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Figure 1: System schematic. Data is captured from sensors by an acoustic packager and fed to the multimodal autoencoder
(MAE).
ABSTRACT
We present a neural network based system capable of learning a

multimodal representation of images and words. This representa-

tion allows for bidirectional grounding of the meaning of words and

the visual attributes that they represent, such as colour, size and

object name. We also present a new dataset captured specifically

for this task.
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1 INTRODUCTION
In order for robots to become ubiquitous, they must be able to cope

with learning to identify new objects continuously without human

intervention. We present a novel method capable of learning a joint

representation across the visual and textual modalities which can

be exploited to allow robots to learn the visual attributes of objects
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and the words used to describe them in a grounded manner. [1, 2].

This is known as Multimodal Representation Learning (MRL) [9].

We provide a new dataset called Real-Shapes (ReShape) which

contains 7 objects, in 10 colours and 3 sizes. Not all objects appear

in all 10 colours or all 3 sizes.

2 METHOD
2.1 Data Acquisition
The Real-Shapes dataset (ReShape) was created by presenting vari-

ous objects to a webcam in 9 different locations and giving a short,

verbal description of the object
1
.

Data is captured using a webcam and microphone. The data is

packaged together using Acoustic Packaging [7, 8]. Speech captured

by the microphone at 16kHz is transcribed using Automatic Speech

Recognition (ASR). Each transcribed utterance contains the size,

colour, name and location of the object presented to the webcam.

Images are captured at 10 frames per utterance, 640x480 pixels

and then cropped to 200x200 pixels, based on the uttered location so

that the object is roughly centred in the crop. Cropped images are

then rescaled to 64x64 pixels and locations are removed from the

utterances such that each utterance is of the form <size> <colour>

<name>. Transcribed utterances are then encoded as binary vectors

with 1 representing the presence of a word in the description. The

MAE has a 20 word vocabulary.

2.2 Training Procedure
To learn a grounded multimodal representation a subset of the

ReShape data is used to train a Multimodal Autoencoder (MAE)

[6, 9, 10]. The MAE consists of stacked layers of convolution, batch

normalisation and dropout [11], with two inputs and two outputs

(one each for images and text).

Pairs of images and their descriptions are fed to the MAE and

their embeddings are merged by concatenation, after several layers

of convolution
2
. After merging the two modalities, two decoder

1
The dataset can be downloaded from https://bit.ly/38lNh37

2
A full implementation can be found at https://bit.ly/341fBo8
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branches work to reproduce the original image and text inputs as

seen in Figure 2.

Figure 2: A Multimodal Autoencoder.

Data is provided to the MAE in three ways Bimodal (Bi), Image

Only (Im) and Words Only (Wo). The MAE is trained to generate

image and text outputs regardless of whether both images and text

are provided as input (Bi), only images are provided as input (Im)

or only text is provided as input (Wo). Data is provided in all three

manners during training, essentially tripling the number of training

examples.

To improve the quality of the generated images, target images

are replaced with class exemplars when only words are provided

as input. Exemplars are selected by calculating the mean image

for each object-colour-size combination from the training data and

selecting the image closest to the mean.

3 RESULTS

Blue Green Yellow

Big Medium Small

Figure 3: Images generated from individual words.

Figure 3 shows images generated by the MAE from individual

words. The MAE has correctly learnt the meanings of these words;

given the word “Blue” it generates blue pixels, “Green”, it generates

green pixels and “Yellow”, yellow pixels. Further to this, we see that

given the word “Big” it generates lots of coloured pixels, “Medium”,

less coloured pixels and “Small”, the least coloured pixels.

The MAE also correctly learns the meanings of the names of

the different objects and combinations of colours, sizes and object

names, even ones unseen in the training data (Figure 4).

4 CONCLUSION AND FUTUREWORK
We present a novel system capable of learning the grounded mean-

ing of different visual attributes (Size, Colour, Shape) and their

textual equivalents. In this preliminary experiment we show how

Big Red Donut Medium Black Donut Small Blue Donut

Figure 4: Different sized donuts that don’t appear in the
training data.

this method can generalise to unseen combinations of colours, sizes

and shapes.

The performance of the MAE on the test data will be evaluated

in future work.

In future work we will utilise the system in an interactive sce-

nario using the iCub robot. To do this, we have implemented a

Natural Language Understanding (NLU) system which allows hu-

mans to query the MAE through conversation with the robot about

the colour, size and name of different objects as well as to interac-

tively teach the iCub new objects.

Switching to a Word2Vec [5] encoding of language instead of

the binary one used here will allow for an expanding vocabulary.

We will also continue to collect data for the dataset, covering

more diverse lighting conditions, different backgrounds and more

objects in order to enhance the quality of themultimodal embedding

learnt by the MAE [3, 4].
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