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Abstract 9 

Multiphase flow in the porous media is of great interest for many engineering fields such as 10 

underground oil and gas reservoirs, environmental process (e.g. carbon dioxide (CO2) geological 11 

storage) and underground water resources remediation. Modelling of these process requires 12 

relative permeability (kr) of each fluid as a function of the fluid saturation. The experimental 13 

measurement of the three-phase relative permeability is much more complex and time 14 

consuming process than the two-phase relative permeability. Hence, many correlations have 15 

been proposed in the oil industry for the calculation of the three-phase relative permeability 16 

using two-phase kr data. However, most of the existing three-phase models ignore the physical 17 

mechanism underlying the multiphase flow in the porous media. 18 

In this study, a novel mechanistic model is proposed to predict the three-phase relative 19 

permeability of the oil, water and gas in the petroleum reservoir (i.e. porous rock). The new idea 20 

is that the interaction between various fluids (i.e. oil, water and gas) and also the fluid saturation 21 

distribution are somehow considered in the estimation of the relative permeability. For this 22 

purpose, a new parameter named characteristic coefficient is introduced in the model. This 23 

parameter reflects the contribution of each fluid in controlling the flow of the other fluids. In 24 

other words, this factor is net impact of the various rock and fluid parameters (e.g. surface 25 

tension between fluids, wettability and saturation distribution) that all influence the flow in the 26 

porous media. This idea is taken from the glass-micro-model experiment that visualises the 27 

mechanism underlying the flow at the pore scale. Another feature of this method is that, at least 28 

one set of experimental three-phase kr data is required to tune the characteristic coefficients. The 29 

estimated characteristic factors can then be employed to predict the three-phase relative 30 

permeability for the other saturation path.  31 

The model is successfully validated against the experimentally measured three-phase relative 32 

permeability data.  33 

 34 

 35 

Keywords: Porous media, Three-phase, Relative permeability, Petroleum 36 

 37 

1- Introduction 38 

The flow of immiscible fluids in the porous media is of great interest in many engineering 39 

process, such as underground hydrocarbon resources, storage of gas in geological formation due 40 

to environmental concern and contamination of underground water. The increasing demand for 41 

fossil fuel, on the one hand, and reduction of oil reserves in the world, on the other hand, have 42 

led many oil companies to develop enhanced oil recovery technique (EOR). Many of the EOR 43 
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processes involve water and gas injection through the petroleum reservoir that result in 1 

development of three-phase flow (oil, water and gas) in the reservoir rock.  2 

Flow of three immiscible fluids (i.e. oil, water and gas) may also occurs in the petroleum 3 

reservoir under different conditions such as in a reservoir having active aquifer and solution gas 4 

drive mechanism in which water and gas displace oil towards the production well.  5 

Relative permeability is a key factor required for the simulation of the displacement process in 6 

the porous media in particular, oil and gas reservoirs. Relative permeability of a fluid is defined 7 

as the ratio of permeability (conductivity) of the pores occupied by that fluid at a given saturation 8 

to the absolute permeability of the entire porous medium. The absolute permeability is a function 9 

of rock alone whereas the relative permeability depends on the both rock and fluid condition 10 

(e.g. surface tension, wettability and pore size distribution). In other words, the relative 11 

permeability describes the extent to which one phase is hindered by the other phases in the pore 12 

spaces, and hence it can be formulated as a function of the fluid saturation. 13 

The well-known complexity of the three-phase flow in the porous media is that an infinite 14 

numbers of the fluid saturation path or saturation combination can occur during a displacement 15 

process. The reason is that the degrees of freedom for the fluid saturation at three-phase 16 

condition are two independent fluid saturations. It means that by fixing one phase saturation the 17 

other two fluids saturations can get infinite values (Sw + Sg + So = 1). But on the other hand, the 18 

two phase flow has one degree of freedom such that by fixing one phase saturation the other 19 

fluid saturation is fixed as well (e.g. Sw + So = 1). Hence, the flow functions (kr and Pc) in the 20 

three-phase circumstance may be function of two independent saturation (a surface plot in 3-21 

dimenstional coordinate) whereas the two-phase relative permeability is function of the single 22 

saturation (a single curve in X-Y coordinate). It should be noted that three-phase kr can be 23 

plotted in the different forms as shown in Figure 1 and Figure 2. Figure 1 (a) illustrates a 24 

schematic of three-phase kro as iso-perm curve (saturation paths which have equal kro) and Figure 25 

1 (b) depicts an example of three-phase oil relative permeability in 3-D form plotted against the 26 

water and gas saturations. Figure 2 (a) demonstrates schematic of kro against its own saturation 27 

(So). Figure 2 (a) depicts that at a fixed value of So there might be several values for kro because 28 

in general the kro is function of two independent saturations (Sw and Sg). Figure 2 (b) shows kro 29 

against water saturation for various values of gas saturation which depicts kro is function of two 30 

independent saturations (Sw and Sg). As shown in Figure 2 (b), having different kro curves should 31 

not necessarily be attributed to the hysteresis effect. 32 

 33 

Relative permeability of three-phase can be either measured in the laboratory by performing 34 

coreflood experiment or estimated using empirical correlations.  Due to aforementioned 35 

complexity of the three-phase flow, the measurement of the relative permeability is costly and 36 

time-consuming process. The earliest three-phase measurement found in the literature belongs to 37 

Leverett and Lewis (1941). A comprehensive review of the experimental studies of the three-38 

phase relative permeability is carried out by Alizadeh and Piri, (2014), recently. They reviewed 39 

the effects of saturation history, wettability, spreading, and layer drainage on the measured flow 40 

properties. 41 

Due to the difficulties of the three-phase measurement, many researches have been directed 42 

towards development of an empirical correlation for estimation of the relative permeabilities 43 

(Corey, et al.  (1956), Naar, and Wygal (1961), Land and Carlson (1968), Stone (1970), Stone 44 
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(1973), Baker (1988), Delshad, et al.  (1989), Hustad and Hunsen (1995), Jeraud (1997), Blunt 1 

(1999), Moulu, et al. (1999),  Hustad and Browning (2010), Shahverdi and Sohrabi (2013), 2 

Shahverdi and Sohrabi (2014), Beygi, et al. (2015), ). Most of these models predict three-phase 3 

relative permeability by interpolating between two-phase relative permeability measured in the 4 

laboratory. The prime difference between the existing models is that they implements different 5 

interpolation technique (i.e. arithmetic or geometric) between two-phase data to estimate three-6 

phase kr. However, each model has been developed based on the limited experimental data and 7 

for the certain range of conditions. It should be noted that the most of the existing three-phase 8 

models ignore the physical mechanism underlying the three-phase flow in the porous media. The 9 

assessment of the three-phase correlations have revealed inadequacy of these models for 10 

prediction of experimental data (Element, et al. (2003), Delshad, et al. (1987), Shahverdi, et 11 

al.(2011a and 2011b)) 12 

In this research first, the most commonly used three-phase kr correlations are briefly described. 13 

Then the theory and the principles of the new mechanistic model that incorporates the physics of 14 

the flow is presented. The new idea is that the interaction between various fluids (i.e. oil, water 15 

and gas) and also the fluid saturation distribution are somehow considered in the three-phase 16 

relative permeability model. For this purpose, a new parameter named characteristic coefficient 17 

is introduced in the model. This parameter reflects the contribution of each fluid in controlling of 18 

the flow of the other fluids. In other words, this factor is net impact of the various rock and fluid 19 

parameters (e.g. surface tension between fluids, wettability and saturation distribution) that 20 

influence the flow in porous media unlike the most of the existing models that ignore these 21 

effects. The validation of the model against various experimental data shows adequate accuracy 22 

in prediction of the three-phase relative permeability. 23 

  24 

 25 

 26 

        27 
                                 (a)                                                                             (b) 28 

 29 

Figure 1: An example of three-phase oil relative permeability plotted in the two forms. Figure (a) is 30 

three-phase kro as iso-perm curve (saturation paths which have the same kro). Figure (b) is three-phase kro 31 

in 3-D form plotted against water and gas saturation. 32 

 33 
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 1 

      2 
                                 (a)                                                                             (b) 3 

 4 

Figure 2: An example of three-phase oil relative permeability plotted in two forms. Figure (a) shows kro 5 

plotted against its own saturation (So). Since kro is function of two independent saturation (Sw and Sg) at a 6 

fixed value of So there might be several values for kro. Figure (b) shows kro against water saturation for 7 

various values of gas saturation which depicts kro is function of two independent saturation ( Sw and Sg ).  8 

 9 

 10 

2- Review of the most famous three-phase kr models 11 

Many empirical correlations have been proposed so far for estimation of the three-phase relative 12 

permeability using two-phase kr data. Here, we briefly review the most widely used models 13 

available in the commercial reservoir simulators (Eclipse, CMG) for simulation of the three-14 

phase flow. The common aspect of all these models is that they all use two-phase relative 15 

permeability to calculate the three-phase kr data. In general, these models can be divided to two 16 

kinds, the STONE type and BAKER type models. The STONE type models was originally 17 

proposed by Stone (1970) named Stone-I model which uses the geometric averaging between 18 

two-phase relative permeability in the following form to calculate the three-phase kro: 19 

 20 

(1) 
 

��� = ��∗
�1 − �
∗��1 − �∗ � × ���
 × ��� 

Where ��∗	is normalized saturation, krow is oil relative permeability in the two-phase oil/water 21 

system and krog is two-phase oil relative permeability in the oil-gas system. The Stone-I model 22 

was then modified by Aziz and Settari (1979) taking into account the maximum oil relative 23 

permeability (����) at the maximum oil saturation ( = 1- Swc) : 24 

(2) 
 

��� = ���� × ���

�1 − �
∗����� ×

����1 − �∗ ����� 

 25 

In the above equation, the two phase oil-water relative permeability (krow) should be computed at 26 

the three-phase water saturation and the two phase oil-gas relative permeability (krog) should be 27 

looked up at the three-phase gas saturation. 28 

This should be noted that Stone models were developed only for the prediction of the three-phase 29 

oil relative permeability. In this model, three-phase water and gas relative permeability are 30 
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assumed to be same as two phase relative permeability in presence of oil. Stone (1972) modified 1 

his first model by a probability approach and incorporating water and gas relative permeability in 2 

the calculation of the three-phase kro: 3 

 4 

(3) ��� = �����
 + ��
����� + ��� − �� − ��
� 
 5 

Although this model is a modified version of Stone-I model, usually it is less accurate than the 6 

Stone-I because, it results to the negative relative permeability for the oil phase at some range of 7 

saturation (Shahverdi, et al. (2011a)). 8 

Hustad and Hold (1992) modified Stone-I model by introducing an exponent factor on the 9 

saturation term in equation (2) : 10 

 11 

 12 

 13 

The β term may be interpreted as a variable that changes between zero and one for low and high 14 

oil saturations respectively. The value of the exponent may be used, therefore, to match the 15 

predicted oil recovery to the observed data. 16 

The most popular BAKER type models are Baker (1988), IKU (Hustad and Hansen (1995)) and 17 

ODD3P (Hustad and Browning (2010)). These models estimate the three-phase kr for all mobile 18 

phases as a function of the two independent saturations. All these models apply an arithmetic 19 

averaging between two phase relative permeability to calculate the three-phase kr. The Baker 20 

(1981) correlation for three-phase oil relative permeability is as follows: 21 

 22 

(5) ��� = � �� − ����� − ��� + �
���� + �
�
�� − ��� + �
����
 

 23 

Similar equations were developed for calculating water and gas relative permeability under 24 

three-phase flow condition. Unlike the Stone models, the two-phase oil relative permeability 25 

(krow and krog) in the Baker model (Equation (5) ) should be looked up at the three-phase oil 26 

saturation.  27 

Hustad and Hansen (1995) proposed IKU model as a modified version of the BAKER method 28 

for estimation of three-phase oil, water and gas relative permeability. The IKU model suggests 29 

that the relative permeability is only affected by the mobile phase saturation rather than the total 30 

phase saturation. They suggested to compute two-phase kr in the Baker model (e.g. krow, krog) at a 31 

representative three-phase mobile saturation. For this purpose, a linear interpolation method was 32 

introduced for calculating maximum and minimum mobile phase saturation at the three-phase 33 

condition by using two-phase residual saturations. This approach is graphically illustrated in 34 

Figure 3 for the oil phase. The end-point saturation regarding to the oil phase at two-phase 35 

condition are residual oil in oil-gas (Sorg), residual gas in oil-gas saturation (Sgro), residual oil in 36 

oil-water (Sorw) and residual water in oil-water system (Sorw). The oil saturation should be 37 

normalised by following equation:  38 

(4) ��� = � ��∗
�1 − �
∗��1 − �∗ ��

�
× ���
 × �������  
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 1 

(6) ��∗ = �� − �������� − ���� 

 2 

Where Somn and Somx are minimum and maximum mobile saturation under three-phase condition. 3 

The normalized oil saturation then is used to obtain representative two-phase oil relative 4 

permeabilities (krow and krog) for using in Equation (5) (without Swc). The equivalent formulation 5 

is derived for calculation of the three-phase water and gas relative permeability. 6 

Hustad and Browning (2010) developed the ODD3P model for calculating three-phase oil, water 7 

and gas relative permeability. This model is modified version of the IKU method taking into 8 

account the effect of the hysteresis and IFT (interfacial tension) variation between fluids. The 9 

full procedure for implementing this model is presented in the SPE paper 125429. 10 

 11 
Figure 3: The method proposed by Hustad and Hansen (1995) for estimation of maximum (Somx) and 12 

minimum (Somn) three-phase mobile saturation using residual saturation (Sorw, Sorg, Swro, Swrg, Sgrw, Sgro) 13 

measured at the two-phase condition. 14 

 15 

 16 

3- Motivation 17 

In addition to the above models, many other correlations have been proposed for the prediction 18 

of three-phase relative permeability (Naar and Wygal (1961); Delshad, et al. (1987); Jerauld 19 

(1997); Blunt (2000)). Most of these models have just been verified for a limited three-phase kr 20 

data. The validity of these models for the wide range of the rock and fluid conditions is 21 

questionable which may lead to an erroneous prediction for the three-phase kr (Element, et al. 22 

(2003), Delshad, et al. (1987), Shahverdi, et al. (2011a and 2011b)). 23 

As mentioned earlier, some of the old models (e.g. Stone, Baker) estimate the three-phase 24 

relative permeability by the simple averaging or interpolation between corresponding two-phase 25 

kr (Equation (5) and (1)) without incorporating any mechanism of the flow. However, there are 26 

more recent models that incorporate different mechanisms occurring in three-phase flow (Beygi, 27 

et al. (2015),  Hustad and Browning (2010), Blunt (2000)). Beygi, et al. (2015) proposed a 28 
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correlation for the calculation of the three-phase kr considering the compositional effect between 1 

fluids under different wettability conditions. Hustad and Browning (2010) proposed a fully 2 

coupled formulation for the three-phase capillary pressure and relative permeability 3 

incorporating the hysteresis and miscibility on both capillary pressure and relative permeability, 4 

simultaneously. Blunt (2000) presented an empirical model for the three-phase relative 5 

permeability that allows for the changes in the hydrocarbon composition and the trapping of oil, 6 

water, and gas. The model accounts the layer drainage mechanism in the oil relative permeability 7 

occurring at the low saturation.  8 

However, in this study, we attempted to incorporate the mechanism of the flow different from 9 

the above-mentioned models.  The main idea behind this model is that the various mechanisms 10 

and pertinent parameters affecting the multi-phase flow in the porous media (e.g. wettability, 11 

spreading coefficient, and pore size distribution) are reflected in the fluid distribution. For this 12 

purpose, a characteristics function with the new fluid saturation terminology is introduced in the 13 

model in order to account the impact of the fluid saturation in the estimation of relative 14 

permeability.  15 

Many displacement mechanisms may take place during multiphase flow in the porous media 16 

which all are governed by the rock and fluid properties such as spreading coefficient, wettability 17 

and saturation distribution.   18 

The fluid distribution in the porous media is a key factor in controlling the flow of the various 19 

phases and consequently the relative permeability functions. For instance, Figure 4 demonstrates 20 

a snapshot of a glass micro-model experiment under three-phase flow condition (water-21 

alternating-gas (WAG) injection) which illustrates the distribution of the various fluids (i.e. oil, 22 

water and gas) in a porous media (Sohrabi, et al., 2000). As shown in this figure a cluster of the 23 

oil (shown by a pink circle) is dominated by only the water which implies the flow of this oil is 24 

only controlled by the water saturation. Whereas the other cluster (green circle) is connected 25 

with both water and gas hence the flow of this oil is affected by both water and gas saturation. 26 

It can be concluded that the flow or relative permeability of each fluid in the three-phase 27 

condition is strongly affected by the distribution of the immiscible fluids in the pores. This fact is 28 

not properly taken into account in development of the existing three-phase kr models (e.g. Stone, 29 

Baker). The main inadequacy of the existing models is that they assume very simple fluid 30 

distribution for three-phase flow as illustrated in Figure 5 schematically.  This figure depicts that 31 

the entire of the oil phase in the system is equally connected to (controlled by) the water and gas 32 

phases. This assumption implies that the flow of oil is equally governed by water and gas 33 

saturation (Figure 5) which is in contrast to the mechanism of three-phase flow described at the 34 

pore scale. In other words, the two-phase relative permeability in the Baker and Stone model 35 

(e.g. Equation (1) and (5)) are looked up at the total three-phase saturation as shown in Figure 5. 36 

 37 

 38 
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 1 
Figure 4: A snapshot of glass micromodel experiment (Sohrabi, et al. (2000)) shows the distribution of 2 

three-phases (oil, water and gas) in the Water-Alternating-Gas (WAG) injection. The oil, water and gas 3 

are presented by red, blue and yellow color, respectively. 4 

 5 

 6 

 7 

8 
          9 

Figure 5: A schematic of three-phase fluid distribution in the porous media assumed in the existing 10 

models (e.g. Stone, Baker). 11 

 12 

 13 

4- Theory 14 

The more realistic pattern for the saturation distribution in the three-phase flow is to consider 15 

each of the immiscible fluids as two parts. As depicted in Figure 6 one part of the oil saturation is 16 

only connected to the water phase (Sow) and the other part is connected only to the gas phase 17 

(Sog). The summation of two saturations Sow and Sog may be less, equal or greater than �����  (the 18 

total oil saturation at three-phase condition). Once this summation is less than �����it depicts that 19 
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the part of oil is immobile whereas the case of summation greater than �����demonstrates the 1 

overlap between Sow and Sog.  While the summation of saturations (Sow and Sog) is equal to the 2 

����� 	shows that the part of oil is controlled by water and the rest of oil is in connection with gas 3 

and hence, there is not any immobile or overlap saturation. 4 

Now, considering this theory, the three-phase kro is combination of two-phase relative 5 

permeability of the oil to the gas (krog) and the oil to the water (krow). However, the contribution 6 

of krow and krog in the three-phase kro is not equal. Whereas the existing models assume equal 7 

impact for krwo and krog in estimation of 3-phase kro such that two-phase oil relative 8 

permeabilities (krow and krog ) are picked up at the same oil saturation (Figure 5). The evaluation 9 

of the existing models performed by the previous researchers (Delshad, et al. (1987), Hustad and 10 

Hunsen (1995),  Hustad and Browning (2010), Shahverdi, et al.(2011a and 2011b) depicted that 11 

the Baker type model (arithmetic averaging) results in the better prediction for the three-phase 12 

relative permeability compared to the other existing models. Hence, we have used the arithmetic 13 

averaging relationship between two-phase and three-phase relative permeability as: 14 

 15 

(7) ��� ∝ �!��� + "���
� 
 16 

 17 

 18 

Where A and B are the weight factors reflecting the extent of impact for each of krow and krog 19 

which affect the three-phase kro. Using saturation weight factor in the above equation:  20 

 21 

(8) ��� = ���� + �
� ������� +
�
��� + �
� ���
���
� 

 22 

As can be seen the krow and krog in the above equation should be picked up at the representative 23 

two-phase saturation (Sow and Sog). Also the saturation weight factors (
#$%

#$%&#'% 	()*	
#'%

#$%&#'%) are 24 

calculated using the representative two-phase saturation. The formulation and theory of the 25 

mechanistic model is illustrated schematically in Figure 7. 26 

Similar theory and equation can be developed to obtain three-phase kr of water and gas: 27 

 28 

(9) �� = ���� + �
 ������� +
�
�� + �
 ��
��
� 

 29 

  (10) 
 

 

��
 = ��
��
 + �
 ��
��
� +
�
��
 + �
 ��
���
�� 

 30 

For determination of the representative saturations in Equations (8) to (10), (Sow , Sog , Sgo , Sgw , 31 

Swo , Swg), a simple linear relationship between two-phase and three-phase oil saturation is 32 

suggested as follows: 33 
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 1 

(11) �� = !� × �����  
(12) ��
 = !�
 × �����  

 2 

Where Aow and Aog are named characteristic coefficient for the three-phase flow which have a 3 

value between zero and one. This coefficient represents the extent of impact of water and gas 4 

phases that affects the oil relative permeability. When Aow is equal to one, �� = �����,  implying 5 

that entire of the oil phase is only in contact with the water and thus its flow (kro) is only affected 6 

by the water saturation. In this case the gas phase is not contributing in the flow of the oil. For 7 

the case that Aow is equal to zero, the value of ��	becomes zero hence, the water does affect the 8 

oil flow or the oil phase is fully governed by the gas phase saturation. The higher value of Aow 9 

demonstrates the higher impact of the water phase in controlling the relative permeability of the 10 

oil and vice versa. Figure 8 shows an example of plot for Sow and Sog versus  �����  based on the 11 

linear relationship proposed in Equation (11) and (12). This graph clearly illustrates the 12 

competition between the water and gas in displacing of the oil phase. As can be seen the slope of 13 

Sog curve (Aog) is greater than that of Sow (Aow) depicting that the oil relative permeability is more 14 

affected by the gas saturation than by the water phase. It should be noted that in the case of the 15 

two-phase oil-gas or oil-water system the characteristic coefficients (Aow and Aog) become unity 16 

(black line in Figure 8). As mentioned earlier, the summation of Aog and Aow is not necessarily 17 

equal to one because there might be an overlap between Sog and Sow indicating that some part of 18 

oil is governed by the both water and gas phase saturation. 19 

Equation (11) and (12) and above theory can similarly be developed for the water and gas phase: 20 

 21 

(13) �� = !� × ���� 
(14) �
 = !
 × ���� 
(15) �
� = !
� × �
��� 
(16) �
 = !
 × �
��� 

 22 

The characteristic coefficients, Awo, Awg, Ago … etc. are functions of interfacial tension (IFT) 23 

between fluids, wettability and pore size distribution of rock which all affect the fluid 24 

distribution. For simplicity, in this study it is assumed that at a given condition of IFT, 25 

wettability and pore size the characteristic coefficients remain constant during the fluid flow. The 26 

characteristic coefficients can be tuned using a measured set of the three-phase relative 27 

permeability data in the combination with Equation (8), (9)  and (10). In other words, this tuning 28 

is kind of inverse problem which estimate the characterization coefficients using an optimization 29 

technique (e.g. Genetic Algorithm). The objective function is the error between the measured and 30 

calculated relative permeability which should be minimized by tuning the characterization 31 

coefficients (Aij). The estimated coefficient can then be employed in the model to calculate the 32 

three-phase relative permeability of the other saturation path. The algorithm for prediction of 33 

three-phase relative permeability using mechanistic model is described in Figure 9. The detailed 34 

procedure of Genetic algorithm for estimation of relative permeability are discussed in another 35 

publication (Shahverdi, et al., 2011).  36 
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Obviously, a level of uncertainty may be associated to the estimated characteristic coefficients, 1 

Aij and subsequently to the relative permeabilities. However, employing more measured data of 2 

the three-phase kr for tuning of the characteristic coefficients, can reduce the degree of the 3 

uncertainty. Moreover, the characteristic coefficients can be used as a tuning factor in history 4 

matching of production and pressure data obtained from the reservoir.  In absence of measured 5 

three-phase kr data, a rough value based on the wettability and IFT condition of the fluids and 6 

porous media can be assigned to the characteristic coefficients. 7 

 8 

    9 

         10 
                                 (a)                                                                             (b) 11 

Figure 6: Figure (a) shows three-phase distribution in porous media obtained from glass micro-model 12 

experiment (Sohrabi, et al., 2000). Figure (b) present three-phase distribution considered in the 13 

mechanistic model.  14 

 15 

 16 
Figure 7: Theory and formulation of the mechanistic model for prediction of three-phase oil relative 17 

permeability.   18 

 19 

 20 
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 1 
Figure 8: An example plot of Swo and Sog versus So,3ph proposed by Equation (11) and (12). The slope of 2 

each curve represents the corresponding characteristic coefficients (Aow , Aog). The black line with unite 3 

slope demonstrate the condition of two-phase flow (either oil-water system when Aow =1 or oil-gas system 4 

when Aog =1) . 5 

 6 

 7 
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Figure 9: Algorithm of implementing the mechanistic model for prediction of three-phase relative 1 

permeability. 2 

 3 

5- Verification of the model 4 

In this section, the three-phase relative permeability data obtained from the coreflood experiment 5 

(Oak (1989)) are used to validate the proposed model in this study. Oak (1989) performed a 6 

series of the steady-state experiment to obtain two-phase and three-phase relative permeability of 7 

a Berea sandstone rocks. The physical properties of the rock and fluid used in these experiments 8 

are provided in Table 1 and 2. 9 

Three steady-state DDI (Decreasing water, Decreasing oil and Increasing gas saturation) test 10 

performed at the three-phase condition are selected from the Oak data. The saturation path met in 11 

these experiments are presented in Figure 10. As can be seen the initial saturation and saturation 12 

path of each test is totally different from the others. The three-phase relative permeability of the 13 

oil, water and gas for each experiment reported by Oak, will be compared with the calculated 3-14 

phase kr using mechanistic model later in this manuscript. 15 

The two-phase relative permeability of the oil-gas, gas-water and oil-water system measured by 16 

the steady-state Oak experiment are reported in Figure 11 and Figure 12. This should be 17 

highlighted that the presented model in this research can be used for any three-phase process 18 

(e.g. IDD, DII, DID, IID ...). However, the input two-phase kr data should be selected from an 19 

appropriate process (Drainage or imbibition) that corresponds three-phase saturation path. For 20 

instance, in the case of DDI process (Decreasing water, Decreasing oil and Increasing gas 21 

saturation; which gas displaces oil and water), the kr of oil-gas and gas-water system should be 22 

selected from drainage process in which gas saturation is increasing. 23 

 24 

These data as well as the three-phase relative permeability of the first DDI test (G1 in Figure 10) 25 

were used in combination with the mechanistic kr model (equations (8), (9) and (10)) to obtain 26 

the characteristic coefficients (Aow, Aog, Awo, Awg, Ago, Agw). This procedure (as explained in step 3 27 

of Figure 9) is a kind of inverse problem in which the 3-phase kr are known and the characteristic 28 

coefficients are unknown. Hence, by using an optimization technique (e.g. Genetic Algorithm) 29 

the unknown characteristic coefficients can be estimated.  30 

 31 

 32 

Table 1: Rock properties of Oak experiment. 33 

Core 
Diameter(cm) 

Core Length 
(cm) 

Porosity 
Absolute 

Permeability(md) 

Connate 
water 

saturation 

5 7.5 0.22 200 0.31 

    34 

Table 2: Fluid properties of Oak experiment. 35 

Gas Oil Water Phase 

0.22 0.83 1.00 Density �	
���	� 
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0.0187 1.77 1.06 Viscosity (cp) 

 1 

6- Results and Discussion 2 

Figure 13 and Figure 14 depict the experimental three-phase kr of the first DDI test (G1) against 3 

the tuned relative permeability for oil, water and gas phase. As can be seen there is a good 4 

agreement between the experimental and calculated relative permeabilities of the first DDI. The 5 

characteristic coefficients estimated by this optimization is given in Table 3. The results of this 6 

table depicts that the Aow is greater than the Aog hence the oil is more dominated by the water 7 

phase than by the gas phase. Also, the comparison between Awo and Awg in Table 3 demonstrates 8 

that the more fraction of the water saturation is governed by the oil and thus the gas phase has 9 

less contribution in controlling the flow of the water. Similarly, the comparison between Ago and 10 

Agw substantiate that the gas is more governed by the oil than by the water. 11 

The characteristic coefficients estimated in the previous step were then employed in the 12 

mechanistic model (equations (8), (9) and (10)) for the second and third DDI test (G2 and G3) to 13 

predict 3-phase kr of these experiments. Figure 15 demonstrates three-phase oil relative 14 

permeability versus oil saturation resulted from the second and third DDI experiment (G2 and 15 

G3) compared with those predicted by the mechanistic model. Figure 16 and Figure 17 present 16 

comparison between experimental and predicted three-phase kr for the water and gas, 17 

respectively. Since the water relative permeabilities have low values (order of 10-3 to 10-4) in 18 

Figure 16, this graph is plotted in semi-log scale to better investigate the measured against 19 

predicted krw. As shown in Figure 15  to Figure 17, the mechanistic model can adequately predict 20 

the three-phase relative permeability of experiments (G2 and G3). However, there are slight 21 

difference between measured and predicted relative permeability in Figure 15 to Figure 17 which 22 

may attributed to the uncertainty in the characteristic coefficients (Aij) derived from optimization 23 

technique. For further investigation of the accuracy of the mode, the predicted three-phase kr (oil, 24 

water and gas) by the model is plotted against experimentally measured kr in Figure 18. The data 25 

points in this Figure belong to oil, water and gas relative permeability. As can be seen, the 26 

predicted kr value are reasonably close to the  straight line that highlights the good agreement 27 

between actual and estimated relative permeability. 28 

In order to investigate the accuracy of the mechanistic model against the existing models, the 29 

Oak data was also estimated by the Baker and Stone model. Figure 19 presents the cross-plot for 30 

the Baker and Stone model. As can be seen both the Baker and Stone model significantly 31 

overestimate the actual three-phase relative permeability. 32 

 33 
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 1 
Figure 10: Saturation path of different DDI test (Oak (1989)) under three-phase condition. “G1”, “G2” 2 

and “G3” stand for first, second and third DDI test, respectively.  3 

 4 

 5 
  (b)                                                                                             (b) 6 

Figure 11: Two-phase oil-gas relative permeability versus gas saturation (picture a) and gas-water 7 

relative permeability versus water saturation (picture b) from the Oak experiment (Oak (1989)). 8 

 9 

 10 
Figure 12: Two-phase oil-water relative permeability versus water saturation from the Oak experiment 11 

(Oak (1989)). 12 
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 1 

 2 

    3 
  (a)                                                                                             (b) 4 

Figure 13: Picture (a): Three-phase water relative permeability versus water saturation resulted from the 5 

first DDI (G1) of the Oak experiment (triangle points) and those obtained from the mechanistic model by 6 

tuning the characteristics coefficients (square points). Picture (b): Three-phase oil relative permeability 7 

versus oil saturation resulted from the first DDI (G1) of the Oak experiment (triangle points) and those 8 

obtained from the mechanistic model by tuning the characteristics coefficients (square points). 9 

 10 
Figure 14: Three-phase gas relative permeability versus gas saturation resulted from the first DDI (G1) 11 

of the Oak experiment (triangle points) and those obtained from the mechanistic model by tuning the 12 

characteristics coefficients (square points).  13 

 14 

Table 3: The characteristic coefficients estimated by tuning the 3-phase kr of the G1 experiment. 15 

 16 
 17 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

* Corresponding author. 

E-mail address: hr_shahverdi@cc.iut.ac.ir 

17 

 

 1 

   2 
  (a)                                                                                             (b) 3 

Figure 15: Picture (a): Three-phase oil relative permeability versus oil saturation resulted from the 4 

second DDI (G2) of the Oak experiment and those obtained from the mechanistic model. Picture (b): 5 

Three-phase oil relative permeability versus oil saturation resulted from the third DDI test (G3)of the 6 

Oak experiment and those obtained from the mechanistic model. 7 

 8 

    9 
  (a)                                                                                             (b) 10 

Figure 16: Picture (a): semi-log plot of three-phase water relative permeability versus water saturation 11 

resulted from the second DDI test (G2) of the Oak experiment and those obtained from the mechanistic 12 

model. Picture (b): semi-log plot of three-phase water relative permeability versus water saturation 13 

resulted from the third DDI test (G3) of the Oak experiment and those obtained from the mechanistic 14 

model. 15 

 16 

 17 

   18 
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                                 (a)                                                                                             (b) 1 

Figure 17: Picture (a): Three-phase gas relative permeability versus gas saturation resulted from the 2 

second DDI test (G2) of the Oak experiment and those obtained from the mechanistic model. Picture (b): 3 

Three-phase gas relative permeability versus gas saturation resulted from the third DDI test (G3)of the 4 

Oak experiment and those obtained from the mechanistic model. 5 

 6 

 7 

 8 
Figure 18: Cross-plot of the calculated three-phase relative permeability (by the mechanistic model) 9 

against the measured three-phase kr of the Oak experiment. 10 

 11 

 12 

     13 
Figure 19: Cross-plot of the calculated three-phase relative permeability by Baker model (left picture) 14 

and Stone model (right picture) against the measured three-phase kr of the Oak experiment. 15 

 16 

7- Conclusions: 17 

1. A new mechanistic model is proposed to predict the relative permeability of three 18 

immiscible fluids (i.e. oil, water and gas) in the porous media. This model attempts to 19 

incorporate the impact of the fluid distribution and physical mechanisms of the flow in 20 
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the estimation of the relative permeability. This theory is well-matched with the physical 1 

mechanism underlying the flow at the pore scale which is observed in the glass micro-2 

model experiment. Unlike, the most of the existing model estimates three-phase relative 3 

permeability only by interpolation between two-phase data without considering any 4 

physics of the flow. 5 

2. A new parameter named characteristic coefficient is introduced in the model that reflects 6 

the interaction between fluids and also the fluid distribution.  This parameter depends on 7 

the rock and fluid properties such as surface tension between fluids, wettability and 8 

saturation distribution. 9 

3. The saturation distribution in porous media is controlled by surface and capillary forces 10 

(e.g. wettability and IFT) which all significantly affect three-phase flow parameters (kr). 11 

One of the drawback of the existing models is that, the three-phase kr is calculated just by 12 

averaging between two-phase kr without considering the physical mechanism occurring at 13 

three-phase condition. In fact, the fluid distribution in three-phase flow mechanism might 14 

be totally different from two-phase flow. Hence, the two-phase kr alone cannot accurately 15 

predict the three-phase flow parameters. In the presented model the impact of saturation 16 

distribution is somehow incorporated in estimation of three-phase kr by defining 17 

characteristic coefficient (Aij). This parameter make the three-phase kr model more 18 

flexible compared to the existing models (that are limited between two-phase kr). The 19 

best choice for value of Aij is to determine it from measured three-phase kr in an 20 

optimization process as presented in Fig.9. However, in absence of measured three-phase 21 

kr, the characteristic coefficient can be used as tuning factor in history matching of 22 

reservoir production and pressure. 23 

4. The input two-phase kr data (used in three-phase models) should be selected from an 24 

appropriate displacement process (i.e. drainage, imbibition) which correspond to the 25 

three-phase saturation history.    26 

 27 
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• A new mechanistic model is proposed to predict the relative permeability (or flow 
function) of three immiscible fluids (i.e. oil, water and gas) in the petroleum reservoirs. 

• The model incorporate the impact of the fluid distribution and physical mechanisms of 
the flow in the relative permeability of fluids. 

• The model is supported and validated against the experimentally measured three-phase 
relative permeability data. 


