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Abstract

Binary, layered ices comprising of benzene (C6H6) on water (H2O), on methanol

(CH3OH) and on diethyl ether (CH3CH2OCH2CH3) have been irradiated with 250

eV electrons. Molecular hydrogen (H2) production is observed by quadrupole mass

spectrometry to be competitive with (in the case of H2O), and dominate over (in the

case of the organic substrates), C6H6 desorption. While very preliminary, these results

suggest that chemical change (in the form of dehydrogenation) induced by interaction

of organic-rich icy solids with ionising particle radiation may significantly contribute to

hydrogen recycling in cold dense environments.
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Introduction

Solid water is highly abundant in astrophysical environments being one of the main compo-

nents if not the dominant species in icy mantles coating interstellar dust grains,1 comets2 and

in icy planetary bodies such as Europa3,4 where exposure to ionising radiation is a significant

promoter of physical and chemical change. Laboratory studies have reported on the effect of

electrons, ions and electromagnetic radiation on the physics and the chemistry of H2O ices;

highlighting the species produced and the mechanisms by which these species are formed;5–8

phase changes;9–12 and desorption of neutral or ionic species during the irradiation.13,14

In astronomical environments, H2O is always found in the presence of other species.

Hence, increasing attention is being paid to understanding the processes taking place after

photolysis and radiolysis of other simple pure molecular solids, such as carbon monoxide

(CO), ammonia (NH3), methanol (CH3OH), acetonitrile (CH3CN), and their mixtures with

H2O and each other at cryogenic temperatures.15–25 The results clearly point to a significant

role for ion, electron and photon induced chemistry in the formation of complex organic

molecules (COMs) in these environments.26–30 Illustrative is the work of Mason and co-

workers on electron bombardment of thin CH3OH films at 14 K;31 wherein the reaction

products and their yields seem to be independent of the primary electron energy suggesting

that the observed electron-induced chemistry (EIC) is linked to the production of low energy

secondary excitations within the ice. The authors conclude with the hypothesis that these

secondary excitations might represent a common underpinning for irradiation phenomena.

Layered ices are a convenient system to investigate how the aforementioned excitations

behave in the interfacial or selvedge regions of a thin film in comparison to the bulk.32,33 In
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such regard, Akin et al. have studied the electron-promoted desorption (EPD) of molecular

products from multilayer films of amorphous solid water (ASW) capped with sub-monolayer

quantities of CH3OH at 50 K.34 They have shown that the EIC in H2O films is quenched by

the CH3OH adlayers consistent with reactions occurring at the ASW/vacuum interface rather

than in the bulk. In this context, we have previously studied C6H6 desorption from H2O,

CH3OH and CH3CH2OCH2CH3 surfaces when irradiated with 250 eV electrons35,36 These

systems were chosen in order to understand the role of hydrogen bonding in transporting

electronic excitation within the solid state to the vacuum interface promoting physicochem-

ical change. In essence, we have reduced the degree of hydrogen bonding in the substrate

film and possibly between C6H6 and the substrate by substituting the hydrogen atom (H)

for an alkyl group, while potentially retaining the electronic excited states localised around

the O-atom that might ultimately lead to efficient electron promoted desorption (EPD) of

C6H6 from solid H2O. This is not observed for the organic-based substrates (CH3OH and

CH3CH2OCH2CH3), where EPD is a minor process.

This leads us to ask what other processes are favoured over C6H6 desorption? How do

these processes relate to the different chemical nature of the three binary ices? In order

to assess these open questions, we present electron irradiation experiments of binary ices

comprising sub-monolayer quantities of C6H6 on top of H2O/CH3OH/CH3CH2OCH2CH3

and compare EPD versus our preliminary observations on electron-induced H2 formation.

Experimental

The experiments discussed here were performed in a stainless steel UHV chamber with a base

pressure in the chamber of 2 < 10−10 Torr at room temperature as it has been described in

detail elsewhere.37,38 The substrate is a polished stainless steel disk cooled by thermal contact

with a liquid nitrogen reservoir giving a base temperature of 109 ± 2 K. The substrate was

resistively heated up to 600 K for 15 minutes to remove volatile contaminants before cooling
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prior to conducting experiments each day.

Layered ices were obtained by sequential background deposition using two independent

manifolds for C6H6 (Fluka 99.5% pure), and for de-ionised H2O, CH3OH (Sigma-Aldrich,

HPLC grade 99.9% pure), or CH3CH2OCH2CH3 (Sigma-Aldrich, Chromasolv grade 99.9%

pure). All the chemicals were stored in separate glass vials and were further purified by

several freeze-pump-thaw cycles before use. Exposure is reported in Langmuir (1L = 10−6

Torr s). Film thickness, d, can be estimated from (Eq. 1):

d =
SPt√

2πmkBT

1

ρs
=

ZW t

ρs
(1)

where S is the sticking coefficient assumed to be 1, P is the ion gauge pressure reading

corrected for using appropriate relative sensitivities,36,39–42 t is the time of exposure, kB is

the Boltzmann constant, T is the temperature for the dosed molecules, ZW is the bombard-

ment rate (the incident flux), and m is the molecular mass. The molecular volume density,

ρS, was assumed to be 2.74 × 1022 molecule cm−3, 1.91 × 1022 molecule cm−3, 5.80 × 1021

molecule cm−3 and 8.57 × 1021 molecule cm−3 for H2O, CH3OH, CH3CH2OCH2CH3
a, and

C6H6 respectively.43–48

Desorption of molecular species during electron irradiation at 250 eV was followed by a

crossed-beam source, quadrupole mass spectrometer (VG Microtech PC300D, further modi-

fied by European Spectrometry Systems) with a homemade line-of-sight tube facing the front

of the sample. Sample irradiation was performed using an electron gun (Kimball Physics,

ELG-2) incident at ca. 30◦ with respect to the substrate normal and over an area of 1 mm2.

The resulting average electron flux was (9± 2)× 1013 electron cm−2 s−1. Our previous work

on the same ices,36 consistent with the experimental conditions reported herein, showed that

in all the systems investigated, the solid films have an overall thickness (> 12 nm) greater

than the calculated electron maximum penetration depth (7-9 nm).

aDensity of the liquid phase, Sigma-Aldrich
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Results and discussion

The upper panels of Figure 1 report the electron-promoted desorption (EPD) of C6H6 from

solid H2O, CH3OH and CH3CH2OCH2CH3 surfaces.

(A)

(A') (B') (C')

(B) (C)

Figure 1: Upper panels: C6H6 EPD signal obtained for 5 L (0.2 nm thick in average) of
C6H6 on a thick ice of ASW, in black (A), of CH3OH in red (B), and of CH3CH2OCH2CH3,
in blue (C). Irradiation starts at t=0 s with 250 eV electrons. Lower panels: H2 formation
detected obtained during irradiation of 1 L of C6H6 on a thick ice of ASW (150 L; 18 nm) in
black (A′), of CH3OH (250 L; 19 nm) in red (B′), and of CH3CH2OCH2CH3 (500 L; 30 nm)
in blue (C′). Irradiation starts at t=0 s with 250 eV electrons. The intensities have been
scaled by the same factor used for the plots in the upper panels for ease of comparison

As discussed elsewhere,35,36,49 these results indicate that non-thermal desorption of the

C6H6 adsorbate is not significant from the CH3OH and CH3CH2OCH2CH3 substrates, in

contrast to H2O. It follows that the energy deposited during the irradiation with 250 eV

electrons is directed towards other, perhaps more chemical, outcomes. In fact, we noticed

that, as soon as the irradiation began, the base pressure inside the chamber increased al-

most an order of magnitude for a few minutes. In comparison, the base pressure remained

almost unchanged while irradiating the C6H6/ASW system or relatively thick films of C6H6

(e.g. 50 L) regardless the substrate (data not shown). This observation is incompatible

with EPD of C6H6, given the low signal-to-noise ratio of the data (Figure 1, panels B and

C), and points unequivocally towards different processes occurring on and in CH3OH and
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CH3CH2OCH2CH3 ices. We would like to stress that a detailed understanding of the reactive

processes involved is beyond the scope of this letter. Simply, we wish to address the following

questions: what is the dominant process occurring upon irradiation of C6H6/CH3OH, and

C6H6/CH3CH2OCH2CH3? Furthermore, if this process is also observable for C6H6/ASW,

how does it relate to EPD of C6H6?

Preliminary experiments of controlled and slow sublimation of the irradiated ices are

consistent with the detection of complex organic molecules (COMs) as previously identified

by Kaiser and co-workers.15,16 These species are likely to be formed also during the irradiation

of CH3CH2OCH2CH3 films along with many other products given the high reactivity of

ethers. The numerous studies on non-thermal reactions in condensed phases stimulated by

charged particles and energetic photons, particularly those on solid CH4
50,51 and H2O,8,14,52

provide us with the means to readily identify molecular hydrogen (H2) formation-desorption

as the main process which satisfies two essential requirements: 1) it is relevant to the three

investigated systems; 2) it is in common for all of the binary ices reported in this work.

Therefore, we have repeated the three key experiments in Figure 1 and performed 250

eV electron irradiation experiments on binary layered systems comprised of 1 L of C6H6

adsorbed on thick ices of ASW, CH3OH or CH3CH2OCH2CH3; but this time the aim was

to observe volatile reaction products, particularly H2 which is formed in large quantities in

all the investigated systems. The lower panels of Figure 1 displays the EIC curves obtained

by plotting the mass spectrometer ion signal at m

z
= 2 as a function of irradiation time

for C6H6/ASW, C6H6/CH3OH and C6H6/CH3CH2OCH2CH3. The most striking aspect

is that the average intensity of the recorded traces is several orders of magnitude larger

than the intensity of the EPD curves. This is particularly evident for C6H6/CH3OH and

C6H6/CH3CH2OCH2CH3 where non-thermal desorption of the adsorbed C6H6 is negligible.

The moment irradiation begins, a prompt rise in the recorded traces is noted. The

increase in H2 signal intensity is larger for CH3OH and CH3CH2OCH2CH3 ices and clearly

smaller for ASW in a manner consistent with the qualitative observations on the change in
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the chamber base pressure. Furthermore, it is noticeable from Figure 2 that the curve C′

Figure 2: H2 formation detected obtained during irradiation of 1 L of C6H6 on a thick ice of
(A′) ASW in black (150 L), (B′) CH3OH in red (250 L), and (C′) CH3CH2OCH2CH3 in blue
(500 L). These are the same experiments shown in Figure 1, but over a longer time scale.
Irradiation starts at t=0 s with 250 eV electrons. EIC traces have been offset for clarity with
the dashed lines showing the zero lines for each curve. The intensities have been scaled by
the same factor used in Figure 1 for ease of comparison.

reaches a plateau around 400 s, and will eventually decrease to zero at very long time of

exposure to the beam. In contrast, curve B′ slowly but continuously decays during the whole

experiment. This difference between the EIC traces can be primarily linked to the higher

density of C-H bonds per molecule in the irradiated volume, which can be broken releasing H

atoms. A complementary argument would be that a thicker CH3CH2OCH2CH3 film (ca. 30

nm) will result in a long-lived steady state of H2 formation compared to the thinner CH3OH

ice (ca. 19 nm). More studies are required to understand the different decay behaviour of

C′ and B′ at long irradiation times (e.g. > 1000 s). Pragmatically, it is clear from curves

C′ and B′ in Figure 2 that there is still a significant amount of H2 desorption above 1000 s,
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hence indicating the presence of an icy film not fully depleted in the irradiation area.

Integrating each EIC curve up to 600 s (see Figure 1) allows estimates of the gross yield of

H2 to be made, namely Φ600(H2O), Φ600(CH3OH), and Φ600(CH3CH2OCH2CH3), and permits

a semi-quantitative comparison among the three systems. The ratio between the area ob-

tained for curves B′ and A′, Φ600(CH3OH)/Φ600(H2O), gives a value of 2.9±0.3, while taking

into account the H2 formed in C6H6/CH3CH2OCH2CH3 (curve A′) with respect to the anal-

ogous system with ASW (curve A′), we obtain a ratio Φ600(CH3CH2OCH2CH3)/Φ600(H2O)

of 3.2± 0.4. In conclusion, the EIC trace labelled A′ provides evidence of less H2 formation

while irradiating C6H6/H2O with 250 eV electrons, and appears to be roughly constant in

time after 100 s. In contrast, C′ and B′ display a significant increase of the signal as soon as

the electron beam is turned on, and their exponential decay is still noticeable after 100 s.

In the series experiments represented by Figure 1, irradiation is performed on binary

layered ices with 1 L of C6H6 as adlayer in order to allow direct comparison with the EPD

curves.36 For now we cannot rule out the possibility that the observed EIC traces contain

a contribution from both the underlying substrate and from the C6H6 adlayer. However,

direct dehydrogenation of C6H6 can be discarded because we noted a negligible variation

of the base pressure (data not shown) during the irradiation of large C6H6 doses (e.g. >

20 L). Moreover, if substrate-mediated dehydrogenation of C6H6 were to be important we

would expect to see a noticeably more intense signal for the C′ trace than for B′ curve

in the first moments of irradiation because of the larger contact area at the interface for

C6H6/CH3CH2OCH2CH3 than for C6H6/CH3OH.53 Therefore, we think that the EIC signal

displayed in Figure 1 refers to H2 production mainly, if not almost exclusively, from the H2O,

CH3OH and CH3CH2OCH2CH3 films.

The origins of H2 from ASW is well-described in our recent publications35 and rests

on the extensive work of Kimmel and co-workers.54 Briefly, electronic excitations of the O-

atom lying in the 8.7-14.5 eV range55,56 are compatible with the energy distribution of the

secondary electrons produced during the irradiation and result in the formation of excitons in
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the ASW film. These long-lived excitons migrate to the C6H6 (and vacuum) interface via the

hydrogen-bonding network in the solid H2O resulting in electronically excited H2O molecules.

These, at the C6H6 interface, (i) could promote H2O desorption or bond cleavage leading

to H2 formation and desorption or (ii) could transfer the excitation to the hydrogen-bonded

aromatic ring enabling its desorption.

In contrast, the replacement of the H-atoms in the H2O molecule with alkyl groups, which

contain C-atom(s), has a two-fold impact. The degree of H-bonding is significantly reduced

in the solid underlying the C6H6 which will hinder the excitation transfer from the bulk to

the interfaces where desorption can be promoted. The presence the C-atom(s) introduces

another electron-rich centre in the molecule that lowers the ionisation potential35,36,57,58 by

adding an additional spectrum of electronic excitations. This might favour other processes

over desorption, channelling the secondary electronic excitations towards reactive routes.

This is consistent with 5 keV electron irradiation experiments of pure methane (CH4) ices at

10 K which clearly show that the predominant reaction pathway is the homolytic cleavage of

the C-H bond.50 The H atoms, free to diffuse in the ice matrix, will subsequently combine to

form H2 which then desorbs. Therefore, the EIC curves in Figure 1, labelled as C′ and B′ are

consistent with the idea that electrons will mainly promote dehydrogenation over physical

processes such as EPD for organic-based ices.

It is important to stress that the observed EIC traces are the result of several competitive

processes taking place in parallel during the electron irradiation. Hence, their kinetics will

be identical. Further work is clearly required to address more fully the nature of the gas

phase products from energetic processing of especially ices rich in organic material and to

investigate the effect of the ice temperature on the observed processes.
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Conclusions, implications and outlooks

EPD of C6H6 from solid H2O, CH3OH and CH3CH2OCH2CH3 surfaces and the formation

of H2 in systems comprising a C6H6 adlayer on solid H2O, CH3OH and CH3CH2OCH2CH3

have been investigated. We have demonstrated that the C6H6 EPD channel is significantly

decreased while the H2 EIC channel is largely enhanced when ices of carbon-bearing molecules

are employed during irradiation with 250 eV electrons. The observation that C6H6 desorption

is less intense while H2 formation is enhanced in the absence of H2O is rather noticeable

even given the similarities between the C6H6/CH3OH and C6H6/ASW ices.53 H2 formation

and desorption is a common process to the three systems but it is clearly more significant

for organic-based ices than in ASW. Ultimately, this striking difference can be addressed by

considering the presence of excitations localised around the C-atom versus those involving the

O-atom with the former favouring reactive routes. Future studies will investigate the nature

of the dominant processes occurring during the electron irradiation of organic molecules and

how these compare to solid H2O. This work (i) emphasizes the need to fully understand the

distribution of products (branching ratios) of photon- and charged-particle-induced physics

and chemistry, (ii) and highlights the importance of looking at the nature of the species

leaving the surface and not simply at what remains on and in the ice if we are to incorporate

these processes into astrochemical models.

Consistent with the radiolysis of liquids,59 if it is true that H/H2 production is likely to

be a major process in photolysis and radiolysis of both simple (e.g. water-rich) and complex

ices (e.g. containing COMs), then it is tempting to question to what extent the formation

and desorption of H/H2 can contribute to hydrogen recycling in various environments. For

example, early in dense cloud formation, gaseous H is initially depleted on to grains that

catalyse H2O, NH3, and CH4 formation. Irradiation of these molecules as icy mantles accrue

would promote EIC which on one hand yields radicals and enriches the ice in COMs, but

on the other seems to return H2 to the gas phase, leaving residues that will potentially

become increasingly unsaturated and with time probably aromatic. Further experiments, at
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temperatures as low as 10 K, are required to reinforce these intriguing speculations.
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