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Abstract  

This study employed a Monte-Carlo simulation approach to characterise the uncertainties in 

climate change induced variations in storage requirements and performance (reliability (time- 

and volume-based), resilience, vulnerability and sustainability) of surface water reservoirs. 

Using a calibrated rainfall-runoff (R-R) model, the baseline runoff scenario was first 

simulated. The R-R inputs (rainfall and temperature) were then perturbed using plausible 

delta-changes to produce simulated climate change runoff scenarios. Stochastic models of the 

runoff were developed and used to generate ensembles of both the current and climate -

change-perturbed future runoff scenarios. The resulting runoff ensembles were used to force 

simulation models of the behaviour of the reservoir to produce ‘populations’ of required 

reservoir storage capacity to meet demands, and the performance. Comparing these 

parameters between the current and the perturbed provided the population of climate change 

effects which was then analysed to determine the variability in the impacts. The methodology 

was applied to the Pong reservoir on the Beas River in northern India. The reservoir serves 

irrigation and hydropower needs and the hydrology of the catchment is highly influenced by 

Himalayan seasonal snow and glaciers, and Monsoon rainfall, both of which are predicted to 

change due to climate change. The results show that required reservoir capacity is highly 

                                                   
* Corresponding author E-mail: a.j.adeloye@hw.ac.uk 



  

2 

 

variable with a coefficient of variation (CV) as high as 0.3 as the future climate becomes 

drier. Of the performance indices, the vulnerability recorded the highest variability (CV up to 

0.5) while the volume-based reliability was the least variable. Such variabilities or 

uncertainties will, no doubt, complicate the development of climate change adaptation 

measures; however, knowledge of their sheer magnitudes as obtained in this study will help 

in the formulation of appropriate policy and technical interventions for sustaining and 

possibly enhancing water security for irrigation and other uses served by Pong reservoir.  

Key words reservoir performance; climate change; uncertainty analysis; Pong reservoir; 

India 

 

1 Introduction  

Climate change is predicted to affect the hydrology of most regions through its influence on 

temperature, rainfall, evapotranspiration (IPCC, 2007) and ultimately the runoff, the planning 

characteristics (e.g. capacity) and the performance (reliability, resilience, vulnerability and 

sustainability) of water resources infrastructures such as reservoirs. These impacts must be 

quantified for better planning and operation of water resource systems. Several studies have 

investigated the effects of climate change on reservoirs including Fowler et al. (2003), Nawaz 

and Adeloye (2006), Burn and Simonovic (1996), Li et al. (2009) and Lopez et al. (2009), 

with majority of these predicting worsening reservoir performance and higher storage 

capacity requirements as a consequence of climatic change. Relatively more recently, Raje 

and Mujumdar (2010) investigated the effect of hydrological uncertainty of climate change 

predictions on the performance of the Hirakud reservoir on the Mahanadi River in Orissa, 

India and found worsening reliability and vulnerability situations in the future.  

 

A common feature of published studies is that they have forced the impacts models with 
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outputs of large scale GCMs that have been downscaled to the catchment scale using either 

the statistical or dynamical (i.e. regional climate models) downscaling protocols. Fowler et al. 

(2007) discuss the pros and cons of these two approaches but despite their popularity for 

water resources climate change impact studies, there still remains a lot of uncertainties in 

both the broad-scale GCM predictions and their corresponding catchment scale downscaled 

hydro-climatology as noted by Raje and Mujumdar (2010). Adeloye et al. (2013) discuss the 

nature of these uncertainties and the problems they pose for decision makers trying to 

develop adaptation measures for projected climate change impacts. Peel et al. (2014) 

distinguish between-GCMs and within-GCM uncertainties, the latter relating to the inability 

of a GCM to produce the same output over different runs, while the former concerns 

variability in outputs of different GCM experiments caused largely by structural, 

parameterisation and initialisation differences. To avoid the complications and uncertainties 

in downscaled GCM climate predictions, change factor (delta perturbation) method is 

suggested (Anandhi et al., 2011; Vicuna et al., 2012), in which plausible changes in the 

runoff impacting weather variables such as precipitation and temperature are assumed and the 

effect of these on runoff is simulated using a suitable hydrological model. 

 

However, whether based on downscaled GCMs or delta perturbations, the traditional 

approach that uses single traces of both the current and future hydrology fails to recognise 

that these single traces represent one realisation of the population of possible traces. Thus, 

any impact estimated using the single traces can only relate to the average impact; no 

information is available on either the possible range of impacts or the variability (or 

uncertainties) of the assessed impacts. To be able to provide these answers, the population (or 

ensemble) of the current and future climate is required. Peel et al (2014) did this to 

characterise the within-GCM variability by replicating (100 times) GCM-based runs of 
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current and future climate. These were then used to force a hydrological model, leading 

ultimately to the evaluation of uncertainties and variability in runoff and reservoir yields. 

 

The work reported here has characterised the uncertainties in climate change impacts on the 

planning characteristics of surface water reservoirs using an approach similar to that 

described by Peel et al. (2014). However, major differences between the current study and 

Peel et al. (2014) include that: delta perturbations instead of downscaled GCM climate 

change scenarios are used; stochastic modelling is used to derive replicates of runoff series 

directly, rather than the indirect approach by Peel et al (2014) in which the rainfall and 

temperature were modelled stochastically and later used to force a rainfall-runoff model, thus 

removing the added layer of uncertainty caused by the multi-ensemble rainfall-runoff 

modelling; and reservoir impacts analysis is not limited to the yield/storage alone but 

includes consideration of performance indices. As far as the authors are aware, this is the first 

attempt at characterising the variability of reservoir performance indices within the context of 

climate change impacts assessment. 

 

To demonstrate the applicability of the methodology, it was applied to the Pong reservoir 

located on the Beas River in Himachal Pradesh, India (see Fig. 1). The Pong reservoir 

principally provides irrigation water although, prior to its diversion to irrigation, its released 

water first passes through turbines for generating electricity (Jain et al., 2007). Consequently, 

the current study is focusing on the irrigation function of the reservoir. The reservoir inflow is 

highly influenced by both the Monsoon rainfall and the melting glacier and seasonal snow 

from the Himalayas; consequently, its ability to satisfactorily perform its functions is 

susceptible to possible climate-change disturbances in these climatic attributes. For a system 

that is inextricably linked to the socio-economic well-being of its region (Jain et al., 2007), 
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any significant deterioration in performance or ability to meet the irrigation water demand 

will have far reaching consequences. This is why it is important to carry out a systematic 

assessment of the performance of the reservoir during climate change and to use the outcome 

to potentially inform the development of appropriate solutions. 

 

In the following sections, more details about the adopted methodology are given. These are 

then followed by the case study after which the results are presented and discussed. The final 

section contains the conclusions.       

 

2 Methodology 

The flowchart of the methodology is shown in Fig. 2. 

2.1 HYSIM hydrological model  

HYSIM was used to simulate catchment runoff in the study. HYSIM is a time-continuous, 

conceptual rainfall-runoff model. The model has two sub-routines simulating, respectively, 

river basin hydrology and the channel hydraulics. The hydrology is simulated with help of 

seven stores representative of land use and soil type while the hydraulic sub-routine is 

conducted using kinematic routing of flows. The full structure of the model is schematically 

illustrated in Fig. 3.  

 

The seven natural stores into which the hydrology routine was conceptualised comprise 

interception storage, upper soil horizon, lower soil horizon, transitional groundwater store, 

groundwater store, snow storage and minor channel storage, all with associated hydrological 

parameters as detailed by Pilling and Jones (1999). The interception storage in the model 

denotes canopy storage of moisture and is determined by the vegetation type in the model. 

Water stored in the interception compartment is ultimately lost by evaporation. The 
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transitional groundwater store is conceptualised as an infinite linear reservoir, and serves to 

represent the first stage of groundwater storage. The store receives water from both the upper 

and lower soil horizons through the process of deep percolation when these horizons are at or 

above the field capacity. Water in the transitional groundwater store is constantly discharging 

to the permanent groundwater store also through deep percolation. 

 

Initial values of some of the panoply of model parameters (see Pilling and Jones, 1999) are 

usually estimated from land use and soil type of the region while others are often extracted 

from the literature. Some of these parameters are later refined by calibration including:  

rooting depth (mm) [RD], permeability – horizon boundary (mm/hour) [PHB], permeability - 

base lower horizon (mm/hour) [PBLH],  interflow - upper (mm/hour) [IU], interflow - lower 

(mm/hour) [IL], snow Threshold [ST], and snow melt rate (mm/
o
C) [SM]. RD depends on the 

type of vegetation but usually ranges between 800mm – 5000mm, with lower value 

associated with grassland and higher value for woodland. For other parameters like PHB, 

PBLH, IU and IL, a universal default initial value of 10 mm/hour is assumed in the model. 

The snow melt related parameters, i.e. ST and SM control respectively the temperature below 

which the precipitation falls as snow and the melt rate in mm for each degree of temperature 

above the threshold.  

 

The hydraulics routine routes the flow down the channel using a simple kinematic wave 

approach, also with associated parameters (Manley and WRA, 2006). As will be shown later, 

the Beas at the Pong catchment was modelled as three sub-catchments in series to account for 

the spatial variability in the catchment. The relevant channel hydraulics parameters for the 

three sub-basins in the Beas basin are shown in the Table 1. None of these were optimised 

during the runs carried out in this study. 
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HYSIM takes precipitation, temperature and, where available, the potential evaporation as 

inputs. The temperature is required for the modelling of snow-melt and accumulation based 

on the empirical degree-day approach.  Where estimates of the potential evaporation are 

unavailable a priori, the temperature is also utilised for estimating the evapotranspiration. 

HYSIM has been extensively used in several research studies including snowy catchments of 

the United Kingdom to address climate change impacts issues e.g. Pilling and Jones (1999; 

2002); Arnell, (2003); Wilby, (2005). Murphy et al. (2006) used HYSIM for hydrological 

simulations associated with climate change water resources impacts studies in Ireland using 

downscaled data from the output from the HadCM3 global circulation model with 

satisfactory results. 

 

2.2 Stochastic data generation for Monte Carlo simulation 

The Monte Carlo simulation relies on generating several realisations of the at-site reservoir 

inflow runoff data. In the case study application, 1000 such replicates were generated. Prior 

to the generation, two issues must be settled: the temporal scale and the form of the stochastic 

generation model to use. Regarding the former, the decision was made to restrict the analysis 

to the monthly time scale. As noted by Adeloye (2012), the monthly time scale is sufficient 

for reservoir planning analysis as it will cater for both the within-year and over-year storage 

requirements. This implies that monthly data must be generated using an appropriate 

stochastic model.  

 

The generation of monthly data can be achieved using one of two approaches: either 

generating annual runoff data and disaggregating these to monthly values using an 

appropriate disaggregation scheme (e.g. method of fragments (Svanidze, 1964; Srikanthan 
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and McMahon, 1982); method of pro-ration (Savic et al., 1989); the Valecia-Schaake 

disaggregation (Valecia and Schaake, 1973)) or by utilizing a monthly generation model such 

as the Thomas-Fiering generation model (Thomas and Fiering, 1962) to directly generate the 

monthly data. Given the between-disaggregation scheme variability of disaggregated runoff 

and the consequent non-uniqueness of the outcome of reservoir planning analyses (see Silva 

and Portela, 2012),  a monthly runoff generation model was used. Thus, replicates of monthly 

runoff were simulated using the Thomas-Fiering monthly model (McMahon and Mein, 

1986): 
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where, Q1, Q2 are generated flows for month January and February respectively; μ is mean 

flow for the month indicated; b is least square regression coefficient (Eq.2); tn is normal 

random variate with zero mean and unit variance; σ is standard deviation of flow for the 

month indicated; ρ is correlation coefficient between adjacent months as indicated. Eq. (1) 

assumes that monthly runoff is normally distributed, which may not be true. To remove the 

possible constraint that can be imposed by the normality assumption, the Box-Cox 

transformation (see Eq. 3) was used to normalise the data:  
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where, Q and Q’ are untransformed (UT) and transformed (Tr) flows respectively, and λ is a 
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parameter estimated such that the skewness of Q’ becomes zero (McMahon and Adeloye, 

2005).  

After transformation using Eq. 3, the parameters (μ, σ, ρ) in Eqs. 1 and 2 are estimated based 

on the transformed data and are then used in Eq. (1) for the data generation. McMahon and 

Adeloye (2005) provide expressions for unbiased estimates of these and other parameters. 

The final step in the data generation is to bring back the generated values to the original 

values by applying the inverse of the Box-Cox transformation: 
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2.3 Sequent peak algorithm (SPA) for capacity estimation   

The first impact investigated is on the required capacity to meet existing demands at the Pong 

without failure when fed with the different runoff scenarios. A simple technique for obtaining 

the failure-free capacity estimate is the graphical mass curve (Ripple, 1883) but its graphical 

implementation makes the technique inconvenient especially for repeated analyses required 

for the Monte Carlo simulation. On the other hand, behaviour simulation is not efficient for 

failure-free capacity estimation because it is iterative, its outcome is not unique (see Adeloye 

et al., 2001) and has been found to mis-behave as demonstrated by Pretto et al. (1997). Thus, 

the required failure-free reservoir capacity was estimated using the sequent peak algorithm 

(SPA) which does not suffer from the above limitations (McMahon and Adeloye, 2005): 

Nt);QDK,0max(K ttt1t                     (5) 

)Kmax(K 1ta                                                (6) 

where, Ka is reservoir capacity,  Kt+1 and Kt are respectively the sequential deficits at the end 

and start of time period t, Dt is the demand during t, Qt is the inflow during t and  N is the 



  

10 

 

number of months in the data record. The SPA is a critical period reservoir sizing technique 

and like all such techniques assumes that the reservoir is full at start and end of the cycle, i.e. 

Ko =KN= 0. If, however, this is untrue, i.e.  KN ≠ 0, the SPA cycle is repeated by setting the 

initial deficit to KN, i.e.  K0=KN. This second iteration should end with KN unless the demand 

is unrealistic, e.g. such as attempting to take a demand higher than the mean annual runoff 

from the reservoir. In this sense, the assumption of an initially full reservoir is not crucial for 

the SPA because if this assumption is not valid, it will become evident at the end of the first 

cycle and a correction made for it during the second cycle.    

 

2.4 Reservoir behaviour simulation and performance indices 

To assess the performance of the historic reservoir capacity and operational rule curves when 

fed with the different runoff scenarios, behaviour simulation was carried out using 

(McMahon and Adeloye, 2005): 

URCSLRC;DQSS 1t

'

ttt1t  
  (7) 

where, St+1, St are respectively, reservoir storage at the end and beginning of time period t; 

Dt’ is the actual water released during t (which may be different from the demand Dt, 

depending on the operating rule curves); LRC is the lower rule curve ordinate for the month 

corresponding to t; and URC is the corresponding upper rule curve ordinate.  

Following simulation, relevant performance measures- reliability, vulnerability, resilience 

and sustainability - were evaluated as outlined below (see also McMahon and Adeloye, 2005; 

McMahon et al., 2006):  

i. Time-based Reliability (Rt) is the proportion of the total time period under consideration 

during which a reservoir is able to meet the full demand without any shortages:  

NNR st                                                                                                                                  (8) 
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where Ns is the total number of intervals out of N that the demand was met. 

ii. Volume-based Reliability (Rv) is the total quantity of water actually supplied divided by 

the total quantity of water demanded during the entire operational period:  

t
'
t

N

1t

t

N

1t

'
tv DD,DDR  



                                                                                                       (9) 

iii. Resilience () is a measure of the reservoir’s ability to recover from failure (Hashimoto 

et al., 1982):  

10;1 
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where fs is number of continuous sequences of failure periods and fd is the total duration of 

the failures, i.e. fd = N - Ns.  

iv. Vulnerability (η) is the average period shortfall as a ratio of the average period demand 

(Sandoval-Solis et al., 2011): 
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v.  Sustainability index integrates the three earlier defined indices (Sandoval-Solis et al., 

2011):                                                                                                               

   3/1

t1 1R    (12) 

where γ1 is the sustainability. Because the volumetric reliability (Rv) is more robust than Rt, 

i.e. less likely to be dramatically affected, an alternative definition of sustainability index (γ2) 

using Rv instead of Rt was also explored, i.e.: 

   3/1

v2 1R    (13)         (16) 
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2.5 Pairing of runoff replicates for impact assessment 

To obtain the population of climate change impacts on the various reservoir characteristics, 

estimates of these characteristics for the current and corresponding future runoff are required. 

The best way to achieve the current-future runoff pairing is to use a ‘two-site’ stochastic 

generation approach (see McMahon and Adeloye, 2005), in which the current runoff is a 

‘site’ and the future runoff is another ‘site’. This approach was used by Peel et al. (2014) for 

quantifying the effect on runoff, etc. of climate change perturbations in the rainfall and 

temperature pair, considering each of these processes as a ‘site’. However, multi-site data 

generation requires too much effort and can be problematic if the data are non-normally 

distributed. Consequently, a different approach which is much simpler to use was adopted in 

this study as follows.  

 

After the stochastic generation of the required number of replicates (e.g. 1000 in the current 

case study) for the current and future runoff, a pair of integer numbers was randomly 

generated, with the 1
st
 of these representing the current and the 2

nd
 representing the future. 

This process was repeated until all the 1000 current and future runoff series have been paired 

up. If during the generation, a number is repeated (i.e. has been generated before), that pair is 

discarded and a new pair is generated. In this way the current and future hydrology scenarios 

(or runoff series) are paired up for the purpose of climate change impacts assessment.  To 

accommodate the randomness in this approach, i.e. in which different pairing might result 

from repeated performance of the procedure, the exercise was repeated 100 times and the 

mean impact over the 100 repetitions was taken as the final impact due to climate change.  
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3 Case Study  

 

3.1 River basin and data   

The Beas River, on which the Pong dam and its reservoir are located, is one of the five major 

rivers of the Indus basin in India (see Fig. 1). The reservoir drains a catchment area of 

12,561 km
2
, out of which the permanent snow catchment is 780 km

2 
(Jain et al., 2007). 

Active storage capacity of the reservoir is 7290 Mm
3
. Monsoon rainfall between July and 

September is a major source of water inflow into the reservoir, apart from snow and glacier 

melt. Snow and glacier melt runoff in Beas catchment was studied from 1990-2004 by Kumar 

et al (2007) and its contribution is about 35% of the annual flow of the Beas River at Pandoh 

Dam (upstream of Pong dam). The reservoir meets irrigation water demands of 7913 

Mm
3
/year to irrigate 1.6 Mha of command area. The major crops cultivated in the area are 

rice, wheat and cotton. The seasonal distribution of the irrigation releases is shown in Fig. 4; 

these releases pass through hydropower turbines to generate electricity prior to being diverted 

to the irrigation fields.  The installed capacity of hydropower plant is 396 kW. In general, Fig. 

4 reveals rises in release during the Kharif (June – October) cultivation season to cater for the 

water-intensive paddy rice cultivation during this season. Less water is released during the 

Rabi cultivation season (November – April); indeed, as Fig. 4 shows, the irrigation release is 

least in April at the end of the Rabi when only minor vegetables are cultivated.  

 

Monthly reservoir inflow and release data from January 1998 to December 2008 (11 years) 

were available for the study. The historic mean annual runoff (MAR) at the dam site is 8485 

Mm
3
 (annual coefficient of variation is 0.225). The mean monthly flows are also shown in 

Fig. 4, which reveals the significantly higher inflows during the Monsoon season. In general, 

the irrigation demands are larger than the natural river flows except during the Monsoon, 

implying that such demands cannot be met without the Pong reservoir.  
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Gridded Tropical Rainfall Measuring Mission (TRRM 3B42 V7) daily rainfall data with the 

spatial resolution of 0.25
o
 × 0.25

o
 that span the runoff period were used.  Potential 

evapotranspiration (ETo) measurements were unavailable; hence they were obtained using the 

Penman-Monteith (P-M) formulation forced with meteorological variables from the NCEP 

Climate Forecast System Reanalysis (CFSR) data (spatial resolution = 0.5
o
 × 0.5

o
) from 

January 1998 – December 2008. Because the spatial resolution of available rainfall and 

climatological data were different, the number of grids used to average rainfall, snowmelt and 

evapotranspiration were also different. 

 

Although measured runoff data at the Pong dam were only available, to accommodate the 

spatial variability within the Beas catchment, the whole basin upstream of the dam was 

divided into three sub-basins: the upper, middle and lower as shown in Fig. 1, based on 

consideration of altitude, spatial difference, presence of hydraulic structures and available 

meteorological data. The sub-catchment areas are respectively 5720 km
2
, 3440 km

2
 and 3350 

km². The Pandoh dam is the hydraulic structure of note upstream of the Pong dam on the 

Beas and diverts water to the Sutlej River. Record of the diversion for the simulation period 

were obtained from the Bhakra-Beas Management Board (BBMB) and used to adjust the 

runoff reaching the Pong during the simulations.  

 

HYSIM hydrological parameters were initialised with the help of the Harmonized World Soil 

Database (HWSD) analysis: the area of each soil type of the catchment was taken into 

account to get an average value of hydrological parameters. These parameters were then 

modified during the calibration of the model. 

 

Finally, as noted in Section 2.4, the simulations for the performance evaluation require the 
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operational rule curves for the Pong reservoir. In the absence of existing rule curves for the 

reservoir, genetic Algorithms (GA) optimised rules curves (with integrated hedging) were 

developed as part of the wider study (see Adeloye et al., 2016), using the recorded historic 

runoff data at the Pong dam site. The basic form of these curves, i.e. without hedging, used in 

the current study is shown in Fig. 5. 

 

3.2 Scenario neutral climate perturbations 

Although scenario neutral perturbations of temperature (dT) and rainfall (dP) were used for 

the analyses, it is important that these perturbations are realistic. An objective way to ensure 

this is for the selected temperature and rainfall delta-perturbations to be guided  by GCM  

projections of these climatic variables for the region of interest. Thus, we have examined the 

CMIP5 model simulations (Taylor et al., 2012; IPCC, 2013) for the Beas basin region to 

arrive at the temperature and rainfall perturbations used for the analyses.  

 

Fig 6 shows the scatter of the projected temperature and rainfall changes in the Beas Basin as 

obtained from 127 GCMs runs covering all CMIP5 representative concentration pathways 

(RCPs) for the short- (2011-2040), medium- (2041 – 2070) and the long-term (2071 – 2100) 

horizons. As seen in the Fig. 6  all the GCMs are projecting temperature rise in the Beas with 

the projected change intensifying as the assumed radiative forcing intensifies and the time 

horizon lengthens. Indeed, majority of the projected changes for 2071-2100 horizon with 

RCP 8.5 were above 5
o
C (which is why they have not been shown in the frame in Fig. 6c).  

Regarding rainfall, both reductions and increases in the annual rainfall are being projected by 

the GCMs. Unlike the temperature where there were noticeable differences between the 

RCPs, the projection in the annual rainfall was broadly similar, ranging from -10% to +20%.  

 

One possibility for selecting the perturbations is to use ranges given by the 95% confidence 
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limits of the mean co-ordinate of the data in Fig. 6. The mean co-ordinates of the scatter 

points are indicated by the crosses in the Fig. 6. The 2041 – 2070 and 2071-2100 plots have 

two crosses because not all the projections have been shown on the frame. Thus,  the lower 

cross represents the mean co-ordinate of the plotted points appearing on the frame while the 

higher cross is the mean co-ordinate if all the “out-of-range” values not shown on the frame 

are included. Obviously, given the large number of such out-of-range values in the 2071-

2100 plots, the effect of including these has been more dramatic than in the 2041-2070 plot. 

These mean co-ordinates (or centroid of the changes) are summarised in Table 2, together 

with their corresponding 95% confidence limits, assuming that the means have a normal 

distribution.  

 

As Table 2 shows, the 95% dT limits do capture the range of temperature changes projected 

by the GCMs; however, the same cannot be said about the dP limits which have completely 

omitted the reductions in rainfall projected by the models. Consequently, the climate change 

sensitivity analyses cannot be restricted to the limits shown in Table 2 but must involve the 

complete range as projected by the GCMs, especially in relation to projected reductions in 

rainfall because of its effect on reservoir inflows and hence on its performance. Following 

these considerations, delta perturbations in temperature (dT) of 0 – 5 
o
C (step of 1 

o
C) and 

annual rainfall perturbations (dP) of -10% to +20% (step of 5%) were finally used in the 

study. Although delta perturbations (or scenario-neutral) approach has often been criticised 

for its inability to accommodate future changes in the seasonality and probability distribution 

of climatic attributes and hence the runoff, it is nonetheless an efficient method in identifying 

tipping points at which a water resources infrastructure, e.g. a reservoir, is likely to fail 

catastrophically in meeting water demand. 
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4 Results and Discussion  

4.1 HYSIM rainfall-runoff model and assessed climate change impacts 

The available flow record (1998 – 2008) was split into three: 1998 – 1999 (2 years) period 

was used for model warm-up, January 2000 – December 2004 period was used for model 

calibration and January 2005 – December 2008 period was used for model validation. The 

upper sub-catchment (see Fig. 1) of the Beas basin has permanent snow throughout the year. 

To simulate this permanent snow condition, we have added five years of data (Jan 1993 – 

Dec 1997) to the upper sub-basin with the temperature fixed at zero (thus guaranteeing the 

availability of snow to be melted) and precipitation (in the form of snow) value of 15 mm on 

each day. This will add a permanent snow of ~27.4 m (5* 365 * 15 mm) to the model. To 

accommodate model parameter uncertainty during calibration, a Monte Carlo approach 

involving the stochastic generation of hundred parameter sets for each sub-catchment during 

the calibration was used; the parameter set corresponding to the best-behaved simulation was 

finally selected.   

 

As noted earlier, measured runoff data were only available for the outlet of the lower sub-

catchment; consequently, comparison was only possible at this site. The performance of the 

model in simulating the runoff at the lower catchment outlet during calibration and validation 

is shown in Figs 7a & b respectively. From these, it can be seen that the model has performed 

reasonably well in reproducing the measured runoff. More re-assuring is the relatively better 

performance of the model in simulating the low runoff sequence in the data, which is more 

important for water resources planning than the high flows periods. The estimated Nash-

Sutcliffe efficiency indices during the calibration and validation were respectively 0.88 and 

0.78, both of which lend further credence to the modelling skill of the calibrated HYSIM.   
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With HYSIM satisfactorily calibrated and validated, it was possible to use the validated 

model to assess impacts of changes in the rainfall and temperature on the runoff. As noted 

earlier, changes in annual rainfall considered were -10% to +20% with an increment of 5%. 

Similarly, temperature changes considered were 0
o
C to +5

o
C with an increment of unity. The 

mean values of the simulated annual and seasonal runoff are shown in Fig. 8. In general, 

reducing the rainfall causes the resulting runoff to reduce irrespective of the temperature 

situation. However, the simulation has also revealed a large influence of the melting glacier 

and seasonal snow on the runoff, where on an annual scale, changing the temperature by 2
o
C 

is causing the runoff to increase by about a third. The simulations also reveal the dominance 

of the Monsoon effect on the runoff of the Pong. For example, of the simulated maximum 

mean annual runoff of about 12000 Mm
3
, almost 88% of this (~ 10500 Mm

3
) was contributed 

during the Monsoon (June to August) and post-monsoon (September to November) periods, 

with both the winter and pre-monsoon periods contributing the remaining 12%. This further 

reinforces the importance of the Monsoon in ensuring the water security of the Beas and 

indeed the whole of India.  

 

Table 3 summarises the percentage change in annual and seasonal runoff relative to the 

simulated historic runoff. As expected, increasing the rainfall causes the annual runoff to 

increase while reducing the rainfall also causes the runoff to decrease  for all the temperature 

scenarios.  However, while increasing or decreasing the rainfall by the same amount has 

resulted in similar absolute change in the runoff for no change in temperature, the situation is 

quite different when temperature increases are also considered. For example, as shown in 

Table 3, an increase in annual rainfall of 5% produced a 10.21% increase in the annual runoff 

if the temperature increased by 1
o
C; however, a similar decrease in rainfall with the 1

o
C 

temperature increase only resulted in a decrease of only 1.6 % in the annual runoff. As noted 

previously, the Beas hydrology is heavily influenced by the melting snow from the 
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Himalayas and what these results show is that runoff contributed by the melting snow 

partially compensates for the reduction in direct runoff caused by the combined effects of 

lower rainfall and higher (temperature-induced) evapotranspiration. Indeed, as the assumed 

temperature increase becomes higher, the effect of any reduction in the annual rainfall fully 

disappears, resulting in a net increase in the annual runoff. Consequently, increasing the 

temperature by 2
o
C has resulted in a net increase in the annual runoff of 12.4% and 7% for 

5% and 10% reductions respectively in the annual rainfall.  

 

The annual runoff situation presented above masks the significant seasonal differences in the 

simulated runoff response of the Beas. As Table 3 clearly shows, both the post-Monsoon and 

winter seasons that do not benefit from the melting snow and its associated runoff tended to 

be well-behaved in terms of the response, with reductions in the rainfall producing significant 

reductions in the generated runoff. Indeed, for these two seasons, increasing the temperature 

can worsen the runoff situation even for situations in which the rainfall has increased, as 

clearly revealed by the 2.4% reduction in the winter runoff  with 1
o
C and 5% rises, 

respectively in the temperature and rainfall. These situations must be resulting from the 

dominance of the evapotranspiration loss, which in the absence of additional water from 

melting snow will make the runoff to decrease. 

 

4.2 Data generation 

The skew of the untransformed (UT) monthly runoff data are shown in Table 4. Assuming 

that the skew has a normal distribution, then the  approximate 95% confidence limits for zero 

skew is [–1.96Sgy, 1.96Sgy] where Sgy is the standard error of estimate of the sample skew 

coefficient, given by (6/n), where n is the sample size. For n = 11, the 95% zero skew limits 

become [-1.45, 1.45], which means that statistically, the March runoff data cannot be 

assumed to be normally distributed. However, to avoid the use of mixed distributions, all the 
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12 months were subjected to the Box-Cox transformation as described in Section 2.2. The 

skew of the Box-Cox transformed data (Tr) are also shown in Table 4, together with the 

estimated transformation parameter (λ). As seen in Table 4, all the skew values for the 

transformed monthly runoff data are well within the 95% limits, implying that the 

transformed data exhibit the required near zero skew and can hence be described using the 

normal distribution.  

The characteristics of the generated and simulated historic runoff (current) data are compared 

in Fig. 9. Similar results are available for the future runoff scenarios but these have been 

omitted here for lack of space. The generated statistics are the mean over the 1000 replicates. 

Fig. 9 shows the stochastic model has reasonably reproduced the mean, standard deviation 

and correlation of the simulated historic. The skewness is less well simulated, which is not 

surprising given that the skew was removed prior to the stochastic modelling. However, this 

should not be a major concern since reservoir capacity estimate is mostly influenced by the 

coefficient of variation, CV (i.e. standard deviation divided by the mean) and less by the 

skew (Burges and Linsley, 1971).   

 

4.3 Uncertainty in capacity estimates 

Population of reservoir capacity based on existing monthly irrigation releases at the Pong (see 

Fig. 1) are summarised in the box plots in Fig. 10(a). The horizontal dashed line represents 

the existing (or historic) capacity of 7290Mm
3
. As Fig. 10(a) clearly shows, there is wide 

variability in the required reservoir capacity for each runoff scenario. Although the existing 

capacity of the Pong is 7290Mm
3
, the required capacity estimates based on the simulated 

current runoff series (see scenario T0_P0% in Fig. 10(a)) could be as low as 3545 Mm
3
 or as 

high as 21452 Mm
3
. These, respectively, represent under-design and over-design situations 

relative to the existing capacity at the Pong reservoir. The implication of under design is that 
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the reservoir will fail frequently to meet the demand.  

 

The effect of climate change on the capacity estimates broadly follows the effect on runoff. 

Thus, as the rainfall and hence runoff decreases, the capacity required for meeting the 

demand increases. Consequently, a 5% decrease in the rainfall without a change in 

temperature (T0_P-5%) would require a capacity as high as 21540 Mm
3
 to meet existing 

demands. However, when the rainfall increased by the same amount, (T0_P+5%), the 

maximum capacity was 12405Mm
3
. This is less than the maximum capacity for the T0_P0% 

scenario and may be caused by the fact that the additional rainfall especially in the already 

wet Monsoon season does not influence reservoir capacity estimate. When the rainfall 

changes are accompanied by increase in temperature, the resulting additional runoff has 

caused a reduction in the capacity requirement when compared to their corresponding no-

temperature change situations. 

 

The variability or uncertainty of the reservoir capacity estimate is characterised by the 

coefficient of variation (CV) and summarised in Fig. 10(d). This shows increasing 

uncertainty in required reservoir capacity as the catchment becomes drier. Kuria and Vogel 

(2015) recently presented the uncertainty (or CV) for water supply reservoir yields as a 

function of the inflow record length and the CV of annual runoff. Although the relationship 

between reservoir yield and capacity is non-linear, making it difficult to infer the variability 

in one from that of the other, the CV of the yield for the Beas record used (length = 11 years; 

CV = 0.225) if interpolated from Kuria and Vogel (2015) will be broadly within the CV 

envelope reported in Fig. 10(d). 

 

Fig. 10(b) summarises the population of changes in required reservoir capacity based on the 
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paired experiments discussed earlier. As a reminder, the changes in Fig. 10(b) are the means 

over 100 replications of the paired experiments. Again, there are huge uncertainties in the 

predicted changes, which call into question the use of single runs of impact models in water 

resources climate change impact studies. Fig. 10(b) shows that the uncertainties are more 

pronounced for drier conditions than for wetter conditions. Thus, a 5% decrease in the rainfall 

can mean that the current capacity is either too little by as much as 195% or is too much by 

47%. For the most wet future scenario investigated (T5_P+20%- not shown in Fig. 10(a) to 

avoid cramping), the variability is much less, with the existing capacity representing an over 

design of between 42% and 63%. 

 

The above large arrays of possibilities in the impact of climate change are bound to 

complicate decision making regarding adaptation and mitigation. Because impacts are not 

unique, it is obviously misleading to be talking of the impact because such does not exist. 

However, what can be done is to attach likelihood (or probability) of occurrence to the 

assessed impacts. Fig. 10(c) shows the empirical cumulative distribution function (CDF) of 

required capacity estimates for all the investigated scenarios and reveals the rightward shift in 

the CDF as the catchment becomes drier, implying higher storage requirements at a given 

probability. Additionally, not only are the drier conditions requiring more storage at a given 

probability, their CDFs are also less steep resulting in significant differences between the 

lower and higher quantiles of the capacity estimates. 

 

4.4 Uncertainty in reservoir performance 

The Box plots for the performance indices are shown in Figs. 11 (a-e). In order to save space, 

however, the Box plots of the changes in these indices as well as their empirical CDFs are not 

reproduced here but can be requested from the corresponding author by interested readers.  
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The two reliability indices, Rv and Rt, shown in Figs. 11 a & b respectively also exhibit 

variability in their estimates, however, a quick juxtaposition of both figures will reveal that 

Rt<Rv as expected, which is why caution should be exercised when adopting the time-based 

reliability for system evaluation: the fact that time-based reliability is low does not make the 

water supply situation of the system poor. Thus, as noted by Adeloye (2012), while the initial 

evaluation of systems performance can be based on the time based reliability Rt because it is 

simple to estimate and might be readily recognized by users who are already familiar with the 

concept of return periods, the volumetric reliability should also be evaluated and any 

necessary adjustments made to system’s characteristics in the light of this. For example, the 

Rt may be relaxed (or reduced), such as through increasing the release from the reservoir to 

meet additional needs or adopting a lower reservoir capacity during planning, if the Rv is very 

high. From Fig. 11(b), it is evident that, Rt is improving when the rainfall is increasing as 

expected; similarly temperature increases also improved the Rt, due to additional runoff 

availability from snow and glacier melt from the Himalayas.  Contrary to Rt, the Rv shows 

less variability for all the scenarios.  

 

Fig. 11(c) shows the resilience (i.e. probability of recovering from failure) and reveals that, 

increasing the rainfall also improves the resilience. The population of the assessed 

vulnerability is summarised in Fig. 11(d) and shows that in general, the mean vulnerability is 

decreasing when the rainfall and temperature are increasing, i.e. when the inflow is 

increasing, as expected but this is at the expense of an expanding variability or uncertainty. 

For example, although the assessed vulnerability of the Pong reservoir is about 66% based on 

single run of the historic runoff record, the vulnerability for this T0_P0 situation could 

actually be either as low as 56% or as high as 97% if the stochastic properties of the historic 

runoff are taken into account. In general, vulnerability (or single period deficits) above 25% 

is not recommended because of the distress it can cause to water users (Fiering, 1982). Thus, 
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the fact that the least historic vulnerability obtained for the Pong reservoir exceeds 25% is an 

indication that changes in existing operational practices, e.g. by hedging, conjunctive use 

with other sources such as groundwater, etc., are required to temper the large single period 

shortage. As the inflow increases, the lower range of the vulnerability drops, sometimes 

approaching zero but its upper range also rises, making the estimate of the vulnerability more 

uncertain. 

 

The sustainability index γ is a figure of merit that integrates the three basic performance 

indices of reservoir performance- reliability, resilience and vulnerability- thus making it 

possible to avoid the complexities that can arise in using multi-criteria (and their possible 

trade-offs as explained earlier in the case of Rt and Rv) in decision making. The population of 

γ is shown in Fig. 11(e) which also reveals high variability as would be expected from the 

behaviour of its constituent indices. The variation with respect to the historic sustainability of 

0.44 appears much larger for the drier scenarios than the wetter scenarios, thus resembling the 

behaviour of the resilience (see Fig. 11(c)). Although the form of the sustainability index 

adopted in this work (see Eq. (12)) is meant to temper the dominating effect (including the 

so-called “nullity” problem where if any of the constituent indices is zero, the γ is also zero- 

see Chiamsathit et al. (2014)) of any of the constituent indices over the other, it would seem 

that the resilience, being the smallest numerically of all the constituent indices of the 

sustainability (γ), is still exerting a strong influence on the γ. Although not shown in Fig. 11 

to save space, the use of Rv (as opposed to Rt) in γ (see Eq. 13) did not result in any 

significant change in the population of the γ. This may be largely due to the fact that the 

estimated γ is more affected by the resilience and less by the reliability (time- and volume-

based) as explained earlier. 

 

 The variability (or CV) of the assessed performance indices are summarised in Figs 12(a-f) 
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and confirm the observation made earlier from considerations of the Box plots. Of the 

performance indices, the two reliability measures, Rt and Rv, were the least variable with the 

Rv being the more reliable of the two (see Figs. 12(a&b)). Furthermore, the trend in the two 

reliability measures was similar to that of the reservoir capacity in that their variability 

increased as the catchment became drier. Although the relative popularity of these two 

indices for reservoir performance evaluation has often been attributed to their ease of 

estimation, the fact that they also exhibit the least variability should further entrench their 

usefulness for reservoir planning analysis.  

 

The vulnerability was the most variable (see Fig. 12(d)), with the CV exceeding 50% for very 

wet catchment conditions as would be expected from the expanding range in its population as 

noted earlier. The vulnerability is a useful index for assessing the impact of water shortage on 

users; however, what this study has shown is that its estimate can be highly variable, which 

calls for caution in its use. For relatively drier situations when the possibility of water 

shortage is more likely, the variability of the vulnerability is much lower, thus making its use 

for decision making in such difficult situations less problematic. 

 

The variability in the sustainability index (see Figs. 12(e & f)) was much tempered when 

compared to the variability in the vulnerability, whereas there is broad variability 

resemblance between the sustainability and resilience (see Fig. 12(c)). Both the resilience and 

sustainability also exhibit similar trend in the variability, i.e. the variability in the two indices  

appears to increase as the catchment becomes wetter, which may further help to explain why 

the resilience is such a dominant index on the estimated sustainability as observed previously. 

The use of Rv instead of Rt in the sustainability index (compare Figs 12  (e) and 12 (f)) did 

not produce any noticeable effect on the variability of the sustainability, which is not 

surprising given the low and broadly similar variabilities of the two reliability measures (as 
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seen in Figs 12 (a & b)). 

 

The above clearly offers useful insights into the use of the performance indices for reservoir 

assessment. On the basis of the variability, the two reliability measures (Rv and Rt) remain the 

best but given that Rv actually quantifies the volume of water supplied and is the least 

variable, Rv should be preferred. The high variability in both the vulnerability and resilience 

makes them unreliable for decision making but the sustainability index which integrates these 

with all other indices is less variable and should form the avenue for accommodating both the 

vulnerability and resilience in performance evaluation.  

 

Conclusions   

This study has revealed the large variability associated with climate change impacts 

assessment and the importance of characterising this variability for improved decision 

making. The application of the methodology to the Pong reservoir on the Beas River in 

norther India used delta perturbations in both the rainfall and temperature that were informed 

by CMIP5 GCM simulations. As expected, reductions in rainfall resulted in reservoir inflow 

runoff to decrease and vice-versa. However, due to the effect of melting snow and glaciers 

that are abundant within the Beas catchment, increasing temperature and the resulting melting 

of the snow and glacier nullified some of the impacts of reduced rainfall on the inflow. 

 

As far as the planning characteristics of the Pong reservoir were concerned, the reservoir 

capacity needed to maintain existing levels of irrigation water releases from the reservoir was 

highly variable in comparison to the existing capacity at the dam. In particular, it has been 

revealed that the needed capacity for future conditions may either be as much as 83% lower 

or 506% higher depending on the climate scenario. Both of these situations are undesirable 

due to capital lock-in in the case of the latter and systems poor performance for the former. 
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The derived empirical distribution of the reservoir capacity showed rightward shifting and 

less steep CDFs as the catchment became drier, implying that that reservoir capacity quantiles 

for drier scenarios are much larger than the corresponding values for wetter conditions.  

 

The associated reservoir performance indices are also variable.  Of these, the vulnerability 

exhibited the highest variability which in the worst case was as high 50%.   The two 

reliability indices, Rt and Rv, were the least variable, with the Rv exhibiting slightly lower 

CVs than the Rt. This further underscores the popularity of the two indices for water 

resources systems evaluation.  

 

The outcome of the study has clearly exposed the dangers of mean climate impacts 

assessments which fail to characterise the variability of the assessed impacts. It should 

certainly be desirous for decision makers to have full picture of the likely range of impacts to 

be expected and the risks (or probabilities) of occurrence of such impacts so that effective 

adaptation measures, e.g. improved reservoir operational practices involving water hedging 

that deliberately withholds water during normal operation for later release when conditions 

are drier, conjunctive use of groundwater and surface water resources, etc. can be developed 

and appropriately prioritised. The methodology reported in this work will provide answers to 

these questions, is simple to implement and, although applied to one system, can readily be 

replicated for other water resources systems. It is also the only study as far as we are aware 

that has extended the characterisation of uncertainties to reservoir performance indices.    
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Fig. 1 Beas river basin 
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Fig. 2 Methodology flow chart 
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Fig. 3 HYSIM schematic 
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Fig. 4 Average monthly inflows and releases from Pong dam (2000-2008) 

 

  



  

 

 

 

Fig. 5 GA optimised rule curves for the Pong Reservoir  
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Fig. 6 Simulated changes in annual temperature and precipitation in the CMIP5-atlas ensemble 

relative to 1986-2005 (Points show results of individual simulations; the crosses are the mean 

coordinates of the plotted points- see the text (section 3.2) for further explanations)  
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Fig. 7 Comparison of observed and simulated monthly river flow during: (a) calibration; and (b) 

validation 
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 Fig. 8 Simulated mean annual and seasonal runoff at the Pong reservoir (Mm
3
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        (a)                  (b) 

  

(c)        (d) 

Fig. 9 Comparison of statistics of ‘observed’ (HYSIM) and stochastically generated (GEN) runoff: 

(a) mean; (b) standard deviation; (c) correlation coefficient; and (d) skewness 
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(d) 

Fig.10  Reservoir storage: (a) box plot of required storage capacity; (b) change (%) in required 

storage capacity; (c) CDF of required storage capacity; (d) CV of required storage capacity 
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(e) 

Fig. 11 box plot of reservoir performance: (a) Volume reliability; (b) Time reliability;  

(c) Resilience; (d) Vulnerability; (e) Sustainability (based on Rt) 
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      (a)-Rt             (b)-Rv 

 

 

        (c)-φ            (d)-η 

 

 

          (e)-γ1            (f)- γ2 

Fig. 12 CV of performance indices: (a) Time reliability; (b) Volume reliability; (c) Resilience; (d) 

Vulnerability; (e) Sustainability (based on Rt); (f) Sustainability (based on Rv) 
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Table  1 HYSIM hydraulic parameters 

 

Parameters 
Sub-basin 

Upper Middle Lower 

Channel roughness 0.03 0.03 0.03 

Reach gradient 0.035 0.007 0.0025 

Flood plain roughness 0.10 0.10 0.10 

 

 

 

 

 

Table 2: Mean and standard deviation of projected changes in temperature (dT) and annual 

rainfall (dP) based on 127 CMIP5 GCMs simulations 

Time slice 

Mean (and standard 

deviation) of change 
95% limits 

dT (
o
C) dP (%) dT (

o
C) dP (%) 

2011-2040 1.84 (0.663) 2.84 (13.017) [1.73, 1.96] [0.58, 5.10] 

2041-2070 2.94 (0.96) 2.77 (14.33) [2.77, 3.11] [0.28, 5.26] 

2070-2100 3.90 (1.67) 5.51 (15.9) [3.61, 4.19] [2.74, 8.29] 
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Table 3. Change (%) of annual and seasonal runoff from simulated historic 

Temperature 

change, C 
Annual Rainfall change, % 

 

-10 -5 0 +5 +10 +15 +20 

Annual 

0 -12.11 -6.25 0.00 6.70 13.77 21.26 29.22 

1 -7.08 -1.63 4.17 10.21 16.44 22.80 29.28 

2 6.98 12.41 18.19 24.27 30.51 36.90 43.40 

3 22.89 28.33 34.12 40.21 46.52 52.97 59.57 

4 40.44 45.94 51.78 57.93 64.32 70.87 77.52 

5 59.50 65.01 70.86 77.03 83.46 90.04 96.75 

Season: Winter (Dec – Feb) 

0 -13.25 -6.82 0.00 7.77 16.40 25.88 36.35 

1 -18.32 -13.55 -8.19 -2.36 3.81 10.27 16.99 

2 -5.90 -1.23 4.00 9.75 15.83 22.23 28.79 

3 8.21 12.80 17.93 23.59 29.66 36.00 42.63 

4 24.16 28.77 33.86 39.51 45.59 51.99 58.55 

5 41.53 46.10 51.08 56.62 62.65 68.96 75.48 

Season: Post-Monsoon (Sep – Nov) 

0 -10.80 -5.54 0.00 5.83 11.93 18.44 25.48 

1 -7.60 -2.80 2.30 7.54 12.81 18.06 23.39 

2 6.88 11.63 16.71 21.99 27.29 32.61 37.94 

3 23.04 27.73 32.77 38.06 43.44 48.80 54.23 

4 40.77 45.42 50.44 55.75 61.17 66.65 72.07 

5 59.95 64.55 69.54 74.81 80.28 85.76 91.24 

Season: Monsoon (Jun – Aug) 

0 -12.29 -6.35 0.00 6.76 13.85 21.26 29.01 

1 -4.74 1.03 7.13 13.48 20.03 26.76 33.62 

2 9.25 15.01 21.07 27.42 33.96 40.68 47.52 

3 24.68 30.42 36.47 42.79 49.35 56.07 62.96 

4 41.19 46.96 53.01 59.35 65.93 72.68 79.57 

5 58.42 64.11 70.08 76.32 82.79 89.43 96.21 

Season: Pre-Monsoon (Mar – May) 

0 -15.09 -7.92 0.00 8.89 18.82 29.65 41.46 

1 -17.76 -12.05 -5.72 1.09 8.29 15.72 23.37 

2 -2.96 3.03 9.70 16.94 24.58 32.56 40.69 

3 19.57 26.28 33.62 41.61 50.04 58.77 67.79 

4 50.53 58.17 66.41 75.27 84.64 94.46 104.50 

5 92.34 101.57 111.41 122.07 133.34 145.14 157.29 
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Table 4. Box-Cox transformation parameter (λ) and the skew coefficient for untransformed 

(UT) and transformed (Tr) monthly flow values for current runoff scenario  

 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

UT -0.35 1.15 1.97 -0.89 0.80 0.99 0.05 0.49 -0.38 0.38 1.03 0.87 

Tr -0.22 0.12 0.33 -0.33 0.01 0.0 -0.07 0.0 -0.22 0.0 0.01 0.0 

λ 2.16 -1.05 -1.93 0.90 -0.16 -0.02 0.75 0.06 1.44 -0.03 -2.21 -1.40 
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Highlights 

 Variability in reservoir planning characteristics during climate change impacts 

assessment has been evaluated using a Monte Carlo simulation approach. 

 Required reservoir capacity is highly variable, which gets worse as a catchment 

becomes drier with climate change. 

 The vulnerability is the most variable of all reservoir performance indices evaluated 

with a CV as high as 0.5, while the reliability (time- and volume-based) was the least 

variable. 

 Consequently, care should be exercised when using these characteristics for decision 

making in adaptation and mitigation activities.  

 
 


