous works,10, 39 we made use of the assumption that the brightest sources of the
image are known exactly, or at most can be corrupted by small variations in the amplitude in the context of

∗http://www.lofar.org/
†http://www.skatelescope.org/
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images with point sources.40 This assumption was useful to reduce the ambiguity problems. In particular, the
joint calibration and imaging problem being a blind deconvolution problem, any arbitrary modulation of the
intensity image can be absorbed in the DDEs without affecting the data in equation (1). The data are also blind
to a common translation of the DDE kernels in the Fourier domain. These two points have been mitigated by
the assumption that both the intensity and the position of the brightest sources in the sky was assumed to be
known. However in practice it is difficult to gather such information and the objective of this work is to relax
it when performing joint DDE calibration and imaging reconstruction. In particular, we consider a realistic
setting where our prior information consists of approximated values of the zero spatial frequency coefficients of
the DDEs (i.e. the DIEs) obtained by performing calibration transfer. This process consists in performing DIE
calibration on a known source out of the field of view of interest, between two acquisition time instants. Then,
the estimated DIEs are interpolated to obtain an approximation of the DIEs appearing in the data of interest.
Finally, normalized DIEs are obtained by dividing each acquisition by the approximated DIEs, and they can
be used as prior information. In this work, we show through simulation results that our joint DDE calibration
and imaging method has good performance in this context, considering the MeerKAT antenna distribution and
sophisticated images with complex structures.

The remainder of the paper is organized as follows. The RI problem is described in Section 2. In Section 3 we
give the associated minimization problem and a description of the proposed optimization method. To show the
good behaviour of our approach, simulations and results are presented in Section 4. Finally, some conclusions
are draxn in Section 5.

2. PROBLEM STATEMENT

2.1 Radio interferometric data

In this section we describe the observation model, accounting for the DDEs, in the RI problem. The complex
observations, namely the visibilities, acquired at instant t ∈ {1, . . . , T }, are determined by the relative position
between each antenna pair indexed by (α, β) ∈ {1, . . . , na}

2, with α < β. Therefore, an interferometer acquires
M = Tna(na − 1)/2 different measurements in the Fourier domain of the image of interest. Moreover, each
visibility yt,α,β ∈ C measured by the antenna pair (α, β) at instant t at the discrete spatial frequency kt,α,β can
be modelled as

yt,α,β =

N/2−1∑

n=−N/2

dt,α(n)dt,β(n)
∗x(n)e−2iπkt,α,β

n
N + wt,α,β , (2)

where dt,α = (dt,α(n))−N/2≤n≤N/2−1 ∈ CN represents the DDE related to antenna α, and
w = (wt,α,β) 1≤t≤T

1≤α<β≤na

∈ CM is a realization of a complex i.i.d. Gaussian additive noise. Note that, using

these notations, the DIEs can be seen as a special case of the DDEs where dt,α = δt,α1N , with δt,α ∈ C and 1N
being the unitary vector of dimension N .

2.2 Prior information

In this work we focus on the case when the DDEs correspond to smooth functions across the field of view, i.e.
they are spatially band-limited. In other words, we assume that, for every (α, t) ∈ {1, . . . , na} × {1, . . . , T },

the 2D Fourier transform d̂t,α of the DDE dt,α, associated with antenna α at time instant t, has a bounded
known support of dimension S ≪ N . Then, dt,α is characterized by its non-zero Fourier coefficients denoted by
ut,α ∈ CS . Moreover, in order to simplify notation in the remainder of the paper, let us introduce, for every
t ∈ {1, . . . , T }, the matrix U t =

(
ut,α

)
1≤α≤na

∈ Cna×S , representing the concatenation of the non-zero Fourier

coefficients of the DDEs.

As described in the introduction, we assume that calibration transfer has been performed, and thus that the
DIEs are normalized. In other words, for every t ∈ {1, . . . , T } and α ∈ {1, . . . , na}, we can assume that the zero
spatial frequency coefficient ut,α(0) (i.e. the DIE) belongs to a complex neighbourhood of 1 + i0. Moreover, we
assume that the other coefficients of ut,α belong to a complex neighbourhood of 0. Note that it is reasonable to
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consider small values for the higher order spatial frequencies since they represent direction-dependent variations
in the gain across the field of view with respect to the mean gain.

It is important to emphasize that having normalized DIEs can also be used to obtain prior information on
the image. Indeed, even though the forward model described in (2) take into account DDEs, we can approximate
it by considering that, for every t ∈ {1, . . . , T } and α ∈ {1, . . . , na}, δt,α = 1. Therefore, an approximation of
the estimate of x can be obtained by defining it as a solution to

minimize
x∈R

N

1

2
‖F(x)− y‖22 + r̃(x), (3)

where F : CN → CK represents the 2D discrete Fourier transform operator, and r̃ : RN →]−∞,+∞] is a regu-
larization function. Let x⋆0 be a minimizer of problem (3). It is interesting to note that x⋆0 is the best estimation
which can be obtained (associated with the regularization term r̃) if DDE calibration is not performed. Then,
x⋆0 can be used as prior information on the image to perform joint DDE calibration and imaging. Nevertheless,
due to the fact that DDEs are not taken into account in (3), x⋆0 will contain artefacts (e.g. noisy background,
wrong amplitude, wrong source detection, etc.). Therefore, in our approach, we propose to use a thresholded
version of x⋆0, denoted by x0, where low amplitude coefficients have been removed. Then, the original unknown
image can be decomposed as the sum of x0 and another image, denoted by ǫ ∈ R

N which has to be estimated,
i.e. x = x0 + ǫ. Thus, problem (2) can be rewritten as follows:

yt,α,β =

N/2−1∑

n=−N/2

dt,α(n)dt,β(n)
∗
(
x0(n) + ǫ(n)

)
e−2iπkt,α,β

n
N + wt,α,β . (4)

2.3 Inverse problem

The inverse problem described by equation (4) is non linear in
(
ǫ, (dα,t) 1≤t≤T

1≤α<β≤na

)
. However, it is linear in ǫ,

and (2) can be rewritten equivalently as follows:

y = GF(x0 + ǫ) +w, (5)

where G ∈ CM×K is the matrix containing on each row the antenna-based gain for the pair (α, β). More

precisely, each row of G, indexed by
(
t, α, β

)
, corresponds to the convolution of the Fourier transforms d̂t,α

and d̂
∗
t,β of the gains dt,α and d

∗

t,β respectively, centred at the spatial frequency kt,α,β. Note that problem (5)
can be solved efficiently when the antenna based gains are assumed to be known. However, in practice, only a
non-accurate approximation of G is accessible, and the objective of this work is to find a better estimate of G
along with an estimate of ǫ. To this aim, we adopt the same strategy as described in our previous work,10 which
is a generalization of the StEFCal model.35 In particular, we propose to rewrite the problem described by (2)
using a matrix formulation:

(∀t ∈ {1, . . . , T }) Y t = D1,t

(
U t

)
X
(
F(x0 + ǫ)

)
D2,t

(
U t

)
+W t, (6)

where, for every t ∈ {1, . . . , T }, D1,t : C
na×S → C

na×N (resp. D2,t : C
na×S → C

na×N ) is the operator defined
such that D1,t

(
U t

)
(resp. D2,t

(
U t

)
) is the sparse matrix containing on each row α ∈ {1, . . . , na} the Fourier

kernel ut,α flipped and centred in kα (resp. u∗
t,α centred in −kα), X

(
F(x0 + ǫ)

)
∈ CK×K contains on each

row/column a shifted version of the Fourier transform of the original image F(x0 + ǫ), and W t ∈ Cna×na is the
matrix formulation associated with the realization of the additive noise in equation (4).

Note that, though problem (6) is not linear with respect to the DDEs (i.e.
(
U t

)
1≤t≤T

), we propose to adopt

a bilinear approach by introducing, for every t ∈ {1, . . . , T }, the matrices U1,t =
(
u1,t,α

)
1≤α≤na

∈ Cna×S and

U2,t =
(
u2,t,α

)
1≤α≤na

∈ C
na×S , satisfying U1,t = U2,t = U t. Then, the objective is to find an estimation of(

ǫ,U1,U2

)
, where U1 =

(
U1,t

)
1≤t≤T

∈ CTna×S and U2 =
(
U2,t

)
1≤t≤T

∈ CTna×S .
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3. PROPOSED OPTIMIZATION APPROACH

3.1 Global minimization problem

We propose to define the estimate
(
ǫ⋆,U⋆

1,U
⋆
2

)
of

(
ǫ,U1,U2

)
as a solution to the following non-convex mini-

mization problem:
minimize

ǫ∈R
N , (U1,U2)∈(Cna×S)2T

h
(
ǫ,U1,U2

)
+ r(ǫ) + p

(
U1,U2

)
, (7)

where h : RN × (Cna×S)2T → R is the data fidelity term related to the model described by equations (5)-(6),
r : RN →]−∞,+∞] is the regularization term associated with the image, and p : (Cna×S)2T →]−∞,+∞] is the
regularization term associated with the DDEs. In particular, the RI measurements being corrupted by an i.i.d.
Gaussian additive noise, we choose h to be the least squares criterion associated with equations (5)-(6), i.e.

h
(
ǫ,U1,U2

)
=

∥∥∥G
(
U1,U2

)
F(x0 + ǫ)− y

∥∥∥
2

2
(8)

=
1

2

T∑

t=1

∥∥∥D1,t

(
U1,t

)
X
(
F(x0 + ǫ)

)
D2,t

(
U2,t

)
− Y t

∥∥∥, (9)

with G : (Cna×S)2T → CM×K being the operator building a matrix containing on each row, indexed by (t, α, β),
the convolution of the Fourier kernels u1,t,α and u∗

2,t,β centred at the spatial frequency kt,α,β. In particular we

have G
(
U1,U2

)
= G

(
U ,U

)
= G, where G is the matrix defined in equation (5).

We propose to use a hybrid function for the regularization term of the image, corresponding to the sum of a
sparsity regularization term and an indicator function introducing constraints on the coefficients of the image.
More formally, we choose

(∀ǫ ∈ R
N ) r(ǫ) = λ‖Ψ†(x0 + ǫ)‖1 + ιE(ǫ), (10)

where Ψ ∈ RQ×N is a given sparsity basis, λ > 0 is a regularization parameter, E is a closed, convex and
non-empty subset of RN , and ιE denotes the indicator function of set E defined as

(∀ǫ ∈ R
N ) ιE(ǫ) =

{
0, if ǫ ∈ E,

+∞, otherwise.
(11)

Different dictionaries can be chosen, depending on the nature of the target image. On the one hand, if the
image is assumed to have only few non-zero coefficients (e.g. point sources), one can choose Ψ = IN to be the
identity operator in RN . On the other hand, natural images are not necessarily sparse, but can have a sparse
representation in other domains. For instance, piece-wise constant images are sparse on the gradient domain,
and thus total variation based regularizations can be used for such images.25, 26, 41 Another choice for Ψ is to
promote sparsity in the wavelet domain, using, e.g., isotropic undecimated wavelet (IUW) transforms,20, 22, 42, 43

or a concatenation of wavelet transforms.21, 44 In our case, we propose to use the average sparsity basis21 which
is the concatenation of a Dirac basis with the first eight Deaubechies wavelets.24 Furthermore, the constraint set
E is chosen to impose positivity on the coefficients of ǫ, and to make use of the prior information x0 we have on
x. Indeed, the image x0 obtained by the process described in Section 2.2 contains information on the brightest
sources of x. Although x0 already gives a good approximation of x, we propose to choose E such that ǫ can be
used to absorb the errors appearing on the non-zero coefficients of x0. Let S0 be the support of x0 and Sc0 its
complementary set. Then, we choose

E =
{
ǫ ∈ R

N
∣∣ (∀n ∈ S0) − ϑx0(n) ≤ ǫ(n) ≤ ϑx0(n), and (∀n ∈ S

c
0) 0 ≤ ǫ(n)

}
, (12)

where ϑ ∈ [0, 1] represents the percentage error we assume on x0. In particular, choosing ϑ = 1 allows ǫ(n) to
be 0 even when n ∈ S (which is not the case when ϑ < 1). Choosing ϑ = 0 is equivalent to impose that ǫ is
equal to x0 on S. This last choice corresponds to the particular case investigated in10 when bright sources are
assumed to be exactly known.

Concerning the regularization term for the DDEs, we choose it to constrain the coefficients of (U1,U2) to
satisfy the assumption given in Section 2.2, and we want to oblige U1 and U2 to be equal at convergence. For
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the first constraint, we define D to be the subset of CN such that, for every t ∈ {1, . . . , T } and α ∈ {1, . . . , na},
u1,t,α(0) and u2,t,α(0) belong to an ℓ∞ complex ball centred in 1 + i0 with radius υ, while, for every s 6= 0,
u1,t,α(s) and u2,t,α(s) belong to an ℓ∞ complex ball centred in 0 with radius υ. Moreover, we want to impose
that the Fourier coefficients of the DDEs have a mean Θ ∈ CTna×S which is defined such that each line of this
matrix is equal to 1 + i0 for the central spatial frequencies, and 0 for the higher frequencies. To this aim, we
use an ℓ2 norm controlling the distance between U1 (resp. U2) and Θ. Finally, concerning the constraint that
we want to impose U1 and U2 to be equal, due to technical assumptions on the algorithm we have developed,
we propose to relax this constraint by choosing to minimize a squared distance between these two variables.
Therefore, the global regularization term chosen for the DDEs is given by

(
∀(U1,U2) ∈ (Cna×S)2T

)
p
(
U1,U2

)
= η‖U1−U2‖

2
2+µ

(
‖U1−Θ‖22+‖U2−Θ‖22

)
+ ιD

(
U1

)
+ ιD

(
U2

)
, (13)

where µ > 0 and η > 0 are regularization parameters. Note that the smooth regularization can be seen as
reducing the degeneracy relative to the fact the a modulation of the image can be absorbed in the DDEs without
affecting the data.

3.2 Optimization tools

In order to describe our optimization method to solve the joint calibration and imaging problem given in equa-
tion (7), we first present in this section the basics of optimization. Note that the definitions given below stand
for non-necessarily convex functions. We refer the reader to45, 46 for an overview in convex optimization, and
to47, 48 for non-convex optimization.

A function ψ : RQ →]−∞,+∞] is proper if its domain, denoted by domψ, is non-empty.

Let ψ be differentiable on RQ. The function ψ is Lipschitz-differentiable, with constant ζ > 0, if

(∀(u, z) ∈ R
Q) ‖∇ψ(u)−∇ψ(z)‖2 ≤ ζ‖u− z‖2. (14)

Let ψ be a proper, lower-semicontinuous function, bounded from below by an affine function. Its proximity
operator49 defined at z ∈ R

Q, denoted by proxψ(z), corresponds to the set of minimizers of ψ + 1
2‖ · −z‖22, i.e.

proxψ(z) = argmin
u∈R

Q

ψ(u) +
1

2
‖u− z‖22. (15)

Note that, in the case when ψ is convex, proxψ(z) reduces to a singleton. Proximity operators are used in
optimization algorithms to deal with non-smooth functions, whereas differentiable functions are usually handled
by computing gradient steps. A particular case of proximity operator is the projection operator onto a closed
non-empty set E, denoted by ΠE, obtained when ψ is the indicator function of E.

3.3 Proposed algorithm

To solve problem (7), one can exploit the block-variable structure of the objective function by using an alter-
nating forward-backward algorithm.36, 38, 50–52 Basically, this algorithm alternates between the estimation of the
unknown image ǫ and the estimation of the DDEs represented by the matrices U1 and U2. At each iteration,
this approach combines a gradient step (forward step) on the Lipschitz-differentiable functions with a proximity
step (backward step) on the non-smooth functions.

In the context of problem (7), on the one hand, for the image estimation, at each iteration, a gradient step
is performed on the differentiable data fidelity term h while a proximity step is computed to deal with the
non-smooth regularization function r. On the other hand, for the DDEs estimation, at each iteration i ∈ N, the
forward step involves not only the data fidelity term but also the differentiable part of the function p, i.e. the

squared distance between U
(i)
1 and U

(i)
2 and between U

(i)
1 (resp. U

(i)
2 ) and Θ. Then a projection step onto set

D is performed.

The proposed method is described in Algorithm (1), where · denotes the Hadamard product, and, for every

i ∈ N, τ (i) is a positive constant, and Γ
(i)
1 and Γ

(i)
2 are positive matrices.
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Algorithm 1 Alternating forward-backward algorithm

1: Initialization Let ǫ(0) ∈ dom r and (U
(0)
1 ,U

(0)
2 ) ∈ D2. Let, for every i ∈ N, (L(i), J (i)) ∈ N2.

2: Iterations

3: For i = 0, 1, . . .

4: Choose to update either the DDEs
(
U

(i)
1 ,U

(i)
2

)
, or the image ǫ(i).

5: If the DDEs are updated:

6: U
(i,0)
1 = U

(i)
1 , U

(i,0)
2 = U

(i)
2 .

7: For ℓ = 0, . . . , L(i) − 1

8: U
(i,ℓ+1)
1 = ΠD

(
U

(i,ℓ)
1 − Γ

(i)
1 ·

(
∇U1h

(
ǫ(i),U

(i,ℓ)
1 ,U

(i)
2

)
− η

(
U

(i,ℓ)
1 −U

(i)
2

)
− µ

(
U

(i,ℓ)
1 −Θ

)))
,

9: end for

10: U
(i+1)
1 = U

(i,L(i))
1 .

11: For ℓ = 0, . . . , L(i) − 1

12: U
(i,ℓ+1)
2 = ΠD

(
U

(i,ℓ)
2 − Γ

(i)
2 ·

(
∇U2

h
(
ǫ(i),U

(i+1)
1 ,U

(i,ℓ)
2

)
− η

(
U

(i,ℓ)
2 −U

(i+1)
1

)
− µ

(
U

(i,ℓ)
2 −Θ

)))
,

13: end for

14: U
(i+1)
2 = U

(i,L(i))
2 .

15: ǫ(i+1) = ǫ(i).

16: end if

17: If the image is updated:

18: ǫ(i,0) = ǫ(i).

19: For j = 0, . . . , J (i) − 1

20: ǫ(i,j+1) = proxτ (i)r

(
ǫ(i,j) − τ (i)∇ǫh

(
ǫ(i,j),U

(i)
1 ,U

(i)
2

))
,

21: end for

22: ǫ(i+1) = ǫ(i,J
(i)).

23:
(
U

(i+1)
1 ,U

(i+1)
2

)
=

(
U

(i)
1 ,U

(i)
2

)
.

24: end if

The proposed method is based on a variable metric block-coordinate forward-backward algorithm developed
by38 (other versions can be found in36, 37). In particular, we can deduce from this paper the convergence
guarantees of Algorithm 1 given below.

In order to ensure the convergence of the proposed algorithm, few technical assumptions have to be sat-
isfied. Let (ǫ(i),U (i),U (i))i∈N be a sequence generated by Algorithm 1. Firstly, we assume that the blocks

(ǫ(i),U (i),U (i))i∈N are updated following an essentially cyclic rule, i.e. each variable has to be updated at least
one time within a given finite number of iterations. Secondly, for every i ∈ N, τ (i) needs to satisfy

0 < τ (i) < 1/‖G(U
(i)
1 ,U

(i)
2 ‖S , (16)

where ‖.‖S denotes the spectral norm. Finally, for every i ∈ N, Γ
(i)
1 and Γ

(i)
2 have to satisfy the majorant

condition given by [38, Ass. 2.3]. In particular, in our case we propose to choose

Γ
(i)
1 =




γ
(i)
1,1,11

⊤
S

...

γ
(i)
1,T,na

1⊤
S


 and Γ

(i)
2 =




γ
(i)
2,1,11

⊤
S

...

γ
(i)
2,T,na

1⊤
S


 (17)
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where

(∀t ∈ {1, . . . , T })(∀α ∈ {1, . . . , na})

{
0 < γ

(i)
1,t,α < 1/(η + µ+ ζ

(i)
1,t,α),

0 < γ
(i)
2,t,α < 1/(η + µ+ ζ

(i)
2,t,α),

(18)

ζ
(i)
1,t,α (resp. ζ

(i)
2,t,α) being the Lipschitz constant of the partial derivative of h(ǫ(i),U

(i)
1 ,U

(i)
2 ) (resp.

h(ǫ(i),U
(i+1)
1 ,U

(i)
2 )) with respect to u

(i)
1,t,α (resp. u

(i)
2,t,α).

Under these assumptions, the sequence of iterates
(
ǫ(i),U

(i)
1 ,U

(i)
2

)
i∈N

generated by Algorithm 1 converges

to a critical point
(
ǫ⋆,U⋆

1,U
⋆
2

)
of the objective function minimized in problem (7). Moreover, the objective

function value is decreasing along the iterations.

4. SIMULATIONS AND RESULTS

To show the performance of the proposed method, we computed numerical experiments, implemented in MAT-
LAB‡. We consider the na = 64 antennas of the MeerKAT telescope, where each antenna pair acquires T = 15
measurements. Note that Earth rotation is incorporated to track the u−v positions of each resulting baseline by
considering a time interval of 6 hours§. Moreover, in order to simplify the experiments, we use discrete versions
of the associated u−v coverages. This is done by considering the nearest discrete u−v position of each antenna.
In our simulations we have considered two images: an image of M31, given in Figure 1 (1a-c), and an image of
W28, given in Figure 2 (1a-c). In both cases, (1a) shows the image in linear scale, (1b) the image in log scale,
and (1c) is a zoom on a subpart of the image in log scale. Finally, for every α ∈ {1, . . . , na}, the DDE kernel
ut,α associated with antenna α at instant t ∈ {1, . . . , T } is simulated randomly in the Fourier domain and we fix
the size S of the support of the direction-dependent Fourier coefficients to be equal to 5 × 5. Note that in our
simulations S is assumed to be known.

For both images of M31 and W28 we have performed preliminary simulations considering only the imaging
problem in the case when the DDEs are perfectly known. In this case, we propose to define the estimate of x as
a solution to

minimize
x∈R

N
‖GF(x)− y‖2 + r̃(x), (19)

where G and y are defined in equation (5), and r̃ : RN →]−∞,+∞] is given by

(∀x ∈ R
N ) r̃(x) = λ‖Ψ†x‖1 + ι[0,+∞[N (x), (20)

with λ and Ψ being defined by (10). Problem (19) can be solved efficiently using a convex optimization method
(e.g. forward-backward algorithm). Note that the estimate obtained by solving this problem can be seen as the
best estimation of the image that we could obtain in the case when DDEs could be known perfectly (for our
choice of regularization and parameters). The recovered images in this case are given in Figure 1 (2a-c) and
Figure 2 (2a-c), respectively for M31 and W28. As for the original image, in both cases (1a) shows the image in
linear scale, (1b) the image in log scale, and (1c) is a zoom on a subpart of the image in log scale.

In practice DDEs cannot be known perfectly. In particular, as explained in Section 2.2, we can only assume
that calibration transfer has been performed and that normalized DIEs are obtained. Therefore, in practice,
problem (3), with r̃ given by (20), is solved to obtain an approximated estimate of x. The reconstruction obtained
in this case, considering our simulation settings are given in Figure 1 (2a-c) and Figure 2 (2a-c), respectively
for M31 and W28. For both cases (1a) shows the image in linear scale, (1b) the image in log scale, and (1c)
is a zoom on a subpart of the image in log scale. Although, when observed in linear scale, the reconstruction
seems to be of good quality, the log scale images emphasize that low amplitude coefficients are not estimated
correctly. This remark is particularly true when looking to the zoomed images, where it can be observed that
the structures around the bright sources have a poor reconstruction quality.

‡The MATLAB code is available at https://basp-group.github.io/joint-img-dde-calibration/.
§The u − v tracks are simulated using the code available at http://www.astro.umd.edu/∼cychen/MATLAB/ASTR410/

uvAndBeams.html
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Image reconstruction Image reconstruction Proposed blind approach
from true DDEs from normalized DIEs

M31 36,3 20 25,5
W28 20,6 17,2 20,6

Table 1. SNR values in dB for the images of M31 and W28 obtained by solving the imaging problem from true DDEs,
the imaging problem from normalized DIEs, or the blind deconvolution problem considering DDEs.

Finally we performed simulations using our method described in Section 3, in order to jointly estimate the
DDEs and the image. The reconstruction results for the images of M31 and W28 are given in Figure 1 (2a-c) and
Figure 2 (2a-c), respectively. For both images, (1a) shows the image in linear scale, (1b) the image in log scale,
and (1c) is a zoom on a subpart of the image in log scale. It can be observed that using the proposed method
to estimate the DDEs leads to a more accurate estimation of the low amplitude coefficients of both images, and
the structures around bright sources have better quality reconstructions.

In Table 1 we present the signal to noise ratio (SNR) values¶ for each of the experiments described above.
Note that, due to the ambiguity problems encountered with blind deconvolution problems, in our case we use a
modified version of the SNR which is expressed as

SNR = 20 log10

(
‖x‖2

‖ν⋆x⋆ − x‖2

)
with ν⋆ = argmin

ν>0
‖ν x⋆ − x‖22. (21)

More precisely, for the image of M31 we present in the first row of the table the modified SNR values between
the images given in (i) Figures 1 (2a) and (1a) in the left column (i.e. the reconstructed image obtained by
considering the true DDEs), (ii) Figures 1 (3a) and (1a) (i.e. the reconstructed image obtained by considering
normalized DIEs), and (iii) Figures 1 (4a) and (1a) (i.e. the reconstructed image obtained by solving the joint
DDE calibration and imaging problem). Similar results are presented in the second row of the table for W28. It
can be observed that for W28 the SNR value of the rescaled estimate obtained with the proposed blind approach
is the same as the one obtained on the case where the true DDEs are perfectly known. Although this remark
does not stand for the image of M31, it can be observed that in this case there is a difference of 5.5 dB between
the SNR of the estimate obtained considering the normalized DIEs and the estimate obtained using our method.

Therefore, for both images, we can conclude that the proposed approach leads to a significant improvement
in terms of quality reconstruction.

5. CONCLUSION

In this work, we have presented a non-convex optimization algorithm to jointly solve the DDE calibration and
imaging problem in the context of RI. It constitutes a generalization of a previous work presented in,10 relaxing
the strong assumption made on the knowledge of the bright sources. The proposed algorithm is based on
a block-coordinate forward-backward approach, using an ℓ1 based regularization term to promote sparsity on
the image and modelling the DDEs as smooth functions of the sky, i.e. spatially band-limited. Our method
presents several advantages. Firstly, it benefits from convergence guarantees for both the image and the DDEs.
Secondly, in contrast with DDE calibration methods developed recently, our method does not require a selection
of calibrator directions since it constructs a smooth DDE screen applied to all the sources across the image.
Finally, the proposed method is very general and can be easily adapted to the nature of the considered image.
The good performance of the proposed method has been shown through simulations on the images of M31 and
W28. In particular, the presented results have been obtained by considering that only calibration transfer has
been performed, without prior knowledge on the bright sources of the images.
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¶The SNR between an original image x and its estimate x
⋆ is expressed as SNR = 20 log

10

(

‖x‖2
‖x⋆ − x‖2

)

.
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Figure 1. Row 1 shows the original image of M31 in linear scale (1a), log scale (1b) and a zoom on the top right of M31
(1c). Row 2 shows the reconstructed image of M31 obtained when solving only the imaging problem, considering the true
DDEs in the reconstruction process. The reconstruction is given in linear scale (2a), log scale (2b) and a zoom on the
top right of M31 in log scale (2c). Row 3 shows the reconstructed image of M31 obtained when solving only the imaging
problem, considering normalized DIEs in the reconstruction process. The reconstruction is given in linear scale (3a), log
scale (3b) and a zoom on the top right of M31 in log scale (3c). Row 4 shows the reconstructed image of M31 obtained
when solving the joint DDE claibration and imaging problem. The reconstruction is given in linear scale (4a), log scale
(4b) and a zoom on the top right of M31 in log scale (4c).
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Figure 2. Row 1 shows the original image of W28 in linear scale (1a), log scale (1b) and a zoom on the top right of W28
(1c). Row 2 shows the reconstructed image of W28 obtained when solving only the imaging problem, considering the true
DDEs in the reconstruction process. The reconstruction is given in linear scale (2a), log scale (2b) and a zoom on the
top right of W28 in log scale (2c). Row 3 shows the reconstructed image of W28 obtained when solving only the imaging
problem, considering normalized DIEs in the reconstruction process. The reconstruction is given in linear scale (3a), log
scale (3b) and a zoom on the top right of W28 in log scale (3c). Row 4 shows the reconstructed image of W28 obtained
when solving the joint DDE claibration and imaging problem. The reconstruction is given in linear scale (4a), log scale
(4b) and a zoom on the bottom right of W28 in log scale (4c).
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[7] Vũ, B. C., “A splitting algorithm for dual monotone inclusions involving cocoercive operators,” Advances in Com-
putational Mathematics 38(3), 667–681 (2013).

[8] Boyd, S. and Vandenberghe, L., [Convex Optimization ], Cambridge University Press (2004).
[9] Smirnov, O., “Revisiting the radio interferometer measurement equation. ii. calibration and direction-dependent

effects,” A & A 527, 10 (March 2015).
[10] Repetti, A., Birdi, J., Dabbech, A., and Wiaux, Y., “Non-convex optimization for self-calibration of directiondepen-

dent effects in radio interferometric imaging,” To appear in Mon. Not. R. Astron. Soc. (2017).
[11] Uecker, M., Lai, P., Murphy, M. J., Virtue, P., Elad, M., Pauly, J. M., Vasanawala, S. S., and Lustig, M., “Espirit - an

eigenvalue approach to autocalibrating parallel mri: Where sense meets grappa,” Magn. Reson. Med. 71, 990–1001
(2014).
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