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A B S T R A C T

The energy assessment of single buildings and of larger areas of built environment, although exhibiting simi-
larities in terms of technique, have in the past often used different approaches to energy modelling. The growing
availability of empirical data and the capability of building modelling software has, more recently, allowed these
differences to be reduced. This paper demonstrates, across two very different case-studies in UK and India, that
techniques for community energy modelling can be used in a way that maintains detail in energy demand
characteristics, thus helping to bridge the gap between detailed building assessment and higher-level energy
system modelling. However, understanding the portability of such techniques requires an understanding of
energy characteristics that can be specific to a geographic area. This study documents these important differ-
ences and proposes a more transferrable approach to detailed community energy modelling.

1. Introduction

Our energy systems are relatively complex structures encompassing
the supply, transmission, distribution and demand of energy. When
based on known, well-understood parameters, such systems perform
well and are robust. However, developing urban landscapes, changes in
building technology, climate change and changes in energy practices
can, in combination, create an uncertain picture from which future
strategies of energy provision have to be formulated. Rather than re-
lying on singular, deterministic predictions of our energy futures, it is
arguably more important to develop a range of tools and techniques
that are flexible and adaptable enough to cope with a range of futures,
thus providing key end-users with information from which sensible
decisions can be made.

Concerns about future uncertainties are present in all countries. In
the UK, the use of energy system models such as MARKAL/TIMES
(ETSAP, 2008; Taylor, Upham, McDowall, & Christopherson, 2014) are
prevalent to provide a policy-conversant, high-level picture of how
energy supply/demand can be optimised. Additionally, the use of future
scenario projections, such as those delivered by the National Grid
(National Grid, 2017b), provide some estimation of cause-and-effect
within our structure of energy provision. Barriers and challenges will
still need to be overcome for a resilient energy supply to be achieved in
a low-carbon future, but such problems exist within a relatively data-
rich, and model-rich, country.

This is in contrast to some other parts of the world which, as well as
having different data and modelling landscapes, are subject to a much

steeper gradient of change. India, for example, has seen a recent growth
in urbanisation and forms of distributed generation within the local
energy infrastructure. Over 40 % of the population in India will be
urban by 2030 (Roy et al., 2018), creating socio-cultural changes with
implications for energy practices. Stresses with respect to clean energy
provision and network management are emerging as key challenges
but, conversely, this sheer pace and scale of change presents opportu-
nities for developing demand reduction strategies married to the evol-
ving energy infrastructure. Through this period of evolution, tailored
approaches are required to determine practicable and quantifiable
guidance for selecting energy demand measures in residential buildings
that are cognisant of evolving infrastructure requirements and also the
needs and constraints of the building occupant. Without a modelling
framework that reflects these uncertainties, the risk is that demand
characteristics develop that are discordant to changes in supply oc-
curring over the same timescale.

Whilst supply-demand matching issues caused, or influenced, by a
low carbon transition may be country-specific, the methods, tools and
expertise used to address these problems may in part be translatable
across different regions. This study aims to explore where techniques
may be similarly beneficial to two very different countries, in UK and
India. However, by looking at important differences in these countries,
the limitations of translating UK-developed tools will also be explored,
noting how such problems may be addressed. In this way, the extent to
which energy demand models can be generalised and ported across to
different geographical areas will be presented. The benefits of being
able to do so is clear, with the potential for knowledge exchange and
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extrapolation of application.
Informing this study will be the research conducted by the authors

across two active projects. The £20M UK National Centre for Energy
Systems Integration (CESI) (CESI, 2018) is a large consortium in-
vestigating modelling solutions to capture how the UK energy system
may evolve in the coming decades. Using a suite of new and existing
modelling techniques, informed by empirical data, CESI aims to provide
guidance to inform future government policy for optimising energy
networks in the UK. Amongst several case-studies, the project has ex-
tensive data from the Findhorn EcoVillage (Findhorn, 2018), where
energy use and behaviour of occupants are being monitored.

The project Community-scale Energy Demand Reduction in India
(CEDRI) (CEDRI, 2018) aims to propose energy demand reduction so-
lutions for residential areas of India that are sensitive to the building
stock, householders, and constraints on the local energy networks.
Within this diverse country, chosen case-studies are being used to test
some of the modelling options for estimating the impact of various
demand reduction strategies. This includes the village of Auroville
(2018).

This paper will use the case-studies of Findhorn and Auroville to
help explain the different challenges for energy demand models in these
two different countries. Whilst these case-studies should not be seen as
being statistically representative of their respective countries (and, in-
deed, no single case-study should ever be presented as thus), they do
offer country- and climate-specific problems to test some of the devel-
oped tools of the aforementioned projects. The paper will provide
context to these case-studies by reviewing energy assessments on a
wider scale, such as those used in energy system/network analysis. The
full spectrum of energy modelling, across scales, will therefore be dis-
cussed for these two different locations.

The CESI and CEDRI projects are looking at several different energy
vectors, but this particular paper will focus on electrical demand
modelling of residential buildings, albeit within wider objectives of
future work in the aforementioned projects.

2. Review of energy modelling of communities across different
locales

2.1. Understanding local energy landscapes

As discussed below, data availability and research into the energy
use of specific building stocks will vary with country. Projections of
changes within those countries can be similarly diverse. To reflect the
work of CEDRI and CESI projects, this paper will focus on the UK and
India as examples of such differences. There will be particular attention
paid to residential buildings, due to the impact of such buildings on the
pressures faced by local energy networks.

2.1.1. Energy use in UK buildings
In 2015, residential buildings (approximately 27.2million (ONS,

2018)) accounted for 29 % of total energy consumption in the UK (BEIS,
2017b). Approximately 14 % of total electricity usage in the UK is due
to residential buildings (BEIS, 2017a), not including electricity con-
sumed due to infrastructure losses (which exist, in part, to deliver that
electricity to homes and other buildings). Whilst year-on-year varia-
tions are common, and often driven by weather, there is a longer-term
trend in the aforementioned publications where annual gas usage (a 21
% decrease in 2016 compared to a peak in 2004) and electricity usage
(13 % in same time period) are decreasing significantly. This has been
affected by well-recorded energy efficiency improvements (Decc, 2012)
though there are also socio-economic factors that are important to note
(Jones & Lomas, 2015).

However, to characterise energy demand of residential buildings
specifically within the context of energy systems requires information
on both the building stock and energy network data (as well as several
other data source pertaining to the occupants). It is also evident that,

for the type of energy system modelling analysis proposed in this paper,
a researcher is required to access data at different spatial scales, ranging
from national scale to building-specific scale, by way of interim levels
of regional and community energy demand. In the UK, data re-
presenting the building stock is relatively well documented, within
known limitations of characterising diverse building and household
types. For designing tailored energy efficiency guidance, and related
subsidy/support schemes, such information is of great importance.

A range of data sources exist for documenting the effect UK build-
ings have on total energy use across the country. In addition to the
modelling approaches of Section 2.2, empirical data (and semi-em-
pirical data that has undergone some degree of inference or extra-
polation) exists that can identify both fuel source and end-use. For
example, the Digest of UK Energy Statistics (DUKES) (BEIS, 2017a) uses
data for fuel trading (and energy/commodity balancing) to gain an
understanding of the carbon intensity of different sectors in the UK
(buildings, industry, transport etc). Generally speaking, as further dis-
aggregation is sought, the reliance on modelling increases where em-
pirically measured disaggregation is not available – though this can be
carried out in such a way that the modelling results of, say, energy use
in residential buildings is consistent with top-down datasets such as
DUKES.

Electrical demand data is available at different scales, though ac-
cessibility becomes more difficult as the scale becomes more building-
focussed. National demand profiles, informed by empirical data, are
widely used by the like of the National Grid and regional data is also
available in different forms (including longer-term projections
(National Grid, 2017a)). Substation data (at Low Voltage network level)
can give profiles of electricity use for communities of residential
buildings (e.g. ∼200 dwellings) but will also exhibit other electrical
loads not emanating from residential buildings. Availability of such
data is not always in the public domain, though the National Energy
Efficiency Database (NEED) (DECC, 2011) provides a more accessible
example of gas and electricity consumption data in the residential and
non-residential sectors. Empirically, the energy data landscape is im-
proving with the use of smart meters, though this provides a “Big Data”
challenge, where we need to characterise temporally precise electrical
demand for a statistically significant number of buildings for a given
region. This is quite a different challenge to that of traditional stock
modelling (Section 2.2), which is generally not used for specifying
variations beyond the monthly timescale, and therefore does not re-
quire the same quality or detail of sample. The difficulty in getting data
that is over a long enough duration (e.g. a calendar year), suitable
temporal resolution for demand analysis (e.g. 1−5minutely), and over
a large enough sample for more general conclusions to be made is a
common dilemma. Datasets with high temporal precision (and detailed
appliance data) are often from a lower number of homes (Murray,
Stankovic, & Stankovic, 2017). Such data can still be immensely valu-
able, but these limitations must be noted to understand the application
of the findings of that data.

2.1.2. Energy use in Indian buildings
In some respects, for India as well as the UK, there is a general

picture of higher resolution data becoming more available to describe
energy use in the built environment, as noted in some of the below
studies. Whilst there may be optimism that such a trend continues, it is
also true that some of the risks that we may try to quantify for elec-
tricity networks (increasing peak demands, changing load factors, etc)
require particularly high resolution data on a scale that might not, yet,
be available.

Additionally for India, the scale of the country, and the difficulty in
getting the same quality of datasets, does present different challenges
for an energy modeller. In particular, the difficultly in connecting
characteristics of individual dwelling demand profiles with trends ob-
served at a regional (or even national) scale is more obvious. Even data
relating to number of homes must be placed in specific context, with the
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definition of a home more complex than in other countries. Figures
often refer to census data that is several years old, which is particularly
a problem for a rapidly changing country. 2001 census data (Ministry of
Home Affairs, 2018) reports of 187 million homes across India, 5 % of
which are described as “dilapidated”. 58 million of these homes are
categorised as “semi-permanent” and 35 million as “temporary”. This,
clearly, should impact our approach to categorising future energy de-
mand in India, where such categories may remain unrecorded within
stock data or be brought “online”.

Meta-level studies in India have attempted to represent the degree
of change projected for that country, further complicating the above
picture. In 2012, India’s residential electricity consumption was
186 TWh/yr, up from 80 TWh in 2000 (Shukla, Rawal, & Shnapp,
2015). This vast increase, in a country where that growth is expected to
continue (with 40 billion m2 of new buildings projected by 2050 (Yu
et al., 2017)), has resulted in households contributing 23 % of the
electrical consumption of India (Ministry of Statistics and Programme
Implementation, 2016).

Disaggregating that electrical consumption into household type, and
improving spatial and temporal resolution, is limited by a lack of data
(GBPN, 2014). Furthermore, due to diversity of households, climate and
construction, relatively large samples of such data would be required to
adequately capture current demand characteristics, where energy is
being used/wasted, and demand reduction strategies that may be ap-
propriate for those homes. Some research has attempted to bridge this
gap between bottom-up and top-down energy modelling of buildings
(Yu et al., 2017). This is of value in understanding regional variations in
building stock and associated energy use, with clear policy impact,
though tends not to focus on the more detailed demand characteristics
that are required for an analysis of the risks facing energy networks in
the future.

Energy efficiency in buildings is an area of concern in India, as
evidenced by the introduction of the Energy Conservation Building
Code (ECBC) (IMFR, 2015). It is notable, when comparing with Eur-
opean Union countries in particular, the goal of such policy is to reduce
gradients of increased energy consumption, not to reverse it. This is due
to the aforementioned increase in building completion, but also a
projected population increase (from 1.3bn in 2015 to 1.5bn in 2030
(United Nations, 2019)) and the impact of climate change on a cooling-
dominated building stock. There are, however, some signs that green
building legislation, and the market associated with that (for both assets
and technology), is maturing; in the beginning of the 21st century,
green buildings were said to cost 18 % more than traditional buildings.
In 2013, the difference was quoted as only 5 % (Smith, 2015).

Historical and projected future change therefore creates an un-
certain picture from which a robust and low-carbon energy system,
taking many years to plan and develop, must be designed. This creates a
need for flexible methodologies to be developed that can assist the co-
evolution between those technologies and buildings creating energy
demand, and those systems aiming to serve that demand. The chal-
lenge, and potential feasibility, to do this at national level in India has
already been noted, but focussing instead on discrete communities (as
proposed within the CEDRI project) may allow an understanding of
electricity demand patterns to be formed that has a wider application.

2.2. Tools and techniques for community energy modelling

Techniques for estimating building energy (thermal and electrical)
performance are varied, and have been reviewed elsewhere for both
transient and steady-state estimations (Jenkins, 2018; Sousa, Jones,
Mirzaei, & Robinson, 2017), but approaches can be grouped as: em-
pirical (using data, such as that in Section 2.1); semi-empirical (through
use of statistical modelling of samples of empirical data); or purely
theoretical (such as the use of thermo-physical models of buildings).
Regional or country-wide building energy consumption is often mod-
elled through stock modelling approaches (Hughes, Armitage, Palmer,

& Stone, 2012) to provide some connection to policies aiming to pro-
mote, for example, energy efficiency measures within a standardised
energy accreditation procedure (such as the role of Energy Performance
Certificates (EPC) emanating from the European Union Energy Perfor-
mance in Buildings Directive (EPBD) (European Commision, 2002)).
This form of modelling also provides a basis for describing typology of
buildings (in the form of archetypes) across a large area. However,
defining specific household behaviour, or any aspect of energy use that
has a strong temporal variation within diurnal scales, is more difficult.
Such approaches are therefore often more successful with thermal de-
mand (which have a strong correlation with physical variables of the
building) rather than non-heating electrical demand.

Traditional dynamic building models are well-documented (Lomas
et al., 1997) within the area of building design and related energy
performance assessments. Although such calculations can require con-
siderable quantity and detail of input, improvements in modelling ef-
ficiency (e.g. processing power of computers, interfaces of software etc)
allow for this form of modelling to be used for groups of buildings.
Much research has been conducted in this area, raising the potential of
dynamic, temporally precise building modelling to be linked with the
larger-scale energy pictures provided by energy system models
(McCallum et al., 2019). This higher temporal resolution can be im-
portant as thermal demand becomes electrified, and the effect of ag-
gregated heating controls across areas of built environment impact the
electrical demand characteristics of those areas.

Energy system modelling (such as those stemming from the
MARKAL/TIMES family of models) provides the potential to optimise
across a range of energy demand and supply solutions, whilst at-
tempting to achieve a future carbon target. The optimisation tends to
occur over relatively long time periods, though work has been carried
out to use higher-resolution supply and demand data with such models
(Zeyringer, Daly, Fais, Sharp, & Strachan, 2014). One notable example
of energy system modelling in practice is the Scottish Government
Energy Strategy (Scottish Government, 2017) that used a version of the
TIMES model to compare, amongst other aspects of energy policy, the
effectiveness of heat decarbonisation against building energy efficiency.
Again, whilst much of this work is often focussed on thermal energy
demand (influenced by the importance of this within the UK built en-
vironment), projections suggesting an increase in electrification of heat
and transport in the UK (United Kingdom Committee on Climate
Change (UKCCC), 2019) will make the understanding of electricity
demand evolution across regions/countries more important in the near
future.

Better use of data can produce statistical models that are more likely
to reflect actual electricity use patterns. Diary-based data studies of
domestic consumption (Suomalainen et al., 2019) and time-of-use data
(McKenna, Hofmann, Merkel, Fichtner, & Strachan, 2016; Torriti, 2017)
can allow behavioural and occupancy patterns to be linked quite di-
rectly to demand profile characteristics, but rely on having significant
qualitative and quantitative inputs from the householder to make such
correlations. This can also, due to the case-study specific nature of such
data collection, limit the ability to extrapolate any findings to a wider
sample.

2.3. Defining the need for further modelling

Reviewing the types of model described above, it is clear that as-
pects of each of these can be valuable when trying to estimate com-
munity electricity demands, and how to project these for given future
scenarios. It would therefore be desirable to achieve a modelling fra-
mework that has the following properties:

- An empirical basis to account for sub-diurnal and seasonal varia-
tions that are difficult to model entirely theoretically

- Within spatial/numerical limitations, provide energy demand
characteristics that are scalable to a level that is useful for energy
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suppliers and local networks (e.g. Low-Voltage network level, for
which these aggregated building demands are so important)

- A modelling framework that has some indication of causal factors
behind demand characteristics, such that future demand profiles can
be generated at similar resolution based on defined scenarios of
climate, occupancy, building typology, and technology

- A modelling framework that exploits the availability of larger,
higher resolution data sources that are becoming (within data pro-
tection protocols) more available for characterising energy demand

A model that captures the above will allow those designing wider
energy systems, and formulating policies for buildings within those
systems, to reflect on how a superposition of changing parameters
might impact on the performance of that system. The case-studies and
model application of Sections 3 and 4 provide an initial indication of
how that might work, and why it might be useful.

3. Case-studies of community energy use

Examining empirical data through real case-studies can be in-
structive in terms of understanding the requirement of what, for ex-
ample, statistical models can do, and what constitutes a suitable ap-
plication. As already discussed, the quantified findings of such
applications (demand profiles, characteristics of energy use, etc) should
not be generalised across large geographies; but the usefulness of that
application, and validation process, can be demonstrated. With this
objective in mind, two case-studies from very different locales are de-
scribed below. Information of the studied dwellings is also summarised
in Table 1.

3.1. UK case-study – Findhorn EcoVillage

Findhorn Ecovillage is a community located in Moray, in north east
Scotland. It was established in 1972 and has seen various phases of
expansion, including a number of coordinated housing developments in
the last decade. There are around 160 dwellings in total under various
tenure arrangements, with a significant proportion being owner-occu-
pied. With over 500 residents, the community is one of the largest of its
kind in the UK. In addition to the dwellings on site, there are a large
number of guest houses, shops, an arts centre, town hall/theatre,
community-run restaurant, a commercial printing press, and a number
of offices and workshops.

Findhorn Ecovillage and its residents identify with a longstanding
culture of understanding and protecting the natural environment, with
these values underlying both lifestyle and construction practices (in-
cluding sustainable food production, transport and energy/water/waste
management). Aside from a number of older “Park home” dwellings, of
relatively lightweight construction, the majority of residential buildings
in Findhorn Ecovillage are built to very high thermal integrity, in excess
of national standards. Along with three biomass-fed district heating
systems, a mixture of air source heat pump (ASHP), LPG boiler and
electric resistive heating can be found in the individual dwellings.
Distributed renewables (solar photovoltaics and solar hot water) and

thermal storage are included across a large number of sites. Further to
this, there is a community-owned wind park (with three 225 kW tur-
bines) and a private wire electricity grid. A number of the dwellings
were monitored between 2014 and 2016 (including 43 listed in
Table 1). Active/reactive power, voltage and frequency were also
monitored at the village substation.

3.2. Indian case-study – Auroville

Auroville is an experimental township in Tamil-Nadu (established
1968) with a population of approximately 50,000 from different
countries. Two sets of apartment buildings – “Citadines” and
“Inspiration” – are being monitored as case studies within the CEDRI
project, containing 34 and 14 flats respectively (of which 21 and 9 units
were chosen to be metered).

23 occupants live in the selected 21 dwellings in Citadine. Most of
these are single occupancy, though the majority have housemaids who
work 4−8 h weekly. All the occupants work in the Auroville commu-
nity. The monitored households use one or more type of lighting out of
four categories (Incandescent, CFL, LED and T5 with Electronic Ballast)
– suggesting a higher degree of diversity than a typical UK household.
Electric fans and/or air conditioning (A/C) are commonly used in the
dwellings. Other common household appliances are present (such as
refrigerators) but, for cooking, Citadines has a community kitchen
where most of the residents have their lunch. Again, from a demand
characterisation perspective, the lack of a clear demand signal in the
home representing times of cooking is somewhat unusual compared to
UK equivalent data. Most of the dwellings use gas cylinders for cooking
in general, though a small number have electric stoves. The dwellings
have single phase meters for monitoring electricity consumption.

In the case of Inspiration, ten occupants live in the selected nine
dwellings. The household size and working patterns are similar to oc-
cupants of Citadines, though differences exist in the use of lighting
(incandescent, CFL and LED) and HVAC (electric fans in all selected
households and A/C in one). Most of the dwellings use gas cylinders for
cooking, as with Citadines, with one household using an induction
stove. In the case of refrigerators, eight dwellings have one, and one
household has two. The other appliances in use in Inspiration are si-
milar as households in Citadines, except eight households use a geyser
for hot water in the bathroom. The dwellings have three-phase meters
for monitoring electricity consumption.

4. Characterising community electricity demand

Although working in different countries, and having somewhat
difference scopes, the work of the CEDRI and CESI projects have a
number of common goals. Amongst these is the desire to overcome the
boundaries between energy system and bottom-up energy demand
models. As discussed elsewhere (Jenkins, Patidar, & Simpson, 2012;
Jenkins, 2018), part of this challenge is being able to upscale detailed
assessments of energy demand profiles of buildings to a level that is
communicable, and useful, to those assessing the performance of an
energy network (e.g. Low Voltage network or regional gas network,

Table 1
Overview data of case-studies.

Case-study Type No. of dwellings No. of occupants Heating technology Cooling technology

Auroville, Tamil-Nadu, India Flat 21 23 None Fans, A/C
Flat 9 10 Geyser

Findhorn, Moray, Scotland Detached 21 63 LPG None
Terraced 6 18 Biomass (district)
Terraced 5 15 Electric
Terraced 9 27 ASHP
Detached 2 6 ASHP
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though potentially at higher spatial scales than this). The authors have
previously developed tools with this objective in mind for both thermal
modelling (Jenkins, Patidar, & Simpson, 2015) and electrical demand
modelling (Patidar, Jenkins, & Simpson, 2016; Patidar, Jenkins, &
Simpson, 2014). An updated approach of the latter will now be de-
monstrated for UK and Indian locations, thus indicating (within the
wider issues discussed in Sections 3 and 4) the suitability of such tools
for allowing building-level demand data to be extrapolated beyond just
the individual building.

4.1. Decomposing electricity demand profiles for purposes of synthesis

A key part of pattern recognition of electricity demand is the dis-
tinction between signals that occur at definable time functions and
those that are broadly stochastic and, as a percentage of a total day, low
frequency. Modelling the latter is particularly important to account for
diversity in aggregated demand profiles; in essence, households doing
similar things at slightly different times.

The synthesis approach taken by the authors is to adopt a Seasonal
Trend decomposition procedure based on Loess (STL) (Cleveland,
Cleveland, McRae, & Terpenning, 1990). This allows for composite
signals within a high resolution demand profile to be recognised. As
well as raising the prospect that these different signatures can be
modelled separately (with different sensitivities to external parameters,
such as weather), it also allows for a stochastic component to be
modelled discretely, with a view to capture diversity through the ag-
gregation process. The stochastic component itself is modelled through
a Hidden-Markov Model Generalised Pareto (HMM-GP), also detailed
elsewhere (Patidar, Allen, Haynes, & Haynes, 2018), that allows for
“states” of demand at a certain time to be linked to previous values,
with the probability of being in those states trained on real data from a
given sample. The use of a Generalised Pareto approach allows for
statistically extreme values (i.e. those representing high power “spikes”
in a typical high resolution demand profile) to be better characterised.
The process can therefore be summarised as:

Step 1: Individual dwelling Demand data series is transformed into
an additive series (from multiplicative series) using a logarithmic
transformation. An STL decomposition algorithm is applied to decom-
pose the electricity demand series into three components for each

individual dwelling: i) Trend, ii) Seasonal and iii) Residual (stochastic)
variations.

Step 2: A HMM model comprising of five elements is fitted to the
residual component. The five elements of HMM model include defining
i) a set of observed states using a percentile analysis of the observed
values, ii) a set of unobserved (hidden) states, iii) a state transitional
probability matrix of observed states, iv) an emission probability matrix
of hidden states, and v) an initial probability matrix of observed states.

Step 3: The Residual component is simulated using a HMM model
fitted to the observed series of Step 2.

Step 4: Synthetic electricity demand profiles are constructed by
combining simulated residual components with the trend and seasonal
components of the observed series.

Step 5: A GP distribution is fitted to the extreme values (i.e. over
95th percentile) of the observed electricity demand profiles. Extreme
values in the simulated synthetic demand series are resampled from the
fitted GP distribution to facilitate better estimation of peak electricity
demand values.

Step 6: A fine percentile-based bias correction is applied to process
and correct any potential bias introduced by logarithmic transformation
of the original series and application of inverse function to achieve the
final profiles.

The advantage of this approach is that it produces individual
dwelling profiles that, when generated repeatedly, produce different
stochastic components that are therefore suitable for aggregating (due
to inherent diversity). One of the weaknesses is the reliance on, po-
tentially, a relatively small sample and this can restrict the appropriate
scale of extrapolation. This is explored further below. The tool will now
be applied to the two case-studies under investigation, noting the
comparison with empirical data (at individual and community level)
and the differing performance of the approach in both locations.

4.2. Statistical modelling of electrical demand data (UK)

4.2.1. Comparison of individual dwelling data
Fig. 1 is an example of a measured 24 -h electrical demand profile in

a home in Findhorn, placed alongside a synthesised version of that
profile from the discussed demand profile algorithm.

A visual inspection of Fig. 1(a) can allow for inference of typical

Fig. 1. (a) Observed and (b) synthesised Findhorn individual dwelling electricity demand profile.
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activities that are present in many UK homes, including short “spikes”
of demand from kettles, toasters, and electric showers, and oven usage
(comprising a cycling heating elements of, typically, 2−3 kW). Some of
these features have strong relationships to time of day, whilst others
occur more stochastically. Other underlying features at lower power
consumption can be seen that occur throughout the day (e.g. re-
frigeration cycles) or for long periods of the day (e.g. lighting/consumer
electronics during occupied hours).

The procedure documented in Section 4.1 allows for a synthesis of
these patterns of demand as seen in the sample. Fig. 1(b) provides an
example of a synthesised demand profile produced from this technique,
with a breakdown of this decomposition (required for synthesis) shown
in Fig. 2. The advantage of Fig. 2, for this particular study, is the ability
to quantify differences in characteristics across different sample selec-
tions. As noted in Section 4.3.1, the variation of demand at defined
periodicities is fundamentally different across the UK and Indian sam-
ples, and this can be related to tangible differences in how energy is
being used.

Although visualising typical 24-hr profiles is of value to demon-
strate the type of signals being generated, this does not provide an
adequate validation for the success of this synthesis. Also, the synthesis
is not designed to exactly replicate all data points – this would be
contrary to the need for modelling diversity (e.g. if a real household has
switched a kettle on at 9.03am, a synthesised profile would not ne-
cessarily model the same feature at exactly the same time, though it
may reproduce this feature at a similar, but non-identical, time).
Therefore, it is to be expected (and, actually, desired) that the synthe-
sised and observed profiles in Fig. 1 do not exactly match every minute.
They should, however, be returning similar characteristics of demand at
similar times. With this in mind, Fig. 3 creates a more robust validation
by carrying out a percentile analysis of modelled demand values,
compared to those measured.

For a single observed dwelling, 20 synthetic dwellings are generated
– where the stochastic element of the synthesis will produce a slightly
different percentile distribution for each synthesised dwelling. Across
percentiles the match between the synthetic demand generator and that
observed is reasonable. The Generalised Pareto method (described in
Section 4.1) proves to be an effective function to ensure very high
percentile values (i.e. 95 % and above) are well matched. There appears
to be slight discrepancies between 80–95 % percentiles; this may be due

to residential demand itself being particularly diverse for such ranges,
where demand values of ∼1−2 kW potentially being the result of a
wide range of residential appliances, and therefore more uncertain in
terms of when they might be visible on a real demand profile.

4.2.2. Comparison of aggregated community electricity usage
The analysis of 4.2.1 is instructive in terms of the mechanism of the

synthesis and the performance at an individual dwelling level.
However, a key function of the process is to produce aggregated de-
mand profiles from a bottom-up process that is, in turn, linked to some
understanding of individual demand profiles. Therefore, validating the
final aggregated profiles against an empirical measurement of com-
munity electricity demand is of value.

For this study, data will be used from substations that are known to
be serving the studied regions. The aim is to replicate, in the synthe-
sised aggregation, the features of a substation profile that result from
residential electricity demand. This can be challenging when a substa-
tion is known to serve significant non-residential demands (non-re-
sidential buildings, industry, electricity used by other services within

Fig. 2. Decomposed Findhorn individual dwelling electricity demand.

Fig. 3. Percentile analysis of model performance for individual dwellings in
Findhorn.
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the community etc), or is impacted by distributed electricity generation
within that community (though that can be modelled discretely if in-
formation is available).

Fig. 4 compares measured substation data from Findhorn with an
aggregated profile that is modelled from individually synthesised
dwellings over the same time period. With the substation known to
serve 181 dwellings, the synthesis is applied for the same number of
dwellings. The building stock in Findhorn fits four construction classes:
Findhorn Construction (FC), FC+, Parkhome (PC) and Timber Con-
struction (TC). In addition, the sample has different floor areas, heating
technologies and solar photovoltaic usage. This breakdown was used to
assign weightings through the aggregation process, to ensure the ag-
gregated profile had a suitable representation of these different demand
profiles.

Further validation of this data (at substation level) is being carried
out as part of a separate task within the CESI project – with longer
duration data becoming available. However, the synthetic aggregation
appears to be reflecting a general diurnal trend that is seen in the real
data, but doing so with more noticeable “noise” signals superimposed
on top of that diurnal cycle. This may be due to the relatively small
sample size of empirical data, and future work will test the performance
of the synthetic aggregation with larger, and more diverse, sample
sizes. Also, although this is primarily a residential community, the
transformer will be serving non-residential loads which are not ac-
counted for in the demand synthesis. Therefore, as also discussed
below, substation data provides a somewhat imperfect validation for
this data synthesis model.

4.3. Statistical modelling of electrical demand data (India)

A similar exercise is now carried out for the Auroville dataset. The
data has been recorded slightly differently to Findhorn (using pulse
meters that record information every 0.06Wh for single-phase proper-
ties and every 1.25Wh for three-phase), but the result is still a high
resolution profile which is appropriate for the STL analysis referred to
in Section 4.1.

4.3.1. Comparison of individual dwelling data
Fig. 5 shows an example of a real 24 -h profile taken from an

Auroville dataset, and compared alongside a synthesised equivalent.
Again, the full characteristics of demand of a household cannot be

inferred in totality from a single day but, aesthetically, the Auroville
profile has somewhat different features to Findhorn. The cycling re-
frigeration profile is more significant (perhaps driven by higher am-
bient temperature), there are fewer features that are associated with
lighting/consumer electronics (suggesting reduced prevalence of such
technologies), and the low frequency, high power events occur at dif-
ferent times. Other known issues about these households (e.g. relatively
little electrical cooking, some communal washing services) are also
evident in the profile.

In theory, the difference in physical activities and technologies in
Fig. 5(a) (compared to Fig. 1(a)) should not impact the performance of
the STL analysis, which just requires a high resolution profile that has
discernible signals occurring at different time periods. As with Fig. 1,
Fig. 5 provides only an indication of the differences in synthesised and
observed demand profiles for an individual dwelling. As noted below
for Fig. 7, the observed Indian demand profiles have a different dis-
tribution of demand values over a given range. In this case, for example,
the fact that the synthesis of Fig. 5(b) is less capable of representing a
refrigeration profile becomes more visible (and potentially more im-
portant) than for a UK home. Fig. 6 shows the results of the STL de-
composition used to generate this synthesis, over a period of two
months.

Comparing Fig. 6 with Fig. 2, there is a stronger signal discerned in
the Seasonal profile and a lower degree of stochasticity in the Random
profile. The former may be the result of a dominance of a smaller
number of appliances in the home (a possibility which will be explored
through household interviews at a later stage of the CEDRI project),
which will produce a pattern repeating at a more regular periodicity.
The notable trend in the Random profile may be due to the relatively
short period over which the data has been collected –with 12 months of
data, the “Trend” profile may identify a stronger link with long-dura-
tion variability (e.g. temperature changes throughout the year), and
thus the technique will “remove” such patterns from the Random pro-
file. However, the applied algorithm shows versatility in being able to
identify quite different variations over a range of periodicities in these
two different locations.

It is instructive to compare Fig. 7 with Fig. 4. Firstly, comparing the

Fig. 4. Substation data compared to aggregated synthesis of electricity demand in Findhorn for example day.
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observed demand in both graphs, it is clear that the two locations ex-
hibit a different demand distribution (though this can also be confirmed
by looking at Figs. 1 and 5). Findhorn has significant features in the
1−3 kW range (as demonstrated by the 80–95 % range of values in
Fig. 4) whereas Auroville does not. It might be expected that a HMM-GP
model would perform differently for these two different locations,
where HMM “states” are calibrated based on discrete percentile ranges
relative to the maximum value. One reason for the relative similarity in
model performance (in Figs. 4 and 7) is due to the bias correction step,
as documented in Section 4.1. This ensures that, otherwise, outlying
values within a percentile band are corrected by the empirical dataset
to produce more characteristic values of that location. As well as being
important for transferring the model across to different regions, this
function is of potential value for looking at future demand profiles of a
region – where the distribution of demand is likely to become quite

different for profiles exhibiting electrified heat and transport.

4.3.2. Comparison of aggregated community electricity usage
As with Section 4.2.2, the aggregation of the synthesised demand

profiles will now be compared to a local substation. The same limita-
tions are present here in terms of non-residential loads, but an illus-
tration of the performance of the synthesis can still be gained, as shown
in Fig. 8.

It is evident that certain features in the substation data are not being
characterised adequately by the synthesis, which has potential im-
plications on sample selection and application of the synthesis to par-
ticular demand profiles. Firstly, there are clear outages in the substation
data that have (intentionally) not been characterised by the synthesis
and one must be aware of these when carrying out this type of analysis
in parts of the developing world. Of more importance to the function

Fig. 5. (a) Observed and (b) synthesised Auroville individual dwelling electricity demand profile.

Fig. 6. Decomposed Auroville individual dwelling electricity demand.
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(and sampling) of the model, of the 21 sample dwellings being used for
Auroville only one exhibited a clear air-conditioning profile. When at-
tempting to upscale this sample to a larger number of dwellings (spe-
cifically, the 108 being served by the above substation), the aggregated
cooling profile is likely to be poorly specified. Even allowing for
weighting of the dataset (i.e. increasing the weighting of the me-
chanically-cooled dwelling within the sample), the aggregation will not
have captured real diversity in cooling usage across a wide enough
sample. Also, for Auroville, there are a number of energy uses that
might be seen as non-typical to other communities (both inside and
outside India). This includes communal cooking and washing within
that community, effectively removing those types of energy use from
the individual demand profile. Clearly, if carrying out a demand
synthesis based only on the characteristics found in residential demand
profiles, there is likely to be a mismatch when comparing to substation
data if that substation serves significant demands that are not due to
residential buildings. This may suggest the need to change the type of

validation analysis, such as comparing synthesised aggregation with an
empirical aggregation (i.e. summated individual dwelling profiles) ra-
ther than the raw substation data. These factors, and other lessons, are
noted in Sections 5 and 6.

5. Summarising differences and synergies

Comparing two different locations allows for an investigation into
the appropriateness of some of the generalisations that might be applied
for an individual location (e.g. a heating dominated country like the UK
that has relatively little electrical heating). Based on the case-study
analyses and extended review, the below areas of interest are identified
as being more generalisable to community energy analysis of elec-
tricity.

5.1. Data availability

The statistical model proposed here requires data at appropriate
temporal and spatial resolution, with key characteristics of residential
demand difficult to distinguish above 5min resolution (for individual
dwellings). However, this is not just a limitation of the proposed model
but a fundamental consequence of the types of electrical devices in the
home. To characterise such features purely from theoretical modelling
is very difficult, but the greater access to data in recent years does open
up the possibility of more robust empirical models, populated and in-
formed by large datasets.

The role of, more theoretical, physical models can still be of im-
portance if/when heat is electrified (see Section 5.3) but the modelling
of partly stochastic, high resolution signatures from real demand data
benefits from an empirical starting point.

Both countries noted here have such data available but within
certain constraints; in particular, as more variables are investigated
with a greater level of data resolution, there is a greater need for sig-
nificantly sized samples of households from which such correlations can
be investigated and, potentially, generalised. An upscaling to larger
regions (and nationally) is not investigated here but is a central chal-
lenge to any desire to take bottom-up modelling to a greater level of
extrapolation.

Fig. 7. Percentile analysis of model performance for individual dwellings in
Auroville.

Fig. 8. Substation data compared to aggregated synthesis of electricity demand in Auroville for example day.
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5.2. Services required and related technologies

The two countries investigated here have significantly different
energy service requirements, and it should not be a given that the same
methodology is suitable for both. For many UK electricity demand
profiles, heating will not be present (due to the prevailing choice of gas
boiler heating from the mains gas grid), apart from relatively small
usage from a boiler pump. Where electrical forms of heating are in use
(e.g. rural areas or when investigating future electrification of heat),
quite different profiles will be observed (see also Section 5.3).

Furthermore, whereas a UK home might have centrally-controlled
heating (i.e. heating control responding to a whole-house average, or
single thermostat), an Indian home will not necessarily be centrally
cooled, so assumptions about control of temperature (and the demand
profile emanating from this) are not necessarily transferrable between
the two countries. Even if comparing Indian demand profiles with UK
profiles that have electrical heating, the methods for achieving thermal
comfort are quite different. Households may: i) not have any mechan-
ical cooling and rely on passive measures, ii) not have mechanical
cooling but rely on mechanical ventilation, or iii) have both mechanical
cooling and ventilation.

The link between options for summertime comfort and household
income, and the assumed change in disposable incomes for many Indian
households in the coming decades, makes this all the more important,
and difficult, to characterise. However, by distinguishing between
current demand profiles that exhibit different forms of comfort provi-
sion (as might be identified through an STL-type decomposition), it is
possible to construct a future aggregation of demand profiles that re-
flect different future scenarios. This is currently being developed by the
CEDRI project.

5.3. Models of building stock

As previously mentioned, when modelling electricity demand, the
relative importance of stock modelling (or any form of physical mod-
elling) will depend on the presence of electrical heating or cooling in
that stock. Again, as with discussions about data availability in Section
5.1, constructing a representative sample size is challenging – in this
case, in terms of building “archetypes”. For both countries, being able
to model thermal demand (to be considered here as relating to both
cooling and heating) across a large number of buildings but whilst
maintaining a suitable temporal resolution to those demand profiles
will often require an upper spatial limit to that modelling. Specifically,
whilst such an approach has been applied here for communities of
∼100 s of dwellings, imagining the same level of bottom-up detail for
something approaching national level is more difficult.

If, in the UK, electricity demand profiles become more correlated
with physical building parameters (due to electrification of heat), a
community-scale stock model of heat will be of value, and this is being
developed by the authors elsewhere (McCallum et al., 2019). For India,
if wanting an analogous exercise around cooling, a further challenge
exists due to the poorer characterisation of the building stock, and
prevalence of informal settlements. There is also the question of whe-
ther building quality or household socio-demographic is the driver for
cooling in Indian communities – and, like many of these questions for
India, whether such a relationship would be in any way generalisable
across a region or country due to the previously discussed cultural and
climatic diversity. A conclusion of this might be that a stronger link is
required between empirical/statistical models of energy demand, phy-
sical models of building archetypes, and the energy behaviour/practices
that are intrinsic to the empirical electricity data that is being collected
and, for CEDRI, embedded into a modelling environment.

5.4. Homogeneity of use

This study has attempted to constrain the multi-building analysis to

relatively small communities (e.g. as might be served by a substation),
rather than extrapolating too widely. However, any assumptions of
homogeneity of electricity use for even small samples of households
should be applied with caution – and, for this reason, the validation
exercises proposed here are important. Electrification of heat, should
this reach a high level of penetration, would potentially reduce
homogeneity in electricity demand even further, with building para-
meters playing a greater role in the shape and characteristics of those
demand profiles. As discussed above, the role of thermal models in such
a future would be of increased importance.

For India, a national-level demand model that has strong bottom-up
components (of the type described here) is unlikely due to the scale and
diversity of the country. However, with data becoming more available
in that country that can be used to quantify that diversity (and poten-
tially explain its causes), an empirical, replicable methodology of de-
mand characterisation is still of value – but within clearly defined
spatial limits. As noted in Section 4.3.2, the task of choosing a sample
that is then weighted to reflect wider heterogeneity in, for example,
cooling demand is a non-trivial task.

5.5. Climate

The relationship between climate and whether residential demand
is heating or cooling dominated as already been touched upon.
However, the importance of future climate should also be noted. The
quality of future climate projections, and accessible formats of these
projections for demand modelling, differs with country. The work of the
UK Climate Projections group (Met Office, 2019) has provided prob-
abilistic future climate projections in the UK for some years, with var-
ious projects (ARCC, 2019) interpreting this for use with building
modelling. These options are, in part, a legacy of the climate modelling
(such as the Hadley model) led by that country over many years.

At present, India does not have the same level of current weather
data or future climate modelling available. With the importance of
cooling in Indian residential electricity demand, and the growth ex-
pected in the penetration of residential cooling into the market, a
higher resolution of climate projection would be of benefit to the
modelling of future electricity demand in India.

6. Discussion and conclusions

As part of a more general need to model the energy use of com-
munities at higher resolution, an approach has been proposed that uses
empirical electricity data to characterise, and synthesise, electricity
demand in a scalable way (noting that the limits of this scalability re-
quires further investigation). The application of this method to two,
very different, communities has allowed for a wider discussion around
modelling requirements and applications.

Amongst other issues, the study has demonstrated challenges re-
lating to lack of diversity present in a small empirical sample when
attempting to upscale those characteristics. In particular, the re-
presentativeness of that sample in describing both the control and ex-
istence of heating/cooling technologies requires further research – and
this is likely to include both a more nuanced approach to sample se-
lection and the re-weighting of the generated profiles to represent a
wider area of energy demand. Other factors include the impact of dis-
ruptions to the power supply (highly variable between different coun-
tries) and the relative importance of non-residential loads, which differ
significantly between communities. This study, by framing these chal-
lenges more completely, will allow for further improvements in the
modelling approach as the named projects progress.

The future evolution of this process will therefore require more
data, and further investigation into the upper limits of scalability – itself
linked to the data (and sample size) populating those models. Moving
forward, the CEDRI project will develop the modelling framework to
incorporate discrete thermal modelling (including other energy vectors)
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to provide a more complete picture of community energy. Furthermore,
empirical correlations with input parameters (weather, occupancy, etc)
will be determined such that modelled demand profiles can be morphed
for different futures. This will then be able to inform design of com-
munity energy networks, reflecting the need to manage infrastructure
and (potentially) demand response strategies to run these networks
more efficiently.
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