
Bridging Curry and Church’s typing style

Fairouz Kamareddine1, Jonathan P. Seldin2 and J.B. Wells1

1 School of Maths and Computer Sc., Heriot-Watt Univ., Edinburgh, UK
2 Maths and Computer Sc., Univ. of lethbridge, Canada

Abstract. There are two versions of type assignment in the λ-calculus:
Church-style, in which the type of each variable is fixed, and Curry-
style (also called “domain free”), in which it is not. As an example, in
Church-style typing, λx:A.x is the identity function on type A, and it has
type A → A but not B → B for a type B different from A. In Curry-
style typing, λx.x is a general identity function with type C → C for
every type C. In this paper, we will show how to interpret in a Curry-
style system every Pure Type System (PTS) in the Church-style without
losing any typing information. We will also prove a kind of conservative
extension result for this interpretation, a result which implies that for
most consistent PTSs of the Church-style, the corresponding Curry-style
system is consistent. We will then show how to interpret in a system of
the Church-style (a modified PTS, stronger than a PTS) every PTS-like
system in the Curry style.3

Keywords: Church-style typing, Curry-style typing, domain-full typing,
domain-free typing

1 Introduction

There are two main styles of type theory in λ -calculus: the Church-style, in
which each abstraction indicates the type of the variable, as in

λx:A.M,

and the Curry-style, in which no such type is given:

λx.M.

These two styles of typing are often called the domain-full and the domain-free
styles respectively. These styles are compared and discussed in [3].

3 This work is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/ or send a letter to Cre-
ative Commons, PO Box 1866, Mountain View, CA 94042, USA.
The journal publisher’s ”version of record” can be found at http://dx.doi.org/10.
1016/j.jal.2016.05.008.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heriot Watt Pure

https://core.ac.uk/display/287541919?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

Remark 1 Barthe and Sørensen [3] distinguish between domain-free systems,
which they regard as Church-style systems with the types of the bound variables
omitted, and what they think of as the Curry view, in which typing rules assign
types to terms that already exist in the pure λ-calculus. In this they are follow-
ing Barendregt [2, Definition 4.1.7], who identifies as the Curry-version of λ2 a
system in which the rules for ∀ are given as follows:

(∀-elimination)
Γ ⊢M : (∀α.σ)

Γ ⊢M : [τ/α]σ

(∀-introduction)
Γ ⊢M : σ

Γ ⊢M : (∀α.σ)
α 6∈ FV(Γ )

But these two rules seem to be closer to the ideas of the intersection type
systems than to any of the systems that interested Curry. As should be clear
from [7, Chapter 14], Curry was basically interested in the system usually called
λ →, and the basic characteristic of his version is that λx.x in λ-calculus and I

in a system of combinators can have any type of the form α → α, which Curry
wrote Fαα. This is what Curry called functionality. He also suggested what he
called generalized functionality, in which the constant F was replaced by G,
where Gαβ is the type we now write (Πx:α.βx). Seldin treated a basic form of
generalized functionality in Curry’s style in his paper [20]. On the other hand,
Church’s typing is probably best exemplified by his simple type theory of [5],
which is characterized by the presence of the type of each bound variable, as in
λxα .M . Hence, to be historically accurate, it is better to identify the Curry-style
with domain-free type systems.

In a Curry-style system, there are terms like λy.yy that have no types. But
there is a sense in which this is also true in a Church-style system: λy:A.yy is a
perfectly good pseudoterm of a Church-style system, but it will not have a type
in many of the usual systems. Perhaps the vocabulary used may disguise the
similarity here: a pseudoterm in a Church-style system corresponds to a term in
a Curry-style system.

There is one standard interpretation of a Church-style system in a corre-
sponding Curry-style system: the function Erase, which simply deletes the do-
mains from a formula, so that

Erase(λx:A.M) ≡ λx.M.

Erase has been used extensively to relate Church-style systems and Curry-style
systems. For example, Erase and modifications of Erase are used by Steffen van
Bakel et al [22] to compare Church-style PTSs (which they call typed systems)
and Curry-style PTSs (which they call type assignment systems). But using
Erase to interpret a Church-style PTS in a Curry-style PTS causes some type
information to be lost. One might think that this information can be restored
from the type (Πx:A.B) of an abstraction term (λx.M) by mapping this to
(λx:A.M). But as is shown in [22, Example 3.5, Theorem 3.6], this is too simple
and may not work properly for some systems.



3

For these reasons, we think there is a need for a method of relating the
Church-style typing and the Curry-style typing that does not lose this type
information.

In this paper, we propose to show how to interpret a system of each style
in an appropriate system of the other without this kind of loss of typing in-
formation. In one direction, the direction from Church-style to Curry-style, the
interpretation is defined by allowing an abstraction of the form (λx:A.M) to be
an abbreviation for a term of the Curry-style system, so the information about
the type of the bound variable in the λ-abstraction is not lost. This interpreta-
tion extends previous work with Garrel Pottinger [18],4 which carried through
the interpretation for three systems from the Barendregt cube: λ → [5], λ2 [8,
19], λC [6], and its extension, the system ECC [14, 15].

In the other direction, the Church-style system into which the Curry-style
PTS is interpreted is not a PTS, but is obtained from a PTS by the addition
of a rule. The idea here is to provide a dummy type A to be the “domain”
of a Curry-style abstraction term (λx.M), so that the Church-style abstraction
which interprets this Curry-style abstraction is (λx:A.M). This dummy type A

does not have any sort as its type, so it can only play a very limited role in the
Church-style system. But to make the interpretation work a rule must be added
to the Church-style PTS to allow an inference from Γ ⊢ (λx:B .M) : (Πx:B.C) to
Γ ⊢ (λx:A.M) : (Πx:B.C). This rule corresponds in a sense to the fact that in
the Curry-style system, the term interpreting (λx:B.M) β-reduces to (λx.M).

An earlier version of this paper, which was never published, is [21].
This article is divided as follows:

– In Section 2, we introduce the type free λ-calculus in both Church’s and
Curry’s notations (systems T and Tc) and we introduce 3 extra systems (Tc
+ Label, Tl and T ′) that will be used to study the interpretations between
T and Tc with minimal loss of information. Reductions are introduced and
shown to be confluent, and interpretations are given to establish bijective
correspondences.

– In Section 3 we introduce typings into the various systems and establish
important properties such as Generation, Subject Reduction, and Preserva-
tion of Types. The systems introduced include PTSs [2], DFPTSs [3] which
cannot support faithful translations between Church’s and Curry’s notation,
and 3 systems that support faithful translations: L-complete DFPTSs, lPTSs
and l′PTSs.

– In Section 4 we show that DFPTSs do not faithfully capture Church’s typing.
– In Section 5 we study the conditions needed for a DFPTS to be able to

capture Church’s typing in Tc + Label. We find that these DFPTSs have to
be L-complete and that although numerous L-complete PTSs exist, a PTS
in Church’s style cannot be interpreted in a DFPTS (Curry’s style) if the
original PTS did not obey these L-completeness conditions.

– In Section 6 we explain why lPTSs (which interpret Tl) are better for cap-
turing Church’s typing since they require no restrictions on the type system.

4 But the reader will not need knowledge of [18] to understand the present paper.



4

– In Section 7 we give the l′PTSs which require restrictions but not as much
as the DFPTSs.

– In Section 8 we study the unicity of types, classification and consistency
lemmas.

– In Section 9 we give the interpretation in the reverse direction.
– In Section 10 we conclude and discuss future work/open questions.

Terms r-reduction ⊢r Rules Name

T (λx:A.B)C →β B[x := C] ⊢β of Figures 2 and 3 PTSs [2]

Tc (λx.B)C →β B[x := C] ⊢β of Figures 2 and 4 DFPTSs [3]

[T ]c ⊂ Tc A =β B
Lem 10
=⇒ [A]c =β [B]c Γ ⊢S

β A : B
Lem 25
=⇒ [Γ ]c ⊢S

β
[A]c : [B]c

[Γ ]c ⊢S

β
[A]c : [B]c

Lem 25

6=⇒ Γ ⊢S

β A : B

Tc + Label β: (λx.B)C →β B[x := C] ⊢β of Figures 2 and 4 DFPTS is

Label ≡ L-complete
λuzx.zx Label must be typeable

[T ]L ⊂ Tc Γ ⊢S

β A : B
Lem 39
⇐⇒ [Γ ]L ⊢S

β
[A]L : [B]L

Tl β = l ∪ β ⊢β of Figures 2, 4 and 5 lPTSs

where lA(λx.b) →l λx.b

[T ]l ⊂ Tl Γ ⊢S

β A : B
Lem 40
⇐⇒ [Γ ]l ⊢S

β [A]l : [B]l

T ′ β′ = l′ ∪ β ⊢β′ of Figures 2, 4 and 6 l′PTSs
where l′A(λx.b) →l′

λx.b l′-complete

[T ]′ ⊂ T ′ Γ ⊢S

β A : B
Lem 42
⇐⇒ [Γ ]′ ⊢S

β′ [A]′ : [B]′

−Ch : ⊢
βA of Figures 2, 3 and 10

Tc 7→ T Γ ⊢S

β
M : B

Lem 54
⇐⇒ ΓCh ⊢S

βA
MCh : BCh

Fig. 1. Systems studied in this paper

The new interpretations and the various results are summarised in Figure 1.
They differ in that:

– For the first, the syntax of the λ-calculus (terms in Tc) is not extended but
for this approach to work, the term Label ≡ λuzx.zx needs to be typed and
for this, we need to impose L-completeness conditions on the specifications
by adding extra axioms in A and rules in R.

– In the second approach the syntax is extended with terms of the form lA(λx.b)
and this does not require any extra axioms or rules. This is in line with [11,
12] where it was argued that for some functions (here the term l), it is enough
to consider them with their full list of arguments (here A and (λx.B)) because



5

these functions are never used without their full arguments so why put many
conditions on the typing systems to type these functions on their own. In this
case, we do not need any new axioms/rules to type lA(λx.B) whereas for the
first approach, we needed to impose L-completeness in order to type Label

when in fact, we only need Label with its arguments A and (λx.B). By adding
extra axioms and rules, we go up in the hierarchy of types and hence lose nice
properties such as decidability.

– The third approach attempts to study the middle grounds between the first
and second. Here, we extend the syntax with terms of the form l′A and in
order to type l′A(λx.B), we need to also type l′A. To do this, new axioms
and rules need to be added but less than those needed for the first approach
(compare L-completeness with l′-completeness).

2 Notions of reduction in Church’s and Curry’s notations

The basic idea of the interpretation from the Church syntax to that of Curry is
due to Garrel Pottinger [16, §9], who proposed using a constant Label so that
in the Curry-style syntax

(λx:A.M)

is an abbreviation for
LabelA(λx.M).

(Pottinger used “φ” for “Label”. ) By the analogy with β-reduction, we will want

LabelA(λx.M)N →→M [x := N ].

This suggests that Label should have the reduction rule

Label UZX →→ ZX,

as proposed by Pottinger in [16, §9]. This would suggest, in turn, that we define
Label as follows:

Label ≡ λuzx.zx.

However, as we shall see, there are problems typing this definition. So we shall
also look at some alternatives.

The next definition introduces a number of sets of terms. T is the set of terms
written à la Church while Tc is the set of terms written à la Curry. Terms in Tl
and Tl′ are also terms written à la Curry, but instead of using Label to save the
type A of x in λx:A.B, we let the built-in l and l′ do the saving work. For each
set of terms we introduce the sets of terms with one hole which will be used in
the proofs.

Definition 2 [Terms and translations]
1. We let S be a set of sorts and V a countably infinite set of variables.

We let s, s′, s1, etc. range over S and x, y, z, x1, u, v, etc. range V .
We assume that S ∩ V = ∅.



6

2. We define the set of terms T by: T ::= S | V | λV:T .T |ΠV:T .T | T T .
We define the set C of T -terms with one hole by:
C ::= ⊠ | λV:C .T | λV:T .C |ΠV:C .T |ΠV:T .C | CT | T C.

3. We define the set of terms Tc by: Tc ::= S | V | λV .Tc |ΠV:Tc
.Tc | TcTc.

We denote the term λz.λx.λy.xy of Tc by Label.
We define the set Cc of Tc-terms with one hole by:
Cc ::= ⊠ | λV .Cc |ΠV:Cc

.Tc |ΠV:Tc
.Cc | CcTc | TcCc.

4. We define the set of terms Tl by: Tl ::= S | V | λV .Tl |ΠV:Tl
.Tl | TlTl | lTlTl.

We define the set Cl of Tl-terms with one hole by:
Cl ::= ⊠ | λV .Cl |ΠV:Cl

.Tl |ΠV:Tl
.Cl | ClTl | TlCl | lCl(λV .Tl) | lTl(λV .Cl).

5. We define the set of terms T ′ by: T ′ ::= S | V | λV .T
′ |ΠV:T ′ .T ′ | T ′T ′ | l′T ′.

We define the set C′ of T ′-terms with one hole by:
C′ ::= ⊠ | λV .C′ |ΠV:C′ .T ′ |ΠV:T ′ .C′ | C′T ′ | T ′C′ | l′C′.

6. We take A, A1, A2, B, a, b, t, M , etc. to range over T , Tc, Tl and T ′.
We take C, C1, C’ etc. to range over C, Cc, Cl and C′.

7. We define translation functions [ ]c, [ ]L, [ ]l and [ ]′ from T resp. to Tc, Tc, Tl
and T ′ as follows:
– [s]c ≡ s, [x]c ≡ x, [AB]c ≡ [A]c [B]c, [Πx:A.B]c ≡ Πx:[A]c .[B]c,

[λx:A.B]c ≡ λx.[B]c.
– [s]L ≡ s, [x]L ≡ x, [AB]L ≡ [A]L [B]L, [Πx:A.B]L ≡ Πx:[A]L .[B]L,

[λx:A.B]L ≡ Label[A]L(λx.[B]L).
– [s]l ≡ s, [x]l ≡ x, [AB]l ≡ [A]l [B]l, [Πx:A.B]l ≡ Πx:[A]l .[B]l,

[λx:A.B]l ≡ l[A]l(λx.[B]l).
– [s]′ ≡ s, [x]′ ≡ x, [AB]′ ≡ [A]′ [B]′, [Πx:A.B]′ ≡ Πx:[A]′ .[B]′,

[λx:A.B]′ ≡ l′[A]′(λx.[B]′).
8. For A ∈ Tl, we define A◦ ∈ T ′ by:

s◦ ≡ s, x◦ ≡ x, (AB)◦ ≡ A◦ B◦, (Πx:A.B)◦ ≡ Πx:A◦ .B◦, (λx.B)◦ ≡ λx.B
◦,

(lA(λx.B))◦ ≡ l′A◦(λx.B
◦).

9. For C ∈ C, we define [C]c, [C]L, [C]l and [C]′ in the obvious way. Similarly, if
C ∈ Cl, we define C◦ in the obvious way.

10. LetM ∈ {T , Tc, Tl, T ′}. If C is anM-term with one hole and a is anM-term,
we define C[a] to be theM-term resulting from replacing ⊠ by a in C.

Note again in the translations given above, the [ ]c translation λx.B
′ of the

Church term λx:A.B loses the type A. The [ ]L translation keeps the type since
[λx:A.B]L ≡ Label[A]Lλx.[B]L. Similarly, the translations [ ]l and [ ]′ keep the
type of the variable x.

Notation 3 We assume familiarity with the notion of compatibility. We use
fv(A) to denote the free variables of A (defined as usual), and A[x := B] to
denote the substitution of all the free occurrences of x in A by B (again defined as
usual). In particular, fv(lAB) = fv(A)∪fv(B), fv(λx:A.B) = fv(A)∪fv(B)\
{x}, and lAC[x := B] ≡ lA[x := B]C[x := B]. Note that as usual, we take terms
to be equivalent up to variable renaming and let ≡ denote syntactic equality [1].
We assume the Barendregt convention (BC) where names of bound variables
are chosen to differ from free ones in a term and where different abstraction



7

operators bind different variables. Hence, for example, we write (Πy:A.y)x instead
of (Πx:A.x)x and Πx:A.Πy:B.C instead of Πx:A.Πx:B.C. We also assume (BC)
for contexts and typings so that for example, if Γ ⊢ Πx:A.B : C then x will not
occur in Γ . For π ∈ {λ,Π}, we write πxm:Am

. . . πxn:An
.A as πi:m..n

xi:Ai
.A. We also

write λxm
. . . λxn

.A as λi:m..n
xi

.A.
As usual, if x 6∈ fv(B) then we write Πx:A.B as A −→ B.

The next lemma connects terms and their translations.

Lemma 4
1. If A is free of any λ then [A]L ≡ [A]l ≡ [A]

′

≡ [A]c ≡ A.
2. Let A ∈ T . We have: fv([A]c) ⊆ fv(A) = fv

(

[A]L
)

= fv

(

[A]l
)

= fv([A]′).
3. Let A ∈ Tl. We have: fv(A) = fv(A◦).
4. Let A,B ∈ T . We have: [A]c[x := [B]c] ≡ [A[x := B]]c, [A]L[x := [B]L] ≡

[A[x := B]]L, [A]l[x := [B]l] ≡ [A[x := B]]l and [A]′[x := [B]′] ≡ [A[x := B]]′.
5. Let A,B ∈ Tl. We have: A[x := B]◦ ≡ A◦[x := B◦].
6. If [A]L ≡ [B]L or [A]l ≡ [B]l or [A]′ ≡ [B]′ then A ≡ B.
7. It is not the case that [A]c ≡ [B]c implies A ≡ B.
8. Let C ∈ C and A ∈ T . We have: [C[A]]c ≡ [C]c[[A]c], [C[A]]L ≡ [C]L[[A]L],

[C[A]]l ≡ [C]l[[A]l], and [C[A]]′ ≡ [C]′[[A]′].
9. Let C ∈ Cl and A ∈ Tl. We have: (C[A])◦ ≡ C◦[A◦].

10. If [C1]
L ≡ [C2]

L or [C1]
l ≡ [C2]

l or [C1]
′ ≡ [C2]

′ then C1 ≡ C2.
11. It is not the case that [C1]

c ≡ [C2]
c implies C1 ≡ C2.

Proof. All of 1..6 are by induction on the structure of A. We only do the case A ≡
λx:C .D of [A]L ≡ [B]L of 6. Since A ≡ λx:C .D then [A]L ≡ Label[C]L(λx.[D]L) ≡
[B]L, hence B ≡ λx:E .F where [E]L ≡ [C]L and [F ]L ≡ [D]L. By IH, B ≡
λx:C .D ≡ A. As for 7., let A ≡ λx:y.x and B ≡ λx:z.x where y 6= z. It is obvious
that [A]c ≡ λx.x ≡ [B]c but A 6≡ B.
8 and 9 are by induction on C.
9 is by induction on C1.
For 11, use a similar counterexample to that of 7. ⊠

Next we introduce the various notions of reductions used in this paper.

Definition 5 [Reductions]
– β-reduction →β is the compatible closure of (λx:A.B)C →β B[x := C].
– β-reduction →β is the compatible closure of (λx.B)C →β B[x := C].
– l-reduction →l is the compatible closure of lA(λx.b)→l λx.b.
– l′-reduction →l′ is the compatible closure of l′A(λx.b)→l′ λx.b.
– We define the union of reduction relations as usual. For example, ββl-reduction
→βl, is the union of →β and →l. We speak of β-reduction and use →β to

denote→βl. We also speak of β′-reduction and use→β′ to denote→
βl′ . Note

that β is defined on T ; β is defined on Tc, Tl and T ′; l and β are defined on
Tl, and l′ and β′ are defined on T ′.

– We write A⇒lβ B when A ≡ C[lE(λx.b)a]→lC[(λx.b)a]→βC[b[x := a]] ≡ B.



8

– We write A⇒l′β B when A ≡ C[l′E(λx.b)a]→l′C[(λx.b)a]→βC[b[x := a]] ≡

B.
– Let r ∈ {β, β, l, l′, β, β′}. We define r-redexes in the usual way. Moreover:
• →→r is the reflexive transitive closure of →r and =r is the equivalence

closure of →r. We write
+
→→r to denote one or more steps of r-reduction.

We write
≤n
→→r (resp.

n
→→r) to denote at most (resp. exactly) n steps of

r-reduction.
• If A→r B (resp. A→→r B), we also write B r← A (resp. B r←← A).
• We say that A is strongly normalising with respect to →r (we use the
notation SN→r

(A)) if there are no infinite →r-reductions starting at A.
• We say that A is in r-normal form, notation NF→r

(A), if there is no B
such that A→r B.
• We use nfr(A) to refer to the r-normal form of A if it exists.
• We say that A is r-weakly normalising, notation WN→r

(A), if A →→r B
where NF→r

(B).

Remark 6 [Label, l, l′ save the type of a variable in a Church expression]
We introduced Label to be used as a type saver when we translate a Church
expression λy:C .d whose type is Πy:C .D into a Curry expression. Recall that
[λy:C .d]

L ≡ LabelA(λy .b) where [C]L ≡ A, [d]L ≡ b. Hence the type of y of
the Church expression λy:C .d is protected in its translation into a Curry expres-
sion LabelA(λy .b). Similarly, l and l′ save the type of a variable in a Church
expression: [λy:C .d]

l ≡ l[C]l([λy .d]
l) and [λy:C .d]

′ ≡ l′[C]′([λy .d]).

Note that we only use the reduction of LabelAB to B when B is an abstract
λy.b, and in this case this reduction holds in λβ-reduction.

The next lemma establishes the metasubstitution property for all our systems
and shows that =r is closed under substitution.

Lemma 7 Let (E , r) ∈ {(T , β), (Tc, β), (Tl, β), (T ′, β′)}. In (E , r) we have:
1. A[x := B][y := C] ≡ A[y := C][x := B[y := C]].
2. If B =r C then A[x := B] =r A[x := C].
3. If A =r B and C =r D then A[x := C] =r B[x := D].

Proof. 1 and 2 are by induction on the structure of A. 3 is by induction on
A =r B using 1 and 2. ⊠

Theorem 8 (Church-Rosser (CR) for →β/β/l/l′/β/β′) Let r ∈ {β, β, l, l′, β, β′}.

If B1 r←← A→→r B2 then there exists C such that B1 →→r C r←← B2.

Proof. For β and β, see [2]. Let (E , r) ∈ {(Tc, β), (Tl, l), (T ′, l′), (Tl, β), (T ′, β′)}.
(E , r) is an ortogonal higher order term rewriting system (i.e. left linear since no
variable occurs twice on the lefthand side in the l and l′ rules, and all critical
pairs are trivial) and hence r is Church-Rosser (see page 644 of [13]). ⊠

Corollary 9 For r ∈ {β, β, l, l′, β, β′}, r-normal forms are unique.



9

The next lemma is needed to show the preservation and closure of =r for r ∈
{β, β, β, β′} under the relevant translations.

Lemma 10 Let A,B ∈ T and A1, B1 ∈ Tl.
1. ([A]l)◦ ≡ [A]′.
2. (a) If A◦

1 →β′ D then there is an E such that D ≡ E◦ and A1 →β E.

(b) Hence, if A◦
1 →→β′ D then there is an E such that D ≡ E◦ and A1 →→β E.

3. If A→β B then:

(a) [A]c
≤1
→→β [B]c and [A]L

+
→→β [B]L.

(b) [A]l ⇒lβ [B]l and hence [A]l
+
→→β [B]l.

(c) [A]′ ⇒l′β [B]′ and hence [A]′
+
→→β′ [B]′.

4. If A =β B then [A]c =β [B]c, [A]L =β [B]L, [A]l =β [B]l and [A]′ =β′ [B]′.
5. If A1 →→β B1 then A◦

1 →→β′ B◦
1 .

6. If A1 =β B1 then A◦
1 =β′ B◦

1 .

7. [A]′ =β′ [B]′ iff [A]l =β [B]l.

8. If [A]l ⇒lβ B1 then A ≡ C[(λx:E .F )a]→β C[F [x := a]] and B1 ≡ [C[F [x := a]]]l.

Proof. 1. By induction on the structure of A ∈ T .
2 (a) By induction on the structure of A1 ∈ Tl. (b) by induction on the length
of the derivation A◦

1 →→β′ D.
3 (a), (b) and (c) are by induction on the derivation A→β B using lemma 4.
4. is by Church-Rosser of β and 3 (a), (b) and (c) above.
5. First show by induction on A1 →β B1 that A1 →β B1 gives A◦

1 →β′ B◦
1 , then

use induction on the length of the derivation A1 →→β B1.
6. is by Church-Rosser of β and 4 above.

7. If [A]l =β [B]l then by 6 above, ([A]l)◦ =β′ ([B]l)◦ and by 1 above, [A]′ =β′

[B]′. As for the other direction, if [A]′ =β′ [B]′ then by 1 above, ([A]l)◦ =β′

([B]l)◦ and hence by CR of β′, there is a C such that ([A]l)◦ →→β′ C β′←← ([B]l)◦.
By 2 above, there are C1, C2 such that C◦

1 ≡ C ≡ C◦
2 (hence C1 ≡ C2) and

[A]l →→β C1 β←← [B]l. Hence [A]l =β [B]l.
8. By induction on A. ⊠

Definition 11

– Let β∗ be the least compatible relation on Tl closed under (lA(λx.B))C →β∗

B[x := C], and define →→β∗ and =β∗ as usual.
– Let [T ]l = {[A]l|A ∈ T } ⊂ Tl.

Lemma 12

1. If A→β∗ B then A→→β B.

2. If [A]l →→β∗ B then B ≡ [C]l where A→→β C.
3. If A→→β B then [A]l →→β∗ [B]l.
4. β∗ is CR on [T ]l.
5. A =β B iff [A]l =β∗ [B]l.



10

Proof. 1. Easy noting that a β∗-step is a simultaneous application of an l-step
with a β-step.
2. First show by induction on the derivation of [A]l →β∗ B that if [A]l →β∗ B
then B ≡ [C]l where A→β C. Then, show the lemma by induction on the length
of the derivation [A]l →→β∗ B.
3. First show by induction on the derivation of A →β B that if A →β B then
[A]l →β∗ [B]l. Then, show the lemma by induction on the length of the derivation
A→→β B.
4. If B1 β∗←← [A]l →→β∗ B2 then by 2, there are C1, C2 such that B1 ≡ [C1]

l,
B2 ≡ [C2]

l, and C1 β←← A →→β C2. Hence by CR (β), there is a C such that
C1 →→β C β←← C2 and by 3, B1 →→β∗ [C]l β∗←← B2.
5. If A =β B then by CR (β), there is a C such that A→→β C β←← B and by 3,
[A]l →→β∗ [C]l β∗←← [B]l and hence [A]l =β∗ [B]l.
If [A]l =β∗ [B]l then similar to above proof using 2 instead of 3. ⊠

3 Typing

In this section we introduce the type systems that will be studied in this paper
and that will be used to interpret Church’s style into Curry’s style of typing.
These systems include the PTSs of [2] which are in Church’s style, the DFPTSs
of [3] which are in Curry’s style, the L-complete DFPTSs, the lPTSs and the
l′PTSs. For all these systems, we establish the necessary properties.

Definition 13 [Declarations, contexts, ⊆]
1. A declaration d is of the form x : A. We define var(d) ≡ x, type(d) ≡ A, and

fv(d) = fv(A). We let d, d′, d1, . . . range over declarations.
2. A context Γ is a concatenation of declarations d1, d2, · · · , dn such that if i 6= j

then var(di) 6≡ var(dj). We define dom (Γ ) = {var(d) | d ∈ Γ} and use 〈〉 to
denote the empty context. We let Γ,∆, Γ ′, Γ1, . . . range over contexts.

3. Assume Γ is a context such that x 6∈ dom (Γ ). We define the substitution of
A for x on Γ , denoted Γ [x := A], inductively as follows:
〈〉[x := A] ≡ 〈〉, and (Γ ′, y : B)[x := A] ≡ Γ ′[x := A], y : B[x := A].

4. We define ⊆ between contexts as the least reflexive transitive relation closed
under: Γ,∆ ⊆ Γ, d,∆.

For r ∈ {β, β, l, β, l′, β′}, we extend r-reduction to contexts in the usual way.
Similarly, we extend the translations in Definition 2 to contexts as follows:

[〈〉]c ≡ 〈〉 [Γ, x : A]c ≡ [Γ ]c, x : [A]c.
[〈〉]l ≡ 〈〉 [Γ, x : A]l ≡ [Γ, x : [A]]l.

[〈〉]l
′
≡ 〈〉 [Γ, x : A]l

′
≡ [Γ, x : [A]]l

′
.

〈〉◦ ≡ 〈〉 (Γ, x : A)◦ ≡ Γ ◦, x : A◦.

Definition 14 [Type Systems]

– A specification S is a triple (S,A,R) such that S is a set of sorts, A ⊆ S×S
is a set of axioms and R ⊆ S × S × S is a set of rules. When no confusion
occurs with an axiom, a rule of the form (s1, s2, s2) is written as (s1, s2).



11

• A sort s is said to be a top sort if there is no (s, s′) ∈ A. The set of top
sorts is denoted by ST .
• (s1, s2) is l

′-complete if there are s3, s4 such that (s1, s4, s2), (s2, s2, s3) ∈
R.
• A specification S is said to be functional (also singly-sorted) if:

1. If (s, s′) ∈ A and (s, s′′) ∈ A then s′ = s′′.
2. If (s1, s2, s3) ∈ R and (s1, s2, s

′
3) ∈ R then s3 = s′3.

• A specification S is said to be injective if:
1. If (s′, s) ∈ A and (s′′, s) ∈ A then s′ = s′′.
2. If (s1, s2, s3) ∈ R and (s1, s

′
2, s3) ∈ R then s2 = s′2.

– Let S = (S,A,R) be a specification. We define:
• ⊢β to be the typing relation given by the rules of Figures 2 and 3.
• ⊢β to be the typing relation given by the rules of Figures 2 and 4.
• ⊢β to be the typing relation given by the rules of Figures 2, 4 and 5.
• ⊢β′ to be the typing relation given by the rules of Figures 2, 4 and 6.
• When ⊢r is a typing relation on a specification S, we write ⊢Sr to em-
phasize the dependability of type derivation on S.
• The Pure Type System (PTS) induced by S is the tuple λS = (T , β,⊢Sβ ).
• The Domain Free Pure Type System (DFPTS) induced by S is the tuple
λS = (Tc, β,⊢Sβ ).

• The l-Labeled Pure Type System (lPTS) induced by S is the tuple λS =
(Tl, β,⊢Sβ ).

• The l′-Labeled Pure Type System (l′PTS) induced by S is the tuple
λ̃S = (T ′, β′,⊢Sβ′).

(axiom) 〈〉 ⊢r s1 : s2 (s1, s2) ∈ A

(start)
Γ ⊢r A : s x 6∈ dom (Γ )

Γ, x:A ⊢r x : A

(weak)
Γ ⊢r A : B Γ ⊢r C : s x 6∈ dom (Γ )

Γ, x:C ⊢r A : B

(Π)
Γ ⊢r A : s1 Γ, x:A ⊢r B : s2 (s1, s2, s3) ∈ R

Γ ⊢r Πx:A.B : s3

(convr)
Γ ⊢r A : B Γ ⊢r B

′ : s B =r B
′

Γ ⊢r A : B′

(appl)
Γ ⊢r F : Πx:A.B Γ ⊢r a : A

Γ ⊢r Fa : B[x:=a]

Fig. 2. The common ⊢r typing rules

As special cases of PTSs, we use the eight powerful systems of Barendregt’s
β-cube. In the β-cube of [2], eight well-known type systems are given in a uni-
form way. The weakest system is Church’s simply typed λ-calculus λ→ [5], and



12

(λ)
Γ, x:A ⊢r b : B Γ ⊢r Πx:A.B : s

Γ ⊢r λx:A.b : Πx:A.B

Fig. 3. The λ-rule for Church’s typing

(λc)
Γ, x:A ⊢r b : B Γ ⊢r Πx:A.B : s

Γ ⊢r λx.b : Πx:A.B

Fig. 4. The λc-rule for Curry’s typing

the strongest system is the Calculus of Constructions λPω [6]. The second order
λ-calculus [8, 19] figures on the β-cube between λ→ and λPω (cf. Figure 8).
Moreover, via the Propositions-as-Types principle (see [10]), many logical sys-
tems can be described in the β-cube. In the β-cube, ∗ is the set of types and
2 is the set of kinds and we have ∗ : 2 as a special axiom (i.e., (∗ : 2) ∈ A.
If A : ∗ (resp. A : 2) we say A is a type (resp. a kind). All pure type systems
have the same typing rules (cf. Figure 2) but differ by the set R of triple of sorts
(s1, s2, s3) allowed in the type-formation or Π-formation rule, (Π).

The β-cube is a collection of 8 special systems where each system has its own
set R such that (∗, ∗) ∈ R ⊆ {(∗, ∗), (∗,2), (2, ∗), (2,2)}. With rule (Π), the
β-cube factorises the expressive power into three features: polymorphism, type
constructors, and dependent types:
– (∗, ∗) is basic. All the β-cube systems have this rule.
– (2, ∗) takes care of polymorphism. λ2 is the weakest system on the β-cube

that features this rule.
– (2,2) takes care of type constructors. λω is the weakest system on the β-cube

that features this rule.
– (∗,2) takes care of term dependent types. λP is the weakest system on the

β-cube that features this rule.
We refer to each system of Figure 8 according to the kind of PTSs we are

in. So, λPω, (resp. λPω, resp. λPω, resp. λ̃Pω) is the PTS (resp. DFPTS, resp.
lPTS, resp. l′PTS) calculus of constructions. Now we give basic notions of type
systems:

Definition 15 [Legal-Contexts, Judgements, Types, Terms]
Let (E , r) ∈ {(T , β), (Tc, β), (Tl, β), (T

′, β′)} and let S be a specification on (E , r).
1. Γ ⊢r A : B is a judgement which states that A has type B in context Γ . When

Γ is empty, we simply write ⊢r A : B.
2. Γ is ⊢r-legal (or simply legal) if there exist A,B where Γ ⊢r A : B.

(l)
Γ, x:A ⊢r b : B Γ ⊢r Πx:A.B : s

Γ ⊢r lA(λx.b) : Πx:A.B

Fig. 5. The l-label-rule



13

(l′)
Γ ⊢r A : s1 Γ ⊢r Πx:A.B : s2 z 6= x, z 6∈ dom (Γ ) (s1, s2) l

′-complete

Γ ⊢r l′A : Πx:A.B −→ Πx:A.B

Fig. 6. The l′-label-rule

λ→ (∗, ∗)
λ2 (∗, ∗) (2, ∗)
λP (∗, ∗) (∗,2)
λP2 (∗, ∗) (2, ∗) (∗,2)
λω (∗, ∗) (2,2)
λω (∗, ∗) (2, ∗) (2,2)
λPω (∗, ∗) (∗,2) (2,2)
λPω (∗, ∗) (2, ∗) (∗,2) (2,2)

Fig. 7. Systems of Barendregt’s β-cube

3. A is ⊢r-legal (or simply legal) if there exist Γ,B where Γ ⊢r A : B or Γ ⊢r B :
A.

4. A is Γ ⊢r-legal (or simply Γ -legal) if there exists B where Γ ⊢r A : B or Γ ⊢r
B : A.

5. If Γ ⊢r x : A for every x : A ∈ ∆, we write Γ ⊢r ∆ .
6. We write Γ ⊢r A : B : C for Γ ⊢r A : B and Γ ⊢r B : C.
7. We define Typer = ∪s∈STypesr and Termr = ∪s∈STerms

r where:
– Typesr = {M ∈ E | Γ ⊢r M : s for some Γ}.
– Terms

r = {M ∈ E | Γ ⊢r M : A : s for some Γ and A}.
8. We say that S satisfies unicity of types w.r.t ⊢r if whenever Γ ⊢r A : B1 and

Γ ⊢r A : B2, then B1 =r B2.
9. We say that S preserves sorts w.r.t ⊢r if whenever Γ ⊢r B1 : s1, Γ ⊢r B2 : s2,

and B1 =r B2 then s1 ≡ s2.

3.1 Properties of our Type Systems

In this section we establish the necessary properties of the various type systems
introduced. These properties all hold for all our typing relations. In the following
sections we will see how and when these various type systems can be used for
interpreting Church’s style into Curry’s style of typing.

Lemma 16 (Free Variable Lemma for ⊢r and →r)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

λ→ λP

λ2 λP2

λω λPω

λPωλω

p p

pp

p p

pp

-

6

��1
(∗,2) ∈ R

(2,2) ∈ R

(2, ∗) ∈ R

Fig. 8. Barendregt’s β-cube



14

1. If x : A and y : B are different elements in a legal context Γ , then x 6≡ y.
2. If Γ1, x : A,Γ2 ⊢r B : C then

a) fv(A) ⊆ dom (Γ1) and fv(B), fv(C) ⊆ dom (Γ1, x : A,Γ2).
b) If Γ1 ⊢r D : s and D =r A then Γ1, x : D,Γ2 ⊢r B : C.

Proof.
1. Since Γ is legal, assume Γ ⊢r C : D. The proof is by induction on the derivation

Γ ⊢r C : D.
2. Both a) and b) are by induction on the derivation Γ1, x : A,Γ2 ⊢r B : C. We

only do the (start) case of b).
If Γ1, x : A,Γ2, y : E ⊢r y : E comes from Γ1, x : A,Γ2 ⊢r E : s′ and
y 6∈ dom (Γ1, x : A,Γ2), then by IH, Γ1, x : D,Γ2 ⊢r E : s′ and by (start)
Γ1, x : D,Γ2, y : E ⊢r y : E.
If Γ1, x : A ⊢r x : A comes from Γ1 ⊢r A : s′ and x 6∈ dom (Γ1), and if
Γ1 ⊢r D : s and D =r A then by (start) Γ1, x : D ⊢r x : D and by (weak)
Γ1, x : D ⊢r A : s′. Hence by (conv) Γ1, x : D ⊢r x : A. ⊠

Lemma 17 (Start/Context Lemma for ⊢r and →r) If Γ is ⊢r-legal then
Γ ⊢r s1 : s2 for every (s1, s2) ∈ A and for all x : A ∈ Γ , Γ ⊢r x : A and
Γ ⊢r A : s.

Proof. Since Γ is legal, assume Γ ⊢r C : D. The proof is by induction on the
derivation Γ ⊢r C : D. ⊠

Lemma 18 (Transitivity Lemma) If ∆ is ⊢r-legal, ∆ ⊢r Γ and Γ ⊢r A : B
then ∆ ⊢r A : B.

Proof. By induction on the derivation Γ ⊢r A : B. ⊠

Lemma 19 (Thinning Lemma for ⊢r and →r)
If ∆ is ⊢r-legal, Γ ⊆ ∆, and Γ ⊢r A : B then ∆ ⊢r A : B.

Proof. Since Γ ⊆ ∆, and since ∆ is ⊢r-legal, by Start Lemma 17,∆ ⊢r Γ . Hence,
by Transitivity Lemma 18, ∆ ⊢r A : B. ⊠

Lemma 20 (Substitution Lemma for ⊢r and →r) If Γ, x : A,∆ ⊢r B : C
and Γ ⊢r a : A then Γ,∆[x := a] ⊢r B[x := a] : C[x := a].

Proof. By induction on the derivation Γ, x : A,∆ ⊢r B : C. ⊠

Lemma 21 (Generation Lemma for ⊢r and →r)
1. If Γ ⊢r s : C then there is a s′ such that (s, s′) ∈ A, C =r s′ and if C 6≡ s′

then Γ ⊢r C : s′′ for some sort s′′.
2. If Γ ⊢r x : C then for some s, A, x : A ∈ Γ , C =r A, and Γ ⊢r C : s.
3. If Γ ⊢β λx:A.B : C then for some D, s, Γ ⊢β Πx:A.D : s; Γ, x:A ⊢β B : D;

Πx:A.D =β C and if Πx:A.D 6≡ C then Γ ⊢β C : s′ for some sort s′.
4. If Γ ⊢β lA(λx.B) : C then for some D, s, Γ ⊢β Πx:A.D : s; Γ, x:A ⊢β B : D;

Πx:A.D =β C and if Πx:A.D 6≡ C then Γ ⊢β C : s′ for some sort s′.



15

5. If Γ ⊢β′ l′A : C then there is (s1, s2) l′-complete, there is B, z, x where z 6=
x, z 6∈ dom (Γ ), Γ ⊢β′ A : s1, Γ ⊢β′ Πx:A.B : s2, C =β′ Πz:Πx:A.B.Πx:A.B
and if C 6≡ Πz:Πx:A.B.Πx:A.B then Γ ⊢β′ C : s for some s.

6. If Γ ⊢r λx.B : C then for some A, D, s, Γ ⊢r Πx:A.D : s; Γ, x:A ⊢ B : D;
Πx:A.D =r C and if Πx:A.D 6≡ C then Γ ⊢r C : s′ for some sort s′.

7. If Γ ⊢r Πx:A.B : C then there is (s1, s2, s3) ∈ R such that Γ ⊢r A : s1,
Γ, x:A ⊢r B : s2, C =r s3 and if C 6≡ s3 then Γ ⊢r C : s for some sort s.

8. If Γ ⊢r Fa : C then there are x,A,B such that Γ ⊢r F : Πx:A.B, Γ ⊢r a : A
and C =r B[x:=a] and if C 6≡ B[x:=a] then Γ ⊢r C : s for some s.

Proof. By induction on the derivation Γ ⊢r M : C where M is of the right
form. ⊠

Lemma 22 (Correctness of Types for ⊢r and →r)
If Γ ⊢r A : B then (B ∈ S or Γ ⊢r B : s for some sort s).

Proof. By induction on the derivation Γ ⊢r A : B using Generation and Substi-
tution Lemmas for the (appl) case. ⊠

Lemma 23 (Subject Reduction for ⊢r and →r)
If Γ ⊢r A : B and A→→r A′ then Γ ⊢r A′ : B.

Proof. First we prove by simultaneous induction on the derivation Γ ⊢r A : B
the following (use Correctness of Types for the (λ), (l), (l′) and (appl) cases and
also Generation and Substitution for the (appl) case):
– If Γ ⊢r A : B and A→r A′ then Γ ⊢r A′ : B.
– If Γ ⊢r A : B and Γ →r Γ ′ then Γ ′ ⊢r A : B.
Then we prove the lemma by induction on the derivation A→→r A′.
We only show the case Γ ⊢β′ l′Aa : D[z := a] comes from Γ ⊢β′ l′A : Πz:C .D and
Γ ⊢β′ a : C where l′Aa →β′ a. By Generation, Πz:C .D =β′ Πz:Πx:A.B.Πx:A.B
where z 6= x. Hence C =β′ Πx:A.B =β′ D and z 6∈ fv(D), so D[z := a] ≡ D =β′

C. By correctness of types, Γ ⊢β′ Πz:C .D : s for some s and by Generation
Γ, z : C ⊢β′ D : s′ for some s′. By Substitution Lemma, Γ ⊢ D[z := a] : s′ and
so Γ ⊢ D : s′. Hence by (convβ′), Γ ⊢ a : D ≡ D[z := a] and we are done. ⊠

Corollary 24 (Reduction preserves types for ⊢r and →r)
If Γ ⊢r A : B and B →→r B′ then Γ ⊢r A : B′.

4 DFPTSs do not faithfully capture Church’s typing

The next lemma shows that the direct interpretation of a PTS into a DFPTS,
although an interpretation, does not preserve the type information that may be
needed later.

Lemma 25 (DFPTSs interpret Church’s typing, but do not preserve types)

1. It is not the case that [Γ ]c ⊢S
β
[A]c : [B]c implies Γ ⊢Sβ A : B.



16

2. It is not the case that [Γ ]c ⊢S
β
[A]c : B implies there is a B1 such that B =β

[B1]
c and Γ ⊢Sβ A : B1.

3. If Γ ⊢Sβ A : B then [Γ ]c ⊢S
β
[A]c : [B]c.

Proof. 1. Consider a λS such that (s1, s1, s3) ∈ R. Note that [λx:z.x]
c ≡ λx.x

and y : s1, z : s2 ⊢Sβ λx.x : Πx:y.y. Even if also (s2, s2, s4) ∈ R, and even if λS is

L-complete (see Definition 28), we still cannot show that y : s1, z : s2 ⊢Sβ λx:z.x :
Πx:y.y. Otherwise, by Generation Πx:y.y =β Πx:z.C, and hence by CR, y =β z
absurd.
2. Take the same example as 1. above. We cannot find B1 such that [B1]

c =β

Πx:y.y and Γ ⊢Sβ λx:z.x : B1. Otherwise, B1 =β Πx:y.y and by generation,
B1 =β Πx:z.C and Πx:y.y =β Πx:z.C, absurd.
3. By induction on Γ ⊢Sβ A : B, using Lemma 10.4. ⊠

5 Under which circumstances can DFPTSs be used to

capture Church typing?

Recall Remark 6 where we discussed how we intend LabelA(λx.b) to be a rep-
resentation of λx:A.b, i.e., the first argument of Label is to be the type of the
variable x. Recall also that we showed that LabelA(λy .b) →→β λy.b. Hence, we
would expect LabelA(λy .b) to have the same type as λy .b. In order to type
LabelA(λy .b) in a DFPTS, Label and LabelA must also be typeable. Let us start
by discussing when Label is typeable.

Example 26 (Type checking Label ≡ λuzx.zx in a DFPTS) Let us see un-
der what circumstances Label ≡ λuzx.zx can be typechecked in Tc with ⊢β. We
will attempt to solve the type judgement Γ ⊢β λuzx.zx :?
By the (λc) rule, it is obvious that for some t1, t2, t3, t4, s3, s4, s5:

1. Γ ⊢β λuzx.zx : Πu:t1 .Πz:t2 .Πx:t3 .t4 where 2. Γ ⊢β Πu:t1 .Πz:t2 .Πx:t3 .t4 : s5
3. Γ, u : t1 ⊢β λzx.zx : Πz:t2 .Πx:t3 .t4.where 4. Γ, u : t1 ⊢β Πz:t2 .Πx:t3 .t4 : s4
5. Γ, u : t1, z : t2 ⊢β λx.zx : Πx:t3 .t4 where 6. Γ, u : t1, z : t2 ⊢β Πx:t3 .t4 : s3
7. Γ, u : t1, z : t2, x : t3 ⊢β zx : t4.
Now we turn to (app) on 7 and we get t2 ≡ Πx:t3 .t4 and z 6∈ fv(Πx:t3 .t4).
– To derive 6. Γ, u : t1, z : t2 ⊢β Πx:t3 .t4 : s3 it is enough by weakening to derive

Γ, u : t1 ⊢β Πx:t3 .t4 : s3. For this we need s1, s2 such that:
10. Γ, u : t1 ⊢β t3 : s1, 11. Γ, u : t1, x : t3 ⊢β t4 : s2 and 12. (s1, s2, s3) ∈ R.

– To derive 4. Γ, u : t1 ⊢β Πz:Πx:t3
.t4 .Πx:t3 .t4 : s4 we need: 13. (s3, s3, s4) ∈ R.

– To derive 2. Γ ⊢β Πu:t1 .Πz:Πx:t3
.t4 .Πx:t3 .t4 : s5 we need s′ such that:

14. Γ ⊢β t1 : s′1 and (s′1, s4, s5) ∈ R.

To summarise, for Γ ⊢β Label : Πu:t1 .Πx:t3 .t4 −→ Πx:t3 .t4 we need5:
L1. (s1, s2, s3), (s3, s3, s4), (s

′
1, s4, s5) ∈ R.

L2. Γ ⊢β t1 : s′1.
L3. Γ, u : t1 ⊢β t3 : s1.

5 Recall that z 6∈ fv(Πx:t3 .t4).



17

L4. Γ, u : t1, x : t3 ⊢β t4 : s2.

Since Label saves the type of the abstracted variable in its first argument, as-
suming that Γ ⊢β λx.b : Πx:A.B, we would expect Γ ⊢β LabelA(λx.b) : Πx:A.B.
Let us use Example 26 to see under which circumstances LabelA is typeable and
when is Γ ⊢β LabelA(λx.b) : Πx:A.B considering that Γ ⊢β λx.b : Πx:A.B.

Example 27 (When can we have Γ ⊢β LabelA(λx.b) : Πx:A.B?) Assume a DF-
PTS where Γ ⊢β λx.b : Πx:A.B. In order to have Γ ⊢β LabelA(λx.b) : Πx:A.B,
we also need to type in Γ , Label and LabelA. Looking back at Example 26, we see
that in the type of Label and in L1..L4, we need t1 ≡ s1, t3[u := A] ≡ A
and t4[u := A] ≡ B. We also need Γ ⊢ A : s1, Γ ⊢β Πx:A.B : s3 and
Γ, x : A ⊢β b : B : s2. Hence, we get Γ ⊢β LabelA : Πx:A.B −→ Πx:A.B
and Γ ⊢β LabelA(λx.b) : Πx:A.B.

This way, the conditions to type Label which behaves as type saver for the
variable x are as follows:

c1. (s1, s2, s3), (s3, s3, s4), (s
′
1, s4, s5) ∈ R and (s1, s

′
1) ∈ A.

c2. Γ ⊢β Label : Πu:s1 .(Πx:A.B −→ Πx:A.B) where Γ, x : A ⊢β B : s2.
In order to type LabelA, it must hold that Γ ⊢β A : s1.
This way by (app), Γ ⊢β LabelA : Πx:A.B −→ Πx:A.B.
Hence if Γ ⊢β λx.b : Πx:A.B we get by (app) Γ ⊢β LabelA(λx.b) : Πx:A.B.

To summarise all these findings, in order to type Label ≡ λuzx.zx in a DF-
PTS and to obtain the expected behaviour that: Γ ⊢β LabelA(λx.b) : Πx:A.B
whenever Γ ⊢β (λx.b) : Πx:A.B the following conditions need to hold:
– The DFPTS has (s1, s2, s3), (s3, s3, s4), (s

′
1, s4, s5) ∈ R, (s1, s

′
1) ∈ A,

– Γ ⊢β A : s1,
– Γ, x : A ⊢β B : s2.
The next definition recalls the notion of L-compatible sorts which will be used
to capture these findings.

Definition 28 [L-compatible and L-complete sorts]

– We call a tuple of sorts (s′1, s1, s2, s3, s4, s5) L-compatible if
(s1, s2, s3), (s3, s3, s4), (s

′
1, s4, s5) ∈ R and (s1, s

′
1) ∈ A.

– We call (s1, s2) L-complete if there are s′1, s3, s4, s5 such that
(s′1, s1, s2, s3, s4, s5) is L-compatible.

Example 29

1. Let us see which corresponding systems of the cube have L-compatible tuple(s)
(s′1, s1, s2, s3, s4, s5). Since we are working with the cube and also with L-
compatible tuples, the following must hold:
– (s1, s

′
1) ∈ A, s1 = ∗, s2 = ∗ and s′1 = 2.

– (∗, ∗, s3), (s3, s3, s4), (2, s4, s5) ∈ R and hence ∗ = s3 = s4 = s5.
Hence, (2, ∗, ∗, ∗, ∗, ∗) is the only L-compatible tuple and it holds in λ2, λP2,
λω and λPω. In these systems, the only L-complete pair of sorts is (∗, ∗).



18

2. If we take a DFPTS where S = {∗,2}, A = {(∗, ∗)} and
R = {(∗, ∗, ∗), (∗,2,2), (2,2,2), (2, ∗, ∗)} then
(2, ∗, ∗, ∗, ∗, ∗) and (2, ∗,2,2,2,2) are L-compatible.
Hence, (∗, ∗) and (∗,2) are L-complete.

The next lemma discusses under what conditions Label is typeable in a DFPTS.

Lemma 30 Assume a DFPTS with L-compatible sorts (s′1, s1, s2, s3, s4, s5) such
that for some Γ,B and some x and u distinct we have Γ, u : s1, x : u ⊢β B : s2.
The following holds: Γ ⊢β Label : Πu:s1 .(Πx:u.B −→ Πx:u.B) : s5.

Proof.

1. Γ, u : s1 ⊢β Πx:u.B : s3 since (s1, s2, s3) ∈ R.
2. Γ, u : s1, z : Πx:u.B ⊢β Πx:u.B : s3 by 1., (weak), for z fresh.
3. Γ, u : s1 ⊢β Πz:Πx:u.B.Πx:u.B : s4 by 1., 2., (Π) and (s3, s3, s4) ∈ R.
4. Γ ⊢β s1 : s′1 by Start Lemma since (s1, s

′
1) ∈ A.

5. Γ ⊢β Πu:s1 .Πz:Πx:u.B.Πx:u.B : s5 by 3., 4., (Π) and (s′1, s4, s5) ∈ R.
6. Γ, u : s1, z : Πx:u.B, x : u is legal by 2., and Generation.
7. Γ, u : s1, z : Πx:u.B, x : u ⊢β z : Πx:u.B by 6., and Start Lemma.
8. Γ, u : s1, z : Πx:u.B, x : u ⊢β x : u by 6., and Start Lemma.
9. Γ, u : s1, z : Πx:u.B, x : u ⊢β zx : B by 7., 8., and (app).

10. Γ, u : s1, z : Πx:u.B ⊢β λx.zx : Πx:u.B by 9., 2., and (λc).
11. Γ, u : s1 ⊢β λzx.zx : Πz:Πx:u.B.Πx:u.B by 10., 3., and (λc).
12. Γ ⊢β λuzx.zx : Πu:s1 .Πz:Πx:u.B.Πx:u.B : s5 by 11., 5., and (λc).

Hence, Γ ⊢β Label : Πu:s1 .(Πx:u.B −→ Πx:u.B) : s5. ⊠

Example 31

1. Since (2, ∗, ∗, ∗, ∗, ∗) is L-compatible in λ2, λP2, λω and λPω, we have in these
systems that for any B,Γ and x, u mutually exclusive, if Γ, u : ∗, x : u ⊢β B : ∗
then Γ ⊢β Label : Πu:∗.(Πx:u.B −→ Πx:u.B) : ∗.

2. If we take the DFPTS where S = {∗,2}, A = {(∗, ∗)} and
R = {(∗, ∗, ∗), (∗,2,2), (2,2,2), (2, ∗, ∗)} then since (2, ∗, ∗, ∗, ∗, ∗) and
(2, ∗,2,2,2,2) are L-compatible. Let s ∈ {∗,2} and B,Γ , x, u mutually
exclusive such that Γ, u : ∗, x : u ⊢β B : s.
We have Γ ⊢β Label : Πu:∗.(Πx:u.B −→ Πx:u.B) : s.

By Example 31.2 we see that Label ∈ Term∗ ∪ Term2 and hence Label is not
uniquely sorted. In the cube however (Example 31.1), Label ∈ Term∗ is uniquely
sorted. The next lemma and corollary show that in DFPTSs that preserve sorts,
if Label is typeable then it is uniquely sorted.

Lemma 32 Assume a DFPTS λS which preserves sorts such that

Γ ⊢β Πu:s1 .(Πx:u.B −→ Πx:u.B) : s5.

There is a unique L-compatible tuple (s′1, s1, s2, s3, s4, s5).



19

Proof. By Generation, there are s′1, s4 such that Γ, u : s1 ⊢β Πx:u.B −→
Πx:u.B : s4 and Γ ⊢β s1 : s′1 where (s′1, s4, s5) ∈ R. By Start Lemma, (s1, s

′
1) ∈

A. By Generation, there are s′3, s3 such that Γ, u : s1, z : Πx:u.B ⊢β Πx:u.B : s′3
and Γ, u : s1 ⊢β Πx:u.B : s3 where (s3, s

′
3, s4) ∈ R. By Weakening and Preser-

vation of Sorts, s3 = s′3.
Since Γ, u : s1 ⊢β Πx:u.B : s3, by Preservation of Sorts and Generation, there is
s2 such that Γ, u : s1 ⊢β u : s1 and Γ, u : s1, x : u ⊢β B : s2 and (s1, s2, s3) ∈ R.
Hence, (s′1, s1, s2, s3, s4, s5) is L-compatible.
Take (s′′1 , s1, s2, s

′
3, s

′
4, s5) L-compatible. As (s1, s

′
1), (s1, s

′′
1 ) ∈ A, then s1 = s′1

by Preservation of Sorts and Start Lemma.
Since Γ, u : s1, x : u ⊢β B : s2 and Γ, u : s1 ⊢β u : s1, by (s1, s2, s

′
3),

Γ, u : s1 ⊢β Πx:u.B : s′3. But Γ, u : s1 ⊢β Πx:u.B : s3 and hence by Preser-
vation of Sorts, s3 = s′3.
Since Γ, u : s1 ⊢β Πx:u.B : s3, by weakening Γ, u : s1, z : Πx:u.B ⊢β Πx:u.B : s3
and by (Π) and (s3, s3, s

′
4) we have Γ, u : s1 ⊢β Πx:u.B −→ Πx:u.B : s′4 and

hence by Preservation of Sorts, s4 = s′4. ⊠

Corollary 33 Assume a DFPTS λS which preserves sorts. Then we have:
1. There exist Γ,B and distinct u, x such that:

Γ ⊢β Label : Πu:s1 .(Πx:u.B −→ Πx:u.B) : s5
iff
There is a unique L-compatible tuple (s′1, s1, s2, s3, s4, s5).

2. If Label is typeable then there is a unique sort s such that Label ∈ Terms.

Proof.

1. If Γ ⊢β Label : Πu:s1 .(Πx:u.B −→ Πx:u.B) : s5 then by Lemma 32, there
is a unique L-compatible tuple (s′1, s1, s2, s3, s4, s5). If there is a unique L-
compatible tuple (s′1, s1, s2, s3, s4, s5) then since for mutually distinct u, x,
we can construct Γ,B such that Γ, u : s1, x : u ⊢β B : s2, we are done by
Lemma 30.

2. If Label is typeable then following Example 27, we can deduce that for some
Γ,B and distinct x, u, and for some L-compatible tuple (s′1, s1, s2, s3, s4, s5),
we have Γ ⊢β Label : Πu:s1 .(Πx:u.B −→ Πx:u.B) : s5. By Lemma 32, s5 is
unique and Label ∈ Terms5 . ⊠

Starting from Γ ⊢β A : s1 and Γ ⊢β Πx:A.B[u := A] : s3 (needed for
Correctness of Types and hence Subject Reduction to hold), we ensure that for
every b where Γ, x : A ⊢β b : B[u := A] : s2 (and hence by (λc) Γ ⊢β λx.b :
Πx:A.B[u := A]), we have Γ ⊢β LabelA(λx.b) : Πx:A.B[u := A].

Lemma 34 Assume a DFPTS with L-complete (s1, s2). Let Γ , A, B, u, x such
that Γ ⊢β A : s1 and Γ, u : s1, x : u ⊢β B : s2.

1. There is s5 such that Γ ⊢β Label : Πu:s1 .(Πx:u.B −→ Πx:u.B) : s5.
2. There are s3, s4 such that Γ ⊢β LabelA : Πx:A.B[u := A] −→ Πx:A.B[u := A] :

s4 and Γ ⊢β Πx:A.B[u := A] : s3.
3. For every b where Γ, x : A ⊢β b : B[u := A], we have Γ ⊢β LabelA(λx.b) :

Πx:A.B[u := A] : s3.



20

Proof.

1. By Lemma 30, Γ ⊢β Label : Πu:s1 .(Πx:u.B −→ Πx:u.B) : s5.
2. By definition of L-complete (s1, s2), there is an L-compatible tuple of sorts

(s′1, s1, s2, s3, s4, s5). By Substitution Lemma 20, Γ, x : A ⊢β B[u := A] : s2.
Since (s1, s2, s3) ∈ R, Γ ⊢β Πx:A.B[u := A] : s3 is by (Π). Since (s3, s3, s4) ∈
R, again by (Π), Γ ⊢β Πx:A.B[u := A] −→ Πx:A.B[u := A] : s4. By (app)
since x 6∈ fv(A) ⊆ dom (Γ ), Γ ⊢β LabelA : Πx:A.B[u := A] −→ Πx:A.B[u :=
A].

3. By (λc), Γ ⊢ λx.b : Πx:A.B[u := A].
By (app) Γ ⊢β LabelA(λx.b) : Πx:A.B[u := A] : s3. ⊠

Corollary 35 In a DFPTS with L-complete (s1, s2), where Γ ⊢β A : s1 and
Γ, u : s1, x : u ⊢β B : s2, we have:
Γ ⊢β λx.b : Πx:A.B[u := A] iff Γ ⊢β LabelA(λx.b) : Πx:A.B[u := A].

Proof. Assume Γ ⊢β λx.b : Πx:A.B[u := A]. By Lemma 34.3, Γ ⊢β LabelA(λx.b) :
Πx:A.B[u := A].
Assume Γ ⊢β LabelA(λx.b) : Πx:A.B[u := A]. Since LabelA(λx.b) →→β λx.b, by
Subject Reduction Γ ⊢β λx.b : Πx:A.B[u := A]. ⊠

Definition 36 [L-complete DFPTSs] We say that a DFPTS is L-complete if
every (s1, s2) for which there are Γ,A,B such that Γ ⊢β A : s1 and Γ, x : A ⊢β
B : s2, it holds that (s1, s2) is L-complete.

Example 37 Recall that in the extended calculus of constructions ECC we have:

S = {∗} ∪ {2n where n is a nonnegative integer}
A = {∗ : 20} ∪ {2n : 2n+1 where n is a nonnegative integer}
R = {(∗, ∗, ∗), (∗, ∗,2n), (2n, ∗, ∗), (2n, ∗,2m) where 0 ≤ n ≤ m}

∪{(∗,2n,2m) where n ≤ m} ∪ {(2n,2m,2r) where 0 ≤ n ≤ r and 0 ≤ m ≤ r }

Let us show that the DFPTS corresponding to ECC is L-complete. Assume Γ ⊢β
A : s1 and Γ, x : A ⊢β B : s2. We will show that (s1, s2) is L-complete:

– If s1 = s2 = ∗ then (20, ∗, ∗, ∗, ∗, ∗) is L-compatible.
– If s1 = ∗ and s2 = 2i for i ≥ 0 then (20, ∗,2i,2i+1,2i+2,2i+3) is L-

compatible.
– If s1 = 2i and s2 = ∗ for i ≥ 0 then (2i+1,2i, ∗,2i+1,2i+2,2i+3) is L-

compatible.
– If s1 = 2i and s2 = 2j for i, j ≥ 0 then (2i+1,2i,2j ,2i+j ,2i+j+1,2i+j+2)

is L-compatible.

Before showing that L-complete DFPTSs faithfully map Curry typing into
Church typing, we need the following help lemma.

Lemma 38 (Convertible contexts) If Γ1 =r Γ2, Γ1 ⊢r A : B and Γ2 is legal
then Γ2 ⊢r A : B.



21

Proof. By induction on the derivation Γ1 ⊢r A : B using start and thinning
lemmas for (start) and (conv). ⊠

The next lemma shows that L-complete DFPTSs with Label preserve types.

Lemma 39 (We can map Curry typing into Church typing) If λS is L-
complete then:

1. If Γ ⊢Sβ A : B then [Γ ]L ⊢S
β
[A]L : [B]L.

2. If [Γ ]L ⊢S
β
[A]L : B then there is B1 such that B =β [B1]

L and Γ ⊢Sβ A : B1.

3. If [Γ ]L ⊢S
β
B : s then there is B1 such that B =β [B1]

L and Γ ⊢Sβ B1 : s.

Proof. 1. By induction on Γ ⊢Sβ A : B. We only do the (λ) case. Assume

Γ ⊢Sβ λx:A.b : Πx:A.B comes from Γ, x:A ⊢Sβ b : B and Γ ⊢Sβ Πx:A.B : s. By

IH, [Γ ]L, x : [A]L ⊢S
β

[b]L : [B]L and [Γ ]L ⊢S
β

Πx:[A]L.[B]L : s and by (λc),

[Γ ]L ⊢S
β
λx.[b]

L : Πx:[A]L .[B]L. By Generation, there is (s1, s2, s) ∈ R such that

[Γ ]L ⊢S
β
[A]L : s1 and [Γ ]L, x : [A]L ⊢S

β
[B]L : s2. Since λS is L-complete, (s1, s2)

is L-complete. By Corollary 35, [Γ ]L ⊢S
β
Label[A]L(λx.[b]

L) : Πx:[A]L .[B]L. Hence,

[Γ ]L ⊢S
β
[λx.b]

L : [Πx:A.B]L.

2. and 3. simulatenously by induction on the derivation [Γ ]L ⊢S
β

[A]L : B or

[Γ ]L ⊢S
β
B : s.

⊠

6 Interpreting Church’s typing into Curry’s typing

without restricting the DFPTS

Section 5 showed that in order to translate Church’s terms (terms of T ) into
Curry’s terms (terms of Tc) without losing type information, we need to use
DFPTSs that allow the typing of Label (the type saver). For these DFPTSs to
behave well requires to be L-compatible and this condition can be restrictive.
The reason behind this restrictiveness is the fact that for Label to be typed, sorts
need to satisfy taxing conditions. Although L-complete DFPTSs exist (e.g., the
DFPTS corresponding to ECC as shown in Example 37), ensuring the existence
of L-compatible sorts (s′1, s1, s2, s3, s4, s5) can be quite restrictive. We require
numerous conditions to hold and if the original PTS does not satisfy these con-
ditions on sorts, then its corresponding one cannot handle Label and the type
A of the variable x in λx:A.B will be lost in the translations from a PTS to its
corresponding DFPTS. For this reason, we presented the lPTSs which require no
extra conditions to faithfully translate λx:A.B from the PTS to the lPTS. The
lPTSs approach is a more relaxed approach where the syntax of terms is ex-
tended to include terms of the form lAB where l has similar behaviour to Label,
but is primitive rather than defined and always comes with its two arguments.
Hence, to type lAB we do not need the restrictions on sorts that we needed on
DFPTSs for typing Label.



22

Compare the next lemma with Lemma 39 where we had to impose the L-
complete condition on the DFPTS.

Lemma 40

1. If Γ ⊢Sβ A : B then [Γ ]l ⊢Sβ [A]l : [B]l.

2. If Γ ⊢Sβ A : B then there are Γ1, A1, B1 such that Γ =β [Γ1]
l, B =β [B1]

l and

Γ1 ⊢Sβ A1 : B1 and if A ≡ [A2]
l then A1 ≡ A2 else A =β [A1]

l.

3. If Γ ⊢Sβ [A]l : B then there are Γ1, B1 such that Γ =β [Γ1]
l, B =β [B1]

l and

Γ1 ⊢Sβ A : B1.

4. If [Γ ]l ⊢Sβ [A]l : [B]l then Γ ⊢Sβ A : B.

Proof. 1. By induction on the derivation Γ ⊢Sβ A : B.

2. By induction on the derivation Γ ⊢Sβ [A]l : B.

3. This is a corollary of 2. above.
4. Similar to the proof given for the corresponding case of Lemma 39. ⊠

7 Interpretations in T
l′

In Section 5 we showed that DFPTSs do not faithfully capture Church’s typing
and in Section 6 we showed that they could be made to capture Church’s typing
if Label ≡ λuzx.zx is typeable and a Church term λx:A.b ∈ T is translated as
[λx:A.b]

L ≡ Label[A]L(λx.[b]
L) ∈ Tc. This meant that we could only faithfully

capture Church’s typing inside L-complete DFPTSs which is too restrictive. In
Section 6 we showed that Church’s typing can be faithfully represented without
any restrictions inside lPTSs, where new l-terms are added to Tc. These terms
are of the form lA(λx.b) where l is a primitive built-in symbol that captures the
meaning of Label but does need to be typed on its own. Here, l can be looked at
as a parameterised constant which can only be used with its two arguments A
and λx.b. Since we don’t need to type l or lA on their own, the rules and axioms
needed to type lA(λx.b) are exactly the same as those for typing λx.b and so our
lPTS is not restricted over the original PTS.

In this section we will check the mid-way where we add l′-terms to Tc and
again use l′A(λx.b) where l′ is a primitive built-in symbol that captures the
meaning of Label, but this time, l′A is a term on its own and hence needs to
be typed. In order to type l′A we need to have at least A ∈ Types1 and to find
s2 such that (s1, s2) are l′-complete. That is, we need to find s3, s4 such that
(s1, s4, s2), (s2, s2, s3) ∈ R. This is less restrictive than what Label demanded
(we need two axioms less and 1 rule less).

In this section we establish the faithfulness of the interpretation of Church’s
typing in l′PTSs. First, we give the following definition:

Definition 41 [l′-complete l′PTS, l′-bachelor-free terms] We say that an l′PTS
is l′-complete if every (s1, s2) for which there are Γ,A,B such that Γ ⊢β′ A : s1
and Γ ⊢β′ Πx:A.B : s2, it holds that (s1, s2) is l

′-complete.



23

We say that a term A is l′-bachelor-free if every occurrence of l′B in A is imme-
diately followed by a term of the form (λx.b). We say that Γ is l′-bachelor-free
if for any y : A in Γ , A is l′-bachelor-free.

Lemma 42 (l′-complete l′PTSs preserve types) If λ̃S is l′-complete then:
1. If Γ ⊢Sβ A : B then [Γ ]′ ⊢Sβ′ [A]′ : [B]′.

2. If Γ ⊢Sβ′ A : B where Γ,A,B are all l′-bachelor-free, then there are Γ1, A1, B1

such that Γ =β′ [Γ1]
′, B =β′ [B1]

′ and Γ1 ⊢Sβ A1 : B1 and if A ≡ [A2]
′ then

A1 ≡ A2 else A =β′ [A1]
′.

3. If Γ ⊢Sβ′ [A]′ : B where Γ,B are all l′-bachelor-free, then there are Γ1, B1 such

that Γ =β′ [Γ1]
′, B =β′ [B1]

′ and Γ1 ⊢Sβ A : B1.

4. If [Γ ]′ ⊢Sβ′ [A]′ : [B]′ then Γ ⊢Sβ A : B.

Proof. 1. By induction on the derivation Γ ⊢Sβ A : B.

2. By induction on the derivation Γ ⊢Sβ′ A : B. We only do the case:

Γ ⊢Sβ′ l′A(λx.b) : D[z := λx.b] comes from Γ ⊢Sβ′ l′A : Πz:C .D and Γ ⊢Sβ′ λx.b :
C. Then by Generation, we have on the proof tree that for some B, s1, s2, s, E, F ,
Γ ⊢Sβ′ A : s1, Γ ⊢Sβ′ Πx:A.B : s2, z 6= x, z 6∈ dom (Γ ), Γ ⊢Sβ′ Πx:E .F : s,

Γ, x : E ⊢Sβ′ b : F , Πz:C .D =β′ Πz:Πx:A.B.Πx:A.B (hence C =β′ Πx:A.B =β′ D)
and C =β′ Πx:E.F . Hence A =β′ E and B =β′ F . By IH and Lemma 24,
Γ1 ⊢Sβ A1 : s1, Γ2 ⊢Sβ Πx:A2

.B2 : s2, Γ3, x : E1 ⊢Sβ b1 : F1, where [A1]
′ =β′

[A2]
′ =β′ [E1]

′ =β′ A and [b1]
′ =β′ b and [F1]

′ =β′ [B2]
′ =β′ B. It is easy to

show that Γ2, x : A2 ⊢Sβ b1 : B2, and so, Γ2 ⊢Sβ λx:A2
.b1 : Πx:A2

.B2 and we’re
done.
3. This is a corollary of 2. above. Note that [A]′ is l′-bachelor-free.
4. Similar to the proof given for the corresponding case of Lemma 39. Note that
[Γ ]′, [A]′ and [B]′ are all l′-bachelor-free. ⊠

8 Unicity of types, Classification and Consistency

In the previous sections we established desirable properties for all our type sys-
tems. Three properties have been left for this section: the unicity of types, clas-
sification and consistency lemmas. We discuss these properties in this section.

Lemma 43 (Unicity of Types for ⊢β and its failure for all other ⊢r)
1. Let S be a functional specification. S satisfies the unicity of types with respect

to ⊢β but fails to do so w.r.t. any other ⊢r.
2. If S satisfies the unicity of types with respect to ⊢r then: If Γ ⊢r A1 : B1 and

Γ ⊢r A2 : B2 and A1 =r A2, then B1 =r B2.
3. If S satisfies the unicity of types with respect to ⊢r then S preserves sorts w.r.t.
⊢r.

4. If 2. holds for ⊢r then:
If Γ ⊢r B1 : s, B1 =r B2 and Γ ⊢r A : B2 then Γ ⊢r B2 : s.

Proof.



24

1. For ⊢β , use induction on the structure of A and the Generation Lemma. For
the counterexample to all other relations, let Γ = y : s1, z : s2 and assume
(s1, s1, s3) ∈ R and (s2, s2, s4) ∈ R. Then:
– Since Γ ⊢r Πx:y.y : s3 and Γ, x : y ⊢r y : s1, we get Γ ⊢r λx.x : Πx:y.y.
– Since Γ ⊢r Πx:z.z : s4 and Γ, x : z ⊢r z : s2, we get Γ ⊢r λx.x : Πx:z.z.
But Πx:y.y 6=r Πx:z.z, hence contradicting 1.

2. This is a consequence of Church-Rosser of r-reduction, Subject Reduction of
⊢r and 1 above.

3. This is a direct consequence of 2 above.
4. Since Γ ⊢r A : B2 then by Correctness of Types for ⊢r, either B2 ≡ s′ or

Γ ⊢r B2 : s′ for some sort s′.
• If B2 ≡ s′ then B1 →→r B2 and by Subject Reduction of ⊢r, Γ ⊢r B2 : s.
• If Γ ⊢r B2 : s′ then by 2 above, s =r s′ and hence s ≡ s′. ⊠

In what follows, we use sorted variables. We divide V into countably infinite
disjoint subsets Vs and use xs, ys, etc., to range over Vs. With this partitioning
of V , variable renaming will respect sorts. That is for example, λx.A is renamed
to λy.A[x := y] only if x and y belong to the same Vs. We replace the two rules
(start) and (weak) of Figure 2 by the rules in Figure 9. With these new rules of
Figure 9, the second clause of the Generation Lemma changes to accommodate
these sorts as shown in Lemma 44.

Lemma 44 (Revised Clauses of Generation) If (weak) and (start) of Fig-
ure 2 and (l′) of Figure 6 are replaced by (weak’), (start’) and (l′’) of Figure 9,
then
– If Γ ⊢r x : C then for some s, A, x ≡ xs, x : A ∈ Γ , C =r A, and Γ ⊢r C : s.
– If Γ ⊢β′ l′A : C then there is (s1, s4, s2), (s2, s2, s3) ∈ R, there is B, z ≡

zs2 , x where z 6= x, z 6∈ dom (Γ ), Γ ⊢r A : s1, Γ, x : A ⊢r B : s4, C =β′

Πz:Πx:A.B.Πx:A.B and if C 6≡ Πz:Πx:A.B.Πx:A.B then Γ ⊢β′ C : s′ for some
s′.

Proof. By induction on the derivation Γ ⊢r x : C ⊠

(start’)
Γ ⊢r A : s x

s 6∈ dom (Γ )

Γ, x
s:A ⊢r x : A

(weak’)
Γ ⊢r A : B Γ ⊢r C : s x

s 6∈ dom (Γ )

Γ, x
s:C ⊢r A : B

(l′’)
Γ ⊢r A : s1 Γ, x : A ⊢r B : s4 z

s2 6= x, z 6∈ dom (Γ ) (s1, s4, s2), (s2, s2, s3) ∈ R

Γ ⊢r l′A : Πx:A.B −→ Πx:A.B

Fig. 9. The start’, weak’ and l′
′
rules with sorted variables



25

With the introduction of sorted variables, unicity of types still fails but the
counterexample given in Lemma 43 needs to change to accommodate the new
rules of Figure 9. This change dictates that s1 = s2. Hence, if (s1, s4) ∈ A,
(s1, s1, s3) ∈ R, Γ = y : s1, z : s1 and x = xs1 , we can derive the following:
Γ, x : y ⊢r x : y and Γ, x : z ⊢r x : z by (start’)
Γ ⊢r Πx:y.y : s3 and Γ ⊢r Πx:z.z : s3 by (Π)
Γ ⊢r λx.x : Πx:y.y and Γ ⊢r λx.x : Πx:z.z by (λc).
Since Πx:y.y 6=r Πx:z.z, unicity of types fails.

The counterexample given in Lemma 43 shows that not only unicity of types
is lost but also unicity of sorts. The term λx.x given in the proof of Lemma 43
belongs to Terms3 ∩ Terms4 and s3 may be different from s4. With our use of
sorted variables we can rescue the unicity of sorts for injective specifications as
we will see in Lemma 48. Note however that we cannot rescue unicity of types
as we have just explained by the above example.

The next two lemmas are extensions of Lemmas in [3].

Lemma 45 Let S be a specification. The following hold:
1. If s′ ∈ Typesr then (s′, s) ∈ A.
2. If x ∈ Typesr then x ∈ Vs′ where (s, s′) ∈ A.
3. C 6∈ Typesr for C ∈ {λx:A.B, λx.B, lA(λx.B), l′A}.
4. If Πx:A.B ∈ Typesr then for some (s1, s2, s) ∈ R, A ∈ Types1r and B ∈ Types2r .
5. If Fa ∈ Typesr then for some (s1, s2, s3) ∈ R, (s, s2) ∈ A, F ∈ Terms3

r and
a ∈ Terms1

r . Moreover, F cannot be of the form l′A for some A.

Proof.
1. By the Generation Lemma.
2. By the revised clause of Generation Lemma 44 using 1.
3. If Γ ⊢r C : s for C ∈ {λx:A.B, λx.B, lA(λx.B), l′A}, then by Generation

Lemma 21, s =r Πz:A.B, contradicting Church-Rosser.
4. If Γ ⊢r Πx:A.B : s then by Generation Lemma 44, for some (s1, s2, s) ∈ R,

A ∈ Types1r and B ∈ Types2r .
5. If Γ ⊢r Fa : s then by Generation Lemma 44, there are z,H,G such that

Γ ⊢r F : Πz:H .G, Γ ⊢r a : H and s =r G[z:=a]. By correctness of Types,
Γ ⊢r Πz:H .G : s3 for some s3. Hence F ∈ Terms3

r . By Generation (note that
=r on sorts is ≡), for some (s1, s2, s3) ∈ R, Γ ⊢r H : s1 (hence a ∈ Terms1

r ),
Γ, z:H ⊢ G : s2 and by Substitution Lemma Γ ⊢r G[z := a] : s2. By Subject
Reduction, since G[z:=a]→→r s, Γ ⊢r s : s2. By 1. above, (s, s2) ∈ A.
If F ≡ l′A then by Generation, there is B, x 6= z (note that z 6∈ dom (Γ )),
such that Πz:H .G =r Πz:Πx:A.B.Πx:A.B. Hence G =r Πx:A.B and G[z:=a] =
Πx:A[z:=a].B[z:=a] =r s, absurd by Church-Rosser.

⊠

Lemma 46 Let S preserve sorts w.r.t ⊢r. The following hold:
1. If s′ ∈ Terms

r then for some s′′, (s′, s′′) ∈ A and (s′′, s) ∈ A.
2. If x ∈ Terms

r then x ≡ xs.
3. If M ∈ Terms

r where M ∈ {λx:A.B, lA(λx.B)} then x ∈ Vs1 , A ∈ Types1r , and
B ∈ Terms2

r for some (s1, s2, s) ∈ R.



26

4. If λx.B ∈ Terms
r then x ∈ Vs1 , and B ∈ Terms2

r for some (s1, s2, s) ∈ R.
5. If l′A ∈ Terms

r then for some (s1, s4, s2) ∈ R, and (s2, s2, s) ∈ R, A ∈ Types1r .
6. If Πx:A.B ∈ Terms

r then for some (s1, s2, s3) ∈ R, (s3, s) ∈ A, x ∈ Vs1 ,
A ∈ Types1r and B ∈ Types2r .

7. If Fa ∈ Terms
r then for some (s1, s, s3) ∈ R, F ∈ Terms3

r and a ∈ Terms1
r .

Proof.
1. By the Generation Lemma, Church-Rosser and Subject Reduction and Lemma 45.1.
2. By the revised clause of Generation Lemma 44 and Preservation of Sorts. Note

that the Vsis partition V .
3. For A ∈ Types1r , and B ∈ Terms2

r for some (s1, s2, s) ∈ R, use Generation
Lemma and Preservation of Sorts. For x ∈ Vs1 , use Start Lemma and 2.
above.

4. Similar to 3. above.
5. By Generation Lemma and Preservation of Sorts.
6. If Γ ⊢r Πx:A.B : C : s then by Generation, for some (s1, s2, s3) ∈ R, Γ ⊢r

A : s1 and Γ, x : A ⊢r B : s2, C =r s3. Hence A ∈ Types1r and B ∈ Types2r .
By Church-Rosser and Subject Reduction, Γ ⊢r s3 : s and by Lemma 45,
(s3, s) ∈ A. Finally, by Start Lemma, Γ ⊢r x : A : s1 and hence by 2. above,
x ∈ Vs1 .

7. This is shown by Generation Lemma, Correctness of Types, Substitution Lemma
and Preservation of Sorts. ⊠

The following example shows that in general, the Classification Lemma fails
for terms which contain l′.

Example 47 Let s3 6= s′3 and s4 6= s′4 and let (s1, s4, s2), (s2, s2, s3), (s1, s
′
4, s

′
2)

and (s′2, s
′
2, s

′
3) ∈ R.

Let Γ = y : s1, y1 : s4, y2 : s′4, and take x ∈ Vs1 , z1 ∈ V
s2 and z2 ∈ V

s′
2 . Then,

Γ ⊢r Πx:y.y1 : s2, Γ ⊢r Πx:y.y2 : s′2, Γ ⊢r l′y : Πz1:Πx:y.y1
.Πx:y.y1 : s3 and

Γ ⊢r l
′y : Πz2:Πx:y.y2

.Πx:y.y2 : s′3. Hence, l
′y ∈ Terms3

r ∩ Term
s′
3

r with s3 6= s′3.

If on the other hand we impose the condition that every term is l′-bachelor-free
then the Unicity of Sorts will hold as we will see in the Classification Lemma 48.
So, in the above example we would speak of l′y(λx.b) which would belong to the
same Terms as λx.b and unicity of sorts for λx.b would propagate to l′y(λx.b).

Below, we prove the Classification Lemma for terms which are l′-bachelor-
free.

Lemma 48 (Classification) Let S be an injective specification which preserves
sorts. Assume M is l′-bachelor-free. The following hold:

1. If M ∈ Terms
r ∩ Terms′

r then s = s′.
2. If M ∈ Typesr ∩ Types

′

r then s = s′.

Proof. 1 and 2 are proved simultaneously by induction on M .
– If s1 ∈ Typesr∩Type

s′

r then by Lemma 45, (s1, s), (s1, s
′) ∈ A. By Start Lemma

and Preservation of Sorts, s = s′.



27

– If s1 ∈ Terms
r ∩ Terms′

r then by Lemma 46, there are s2, s3 such that
(s1, s2), (s2, s), (s1, s3), (s3, s

′) ∈ A. By Start Lemma and Preservation of
Sorts, s2 = s3 and s = s′.

– If x ∈ Typesr ∩ Types
′

r then by Lemma 45, x ∈ Vs1 ∩ Vs2 , (s, s1), (s
′, s2) ∈ A.

Since the Vsis partition V , s1 = s2 and by injectivity, s = s′.
– If x ∈ Terms

r ∩ Terms′

r then by Lemma 46, x ∈ Vs ∩ Vs′ . Since the Vsis
partition V , s = s′.

– If Πx:A.B ∈ Typesr ∩ Types
′

r then by Lemma 45, (s1, s2, s), (s
′
1, s

′
2, s

′) ∈ R,

A ∈ Types1r ∩ Type
s′
1

r and B ∈ Types2r ∩ Type
s′
2

r . By IH, s1 = s′1 and s2 = s′2.
Hence, (s1, s2, s), (s1, s2, s

′) ∈ R. Since Γ ⊢r Πx:A.B : s for some Γ , by
Generation, Γ ⊢r A : s3, Γ, x : A ⊢r B : s4, hence s3 = s1, s4 = s2 and by
(Π), Γ ⊢r Πx:A.B : s and Γ ⊢r Πx:A.B : s′. By Preservation of Sorts, s = s′.

– If Πx:A.B ∈ Terms
r ∩ Terms′

r then by Lemma 46, (s1, s2, s3), (s
′
1, s

′
2, s

′
3) ∈ R,

(s3, s), (s
′
3, s

′) ∈ A, x ∈ Vs1 ∩ Vs′
1 , A ∈ Types1r ∩ Type

s′
1

r and B ∈ Types2r ∩

Type
s′
2

r . By IH, s1 = s′1 and s2 = s′2. Hence, (s1, s2, s3), (s1, s2, s
′
3) ∈ R. Since

Γ ⊢r Πx:A.B : C for some Γ , by Generation, Γ ⊢r A : s5, Γ, x : A ⊢r B : s4,
hence s5 = s1, s4 = s2 and by (Π), Γ ⊢r Πx:A.B : s3 and Γ ⊢r Πx:A.B : s′3. By
Preservation of Sorts, s3 = s′3. By Start Lemma Γ ⊢r s3 : s and Γ ⊢r s3 : s′.
By Preservation of Sorts, s = s′.

– If Fa ∈ Typesr ∩ Types
′

r then by Lemma 45, F is not of the form l′A, and

(s1, s2, s3), (s
′
1, s

′
2, s

′
3) ∈ R, (s, s2), (s

′, s′2) ∈ A, F ∈ Terms3
r ∩ Term

s′
3

r and

a ∈ Terms1
r ∩ Term

s′
1

r . Use IH and injectivity twice.
– If Fa ∈ Terms

r ∩ Terms′

r then by Lemma 46, (s1, s, s3), (s
′
1, s

′, s′3) ∈ R, F ∈

Terms3
r ∩ Term

s′
3

r and a ∈ Terms1
r ∩ Term

s′
1

r .
If F ≡ l′A then a ≡ λx.b and λx.b ∈ Terms

r ∩ Terms′

r . Hence by IH, s = s′.
If F 6≡ l′A for any A, then by IH on a, s1 = s′1 and by IH on F , s3 = s′3. By
injectivity, s = s′.

– If M ∈ {λx.B, λx:A.B, lA(λx.B)} then by Lemma 45, M 6∈ Typesr ∩ Types
′

r .
– IfM ∈ {λx.B, λx:A.B, lA(λx.B)} whereM ∈ Terms

r∩Term
s′

r then by Lemma 46,

x ∈ Vs1 ∩ Vs′
1 , A ∈ Types1r ∩ Type

s′
1

r , and B ∈ Terms2
r ∩ Term

s′
2

r for some
(s1, s2, s), (s

′
1, s

′
2, s

′) ∈ R. Use IH, Generation Lemma and Preservation of
Sorts. ⊠

Corollary 49 Let S be an injective specification which preserves sorts. Assume
M is l′-bachelor-free and ⊢r-legal. The following hold:

1. M ∈ Terms
r for some s ∈ S; or

2. M ∈ Typesr for some s ∈ ST ; or
3. M ≡ s for some s ∈ ST .

Furthermore, 1..3 are mutually exclusive and s is unique.

Proof. The same proof as that of Corollary 25 of [3] applies here. ⊠

We say that λS is top sort grounded if every top sort s is inhabited by another
sort s′ where ⊢Sβ s′ : s).



28

Next we move to consistency and show that if λS is top sort grounded and
consistent then λS (on Tc + Label), λS and λ̃S are consistent.

Lemma 50 Let λS be top sort grounded.
1. If λS is L-complete and consistent then λS (on Tc + Label) is consistent.
2. If λS is consistent then λS is consistent.
3. If λS is l′-complete and consistent then λ̃S is consistent.

Proof. All items are similar. We only do 2. Assume λS is inconsistent. Hence,
every type is inhabited. In particular, for every s ∈ S, Πx:s.x is inhabited.
I.e., there is an M ∈ Tl such that ⊢Sβ M : Πx:s.x. Hence by Lemma 39 and

Reduction Preserves Types Lemma 24, there is M1 ∈ T such that [M1]
l =β M

and ⊢Sβ M1 : Πx:s.x. Hence y : s ⊢Sβ M1y : y and for any C such that ⊢Sβ C : s

we get by Substitution Lemma that ⊢Sβ M1C : C. Hence, λS is inconsistent. ⊠

9 Curry Style to Church Style

An interpretation in the reverse direction requires the availability of a type which
can be used as the domain in the Church-style syntax which interprets the Curry-
style abstract λx.M . For this purpose, let us introduce a new atomic constant
A as a new dummy type, so that the interpretation of λx.M in the Church-style
system will be λx:A.M . This, of course, requires a change in the definition of
“type”. We will also need to add the following rule to the system: See Fig. 10.

(Aλ)
Γ ⊢β λx:B.M : Πx:B.C

Γ ⊢β λx:A.M : Πx:B.C

Fig. 10. The λ-rule for Church’s typing

This rule corresponds to the inference in the Curry-style system from

Γ ⊢ LabelB(λx.M) : Πx:B.C

to
Γ ⊢ λx.M : Πx:B.C

since [λx:B.M ]L is LabelB(λx.M), and is necessary for the proof of the Theo-
rem 54 below.

We can now define the mapping from the Curry-style syntax to the Church-
style syntax:

Definition 51 The function −Ch from the Curry-style syntax (Tc, Tl and T ′)
to the Church-style syntax T is defined as follows:
xCh ≡ x (λx.M)Ch ≡ λx:A.M

Ch (lB(λx.C))Ch ≡ (l′B(λx.C))Ch ≡ λx:A.C
Ch

cCh ≡ c (MN)Ch ≡MChNCh (Πx:B.C)Ch ≡ Πx:BCh .CCh



29

We define ΓCh in the obvious way.
Note that −Ch is partial on T ′ since we only define it for l′-bachelor-free terms.

The following lemma shows that the function −Ch is closed under free vari-
ables, substitution and reduction.

Lemma 52 Let r ∈ {β, β, β′}. When r is β′, we assume that we are only work-
ing with l′-bachelor-free terms.

1. If M is in either Tc, Tl or T ′, then FV(MCh) = FV(M).
2. (M [x := N ])Ch ≡MCh[x := NCh].
3. If M →→r N then MCh →→β NCh.
4. If M =r N then MCh =β NCh.
5. If MCh →→β N then N ≡ PCh and M →→r P .
6. If M,N ∈ Tc and MCh =β NCh then M =β N .

Proof. 1. and 2. By induction on M .
3. First show by induction on the derivation of M →r N that if M →r N then
MCh →β NCh, and then we show the lemma by induction on the length of the
derivation M →→r N .
4. Use 3 and CR of r.
5. First show by induction on M ∈ Tc that if MCh →β N then N ≡ PCh and
M →r P . Then show the lemma by induction on the length of the derivation
MCh →→β N .
6. By CR, MCh →→β P β←← NCh. By 5, P ≡ QCh

1 ≡ QCh
2 where M →→β Q1 and

N →→β Q2. Since Q1, Q2 ∈ Tc and QCh
1 ≡ QCh

2 , we can show by induction on Q1

that Q1 ≡ Q2. Hence, M →→β Q1 β←← N . Hence, M =β N . ⊠

Definition 53 We define ⊢βA to be the typing relation given by the rules of

Figures 2 and 3 (that is ⊢β) and (Aλ) given above.
When λS = (T , β,⊢Sβ ) is the PTS induced by S, we take λSA to be the tuple

(T , β,⊢S
βA

).

Note that the system λS
A
is not a PTS. Note also that there are no postulates

which make it possible to deduce ⊢ A : s for any sort s. This means that in λSA,
the only place in which A can occur is in the domain of an abstraction. In
particular, in λSA, we cannot introduce assumptions of the form x : A into any
legal context and we cannot prove a result of the form Γ ⊢M : A.

Theorem 54 In Tc the following holds:
1. If Γ ⊢S

β
M : B then ΓCh ⊢S

βA
MCh : BCh.

2. If Γ ⊢S
βA

M : B then there are Γ1, M1, B1 such that ΓCh
1 =β Γ , BCh

1 =β B,

Γ1 ⊢Sβ M1 : B1 and if M ≡MCh
2 then M1 ≡M2 else MCh

1 =β M .

3. If ΓCh ⊢S
βA

MCh : BCh then Γ ⊢S
β
M : B.

Proof. 1. By induction on the derivation Γ ⊢S
β
M : B.

2. By induction on the derivation Γ ⊢S
βA

M : B.



30

3. By 2, Γ1 ⊢Sβ M : B1 where ΓCh
1 =β ΓCh and BCh

1 =β BCh. By Lemma 52,

Γ1 =β Γ and B1 =β B. By Lemma 38, Γ ⊢S
β
M : B1 (it is easy to show that Γ

is ⊢β-legal). Now, by correctness of types we have:

– Either BCh ≡ s then B ≡ s and B1 =β s hence B1 →→β s and by reduction

preserves types lemma, Γ ⊢S
β
M : s ≡ B.

– Or ΓCh ⊢S
βA

BCh : s and by 2, Γ2 ⊢Sβ B : C where ΓCh
2 =β ΓCh and CCh =β

sCh. From this we can deduce Γ ⊢S
β
B : s and by (convβ), Γ ⊢

S

β
M : B. ⊠

The proof of the theorem does not depend on how the type A is interpreted,
but it might be worth considering how that interpretation should be carried out.
Since (λx:A.M) is the way the Curry-style abstraction (λx.M) is interpreted,
this suggests that we want to interpret (λx:B.M) for B not convertible to A, as a
restriction of (λx:A.M). With this idea for an interpretation, we might think of
rule (Aλ) as making the system, which is based on the Church-style syntax, more
like a system based on the Curry-style syntax. This idea for an interpretation
suggests that our intended interpretation of A is as a type including all terms in
all other types. The system λSA as defined above does not include any postulates
to formalize this interpretation: all we have in λSA is an alternative to adding
domain-free abstraction terms to the Church-style syntax. If we wanted to add
such a postulate, we might consider adding the following rule:

(AI)
Γ ⊢ M : B

Γ ⊢ M : A

It might appear that this significantly strengthens the system. However, un-
less we add an axiom of the form A : s for some sort s, it is impossible to prove
that a type of the form Πx:A.B has any sort as its type, so a type of this form
cannot be the type of a conclusion of (λ). Hence, it does not appear that adding
rule (AI) would have that much effect on the system. In particular, it appears
that adding rules (AI) and (Aλ) to a system satisfying strong normalization
would preserve strong normalization.

Another possibility would be to interpret A as the type ω that is the type
of every term (or pseudoterm in a Church-style syntax, but with ω present as a
type, every pseudoterm in a Church-style system is a legal term), which is the
way this type is used in intersection type systems. Then instead of rule (AI), we
would add the rule

(ωI)
Γ ⊢ M : ω

This would automatically give a type to every pseudoterm of the Church-
style semantics. Since the Curry-style system with which we are starting is a
PTS, whose postulates exclude a rule like (ωI), this really would strengthen the
system. And this rule clearly does not satisfy strong normalization.

Note that adding postulates to interpret A as a type is not necessary to the
interpretation of the Curry-style PTS in a Church-style system.



31

10 Conclusion and future work

In this paper we showed how to interpret in a Curry style system every Church
style pure type system without losing any typing information. We gave a number
of interpretations together with conservative extensions that preserve consistency
and showed how the reverse interpretations can be constructed. The three new
interpretations are summarised in Figure 1.

The following remarks are in order:

Remark 55 [Subtyping] If subtyping is present, LabelA(λx.M), lA(λx.M) and
l′A(λx.M) are in a sense restrictions of λx.M to the type A as domain, and λx.M
is a kind of universal function. Since LabelA(λx.M), lA(λx.M) and l′A(λx.M)
are typeable under the same conditions that type λx.M (and vice versa), Curry
style identifies functions with their restrictions. This is not surprising since λ-
calculus involves uniform definitions of functions as rules. In Church-style typing,
the domain in an abstraction is given explicitly in the abstraction term; it is the
type A in λx:A.M . However, in Curry-style typing, no such domain is given in
λx.M . In a Church-style PTS with subtyping, the specification of the domain
A in (λx:A.M) can represent a restriction of a function as a distinct term not
convertible to (λx:B.M) for a type B which is not convertible to A, but there is
no way to use the Curry-style syntax to represent a restriction this way.

Remark 56 [η-reduction] If we could find a way to add η-reduction to a Church-
style system with subtyping without losing the Church-Rosser Theorem, then we
would have a Church-style system in which functions could not be distinguished
from their restrictions; see [9, Remark 13.77]. For suppose B is a subtype of C,
and suppose that within a certain context, M : C → D. Then the subtyping
relation gives us

(λu:B .u) : B → C

so that if x 6∈ FV(M),
(λx:B.M((λu:B .u)x))

represents the restriction of M to domain type B. Now we have by (βCh),

(λx:B .M((λu:B.u)x))→→ (λx:B.Mx),

so (λx:B .Mx) also represents the restriction of M to domain type B. But if we
then apply a contraction by (ηCh), we contract (λx:B.Mx) to M , thus identifying
M with its restriction. Thus, to have a system with subtyping in which functions
can be distinguished from their restrictions, it is necessary to use a Church-style
syntax and use only β-reduction.

This seems to show the importance of the distinction between β-reduction
and βη-reduction for type theory.

Remark 57 [multivariate λ-calculus] In his paper [17], Garrel Pottinger intro-
duces a variety of the λ-calculus, which he calls the multivariate λ-calculus,
in which a term of the form λx1x2...xn

.M is not an abbreviation for repeated



32

abstraction, but is a term which can only become the head of a redex if it is
followed by n arguments. Thus in that calculus, (λxyz.xz(yz))MN is not a re-
dex, but (λxyz.xz(yz))MNP is. If the multivariate λ-calculus is used, then Label

would be a term which requires three arguments to make a redex.
In the multivariate λ-calculus, the reduction is β-reduction, not βη-reduc-

tion. The reason for this is that η-reduction collapses multivariate abstractions
to regular abstractions, since for a multivariate abstract

(λx1x2...xn
.M)

and variables u1, u2, . . . , un which do not occur bound or free in our term, we
have

λu1
.λu2

. . . . .λun
.(λx1x2...xn

.M)u1u2 . . . un

→→β λu1
.λu2

. . . . λun
.[x1 := u1, x2 := u2, . . . , xn := un]M

→→α λx1
.λx2

. . . . .λxn
.M

and

λu1
.λu2. . . . .λun

.(λx1x2...xn
.M)u1u2 . . . un

→→η λu1
.λu2

. . . . λun−1
.(λx1x2...xn

.M)u1u2 . . . un−1

...

→→η (λx1x2...xn
.M).

This tells us that if η-reduction is introduced into the multivariate λ-calculus in
connection with the use with Label in the previous paragraph, then the distinc-
tion between functions and their restrictions would be lost, just as it is with η
in the Church-style syntax as shown in Remark 55.

10.1 Future Work/Open Questions

The following questions arise naturally from the above interpretations, but are
so far unanswered:

1. In the Church-style syntax, we might consider adding η-contractions and
also the contraction scheme

λx:B.M →→ λx:A.M. (1)

This is roughly equivalent to adding Curry-style abstractions to the Church-
style syntax and then adding the contraction scheme

λx:B.M →→ λx.M.

In conjunction with this extended reduction, the typing rule (Aλ) would pre-
serve the Subject Reduction Lemma. Furthermore, the contraction scheme
(1) is the analogue for the Church-style syntax of a valid reduction in the
Curry-style syntax under the interpretation of this paper. But would the
Church-Rosser property hold for this reduction?



33

2. If we interpret A as the type ω as suggested above, then the normal form
theorem fails. In intersection type systems with this type, it can be proved
that any term that has a type in which ω does not occur has a normal form.
Would this be true here?

3. Suppose that instead of PTSs we consider the more liberal versions of PTSs
of [4]. How are the results of this paper affected?

Acknowledgements

We would like to thank Martin Bunder, Roger Hindley, Garrel Pottinger and
the anonymous referees for their helpful comments and suggestions. Seldin was
supported by the Natural Sciences and Engineering Research Council of Canada
as well as the Scottish Informatics and Computer Science Alliance (SICSA).
Kamareddine was supported by the Pacific Institute of Mathematical Sciences
(PIMS).

References

1. Barendregt, H.P. The Lambda Calculus: its Syntax and Semantics. Studies in Logic and the
Foundations of Mathematics 103. North-Holland, 1984.

2. Barendregt, H.P. Lambda calculi with types. In S. Abramsky, Dov M. Gabbay, and T.S.E.
Maibaum (editors), Handbook of Logic in Computer Science, Volume 2, pp. 117–309. Oxford Uni-
versity Press, 1992.

3. Barthe and Sorensen. Domain Free Pure Type Systems. Journal of Functional Programming
10(5), pp. 417-452, Cambridge University Press, 2000.

4. M. Bunder and W. Dekkers. Pure type systems with more liberal rules. Journal of Symbolic
Logic, 66:1561–1580, 2001.
5. Church, A. A formulation of the simple theory of types. The Journal of Symbolic Logic 5,
pp. 56–68, 1940.

6. Coquand, T. and Huet, G. The calculus of constructions. Information and Computation 76,
pp. 95–120, 1988.

7. H. Curry, J. Hindley, and J. Seldin. Combinatory Logic, volume 2. North-Holland Publishing
Company, Amsterdam and London, 1972.

8. Girard, J.-Y. Interprétation fonctionelle et élimination des coupures dans l’arithmétique
d’ordre supérieur. PhD thesis, Université Paris 7, 1972.

9. J. Hindley and J. Seldin. Lambda-Calculus and Combinators, an Introduction. Cambridge
University Press, 2008.

10. Howard. W.A. The formulas-as-types notion of construction. In J.P. Seldin and J.R. Hind-
ley (editors). To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,
pp. 479–490, Academic Press, New York, 1980.

11. Fairouz Kamareddine, Twan Laan and Rob Nederpelt. Refining the Barendregt Cube using
Parameters. Fifth International Symposium on Functional and Logic Programming, FLOPS 2001,
Lecture Notes in Computer Science 2024, Pages 3750–389. Springer 2001.

12. Fairouz Kamareddine, Twan Laan and Rob Nederpelt A Modern Perspective on Type Theory
From its Origins Until Today. Kluwer Academic Publishers, Applied Logic Series, Volume 29. 357
pages. May 2004.

13. Marc Bezem, J.W. Klop and Roel de Vrijer, Term rewriting systems. Cambridge University
Press 2003.

14. Z. Luo. ECC, an extended calculus of constructions. In Proceedings of the Fourth Annual
Symposium on Logic in Computer Science, June 1989, Asilomar, California, U.S.A., 1989.
15. Z. Luo. An Extended Calculus of Constructions. PhD thesis, University of Edinburgh, 1990.

16. G. Pottinger. Ulysses: Logical and computational foundations of the primitive inference engine.
Technical Report TR 11-8, ORA Corporation, January 1988.

17. G. Pottinger. A tour of the multivariate lambda calculus. In J. M. Dunn and A. Gupta,
editors, Truth or Consequences: Essays in Honor of Nuel Belnap, pages 209–229. Kluwer Academic
Publishers, Dordrecht, Boston, and London, 1990.



34

18. G. Pottinger and J. P. Seldin. Interpreting Church-style typed λ-calculus in Curry-style type as-
signment. Former title, “Note on η-Reduction and Labelling Bound Variables in Typed λ-Calculus.”
Unpublished.
19. Reynolds, J.C. Towards a theory of type structure. Lecture Notes in Computer Science. 19,
pp. 408–425, Springer-Verlag, 1974.
20. J. Seldin. Progress report on generalized functionality. Annals of Mathematical Logic, 17:29–
59, 1979.
21. J. Seldin. On the relation between Church-style typing and Curry-style typing. Unpublished.
22. S. van Bakel, L. Liquori, S. R. della Rocca, and P. Urzyczyn. Comparing cubes of typed and
type assignment systems. Annals of Pure and Applied Logic, 86(3):267–303, 1997.


