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Abstract. There has been a recent proliferation of large-scale marine protected areas (MPAs) containing
pelagic habitats. These contribute substantially toward meeting the area-based goal of Aichi Biodiversity
Target 11 and to managing pelagic ecosystem pressures, including fishing. We assessed theoretical and
empirical evidence for the achievement of ecological objectives by static and dynamic spatial management
of pelagic fisheries. Exceptionally few studies have assessed ecological responses to MPAs that constrain
pelagic fisheries, leaving substantial uncertainty over their efficacy. Assessments have provided a limited
basis for causal inferences and have not evaluated whether other management tools would be more effec-
tive. Pelagic MPAs have relatively high promise to mitigate fisheries bycatch of species of conservation con-
cern with “slow” life history traits and that form temporally and spatially predictable hotspots, and for
some species, to protect habitats important for critical life history stages. It would be challenging to design
MPAs to maintain absolute biomass levels of target stocks near targets and above limits: MPAs would need
to be extensive to account for broad and variable distributions, and account for catch risk outside of the
MPA, including from displaced fishing effort and fishing-the-line. For non-overexploited stocks, which is
the status of most target pelagic species and their prey, there would likely be little response in absolute
stock biomass to an MPA. While pelagic MPAs have a higher promise of increasing target stocks’ local
abundance, evidence with a robust basis for inferring causality is needed. Reducing fishing mortality of
prey species might not affect the biomass of their pelagic predators because prey species experience light
fishing pressure and because there may be a weak correlation between the absolute abundance of forage
fish and their predators. There is an especially limited basis for predicting the effects of MPAs on fisheries-
induced evolution (FIE) in pelagic species. We describe how pelagic MPAs could be designed to achieve
five ecological objectives without causing cross-taxa conflicts and exacerbating FIE. To fill substantial gaps
in knowledge, we prescribe counterfactual-based modeling of time series data of standardized catch
records to infer causation in assessments of ecological responses to pelagic MPAs.
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SYNTHESIS & INTEGRATION

INTRODUCTION

Marine protected areas (MPAs) are increasingly
employed as a component of management frame-
works to govern human activities in the ocean,
including fishing, and to protect marine biodiver-
sity. There is a large body of evidence demonstrat-
ing the biological community changes that occur
within coastal, benthic, shallow-water MPAs and
MPA networks when fishing mortality is reduced
or eliminated. These responses include, on aver-
age, increases in the following (Halpern 2003,
Claudet et al. 2006, Lester et al. 2009, Stewart
et al. 2009, Kaiser et al. 2018, Kenchington et al.
2018): local abundance and biomass; mean length;
recruitment and absolute biomass; and species
richness and diversity. These increases can occur
within and near the MPA, including from spil-
lover of adults, juveniles, and larvae across the
MPA seaward margin (Roberts et al. 2001, Lub-
chenco et al. 2003, Goni et al. 2008, Lester et al.
2009, Christie et al. 2010). The responses are stron-
gest for species with high site fidelity and limited
mobility (Blyth-Skyrme et al. 2006, Kaiser et al.
2018, Kenchington et al. 2018).

We include the caveat “on average” because
the response to protection is highly variable
among taxa. This variability is due to factors
such as the biology, life history and behavioral
traits, trophic links such as whether increased
predator abundance in the MPA increased preda-
tion pressure and reduced the abundance of their
prey, and economic value. The types and magni-
tudes of ecological responses are also variable by
MPA—depending in part on the type and magni-
tude of pressures that were reduced within the
MPA, the MPA'’s size and age, the suitability of
the MPA’s design, and the efficacy of regulatory
and management frameworks and compliance
(McClanahan et al. 1999, Mosqueira et al. 2000,
Halpern 2003, Micheli et al. 20044, b, Kaiser 2005,
Claudet et al. 2006, 2010, Le Quesne and Codling
2009, Gruss et al. 2011, Edgar et al. 2014, Gill
et al. 2017, Kenchington et al. 2018, Gillespie and
Vincent 2019).

While coastal, benthic MPAs have been shown
to generate positive outcomes on average, there
remains substantial uncertainty over the feasibil-
ity of pelagic MPAs to achieve these and other
ecological objectives (Botsford et al. 2003, Hil-
born et al. 20044, b, Kaiser 2005, Le Quesne and
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Codling 2009, Kaplan et al. 2010, Davies et al.
2012, Graham et al. 2012, Hazen et al. 2013).
Despite these uncertainties, over the past decade
there has been a proliferation of large-scale
MPAs that either include or are exclusively pela-
gic habitat in which pelagic fishing is restricted
(Fernandes et al. 2005, Sheppard et al. 2012,
Gannon et al. 2017). These pelagic MPAs support
progress toward achieving the area-based goal of
Aichi Biodiversity Target 11—also adopted as
Sustainable Development Goal (SDG) target 14.5
—which calls for 10% of coastal and marine areas
by 2020 to be conserved through ecologically
representative and well-connected systems of
MPAs and other effective area-based conserva-
tion approaches (CBD 2011, UNGA 20154, Rice
et al. 2018).

Reservations, however, have been raised over
whether achieving MPA area-based targets will
achieve biodiversity and fisheries management
objectives if governance frameworks are weak or
absent, and if MPA site selection is opportunistic
and not based on ecological criteria (Kaiser 2005,
Leenhardt et al. 2013, Edgar et al. 2014, Gill et al.
2017, Jantke et al. 2018, Sala et al. 2018, Visconti
et al. 2019). Concerns have been raised over the
feasibility of effectively monitoring, conducting
surveillance, and enforcing management mea-
sures of pelagic MPAs, in particular in areas
beyond national jurisdiction where vessels of
multiple flag states occur (Fonteneau 2007,
Gilman 2007, Kaplan et al. 2010).

There is large variability in the degree of pro-
tection afforded by different marine spatial man-
agement frameworks. Some are cross-sectoral in
scope and prohibit all extractive activities, some
prohibit a subset of extractive activities, while
others temporally or spatially prohibit one or
more pelagic fishery. Some fisheries spatial man-
agement frameworks meet IUCN’s MPA defini-
tion of “clearly defined geographical space,
recognised, dedicated, and managed, through
legal or other effective means, to achieve the
long-term conservation of nature with associated
ecosystem services and cultural values” (IUCN
2018). Other marine areas may achieve protec-
tion of pelagic habitat as a consequence of restric-
tions implemented for reasons other than nature/
biodiversity conservation that may also achieve
ecological benefits by constraining fishing mor-
tality of pelagic species. Examples include: areas
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zoned for defense, prohibitions on fishing to pre-
vent damage of data buoys, areas subject to
piracy, privately protected areas, and areas pro-
tected by indigenous peoples and local commu-
nities (e.g.,, WCPFC 2009, Chassot et al. 2010,
Gannon et al. 2017). These examples, which fit
IUCN’s definition of Other Effective Area-based
Conservation Measures, could contribute to the
attainment of area-based goals for global MPAs
in relation to SDG target 14 (Diz et al. 2018).

Some pelagic MPAs are static (place-based)
and prohibit pelagic commercial fishing year-
round, such as the Great Barrier Reef Marine
Park, the first large MPA containing pelagic habi-
tats, which prohibits pelagic longline fishing
throughout the park (Australian Government
1983, GBRMPA 2004; Tom Hatley, personal com-
munication), and MPAs established by some Paci-
fic island states where pelagic longline fishing is
prohibited within a specified distance of shallow
submerged features (e.g., FSM Government 2014,
MIMRA 2018). Others are static but seasonal,
and are often species-specific, such as seasonal
spatial closures to purse seining adopted by tuna
regional fisheries management organizations
(RFMOs) designed to reduce fishing mortality of
juvenile bigeye tuna (Thunnus obesus), and the
Mackerel Box off southwestern England estab-
lished to protect juvenile mackerel (Scomber scom-
brus; Sweeting and Polunin 2005, Torres-Irineo
et al. 2011, IATTC 2017). Some are spatially
explicit but triggered only when seasonal thresh-
olds are exceeded. For instance, in the Hawaii
tuna longline fishery, the U.S. government has
adopted a seasonal limit of catching and causing
mortality or serious injury to two false killer
whales (Pseudorca crassidens) in a portion of the
fishing grounds near the main Hawaiian Islands
(NMEFS 2012). Others are spatially dynamic, such
as near real-time dynamic spatial management of
southern bluefin tuna (Thunnus maccoyii) bycatch
by the eastern Australian pelagic longline fishery
(Hobday and Hartmann 2006, Hobday et al.
2010).

The socioeconomic sustainability of marine
capture fisheries and the quasi-stable state of
marine ecosystems are unequivocally linked
(Link 2002, FAO 2003, Gilman et al. 2011, 2017).
Pressures from marine capture fisheries interact
with the other main drivers of change and loss of
marine biodiversity of climate change, marine
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pollution, habitat degradation, and the spread of
invasive alien species (Kaiser and de Groot 2000,
Pauly et al. 2005, Halpern et al. 2008, 2015, Lead-
ley et al. 2010, Pereira et al. 2010, Selig et al.
2014). Direct fishing mortality by pelagic marine
fisheries is the main driver of reductions in the
size and abundance of pelagic apex predators,
including of target stocks and incidentally caught
species, although there is disagreement over the
magnitude of these declines (Baum et al. 2003,
Myers and Worm 2003, Burgess et al. 2005,
Hampton et al. 2005, Ward and Myers 2005,
Worm et al. 2005, Sibert et al. 2006, Dulvy et al.
2014). Fisheries that target tuna and tuna-like
species (Scombroidei), billfishes (Xiphioidei), and
other relatively fecund species can have large
impacts on incidentally caught species that, due
to their lower reproduction rates and other
“slow” life history traits, are relatively vulnerable
to increased mortality, including seabirds, sea
turtles, marine mammals, elasmobranchs, and
some teleosts (Goni 1998, Hall et al. 2000, Gil-
man 2011, Branch et al. 2013). Pelagic fisheries
selectively remove individuals based on certain
traits (e.g., behavioral traits for boldness; life his-
tory traits for size-at-age; physiological traits for
visual acuity; morphological traits for mouth
dimensions), reducing intraspecific genetic diver-
sity and altering fitness and evolutionary pro-
cesses (Heino et al. 2015, Hollins et al. 2018).
Fishing gear can alter and damage habitat (e.g.,
drifting fish aggregating devices (FADs) can alter
the natural behavior and ecology of species that
associate with the device; derelict FADs can run
aground on sensitive coastal habitats; Dagorn
et al. 2013, Sempo et al. 2013, Escalle et al. 2017).
Fisheries targeting large, highly migratory pela-
gic predators of high trophic levels (TL > 4.0)
indirectly modify trophic food web structure and
processes and functionally linked systems (Pace
et al. 1999, Stevens et al. 2000, Cox et al. 2002,
Pikitch et al. 2004, Ward and Myers 2005, Baum
and Worm 2009, Polovina et al. 2009, Ferretti
et al. 2010, Estes et al. 2011). At this latter broad
level, there is limited understanding of what
magnitudes of interacting natural (e.g., large-
scale climate variability) and anthropogenic pres-
sures (including from fishing) cause pelagic
ecosystems to reach a tipping point where they
undergo a protracted or permanent regime shift,
and how altered components of the state of
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pelagic ecosystems affect functionally linked sys-
tems (Pace et al. 1999, Daskalov et al. 2007, Moll-
mann et al. 2009, Leadley et al. 2010, Crespo and
Dunn 2017).

This study reviews theoretical and observed
findings on whether static and dynamic spatial
management of pelagic fisheries have achieved
the following ecological objectives:

1. Reduce or eliminate bycatch fishing mortality
of pelagic species of conservation concern;

2. Reduce or eliminate fishing mortality at
habitats that are important for critical life
history stages of pelagic species;

3. Reduce the fishing mortality of target stocks
to contribute to sustaining desired produc-
tion levels (i.e., stay near target thresholds)
and avoiding conditions where protracted
or irreparable harm to the stock occurs (i.e.,
stay above limit thresholds);

4. Reduce fishing mortality of prey species of
pelagic target stocks and species of conser-
vation concern in order to stay near targets
and above limits; and

5. Reduce trait-based selective fishing mortal-
ity and fisheries-induced evolution (FIE).

We describe how pelagic MPAs could be
designed to achieve these ecological objectives
and discuss what factors may have a significant
influence on the performance of a pelagic MPA.
We explain how counterfactual-based modeling
of time series data of standardized catch records
can be used for causal inference of the ecological
responses to the implementation of pelagic MPAs.

THeEORETICAL AND OBSERVED EVIDENCE OF
PeLagic MPAs AcHIEVING EcoLoaicAL
OBJECTIVES

The following sections synthesize theoretical
and empirical evidence of static and dynamic
MPAs that constrain pelagic fishing in achieving
ecological objectives and underlying ecological
responses. For each overarching ecological objec-
tive, the study describes ecological responses,
direct and indirect ecological objectives, MPA
designs that enable achieving the objectives and
responses, why the MPA design might not be
successful, and evidence of pelagic MPAs achiev-
ing the objectives and responses. While the
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ecological objectives used to structure this review
could be objectives of pelagic MPAs, explicit pur-
poses for establishing MPAs tend to be broad
and vague, such as to protect marine biodiversity
and representativeness, and to improve fisheries
yields, and in some cases have narrow objectives,
such as to protect rare, endemic, and threatened
species (e.g., see Gilman et al. 2011: Figure 2).

We undertook structured and unstructured lit-
erature searches to compile peer-reviewed and
gray literature with findings on observed and the-
oretical ecological responses to MPAs with pelagic
habitats. The structured search employed Boolean
searches on combinations of the following key-
words in Google Scholar: area, bigeye, billfish,
blue water, dynamic, fisheries-induced evolu-
tion, FIE, fishery, fishing, genetic, highly migra-
tory, open ocean, longline, marine, marlin,
monument, MPA, no-take, park, pelagic, piracy,
protected, purse seine, reserve, sanctuary, skip-
jack, Somali, spatial, swordfish, time-area, tuna,
yellowfin, and zoning. No previous systematic
reviews or meta-analyses on pelagic MPAs were
identified. The unstructured search reviewed ref-
erence lists of relevant publications and reports,
and tuna RFMO materials from assessments of
pelagic MPAs. Table 1 summarizes how MPAs
could be designed to achieve these objectives,
intended ecological effects, main factors that affect
whether the MPA achieves the objective, and the-
oretical and empirical evidence that pelagic MPAs
are able to achieve these intended outcomes.

Reduce fishing mortality of species of
conservation concern

Intended ecological response.—Increase the abso-
lute abundance of populations of species of con-
servation concern, including endangered and
threatened species, that are susceptible to capture
in pelagic fisheries.

Direct and indirect ecological objectives.—Reduc-
ing anthropogenic mortality levels of vulnerable
populations contributes to reducing the risk of
population extirpations and to recovering
depleted populations. This may also contribute
to maintaining populations near target and
above limit thresholds, and maintaining their
community and ecosystem roles. This contributes
to maintaining the system in a quasi-stable and
resilient state, and a state selected to maintain
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Table 1. Aims and intended ecological effects from eliminating pelagic fishing in marine pelagic areas, MPA
design, factors that significantly explain whether the MPA achieves the intended objective and response, and
the theoretical and empirical basis for hypothesizing that pelagic MPAs can achieve the objectives.

Intended
ecological MPA design
Aim effects options Why it may fail Theoretical basis Empirical basis
Reduce fishing e Reduce the e Reduce/elimi- e Displaced effort e Hypothetical clo- High catch rates
mortality of risk of popula- nate pelagic has the same or sure of an area of species of con-
species of tion extirpa- fishing in tem- higher fishing with relatively servation concern
conservation tions poral/spatial mortality rates of high species rich- and species diver-
concern e Maintain bycatch hot- species of conser- ness and density sity occur at shal-
stocks/popula- spots with vation concern, of pelagic preda- low submerged
tions near tar- high local or displaced tors would features and float-
get and above abundance or effort has reduce catch ing objects (Worm
limit thresh- high catch increased catch levels of some et al. 2003, Mor-
olds; recover rates of spe- rates of higher sharks and tele- ato et al. 2008,
depleted cies of conser- risk age classes. osts if displaced 20104, 2010
stocks and vation concern e Displaced effort effort maintained Gilman et al.
populations e Reduce/elimi- (or changing the same level of 2012, Dagorn
e Contribute to nate pelagic effort from one target species et al. 2013, Hall
implementing fishing in tem- fishing method to catch or effort and Roman 2013).
ecosystem- poral/spatial another) results (Worm et al. Dynamic spatial
level harvest hotspots with in cross-taxa con- 2003). management of
strategies and high bycatch:- flicts. e Dynamic spatial Australia's east-
maintaining a target catch o In fisheries with management of ern tuna and bill-
desired quasi- ratios quotas for target Hawaii's sword- fish longline
stable ecosys- e May be spa- species but no fish pelagic long- fishery has miti-
tem state tially and/or effort controls, if line fishery could gated southern
temporally an MPA displaces mitigate sea tur- bluefin tuna
static and/or effort to areas or tle bycatch (How- bycatch (Hobday
dynamic periods with ell et al. 2008, et al. 2010).
lower target spe- 2015).
cies catch rates, e Dynamic spatial
this could management of
increase catch California's
and fishing mor- swordfish drift-
tality of bycatch net fishery could
species. mitigate bycatch
e Depending on (1) of sea turtles, sea
the proportion of lions and sharks
each age class (Hazen et al.
and sex of a pop- 2018).
ulation that e Some pelagic spe-
occurs within the cies of conserva-
MPA, (2) the pro- tion concern may
portion of an have sulfficiently
individual's life- long residency
time spent within times at networks
the MPA, (3) of aggregating
whether the MPA features so that
includes habitat MPAs could pro-
critical for life tect individuals
history stages, for a sufficient
and (4) the proportion of
degree of risk of their lifetime dur-
anthropogenic ing which growth
mortality outside and increased
the MPA, the pro- biomass occurs.
tection afforded
may not increase
biomass. The
MPA may be too
small and inade-
quately designed
to account for the
extensive ranges,
variable
ECOSPHERE % www.esajournals.org 5 December 2019 ¢ Volume 10(12) ** Article 02968
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(Table 1. Continued.)
Intended
ecological MPA design
Aim effects options Why it may fail Theoretical basis Empirical basis
distributions, and
shifting distribu-
tions in response
to outcomes of
climate change
and changes in
biomass to
increase highly
migratory pelagic
species’ biomass.

Protect habitat e Increase e Restrict pela- e Increased recruit- e Purse seine sea- e High densities of
in locations reproduction, gic fishing at ment does not sonal area clo- juvenile tunas
and during recruitment spatially and affect absolute sures may have and other species
periods and absolute temporally biomass for reduced juvenile occur at shallow
important for biomass predictable stocks that are bigeye tuna fish- submerged fea-
pelagic e Reduce the sites used for not recruitment- ing mortality tures (Fonteneau
species’ risk of popula- spawning, limited. (Torres-Irineo 2007, Itano and
critical life tion extirpa- mating, calv- e Effortis dis- et al. 2011, Holland 2000,
history stages tions ing, pupping, placed where IATTC 2017). Sibert et al. 2012,

e Maintain nurseries, fishing mortality e Mobile MPAs Adam et al. 2003,
stocks/popula- nesting, forag- rates during criti- might be able to Gilman et al.
tions near tar- ing and cal life history protect relatively 2012).
get and above migratory stages are the small dynamic
limit thresh- pathways same or higher. sites important
olds; recover e May be spa- e Displaced effort for pelagic spe-
depleted tially and/or results in cross- cies’ critical life
stocks and temporally taxa conflicts, history stages
populations static and/or benefiting some that are tempo-

e Contribute to dynamic species during rally and spa-
implementing critical life his- tially predictable
ecosystem- tory stages, while (e.g., seabird for-
level harvest exacerbating fish- aging habitat,
strategies and ing mortality of Hyrenbach et al.
maintaining a others during a 2006a, Oppel
desired quasi- critical life his- et al. 2018; sea
stable ecosys- tory stage. turtle migratory
tem state e For some species, corridors, Schil-

areas important linger et al. 2008;
for critical life eddies within
history stages bluefin tuna
may not be pre- spawning
dictable or grounds, Bakun
known, so that 2012; pelagic
MPAs cannot be shark aggrega-
designed to pro- tions, Litvinov
tect them. 2006, Domeier

e The MPA may be and Nasby-Lucas
too small and 2007, Vandeperre
inadequately et al. 2014aq, b).
designed to pro-
tect extensive
critical habitat
areas.

Reduce or e Reduce fishing e Protectasuffi- e The MPAmaybe e Lifetime displace- e Increased local
eliminate mortality and cient propor- too small and ments of tropical and regional
fishing increase tion of inadequately tunas in some abundance of
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Intended
ecological MPA design
Aim effects options Why it may fail Theoretical basis Empirical basis

mortality of recruitment, individuals designed to pro- regions may be striped marlin
target stocks increasing for an ade- tect extensive sufficiently small occurred follow-
of large absolute stock quate propor- ranges, tempo- so that a large ing temporary
pelagic biomass tion of their rally and spa- MPA could pelagic longline
predatorsata e Increase local lifespan and tially variable enable a large closures in part of
site or period biomass, with sufficient pro- distributions, part of a local the Mexican EEZ

in order to
contribute to
keeping the
stock near its
target and
above its limit
reference
points

spillover
across the
MPA margin
Maintain
stocks near
target and
above limit
thresholds,
recover
depleted
stocks
Contribute to
implementing
ecosystem-
level harvest
strategies and
maintaining a
desired quasi-
stable ecosys-
tem state

portion of the
stock's distri-
bution to
cause an
increase in
local and/or
absolute bio-
mass of a tar-
get stock
May be spa-
tially and/or
temporally
static and/or
dynamic

account for catch
risk outside the
MPA, and
account for shift-
ing distributions
in response to
outcomes of cli-
mate change and
changes in bio-
mass to increase
highly migratory
large pelagic tar-
get species’ local
or absolute bio-
mass.

Displaced effort
has the same or
higher fishing
mortality rate,
such that the
MPA does not
cause absolute
biomass to
increase.
Increased recruit-
ment does not
affect absolute
biomass for
stocks that are
not recruitment-
limited.

population to be
protected for sev-
eral months or
longer (Sibert
and Hampton
2003, Gunn et al.
2005), during
which a large
proportion of life-
time growth
occurs, which
could augment
local and abso-
lute biomass.
Some tunas exhi-
bit long residency
times at networks
of aggregating
features (Adam
et al. 2003,
Dagorn et al.
2007), suggesting
that MPAs pro-
tecting these sites
could protect
individuals for a
sufficient propor-
tion of their life-
time to augment
growth and local
biomass.

85% of the distri-
bution of overex-
ploited stocks of
highly mobile
species needs to
be included in a
no-take MPA in
order to increase
absolute biomass
and yields (Le
Quesne and Cod-
ling 2009).
Closed areas
would not affect
biomass and
yields of highly
migratory stocks
that are not over-

in the eastern
Pacific (Jensen

et al. 2010).
Temporary high
seas closure to
tuna purse seine
vessels in the
western and cen-
tral Pacific did
not reduce bigeye
tuna fishing mor-
tality because
effort displaced to
areas outside the
MPAs and effort
increased
(WCPEC 2010,
Sibert et al. 2012).
A de-facto MPA in
the Indian Ocean
from Somali
piracy reduced
regional effort,
caused vessels to
rely on log associ-
ated sets in place
of sets on free
swimming
schools, increas-
ing catch rates of
juvenile tunas
(Chassot et al.
2010).

Purse seine catch
rates and relative
abundance of yel-
lowfin and skip-
jack tunas in an
area adjacent to
the Galapagos
Marine Reserve
were higher fol-
lowing enforce-
ment of the
Galapagos Mar-
ine Reserve. Fish-
ing-the-line
occurred to the
southwest of the

exploited (Le reserve (Boerder
Quesne and Cod- et al. 2017,
ling 2009).
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(Table 1. Continued.)

Intended
ecological MPA design
Aim effects options Why it may fail Theoretical basis Empirical basis
e High seas clo- Bucaram et al.
sures to purse 2018).
seining and pela-
gic longline fish-

eries in the
western and cen-
tral Pacific Ocean
were simulated
to resultin a
small increase in
absolute biomass
of adult bigeye
tuna, with largest
gains within and
near the MPAs
(Sibert et al.
2012).

e Model simula-
tions found the
Chagos MPA had
a minor effect on
absolute skipjack
biomass. A hypo-
thetical MPA cov-
ering a large
portion of the
western Indian
Ocean caused a
large reduction in
fishing mortality
and stabilized
spawning bio-
mass (Dueri and
Maury 2013).

o Model simula-
tions found that
the Chagos MPA,
Indian Ocean
Tuna Commis-
sion spatio-tem-
poral closures,
and a closed area
in part of the
Maldives’ EEZ,
with spatial dis-
placement of
effort, have had
little effect on the
biomass of yel-
lowfin tuna (Mar-
tin et al. 2011).

e Reducing or elim-
inating pelagic
fishing at shallow
seamounts, other
discrete static
natural features
that aggregate
apex pelagic
predators, and
networks of
FADs would
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Intended
ecological MPA design
Aim effects options Why it may fail Theoretical basis Empirical basis

reduce fishing
mortality (Worm
et al. 2003,
Dagorn et al.
2013; Hall and
Roman 2013, Gil-
man et al. 2012),
assuming that
displaced effort
would have
lower catch rates
than at these fea-
tures.

Protect prey of e Reduce fishing e Protectasuffi- e Because prey of o Reduced fishing e Penguins immi-
pelagic mortality and cient propor- large pelagic mortality of for- grated into a
predators increase tion of predators are age fish may recently estab-
(including recruitment, individuals generally under- increase their lished MPA
target species increasing for an ade- exploited, and local abundance, closed to fishing,
and species of absolute prey quate propor- because there is a increasing the and there was a
conservation stock biomass tion of their weak correlation, local availability 30% decrease in
concern) to e Increase local lifespan and if any, between of seabirds’ prey, penguin foraging
maintain prey biomass of sufficient pro- absolute abun- seabird popula- effort three
and predator prey stocks portion of the dance of forage tions’ reproduc- months after the
stocks near e Increase local stock's distri- fish and their tive success and fishery closure
target and and absolute bution to predators, population abun- was established,
above limit biomass of cause an reduced fishing dance (Gremillet possibly because
thresholds predator increase in mortality and et al. 2008, Cury the local abun-

stocks/popula- local and/or increased bio- et al. 2011). dance of their
tions absolute bio- mass of prey will prey increased
e Maintain prey mass of the not likely affect (Pichegru et al.
and predator prey stock the absolute pop- 2010).
stocks/popula- May be spa- ulation sizes of
tions near tar- tially and/or their predators.
gets and temporally e Effort is dis-
above limits static and/or placed spatially
¢ Contribute to dynamic or temporally
implementing where fishing
ecosystem- mortality rates of
level harvest prey species are
strategies and the same or
maintain a higher.
desired quasi- e Displaced effort
stable ecosys- results in cross-
tem state taxa conflicts,
benefiting some
prey species but
exacerbating
catch rates of
others.
e The MPA may be
too small and
inadequately
designed to
account for the
extensive ranges,
temporally and
spatially variable
distributions, and
shifting
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(Table 1. Continued.)
Intended
ecological MPA design
Aim effects options Why it may fail Theoretical basis Empirical basis

Reduce, halt or
reverse FIE
resulting from
heritable,
trait-selective
fishing
mortality

e Maintain a
population's
diversity of
heritable traits
and adaptive
genetic varia-
tion, fitness,
and evolution-
ary processes,
reducing the
risk of popula-
tion extirpa-
tions

e Maintain a
desired quasi-
stable ecosys-
tem state

e Depends on
species-speci-
fic traits and
concomitant
evolutionary
responses to
different
forms of
reductions in
trait-based
selective fish-
ing mortality,
and for which
heritable traits
a fishery has
been selec-
tively remov-
ing

e Protect areas
where a large
proportion of
the local bio-
mass of a spe-
cies is made
up of individ-
uals with heri-
table traits
that cause
them to be
selectively
harvested.

e Protect areas
where the full
diversity of
variation in
heritable traits
of a popula-
tion are repre-
sented, pre-
serving natu-
ral genetic
variation in a

distributions in
response to out-
comes of climate
change to
increase the local
or absolute bio-
mass of highly
migratory prey
species.

Intraspecific
changes in
genetic diversity
from FIE may be
irreversible.

An MPA can
have nominal
effect, and in
some cases might
exacerbate FIE,
depending on the
MPA design and
the life history
traits of affected
pelagic species,
including if the
MPA is not a
source for
recruits to the
population and if
density-depen-
dent processes
within the MPA
strengthen FIE.
Fishing effort
may be displaced
temporally or
spatially, where it
exacerbates the
magnitude of FIE
that the MPA was
intended to
reduce, or exacer-
bates FIE in other
taxa.

The MPA may be
too small and
inadequately
designed to sig-
nificantly affect
the magnitude of
FIE.

No theoretical basis

of the efficacy of
MPAs at reducing,
halting or
reversing FIE in
pelagic marine
species.
Theoretical Basis
for Non-Pelagic
Species:

e Model-based

studies predicted
that no-take
MPAs mitigated
FIE for matura-
tion at a younger
age, smaller size
and slower
growth in
demersal and
coastal fishes.
Assumed MPA
was a source of
recruits to the
population.
Using a model
calibrated for life
history traits for
Atlantic cod, a
no-take MPA in
foraging grounds
reduced the mag-
nitude of FIE, but
an MPA in
spawning
grounds had
nominal effect or
exacerbated the
magnitude of FIE
for earlier matu-
ration and smal-
ler size (Trexler

No empirical basis
of the efficacy of
MPAs at reducing,
halting or
reversing FIE in
pelagic marine
species

portion of the e Not all pelagic and Travis 2000,
population species may have Baskett et al.

e Design the spatially and 2005, Dunlop
MPA to temporally pre- et al. 2009,
reduce fishing dictable areas Miethe et al.
mortality of that meet either 2009). These
the population of the MPA studies assumed
subject to FIE. designs predicted the MPA was a
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SYNTHESIS & INTEGRATION GILMAN ET AL.
(Table 1. Continued.)
Intended
ecological MPA design
Aim effects options Why it may fail Theoretical basis Empirical basis

Because the
rate of FIE is
determined in
part by the
intensity of
fishing that
selectively
removes indi-
viduals from a
stock, an MPA
that reduces
the fishing
mortality rate
will contribute
to reducing
the magnitude
of FIE, and
possibly to
recovering
from previous
FIE

to alleviate pres-
sures for FIE in
pelagic marine
organisms.

source of recruits
to the population.

Notes: EEZ, exclusive economic zone; FIE, fisheries-induced evolution; MPA, marine protected area.

desired provision of ecosystem services. Popula-
tion extirpations result in the permanent loss of
unique genotypes, which can reduce species resi-
lience and concomitant resistance to extinction,
as well as cause broad changes in community
structure and functioning (Carlton et al. 1999,
Dulvy 2006).

MPA design—The ecological objectives and
response could be achieved by prohibiting fish-
ing with gear types in which the species of inter-
est is susceptible to capture in spatially and/or
temporally predictable hotspots of local abun-
dance (Hays et al. 2019) and of catch rates (Gil-
man et al. 2012). Or, fishing could be prohibited
in areas or periods with relatively high ratios of
bycatch to target catch levels.

These pelagic MPAs could be spatially and
temporally static (fixed in location and year-
round), such as at anchored floating objects, a
shallow seamount, shelf break, or other bathy-
metric feature that concentrates, and enhances
the residency time, of pelagic predators and their
prey (Worm et al. 2003, Genin 2004, Morato et al.
2008, 20104, b, Gilman et al. 2012, Kaplan et al.
2014). Alternatively, the MPA, or network of
MPAs, could be spatially static but temporally
dynamic, such as a migratory corridor leading to
a breeding area, or a site with variable periods of
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upwelling (Schillinger et al. 2008). The MPA
could be spatially dynamic but temporally static,
protecting features such as fronts and eddies that
can be temporally predictable but variable spa-
tially and in intensity. Or, the MPA could be both
spatially and temporally variable, such as an
MPA designed to protect hydrographic features
(fronts, eddies) and drifting floating objects
whose locations vary in space and time (Hyren-
bach et al. 2000, Hobday and Hartmann 2006,
Game et al. 2009, Hobday et al. 2010, Hall and
Roman 2013, Gaertner et al. 2016).

Why the MPA design might not achieve ecological
objectives and responses.—The response of fishers
to the establishment of an MPA can affect MPA
efficacy. MPAs designed to mitigate the bycatch
of a species of conservation concern may, in some
cases, cause the displacement of fishing effort to
areas or periods that inadvertently exacerbate
bycatch rates of this species or of other at-risk
taxa (Gilman et al. 2019). In some cases, marine
area closures have resulted in the spatial or tem-
poral displacement of bycatch of an individual
species or age classes (Murray et al. 2000, Powers
and Abeare 2009, Diamond et al. 2010, SPC 2010,
Suuronen et al. 2010, Sibert et al. 2012). Fishing
effort can be displaced to other sites or seasons
where mortality rates and levels are the same or
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higher than they had been at the protected site,
or where there is higher mortality of age classes
with greater risk of causing irreparable harm or
population extirpations than the age classes that
are caught in the closed area (Ardron et al. 2008,
WCPFC 2010, FAO 2011).

Although less well documented, there are also
examples of closed areas designed to reduce the
bycatch of one species of conservation concern
that then lead to an increase in the bycatch of
another species of conservation concern (Abbott
and Haynie 2012, Gilman et al. 2019). For exam-
ple, Baum et al. (2003) modeled the effects on
catch rates from the closure of areas to the U.S.
north Atlantic swordfish longline fishery. A por-
tion of the fishing grounds was closed for about
three years to reduce loggerhead (Caretta caretta)
and leatherback (Dermochelys coriacea) sea turtle
by catch. Spatially displaced effort was modeled
to simulate constant levels of swordfish catch
and effort. Both of the closure scenarios pre-
dicted reduced catch rates of loggerhead and
leatherback sea turtles and blue and shortfin
mako sharks, the latter being categorized as Low
Risk by the IUCN Red List. However, there was
a predicted increase in the catch rates of 10 shark
species, including two categorized as Vulnerable
by the IUCN Red List (Baum et al. 2003).

In fisheries with quotas for target species (e.g.,
bigeye tuna annual quotas for longline fisheries
in the western and central Pacificc WCPFC 2018)
but no effort controls, MPAs could displace fish-
ing effort to areas or periods with relatively
lower target species catch rates, resulting in
increased effort to maintain target species catch
levels. This could result in increased catch levels
and fishing mortality of bycatch species, includ-
ing of endangered, threatened, and protected
species (Kaiser 2005).

For some populations, including those of
endangered species, fisheries discards can be an
important food subsidy (Oro et al. 2013, Fondo
et al. 2015). An abrupt discontinuation of dis-
carding offal, spent bait, and dead catch, such as
might occur from the establishment of a no-take
reserve that displaces fishing effort, may result in
precipitous declines in local biomass and abso-
lute population sizes of seabirds, dolphins, and
other at-risk taxa (Fondo et al. 2015). Elimination
of one fishing gear type in an MPA might
increase scavenging from another gear type that
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poses a larger bycatch risk (e.g., eliminating
trawling increases seabird bycatch in pelagic
longline fisheries; Soriano-Redondo et al. 2016).

MPAs with time/area restrictions on pelagic
fishing may be too small and inadequately
designed to account for the extensive ranges,
temporally and spatially dynamic distributions,
and shifting distributions in response to out-
comes of climate change. As a result, there may
be no increase in local or absolute biomass of
highly migratory pelagic species in response to
an MPA. Depending on (1) the proportion of
each age class and sex of a population that occurs
within the MPA (more likely to be effective for
species with small ranges), (2) the proportion of
an individual’s lifetime that they spend within
the MPA, (3) whether the MPA includes habitat
critical for certain life history stages (section
Reduce Fishing Mortality at Pelagic Habitats Critical
for Life History Stages), and (4) the risk of mortal-
ity outside of the MPA from anthropogenic
sources, including from fishing, the protection
afforded to a population of conservation concern
from an MPA may not be adequate to cause an
increase in biomass, locally or stock-wide (e.g.,
Botsford et al. 2003, Hilborn et al. 2004, Blyth-
Skyrme et al. 2006, Le Quesne and Codling 2009,
Moffitt et al. 2009, Gruss et al. 2011, Graham
et al. 2012, Rosenbaum et al. 2014). These issues
are applicable across migratory pelagic species,
and not just species of conservation concern. This
is discussed in more detail in the section Main-
tain the Condition of Target Stocks of Large Pelagic
Predators as it pertains to large pelagic target
species.

Pelagic apex predators, and in some cases dif-
ferent size classes and sexes within species, uti-
lize different static and dynamic pelagic habitats
(Hyrenbach et al. 2000, 20064, b, Polovina et al.
2004, Bailey and Thompson 2010, Muhling et al.
2011, Vandeperre et al. 20144, b, Gilman et al.
2016). Their geospatial and vertical distributions
are determined, in part, by prey availability and
primary environmental variables of hydrostatic
pressure, temperature, and dissolved oxygen
(Musyl et al. 2003, 2011, Beverly et al. 2009, Ber-
nal et al. 2010, Lehodey et al. 2011, 2015, Muh-
ling et al. 2011, Brodziak and Walsh 2013). The
distributions of pelagic predators, and when and
where they aggregate, are also determined, in
part, by physical features that determine their
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biophysical structure (e.g., gyres, fronts). These
features structure the distribution of nutrients,
levels of primary productivity, and the distribu-
tions and aggregations of prey species of pelagic
apex predators (Hyrenbach et al. 2000, g, b, Selles
et al. 2014, Vandeperre et al. 20146, Kavanaugh
et al. 2016). The different categories of these fea-
tures differ in their amenability for management
through spatial restrictions such as MPAs.

Some pelagic species aggregate at bathymetric
structures, which have fixed (static) geospatial
locations. Such structures include shallow sub-
merged features like seamounts and reefs, areas
with steep seabed gradients such as shelf breaks,
and near islands and coastal features that create
small-scale eddies and fronts (i.e., island mass
effect; Doty and Oguri 1956, Worm et al. 2003,
Genin 2004, Hyrenbach et al. 2000, Bailey and
Thompson 2010, Gilman et al. 2012, Kavanaugh
et al. 2016). Depending on their physical charac-
teristics and location, these features alter local
currents and possibly isotherm distributions, cre-
ate oceanographic perturbations, such as
through advection and dispersion, and increase
upwelling and mixing (Pitcher et al. 2007, White
et al. 2007). The influence of these static features
in concentrating productivity, and aggregating
pelagic predators, can be coupled with hydrody-
namic conditions, such as current direction and
strength. In other words, the feature is fixed in
location, but its concentration of productivity can
be temporally variable. This class of pelagic fea-
tures is relatively suitable for management
through spatially static MPAs due to our ability
to predict the physical parameters that lead to
variation in the intensity, extent, and position of
these features.

Other habitats of pelagic apex predators are
much more challenging to manage through the
use of MPAs. Spatially dynamic hydrographic
features affect the distribution of pelagic preda-
tors. Some are broadscale, such as currents and
frontal systems that are temporally persistent,
occurring over years to decades, and over entire
ocean basins. Others are meso-scale, such as
upwelling plumes, eddies, and frontal systems,
persisting over tens to hundreds of days and
occurring over tens to hundreds of kilometers.
Others are fine scale, including fronts and eddjies,
which are ephemeral, lasting for days, and occur-
ring over 100s of meters to kilometers
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(Hyrenbach et al. 2000, McGlade and Metuzals
2000, Polovina et al. 2001, Hazen et al. 2013,
Kavanaugh et al. 2016). Aggregations of pelagic
species at ephemeral, dynamic, pelagic habitats
are difficult to map and manage in real time for
the exclusion of fishing effort, especially for high
seas areas where vessels of multiple flag states
occur and in some cases target species that are
not covered by RFMOs (e.g., Kaiser 2005, Fonte-
neau 2007, Gilman 2007, Kaplan et al. 2010). As
with static habitats, dynamic but persistent habi-
tats are relatively predicable, enabling dynamic
pelagic MPA boundaries to be defined more
easily, but as discussed above, they may need to
be extremely large to achieve ecological objec-
tives, especially if they are used without other
management measures (Horwood et al. 1998).

Pelagic MPA designs need to account for other
sources of variability in the ranges of mobile
pelagic predators. This includes inter-annual,
decadal, and multidecadal variability in the dis-
tributions, recruitment, and biomass of pelagic
species in response to large-scale climate cycles
(Lehodey et al. 1997, 2006, Lu et al. 1998, Leho-
dey 2000, Menard et al. 2007, Gilman et al. 2012,
Baez et al. 2018, Faillettaz et al. 2019). Distribu-
tions and abundance of pelagic predators are
also shifting in response to the outcomes of
human-induced climate change (Perry et al.
2005, Dufour et al. 2010, Lehodey et al. 2010,
2013, 2015, Muhling et al. 2011, Gilman et al.
2016). Climate change outcomes include decadal
and longer-term trends in: ocean surface and
subsurface temperature, dissolved CO, and O,
concentrations, pH, ocean circulation patterns,
vertical mixing, and eddies, as well as outcomes
from indirect effects such as alterations to func-
tional links between ecosystems (Brander 2010,
Le Borgne et al. 2011, Lehodey et al. 2011).
Ranges may also change in response to variations
in abundance, where it is hypothesized that, as a
population’s abundance declines, its distribution
will contract toward the center of their ranges,
where density remains stable (Collette and Russo
1984, Pitcher 1995, Brodie et al. 1998, Worm and
Tittensor 2011).

Expanding on the categorizations of Hyren-
bach et al. (2000) and Kavanaugh et al. (2016) of
physical features that determine pelagic ecosys-
tems’ biophysical structure, we add a category of
individual and networks of natural and artificial
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drifting and anchored floating objects (Hall and
Roman 2013, Gaertner et al. 2016). Some pelagic
species associate near and aggregate at natural
and artificial floating objects, including FADs,
possibly because the floating objects provide
shelter, foraging opportunities, and meeting
points (Freon and Dagorn 2000, Castro et al.
2002, Hall and Roman 2013). Floating objects that
aggregate pelagic marine organisms include
drifting logs, drifting algae, live and dead large
marine organisms, marine debris (e.g., crates,
pallets, nets), vessels, and anchored and drifting
FADs, which are artificial floating objects that are
built and deployed by fishers and are designed
specifically to aggregate pelagic fishes (Castro
et al. 2002, Hall and Roman 2013, Gaertner et al.
2016).

FADs have modified pelagic habitat by
increasing the density of floating objects in
regions where natural floating objects already
were present, and possibly by introducing float-
ing objects to areas where they did not naturally
occur. FADs may detrimentally alter the natural
behavior and ecology of species that associate
with the device. Drifting FADs have been
hypothesized to change the spatial distributions,
migration patterns, schooling dynamics, and ver-
tical habitat use of aggregated organisms. In
turn, by altering their distributions and move-
ment, drifting FADs may modify the aggregated
organisms’ diet, condition, growth, reproductive
success, and other biological characteristics (Mar-
sac et al. 2000, Hallier and Gaertner 2008,
Amande et al. 2010, Dagorn et al. 2013, Sempo
et al. 2013). As with natural static features,
anchored floating objects, including networks of
anchored FADs, could feasibly be managed
through the use of spatially static MPAs. Given
adequate monitoring and surveillance, managing
tuna purse seine fishing on drifting FADs and
other drifting floating objects is feasible through
temporally and spatially dynamic MPAs (e.g.,
seasonal tuna purse seine FAD closure; WCPFC
2018). Otherwise, for tuna purse seine fisheries
with limited observer coverage and surveillance,
drifting floating objects would face similar issues
constraining the utility of management through
dynamic MPAs as occurs with dynamic hydro-
graphic features.

Theoretical and empirical basis.—There is empiri-
cal evidence of higher bycatch rates of at-risk
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taxa, as well as higher pelagic species diversity,
at shallow submerged features, including sea-
mounts and submerged reefs (Worm et al. 2003,
Morato et al. 2008, 20104, b, Gilman et al. 2012).
Protecting these static sites might reduce
bycatch. Furthermore, bigeye and yellowfin
tunas have residency times at networks of static
aggregating features (shallow seamounts,
anchored FADs, and buoys, banks, and ledges)
of between days (Ohta and Kakuma 2004) and as
long as possibly two years (Adam et al. 2003). In
some locations with networks of natural and
non-natural aggregating features, these tuna spe-
cies, and possibly pelagic species of conservation
concern, may have sufficient persistence such
that MPAs could provide protection to individu-
als for an adequate proportion of their lifetime to
augment growth and local biomass within the
MPA.

Restrictions on purse seine fishing on FADs
and other anchored and drifting floating objects
could reduce bycatch of some species of conserva-
tion concern. There is empirical evidence of a lar-
ger number of species in the catch and higher
bycatch rates of silky and oceanic white tip sharks
in tuna purse seine sets on drifting FADs and logs
than occurs in sets in unassociated free-swim-
ming school sets (Dagorn et al. 2013, Hall and
Roman 2013, Gilman et al. 2019). School sets,
however, have higher catch rates of mobulid rays
and leatherback sea turtles (Dagorn et al. 2013,
Hall and Roman 2013, Gilman et al. 2019). There-
fore, if restrictions on associated sets (i.e., sets on
FADs and other floating objects) increased school
set effort, this would result in cross-taxa conflicts
by displacing bycatch issues onto other species of
conservation concern (Gilman et al. 2019).

Using a closed-area model to analyze historical
catch data from a U.S. swordfish longline fishery
in the northwest Atlanticc, Worm et al. (2003)
assessed what the effect would have been if the
fishery had been banned in a hotspot of pelagic
species richness and density (an area with a high
number of species per unit of number of catch
and a high number of species per unit of fishing
effort). The area closure would have reduced
catch levels of some species of pelagic sharks and
teleosts without reducing swordfish catch levels,
when assuming displaced effort maintained
either swordfish catch levels or effort (Worm
et al. 2003).
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Theoretical approaches have been developed
for dynamic temporal and spatial fisheries man-
agement based on the variable position of pelagic
habitats and variable ecosystem processes. The
objectives of these theoretical approaches to fish-
eries dynamic spatial management include pro-
tecting and recovering depleted target species,
mitigating fisheries bycatch of species of conser-
vation concern, mitigating ecosystem effects of
pelagic fisheries, contributing to the protection of
representative habitats nationally and globally,
and protecting processes that maintain and pro-
duce biodiversity (e.g.,, Hyrenbach et al. 2000,
Alpine and Hobday 2007, Lombard et al. 2007,
Pressey et al. 2007, Nel and Omardien 2008). A
retrospective analysis of the efficacy of a
dynamic fisheries management system for the
eastern Australian yellowfin and bigeye tuna
and billfish longline fishery that uses a habitat
model found that it is successfully mitigating
bycatch of southern bluefin tuna (Hobday and
Hartmann 2006, Hobday et al. 2009, 2010). A
similar approach provides maps of near real-time
locations of predicted thermal habitat of logger-
head and leatherback sea turtles to Hawaii long-
line swordfish vessels, information that could,
theoretically, enable them to avoid loggerhead
bycatch hotspots (Howell et al. 2008, 2015). A
comparable tool for the California drift swordfish
gillnet fishery identifies near real-time areas with
high ratios of bycatch to target catch for leather-
back sea turtles, California sea lions, and blue
sharks (Hazen et al. 2018).

In summary, only two studies were identified
that assessed pelagic MPA effects on species of
conservation concern. Both were retrospective
analyses, one of a hypothetical closure (Worm
et al. 2003) and the other of the efficacy of a
dynamic fisheries management system (Hobday
et al. 2010).

Reduce fishing mortality at pelagic habitats critical
for life history stages

Intended ecological response.—Increase recruit-
ment and absolute biomass of populations of
species that are susceptible to capture in pelagic
fisheries.

Direct and indirect ecological objectives.—Pelagic
MPAs may protect habitat in locations and dur-
ing periods that are important for critical life
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history stages of pelagic species (Kaiser 2005,
Game et al. 2009, Davies et al. 2012). In addition
to the ecological objectives described in the sec-
tion Reduce Fishing Mortality of Species of Conser-
vation Concern, protecting spawning, mating,
calving/pupping, nursery, and nesting sites, and
migratory corridors leading to these sites, may
increase reproduction. Fish eggs and larvae, and
juvenile fish, seabirds, sea turtles, and marine
mammals, are exported from the protected area.
This in turn may cause an increase in stock/pop-
ulation recruitment and total stock/population
biomass.

MPA design.—The ecological objectives and
responses could be achieved by prohibiting fish-
ing with gear types in which the species in ques-
tion is susceptible to capture in spatially and
temporally predictable sites important for critical
life history stages. This includes periods and
areas used for spawning, mating, and calving/
pupping, as well as nursery and nesting areas,
areas important for foraging, and migratory
pathways. The MPA or network of MPAs may be
spatially and/or temporally static and/or
dynamic, as with MPAs designed to mitigate
bycatch of at-risk taxa (section Reduce Fishing
Mortality of Species of Conservation Concern).

Why the MPA design might not achieve ecological
objectives and responses.—Displaced effort could
have higher catch rates during critical life history
stages. Displaced effort could also produce cross-
taxa conflicts, benefiting some species during
critical life history stages, but exacerbating fish-
ing mortality rates of others during a critical life
history stage (Gilman et al. 2019).

Areas important for critical life history stages
are not known for many populations of pelagic
species, and not all pelagic species may have spa-
tially and temporally predictable pelagic areas of
critical habitat that are relatively small, where
overlap with problematic fisheries can be elimi-
nated (e.g., Fernandez et al. 2001, Hyrenbach
et al. 2002, Oppel et al. 2018). For instance, with
the exception of bluefin tuna species, discussed
below, there is very limited documentation of
spawning aggregations for large pelagic target
species (SCRFA 2019), with, for example, a hand-
ful identified for istiophorid billfishes (e.g., black
marlin, Istiompax indica; Domeier and Speare
2012, Erisman et al. 2015) and dolphinfish (Cor-
phaena hippurus; Alejo-plata et al. 2011). This
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may be because there have been too few larval
studies, or it may be that most large pelagic spe-
cies do not spawn in discrete sites or during dis-
crete time periods. For instance, bigeye,
yellowfin, skipjack, and albacore tunas are
believed to have extensive spawning grounds in
tropical and subtropical waters with long spawn-
ing seasons relative to bluefin species (Schaefer
et al. 2005, Collette et al. 2011, Muhling et al.
2011, Dueri, and Maury 2013). In addition, if the
MPA does result in increased recruitment, this
will increase total stock biomass only if the stock
was recruitment-limited (Hilborn et al. 2004b).

Theoretical and empirical basis.—There is empiri-
cal evidence of relatively high catch rates of
undersized and juvenile tunas and other fish spe-
cies at shallow seamounts and other features
(Fonteneau 1991, Itano and Holland 2000, Sibert
et al. 2000, Adam et al. 2003, Gilman et al. 2012).
Protecting these sites could reduce catch rates of
these age classes.

Tuna RFMO seasonal closures to purse seine
fishing in areas with a high density of juvenile
bigeye tunas, in the eastern Pacific and Atlantic
Oceans, may have reduced juvenile bigeye tuna
catch rates (Torres-Irineo et al. 2011, IATTC
2017).

Theoretically, mobile MPAs might be able to
protect relatively small, dynamic sites that are
important for critical life history stages of pelagic
species if the sites are temporally and spatially
predictable. For example, mobile MPAs designed
to protect eddies within bluefin spawning
grounds during spawning periods hold promise.
The three bluefin tuna species, which are catego-
rized as IUCN Threatened (Collette et al. 2011),
spawn in small areas (Muhling et al. 2011). Blue-
fin tunas also have relatively short spawning
periods of 1-2 months (Collette et al. 2011, Muh-
ling et al. 2011). Bluefin tunas may depend heav-
ily on eddies to produce spawning schools that
are above a density threshold needed for success-
ful reproduction (Bakun 2012).

Theoretically, for those species that exhibit con-
sistent at-sea aggregating behavior, where the
individuals of the same population aggregate
during the same periods and at the same areas,
mobile or static MPAs may be highly effective,
such as for predictable pelagic foraging hotspots
of some seabird species (Hyrenbach et al. 20064,
Louzao et al. 2006, Oppel et al. 2018). Similarly,
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pelagic MPAs could theoretically be designed to
protect predictable pelagic foraging hotspots of
pelagic shark pupping, nursery, and mating
aggregations (Litvinov 2006, Domeier and
Nasby-Lucas 2007, Vandeperre et al. 20144, b).
Pelagic MPAs could protect areas where pelagic
juvenile loggerhead sea turtles have prolonged
residence (e.g., the Kuroshio Extension Bifurca-
tion Region, Kobayashi et al. 2008; an area off
Baja California, Peckham et al. 2007; and an area
in the East China Sea, Kobayashi et al. 2011).
Pelagic MPAs could protect predictable, well-de-
fined pelagic migratory corridors (Block et al.
2011), for example, for post-nesting leatherback
sea turtles between their nesting beaches in Costa
Rica and foraging grounds in the South Pacific
Gyre (Schillinger et al. 2008). Such an application
has been applied to migratory right whales off
the coast of New England with considerable suc-
cess (Schick et al. 2009). Although this is not a
fishery example, it has reduced mortality
through an area avoidance approach (i.e.,, by
excluding the source of mortality—shipping).

Of the above-reviewed studies, only one
assessed the effect of a pelagic MPA established
in habitat important for critical life history stages.
A one-month annual closure to a pelagic fishery
in an area with a high density of juvenile tunas
was assessed using a Before—After-Control-
Impact (BACI) study design (discussed in the
section Counterfactual Reasoning), but without
after sampling in the closure (Torres-Irineo et al.
2011). During an annual one-month closure,
purse seine vessels making free school sets
fished-the-line. In the control area, juvenile tuna
catch levels increased after the closure was estab-
lished, possibly due to fishing-the-line by the dis-
placed effort, or possibly due to various other
variables.

Maintain the condition of target stocks of large
pelagic predators to sustain desired production
levels

Intended ecological response.—Increase local bio-
mass, and maintain the absolute biomass of
stocks of principal market species near targeted
levels.

Direct and indirect ecological objectives.—Pelagic
MPAs may reduce or eliminate the fishing mor-
tality of target stocks of large pelagic predators
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at a site or time period in order to contribute to
maintaining biomass levels and exploitation
rates near target reference points (TRPs) so as to
sustain desired production levels, and above
limit reference points (LRPs) in order to avoid
causing protracted or irreparable harm to the
stock.

Defined in Annex II of the United Nations Fish
Stocks Agreement, “Limit reference points set
boundaries which are intended to constrain har-
vesting within safe biological limits within which
the stocks can produce maximum sustainable
yield. Target reference points are intended to
meet management objectives” (UNFSA 1995).
Stock-specific and multispecies TRPs are
designed to meet long-term socioeconomic objec-
tives of managing target stocks, but also con-
tribute to addressing ecological risks, as the TRP
establishes biomass and fishing morality rate
levels at or above the level that is predicted to
produce maximum sustainable yields, and also
may avoid a spiral to LRPs and other biological
reference points where increased fishing effort
and mortality risk irreparably damaging a fish
stock (e.g., Ferash, the fishing mortality rate that
will drive a population to 1/1000 of virgin bio-
mass, B, the minimum viable population size
below which population extirpation is imminent,
threshold for minimum viable density) (Mace
1994, White et al. 2007, Gilman et al. 2014).
When current biomass falls below By, for a suf-
ficiently long period, this could trigger a decrease
in market supply. In turn, this could increase
both the market value and demand and concomi-
tantly incentivize increasing fishing effort (Cin-
ner et al. 2011). Thus, TRPs can be seen as checks
against market forces that could drive the bio-
mass of an overexploited stock to a critical level
or lead to Allee effects (Stephens and Sutherland
1999, Gilman et al. 2014). Stock-specific TRPs can
be designed to be consistent with ecosystem-
level target and limit thresholds (Gilman et al.
2017).

The reduction or elimination of fishing mortal-
ity of target species in the MPA increases recruit-
ment and reduces fishing mortality risk due to
diminished catch risk of individuals who spend
a proportion of their lifetime in the MPA. These
outcomes, in turn, contribute to the intended eco-
logical response of maintaining absolute stock
biomass at a targeted level, or increasing biomass
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if it is below the target (e.g., Christie et al. 2010).
This contributes to maintaining the stock near its
TRP, to recovering depleted stocks, and to imple-
menting stock-specific as well as ecosystem-level
harvest strategies (Sainsbury et al. 2000, Link
2005, Gilman et al. 2017).

The reduction or elimination of fishing mortal-
ity of target species in the MPA results in an
increase in local biomass (number of individuals
and size) within the MPA. This, in turn, results in
spillover, benefiting fisheries adjacent to the sea-
ward margin of the MPA, through emigration of
target (as well as non-target) species from within
to outside the protected area (Roberts et al. 2001,
Goni et al. 2008).

MPA design.—The ecological objectives and
responses could be achieved by creating tempo-
ral and/or spatial closures to historical fishing
grounds where target species were caught,
designed to protect a sufficient proportion of
individuals of a stock of a target species for an
adequate proportion of their life span, and pro-
tect a sufficient proportion of the distribution of
the stock. The MPA or network of MPAs may be
spatially and/or temporally static and/or
dynamic, as with MPAs designed to mitigate
bycatch of at-risk taxa (section Reduce Fishing
Mortality of Species of Conservation Concern).

Why the MPA design might not achieve ecological
objectives and responses.—As discussed in the sec-
tion Reduce Fishing Mortality of Species of Conser-
vation Concern, time/area restrictions applied to
pelagic fisheries attempting to protect highly
migratory large pelagic predators may not be
sufficiently large to account for their extensive
ranges and designed to account for their tempo-
rally and spatially variable distributions and
catch risk outside of the MPA, as well as account
for permanent shifts in distributions due to the
outcomes of climate change. Large pelagic target
species on average are highly migratory (how-
ever, see Sibert and Hampton 2003 and Gunn
et al. 2005, discussed below). A pelagic MPA, or
network of pelagic MPAs, would need to cover
extremely large areas in order to enable an indi-
vidual pelagic fish to be at significantly reduced
risk of capture throughout its lifetime (i.e., the
protected area or areas need to cover a large pro-
portion of the stock’s distribution), and to protect
a substantially large proportion of the individu-
als of the stock (Botsford et al. 2003, Blyth-
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Skyrme et al. 2006, Le Quesne and Codling 2009,
Grtss et al. 2011, Dueri and Maury 2013). If indi-
viduals of the target species are transient,
remaining relatively short time periods (days,
weeks) in the MPA, especially if fishing-the-line
occurs, then there would not be an increase in
biomass from the MPA, locally or stock-wide
(Moffitt et al. 2009, Gruss et al. 2011, Graham
et al. 2012).

If effort is displaced, temporally or spatially, so
that it increases the catch risk and fishing mortal-
ity rate, then the pelagic MPA might act to
reduce biomass. And, as discussed in the section
Reduce Fishing Mortality at Pelagic Habitats Critical
for Life History Stages, if the MPA increases
recruitment, this will increase absolute stock bio-
mass only if the stock was recruitment-limited.

Where MPAs have been documented to result
in spillover of fished species that increase in local
abundance as a result of site-based protection
from fishing mortality, the spillover effect was
detectable over very small distances (100s of
meters) from the MPA boundary (Halpern et al.
2009). However, it is possible that the spatial
extent of a spillover effect could extend over tens
to hundreds of km (e.g., see Boerder et al. 2017,
Bucaram et al. 2018).

Theoretical and empirical basis.—Tropical skip-
jack and yellowfin tunas had median lifetime dis-
placements (net distance moved) of between
about 400 and 500 nm, and median residence
times (the time it would take for half of the local
population to emigrate outside of the exclusive
economic zone (EEZ) of a Pacific island country)
of about 6 months (Sibert and Hampton 2003). In
contrast, bigeye tuna in the Coral Sea off the
northeastern coast of Australia showed limited
horizontal movements: 90% of 83 bigeye tunas
that were recaptured between 16 and 1441 days
following release were within 150 nm of their
release locations (Gunn et al. 2005). Adult bigeye
tuna in the Pacific made home range movements
of between 100 and 700 nm (Schaefer and Fuller
2009). Mark-recapture studies of juvenile skip-
jack, bigeye, and yellowfin tunas in the Indian
Ocean have shown much larger-scale move-
ments of 400-1000 nm within three months (not
lifetime displacements; IOTC 2008, Kaplan et al.
2014). Thus, while a large proportion of a local
population of tropical tunas occurs in more than
one EEZ and/or high seas area, the findings of
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Sibert and Hampton (2003) and Gunn et al.
(2005) suggest that it might be feasible to estab-
lish a large pelagic MPA within which a large
part of the local population of tropical tunas
remains for several months or longer, a period of
time during which a large proportion of the total
growth of these species occurs. It is unclear, how-
ever, what effect protecting areas of high tuna
persistence/residency might have on local bio-
mass within the MPA or absolute biomass of the
population.

Similarly, bigeye and yellowfin tunas have res-
idency times at networks of static aggregating
features (e.g., shallow seamounts, anchored
FADs, and buoys, banks, and ledges) of between
days to months (Ohta and Kakuma 2004, Dagorn
et al. 2007) and as long as approximately two
years (Adam et al. 2003). In some locations with
networks of natural and non-natural aggregating
features, these tuna species, and perhaps other
pelagic predators, may have sufficient persis-
tence such that MPAs could provide protection
to individuals for an adequate proportion of their
lifetime to augment growth and local biomass
within the MPA. Bigeye and yellowfin tunas,
however, have short residency times at individ-
ual static aggregating features of days to months
(Holland et al. 1999, Itano and Holland 2000, Sib-
ert et al. 2000, Adam et al. 2003, Ohta and
Kakuma 2004, Richardson et al. 2018), and resi-
dency times of days at drifting FADs (Schaefer
and Fuller 2002).

Jensen et al. (2010) modeled the response in
abundance of striped marlin (Kgjikaia audax) to
two temporary closures to longline fishing estab-
lished in part of the Mexican EEZ in the eastern
Pacific. During the closures, local and regional
abundance of striped marlin increased. This may
have been a response to the MPA, as a large pro-
portion of the stock’s range might have occurred
inside the MPA. Alternatively, other factors, such
as effects on recruitment and stock distribution
in response to large-scale climate cycles, and
effects of changes in fishing gear and methods
that affect fishing efficiency and species selectiv-
ity that were not accounted for in standardizing
the catch time series, may have had significant
influences on striped marlin catch rates.

High seas closures to purse seine fishing in the
western and central Pacific Ocean did not reduce
bigeye tuna fishing mortality because purse seine
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effort was displaced to areas adjacent to the clo-
sures, and effort increased by 10% following the
creation of the MPAs (WCPFC 2010, Sibert et al.
2012). A de facto pelagic MPA from Somali
piracy in the Indian Ocean resulted in reduced
effort regionally. However, this also resulted in a
switch to log-associated sets in place of sets on
free-swimming schools, which increased the
catch rate of juvenile bigeye and yellowfin tunas
(Chassot et al. 2010).

Boerder et al. (2017) observed that nominal
tuna purse seine catch rates, fishing effort, and
catch levels in an area adjacent to and down cur-
rent of the Galapagos Marine Reserve were
higher after enforcement of a ban on industrial
tuna fishing within 40 nautical miles around the
Galapagos Islands began than during a period
before enforcement of the closure occurred. Anal-
yses of Automatic Identification System data
from purse seine vessels also detected a higher
density of sets near the reserve (fishing-the-line).
Based on these observations, the authors hypoth-
esized that the MPA caused an increase in the
local abundance of tropical tunas, with spillover
across the MPA boundary. However, the authors
recognized that other variables may have con-
tributed to causing these observed changes
(Boerder et al. 2017). The study did not assess
whether there was a local or absolute response in
stock biomass to the MPA.

Similar to Boerder et al. (2017), Bucaram et al.
(2018) assessed the effects of the Galapagos Mar-
ine Reserve on Ecuadorian tuna purse seine catch
rates, relative local abundance of tuna species,
and the spatial distribution of fishing effort. Fol-
lowing enforcement of the reserve, fishing-the-
line was observed southwest of the reserve. In
the Ecuador EEZ adjacent to the Galapagos
Islands, and on the high seas in El Corralito, an
area to the west of the Galapagos that is season-
ally closed to tuna purse seine vessels (IATTC
2017), significantly smaller sized yellowfin tuna
were caught relative to yellowfin caught by tuna
purse seine vessels throughout the eastern Pacific
Ocean. After the reserve was established, yel-
lowfin and skipjack tuna catch rates with stan-
dardized effort significantly increased in the
Ecuadorian EEZ adjacent to the reserve and in El
Corralito, indicating that their local abundance
may have increased. These studies did not assess
absolute abundance responses to the MPA. Thus,
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the findings of Boerder et al. (2017) and Bucaram
et al (2018) support possible tuna local abun-
dance responses to the Galapagos Marine
Reserve, where a counterfactual assessment
approach would provide a more certain under-
standing (section Counterfactual Reasoning).

While not an assessment of responses of pela-
gic predators to fishery closures, the findings of
Le Quesne and Codling (2009) have implications
for highly migratory pelagic species. Using a
population model parameterized for North Sea
cod (Gadus morhua), the authors predicted that,
for overexploited stocks of highly mobile species,
85% of the distribution of the stock would need
to be included in a no-take MPA in order to
increase absolute biomass and yields. Further-
more, a closed area would not affect biomass and
yields of stocks that are not overexploited (i.e.,
are fully exploited and achieving maximum sus-
tainable yields or are underexploited; Le Quesne
and Codling 2009).

Theoretical, model-based results of the effect
of high seas closures to purse seine fishing in the
western and central Pacific Ocean, with effort
displaced outside the closed areas, predicted a
very small (0.1%) increase in stock-wide adult
bigeye biomass (Sibert et al. 2012). High seas clo-
sures to both purse seine and pelagic longline
fisheries, such that the longline closures were
located within part of the known bigeye spawn-
ing area, with effort displacement, would result
in a 1% increase in absolute adult bigeye biomass
(Sibert et al. 2012). This spatially explicit popula-
tion model accounted for the limited lifetime spa-
tial movements estimated by Sibert and
Hampton (2003). The effect of the closures on
adult bigeye biomass was predicted to be largest
within the closed areas and adjacent areas from a
spillover effect (Sibert et al. 2012).

Dueri and Maury (2013) modeled the effect of
the Chagos Archipelago/British Indian Ocean
Territory MPA and of a hypothetical MPA cover-
ing a large portion of the western Indian Ocean
where most skipjack catches currently occur,
employing various assumptions on the displace-
ment of fishing effort. The Chagos MPA had a
very minor effect on absolute skipjack biomass,
while the hypothetical extremely large MPA was
projected to cause a large reduction in fishing
mortality and stabilization of skipjack spawning
biomass (Dueri and Maury 2013). Martin et al.
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(2011) used an age-structured model to assess
the effects of the Chagos MPA, Indian Ocean
Tuna Commission one-month closures of an area
off the coast of Somalia to pelagic longline and
tuna purse seine fisheries, and a longline closure
in part of the Maldives EEZ, with spatial dis-
placement of fishing effort from the Chagos and
IOTC MPAs. They found that the MPAs have
been associated with little change in yellowfin
tuna absolute stock biomass, and may be causing
a decrease in biomass. These findings support
the idea that a static pelagic MPA would need to
be larger than Chagos and located to encompass
a much larger proportion of the distribution of
the skipjack stock in order to affect absolute bio-
mass. For instance, the Chagos MPA covers
about 2.5% of longline and 5.5% of purse seine
fishing grounds in the Western Indian Ocean
(Dunne et al. 2014) and does not include areas
with high concentrations of juvenile and adult
spawning tunas (Kaplan et al. 2014).

Davies et al (2017) conducted a counterfactual
analysis of the Indian Ocean Tuna Commission’s
one-month closure and the Chagos MPA to
assess effects on the distribution of effort. They
found inconsistent short-term responses to the
closures by different tuna purse seine fleets. The
study did not assess ecological responses to the
two MPAs.

As reviewed in the section Reduce Fishing Mor-
tality of Species of Conservation Concern for at-risk
taxa, there is empirical evidence of higher catch
rates and species diversity at shallow submerged
features as well as at natural and artificial float-
ing objects (Worm et al. 2003, Gilman et al. 2012,
2019, Dagorn et al. 2013, Hall and Roman 2013).
This suggests that protecting these discrete static
sites and floating objects would reduce fishing
mortality, assuming that displaced effort would
have lower catch rates of principal market spe-
cies than occur at these features.

Of the eight studies that assessed effects of
pelagic MPAs on the biomass of stocks of large
pelagic target species, five were retrospective
observational studies without controls (Chassot
et al. 2010, Jensen et al. 2010, WCPFC 2010, Sib-
ert et al. 2012, Boerder et al. 2017, Bucaram et al.
2018). The other three studies modeled historical
catch data to assess retrospective, and in one case
prospective, effects of hypothetical and existing
pelagic fishery closures, with model runs that
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included no MPAs, that is, serving as controls
(Martin et al. 2011, Sibert et al. 2012, Dueri and
Maury 2013).

Protect prey species of large pelagic apex
predators

Intended ecological response.—Maintain the abso-
lute biomass of stocks of prey and principal mar-
ket species near targeted levels.

Direct and indirect ecological objectives.—Pelagic
MPAs may protect stocks of prey species of pela-
gic target species and species of conservation
concern in order to contribute to maintaining
biomass levels and exploitation rates of the prey
stocks near TRPs and above LRPs, and in turn
keep the biomass of their pelagic predators near
targets and above limits.

Similar to the section Maintain the Condition of
Target Stocks of Large Pelagic Predators, the
intended ecological effects are to reduce fishing
mortality and increase recruitment, increasing
absolute stock biomass of prey stocks. This
would increase the local biomass of the prey
stock. The increase in local and absolute biomass
of large pelagic predators’ prey would in turn
cause an increase in local and absolute biomass
of pelagic predator stocks/populations. The
resulting ecological response would be to main-
tain stocks of prey, as well as of their predators,
near target and above limit thresholds. Maintain-
ing prey and predator stocks near target levels in
turn contributes to implementing ecosystem-
level harvest strategies and maintaining a
desired quasi-stable ecosystem state.

MPA design.—Similar to the section Maintain
the Condition of Target Stocks of Large Pelagic Preda-
tors, the ecological objectives and responses
could be achieved by establishing temporal and/
or spatial closures to historical fishing grounds
where prey species of large predatory pelagic
species were subject to fishing mortality,
designed to protect a sufficient proportion of
individuals of the prey stocks for an adequate
proportion of their life span, and protect a suffi-
cient proportion of the distribution of the stock.
The MPA or network of MPAs could be spatially
and/or temporally static and/or dynamic.

Why the MPA design might not achieve ecological
objectives and responses.—In addition to the points
covered in sections Reduce Fishing Mortality of
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Species of Conservation Concern and Maintain the
Condition of Target Stocks of Large Pelagic Predators,
there is little evidence of a strong correlation
between the total abundance of forage fish and
their predators (Hilborn et al. 2017). This sug-
gests that reducing fishing mortality on prey spe-
cies would unlikely affect the population sizes of
their pelagic predators. The prey for large pelagic
predators includes micronekton and macrozoo-
plankton, including small schooling fishes,
cephalopods, and small scombrids, which are at
intermediate TL. These species generally experi-
ence light fishing pressure (Young et al. 1997,
Olson and Watters 2003, Lansdell and Young
2007, Potier et al. 2007, Le Borgne et al. 2011).

Theoretical and empirical basis.—Pichegru et al.
(2010) observed the immigration of African pen-
guins (Spheniscus demersus) into a recently estab-
lished MPA closed to fishing by purse seine
vessels that target small pelagic fishes. There was
also a 30% decrease in penguin foraging effort
within three months following the establishment
of the fishery closure. The local abundance of
prey resources may have increased in the MPA
as a result of the cessation of fishing mortality.
Alternatively, other factors may have caused the
observed change in the penguins’ distribution
and foraging behavior. This was the only study
that reported findings related (albeit indirectly
and inconclusively) to how the abundance of
stocks of prey of pelagic target species or species
of conservation concern responded to a pelagic
MPA.

There is evidence of competition for forage fish
between fisheries and seabirds, where the local
(not total) abundance of prey affects seabird
reproductive success (Gremillet et al. 2008, Cury
et al. 2011).

Reduce, halt, or reverse trait-based selectivity and
fisheries-induced evolution

Intended ecological response.—The magnitude of
FIE is reduced, halted, or reversed.

Direct and indirect ecological objectives.—Pelagic
MPAs may reduce, halt, or reverse FIE resulting
from a fishery’s intraspecific heritable trait-selec-
tive mortality, thus sustaining genetic diversity,
fitness, and evolutionary characteristics of
affected populations (Dunlop et al, 2009; Heino
et al. 2015, Hollins etal. 2018). Ecological
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objectives of reducing, halting, or reversing FIE
include maintaining the diversity of a popula-
tion’s heritable traits, fitness, resistance and resili-
ence to stressors, and ability to evolve, and
avoiding ecosystem-wide changes in structure
and functioning through trophic links.

Marine fisheries that selectively remove indi-
viduals within populations based on certain
traits that are highly heritable and vary within
the population can cause FIE (Heino et al. 2015,
Tuck et al. 2015, Audzijonyte et al. 2016, Lennox
et al. 2017, Hollins et al. 2018). The relative
catchability of individuals of a population sus-
ceptible to capture by a fishing gear type is
explained, in part, by various heritable traits that
vary within a population. This includes, for
example, behavioral traits for shyness/boldness;
life history traits such as age and size at matura-
tion and growth rate (size-at-age); physiological
traits such as metabolic rate (which may be corre-
lated with shyness/boldness), visual acuity, and
swimming performance; and morphological
traits such as mouth dimensions (e.g., gape
width and height) and body shape (Heino et al.
2015, Lennox et al. 2017, Hollins et al. 2018).

Selective mortality on heritable traits reduces
the range of phenotypes for these traits within
the populations. In other words, a fishery that
causes intraspecific heritable trait-based selectiv-
ity reduces genetic diversity of affected popula-
tions by reducing the occurrence of phenotypes
for traits associated with higher catch risk. These
intraspecific changes in genetic diversity can be
protracted or irreversible (Kuparinen and Merila
2007, Heino et al. 2015). Reduced intrapopula-
tion genetic diversity compromises population
fitness, weakens resistance and resilience to natu-
ral pressures, and reduces the population’s natu-
ral selection and ability to evolve in response to
changes in environmental conditions (Saccheri
et al. 1998, Westemeier et al. 1998, Reed and
Frankham 2003, Jorgensen et al. 2007, Evans and
Sheldon 2008). This reduction in adaptive genetic
variation increases the risk of population loss
(Ehlers et al. 2008, Evans and Sheldon 2008).

For example, many fisheries target and selec-
tively catch large individuals of species. This cre-
ates (unnatural) selection for maturation at a
younger age, smaller size, and slower growth
(i.e., “fast” life history traits) by reducing the pro-
portion of the population made up of individuals
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with “slow” life history traits (Law 2000, Kupari-
nen and Merila 2007, Swain et al. 2007, Fenberg
and Roy 2008, van Wijk et al. 2013). In addition
to compromised fitness and altered evolutionary
processes, this reduces fecundity and duration of
the spawning season and decreases larva sur-
vival potential, size, and growth rate, which in
turn reduces reproductive potential and fisheries
yields (Heino 1998, Law 2000, Ernande et al.
2004, Swain et al. 2007, Fenberg and Roy 2008,
Miethe et al. 2009). These altered life history
traits result in cascading effects through trophic
food webs (Jennings et al. 1999, Polovina et al.
2009). Furthermore, selectively removing larger
individuals changes the community’s size struc-
ture and predator—prey interactions by reducing
the relative abundance of species that grow to
large sizes, and releasing pressure and increasing
abundance of smaller sized species (Kuparinen
and Merila 2007, Polovina and Woodworth-Jef-
coats 2013).

MPA design.—MPA designs that effectively
counter FIE will depend in part on species-speci-
fic traits and concomitant evolutionary responses
to different forms of reductions in trait-based
selective fishing mortality. This will also depend
on which heritable traits a fishery has been selec-
tively removing (e.g., Dunlop et al. 2009).

Protection would be desirable for areas where a
large proportion of the local biomass of a species
is made up of individuals with heritable traits
that cause them to be selectively harvested by a
fishery (Kuparinen and Merila 2007, Dunlop et al.
2009). For instance, an MPA designed to reduce,
halt, or reverse FIE caused by fisheries that selec-
tively remove large, mature individuals of a stock
could select temporally and spatially predictable
habitat where large, old individuals of the stock
make up a large proportion of the local biomass,
in essence creating a genetic reservoir for individ-
uals in the population with traits for late matura-
tion and large size (Law 2007). Alternatively,
establishing no-take MPAs where the full diver-
sity of variation in heritable traits of a population
is represented, such as foraging grounds that are
used by all age classes of a population, might
effectively preserve natural genetic variation in
the portion of the population that is protected by
the MPA (Conover and Munch 2002, Baskett et al.
2005, Kuparinen and Merila 2007, Dunlop et al.
2009, Miethe et al. 2009).
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Because the rate of FIE is determined in part
by the intensity of fishing by a fishery that selec-
tively removes individuals from a stock, an MPA
that effectively reduces the fishing mortality rate
will contribute to reducing the magnitude of FIE,
and possibly recovering from previous FIE (Bas-
kett et al. 2005, Kuparinen and Merila 2007).

Why the MPA design might not achieve ecological
objectives and responses.—Intraspecific changes in
genetic diversity from FIE may already be irre-
versible (Kuparinen and Merila 2007, Heino et al.
2015).

An MPA can have nominal effect and in some
cases might exacerbate FIE depending on the
MPA design and the life history traits of affected
pelagic species, including if the MPA is not a
source for recruits to the population and if den-
sity-dependent processes within the MPA
strengthen FIE, such as for earlier maturation
(Trexler and Travis 2000, Dunlop et al. 2009). For
instance, an MPA may select in favor of individu-
als of a population with traits for less mobility,
where individuals with traits for high mobility
suffer higher fishing mortality rates (which
would improve the likelihood that the MPA
increases local population abundance within the
MPA; Miethe et al. 2009, Mee et al. 2017). How-
ever, it is not well understood whether behav-
ioral differences in mobility are heritable in
pelagic predators (Kaplan et al. 2014).

Fishing effort may be displaced temporally or
spatially, where it exacerbates the magnitude of
FIE that the MPA was intended to reduce, or
exacerbates FIE in other taxa. A time-area clo-
sure might displace fishing effort to times or
areas where a narrower proportion of the varia-
tions of a trait that occurs for an affected popula-
tion occurs. For example, because many marine
species exhibit temporal and spatial variability in
habitat use by size (e.g., sharks, Stevens and
McLoughlin 1991; teleosts, Solmundsson et al.
2015), an MPA that displaces fishing effort to an
area with a narrower length frequency distribu-
tion of a species could result in an increase in size
selectivity by a fishery. If small size classes of a
species predominantly occur nearshore while lar-
ger individuals are largely distributed offshore,
an MPA that displaces fishing to offshore waters
would increase selection for larger organisms,
favoring heritable traits for earlier maturation
and other “fast” life histories (Heino et al. 2015).
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Similarly, a no-take reserve that protects a
spawning site that predominantly protects
mature age classes might contribute to FIE
through increased size selectivity (Dunlop et al.
2009).

The MPA may be too small and inadequately
designed to significantly affect the magnitude of
FIE. And, not all pelagic species may have spa-
tially and temporally predictable areas that meet
either of the MPA designs predicted to alleviate
pressures for FIE in pelagic marine organisms.

Theoretical and empirical basis—MPAs are
hypothesized to provide broad protection for
genetic diversity (Perez-Ruzafa et al. 2006, Gil-
man et al. 2011). More specifically, there are sev-
eral model-based studies that provide a
theoretical basis for MPAs offsetting pressures
for FIE in demersal and coastal fishes from selec-
tive fishing mortality of individuals with geno-
types for delayed maturity, described below.
These model-based assessments assume that the
MPA serves as a source of recruits to the popula-
tion, which would be a more -challenging
assumption to meet when modeling pelagic
fishes. No studies were identified with model- or
empirical-based evidence of the efficacy of MPAs
at reducing, halting, or reversing FIE in pelagic
marine species.

Dunlop et al. (2009) modeled the effect of
alternative locations of no-take MPAs on FIE of
life history traits for growth, maturation, and
reproductive investment using life history char-
acteristics typical of northern populations of
Atlantic cod (G. morhua). An MPA located in for-
aging grounds, where all age classes occur, was
simulated to reduce FIE. Fishing in foraging
areas, where both juveniles and adults are
caught, selects for individuals with traits for ear-
lier maturation with relatively little investment
in energy for growth (Law and Grey 1989, Heino
and Gode 2002, Dunlop et al. 2009). An MPA
protecting spawning grounds where only breed-
ing-aged classes occur had either a nominal effect
or exacerbated FIE (Dunlop et al. 2009). This is
because fishing in spawning grounds benefits
(selects for) individuals with traits for delayed
maturity (i.e., individuals that are larger and
more fecund when they reach maturity and
begin to occur at spawning grounds; Law and
Grey 1989, Heino and Gode 2002, Dunlop et al.
2009). In other words, protecting spawning
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grounds could favor life history traits for matur-
ing and moving to the protected spawning
grounds at an earlier age. With increased mobil-
ity of individuals in the population, the larger
the feeding ground no-take MPA needs to be to
reduce FIE (Dunlop et al. 2009).

Trexler and Travis (2000) modeled the effect of
no-take MPAs on the evolution of the size at mat-
uration, where the model was calibrated using
life history parameters for Gulf of Mexico popu-
lations of red snapper (Lutjanus campechanus),
and the population was subject to size-selective
fishing mortality outside of the MPA. The MPA
increased the age at maturity of the population,
assuming that the MPA was a source of recruits.
The effect was larger when recruitment is not
limited by density-dependent mortality (Trexler
and Travis 2000).

Baskett et al. (2005) also modeled the effect
of no-take MPAs on the evolution of the size
at maturation of stocks subject to size-selective
fishing mortality. No-take MPAs protected
against strong FIE for earlier maturation when
the model was calibrated using life history
parameters for cod, red snapper, and rock-
fishes (Sebastes spp.).

Miethe et al. (2009) modeled the effect of no-
take MPAs on the evolution of the size at matura-
tion and behavioral changes in mobility from
size-selective fishing mortality. No-take MPAs
could prevent FIE for earlier maturation within
the MPA and could decrease mobility. As dis-
cussed above, this latter finding may result if the
MPA increases the fitness and local abundance of
less mobile individuals of a population within
the MPA, where individuals with traits for high
mobility suffer higher fishing mortality rates.
Both the protection from FIE to small maturation
size and reduced mobility are stronger the larger
the size of the MPA (Miethe et al. 2009).

DiscussioN AND CONCLUSIONS

Given the recent proliferation of very large
MPAs, we can be optimistic that area-based goals
of Aichi Biodiversity Target 11 and SDG target
14.5 (CBD 2011, UNGA 20154) will be achieved.
The United Nations has committed to develop a
legally binding treaty to improve management of
marine biodiversity in the 64% of the ocean that
lies beyond national jurisdictions (UNGA 20155,
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United Nations 2018), which may strengthen
political will to establish, as well as allocate ade-
quate resources to enable effective management,
of additional large pelagic MPAs.

But there remains a tremendous lag in rigor-
ous scientific research to assess whether pelagic
MPAs are achieving ecological objectives of mar-
ine biodiversity conservation and management
of fishing and other human ocean activities. This
concluding section summarizes the key findings
and identifies research priorities, and presents
counterfactual-based modeling as a robust
approach to infer causation in assessments of
ecological responses to pelagic MPAs.

Key findings and research priorities

The main findings from this review, and
research priorities to fill key gaps in knowledge
of whether static and dynamic spatial manage-
ment of pelagic fisheries achieve ecological objec-
tives, are as follows:

1. The empirical and theoretical evidence for
ecological responses to pelagic MPAs is
extremely limited and inconclusive. Pelagic
MPAs remain extremely underrepresented
in the body of literature assessing ecologi-
cal responses to MPAs—in particular for
assessments that provided a strong basis
for causal inferences. Only 12 studies were
identified ~ that  assessed  ecological
responses of pelagic MPAs: 8 on effects on
the local and absolute biomass of stocks of
target species, 2 on effects of protecting
bycatch hotspots for species of conserva-
tion concern, 1 on protecting habitat
important for critical life history stages of
pelagic predators, and 1 on protecting
prey species of pelagic predators. No stud-
ies were identified that provided observa-
tional or theoretical evidence of an effect
of a pelagic MPA on FIE in pelagic marine
species. There likewise is a gap in research
observing and simulating the broad com-
munity- and ecosystem-level effects of
pelagic MPAs, including how this manage-
ment tool might contribute to robust
ecosystem-level harvest strategies. This
highlights the need for investment in
robust assessments of ecological effects of
the growing number of pelagic MPAs.

ECOSPHERE % www.esajournals.org

24

GILMAN ET AL.

2. Assessments of pelagic MPAs have not eval-
uated  whether  other = management
approaches would be more effective at
achieving objectives. If MPAs are to success-
fully contribute to meeting objectives of fish-
eries management, they likely need to be
one component of a suite of management
tools (Hilborn et al. 20044, b). For some eco-
logical and socioeconomic objectives of fish-
eries management and  biodiversity
conservation, tools other than MPAs that
constrain fishing may be more effective (Hil-
born et al. 20044, b, Kaiser 2005, Hilborn
2016). MPAs can result in substantial
adverse effects on fishing communities.
Conventional fisheries management tools
might avoid these adverse effects while
achieving the same ecological objectives
(Agardy et al. 2003, Hilborn et al. 20044, b,
Kaiser 2005). Conventional fisheries man-
agement tools may also effectively avoid
adverse unintended consequences that may
result from pelagic MPAs, including cross-
taxa conflicts and exacerbated FIE (Dunlop
et al. 2009, Miethe et al. 2009, Mee et al.
2017, Gilman et al. 2019). In fisheries where
conventional management methods have
failed, the underlying causes for failure
(management measures do not follow scien-
tific advice, lack of compliance, high levels
of illegal fishing, etc.) may also prevent
MPAs from meeting objectives (Hilborn
et al. 20044, b, Kaiser 2005, Hilborn 2016).
For example, if overfishing is occurring,
establishment of an MPA might displace
effort without addressing underlying man-
agement deficits and socioeconomic condi-
tions responsible for overfishing.

Displaced effort can prevent MPAs from
achieving objectives. Effort displacement in
response to MPAs, if it occurs, affects eco-
logical responses. Retrospective observa-
tional studies demonstrated that displaced
fishing effort, including fishing-the-line, pre-
vented pelagic MPAs from meeting manage-
ment objectives for target stocks (WCPFC
2010, Martin et al. 2011, Torres-Irineo et al.
2011, Sibert et al. 2012).

Pelagic MPAs have the highest promise of
contributing to managing problematic
bycatch and to protecting habitat for critical
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life history stages. Of the five conservation
issues assessed here, pelagic MPAs have rel-
atively high promise to mitigate bycatch of
species of conservation concern and to pro-
tect areas important for critical life history
stages of some pelagic species at spatially
and temporally predictable hotspots (Worm
et al. 2003, Hyrenbach et al. 20064, Peckham
et al. 2007, Schillinger et al. 2008, Hobday
et al. 2010, Collette et al. 2011, Oppel et al.
2018). Unlike the highly fecund target spe-
cies of pelagic fisheries, many at-risk
bycatch species in pelagic fisheries (1) have
“slow” life history traits, where even small
changes in anthropogenic mortality levels
can cause large changes in population sizes
(Goni 1998, Hall et al. 2000); and (2) form
bycatch hotspots of spatially and temporally
predictable aggregations at manageable spa-
tial and temporal scales (Hyrenbach et al.
2006a, Louzao et al. 2006, Peckham et al.
2007, Morato et al. 2008, Schillinger et al.
2008, Block et al. 2011, Vandeperre et al.
20144, b).

5. Pelagic MPAs are less likely to contribute to
managing target stocks of pelagic predators.
Pelagic MPAs need to cover extremely large
areas to significantly reduce the risk of cap-
ture of an individual pelagic fish throughout
its lifetime (i.e., the protected area would
need to cover a large proportion of a stock’s
distribution) and to protect a substantially
large proportion of the individuals of a
stock (Botsford et al. 2003, Le Quesne and
Codling 2009, Gruss et al. 2011, Dueri and
Maury 2013). If the target species remain rel-
atively short time periods in the MPA, and
especially if fishing-the-line occurs, then the
MPA would not likely cause an increase in
absolute biomass of a stock (Moffitt et al.
2009, Gruss et al. 2011, Graham et al. 2012).
Theoretical analyses indicate that there will
likely be no regional stock-level benefits for
stocks that are not overexploited (Le Quesne
and Codling 2009), which is the case for
most target pelagic species as well as for
prey of pelagic predators (Olson and Wat-
ters 2003, Le Borgne et al. 2011, ISSF 2018).
Furthermore, there is little evidence of a
strong correlation between the total abun-
dance of forage fish and their predators
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(Hilborn et al. 2017). Pelagic MPAs have
higher promise of causing increased local
abundance of target stocks of pelagic fish-
eries. While the findings of Boerder et al.
(2017) and Bucaram et al (2018) support
possible increased tuna local abundance
responses to the Galapagos Marine Reserve,
stronger evidence is needed through coun-
terfactual assessments (section Counterfac-
tual Reasoning). Pelagic MPAs may need to
be one element of a robust governance
framework to achieve stock management
objectives.

6. Pelagic MPA effects on FIE are highly uncer-
tain. There is no evidence, empirical or theo-
retical, of effects of MPAs on FIE in pelagic
species. Pelagic MPAs will affect FIE only in
pelagic species for which an MPA serves as
a source of recruits, which may exclude
most pelagic fishes. Because of the high
mobility of pelagic species, pelagic MPAs at
foraging grounds are unlikely to affect FIE
in pelagic marine species (Dunlop et al.
2009). Pelagic MPAs located in spawning
grounds, for pelagic species that spawn at
discrete sites where predominantly breed-
ing-aged classes occur, could exacerbate FIE
for earlier maturation and select for traits for
lower mobility (Dunlop et al. 2009, Miethe
et al. 2009).

Counterfactual reasoning

An important issue in conservation manage-
ment is how to infer the causal ecological
impact attributable to a specific policy inter-
vention (Ferraro and Hanauer 2014, Bull et al.
2015) —such as the implementation of large
pelagic MPAs (Boerder et al. 2017, White et al.
2017). The most common way to evaluate the
effect of an intervention is to use some form
of BACI study design (Stewart-Oaten and
Bence 2001, Conner et al. 2016, Smokorowski
and Randall 2017). In its simplest form, BACI
is a before/after sampling at the impact site
compared with a simultaneous before/after
sampling at a control site (Stewart-Oaten and
Bence 2001). Before means sampling during
the pre-intervention period, and after means
sampling during the post-intervention period.
The impact is then assessed by the difference-
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of-differences method: Calculate the difference
between the pre- and post-intervention periods
for the control and the difference between the
pre- and post-intervention periods for the
impact site and then calculate the difference
between those two differences.

The approach is then used to detect a large,
abrupt, and permanent change in the mean
response of the monitored system (Underwood
1994, Stewart-Oaten and Bence 2001). However,
an ecological or environmental response to a
management intervention such as an MPA might
be small and not large, gradual and not abrupt,
and temporary and not permanent (Underwood
1994, Fujitani et al. 2012, Smokorowski and Ran-
dall 2017). Moreover, the mean system response
might not be the most appropriate metric to
assess any impact—the intervention might affect
the temporal variability of the impacted system
rather than just the mean response (Underwood
1994).

So, what is the best approach to account for
such temporal dependence in a BACI-type moni-
toring scheme and one where there might not be
clear and randomly assigned treatment and con-
trol sites? One approach is based on inferring
causality that takes into account the temporal and
uncertain nature of any ecological response to a
major intervention by using counterfactual rea-
soning (Hofler 2005, Coffman and Noy 2012).
Counterfactuals are the main framework for cau-
sal inference in several disciplines such as medi-
cine and epidemiology (Hofler 2005), economics
(Coffman and Noy 2012), ecology (McConnachie
et al. 2016), and environmental impact assess-
ment (Ferraro and Hanauer 2014). Counterfactual
reasoning is the process of evaluating conditional
claims about alternate possibilities and their con-
sequences. Here, it is about inferring what might
have happened if the MPA under review had not
in fact been established (Smith et al. 2006, Fujitani
et al. 2012, Davies et al. 2017).

The simplest way of using counterfactuals to
infer causal impact in this specific setting, where
there were no pre- and post- intervention and
control sites, is to model time series of standard-
ized pelagic species catches in the region of the
MPA (see Boerder et al. 2017). A suitable syn-
thetic control could also be an environmental fac-
tor such as ocean temperature that drives
regional fisheries productivity—or some macro-
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scale regional environmental proxy such as the
Pacific Decadal Oscillation or Multivariate ENSO
Index (Wolter and Timlin 2011). It is assumed
that the pelagic MPA has no impact on the envi-
ronmental factor, or else it is not a valid synthetic
control. If we know that factor and we have a
reliable time series of that factor pre- and post-in-
tervention, then that would be a suitable syn-
thetic control to compare with the standardized
catch time series.

The two series are then (1) the standardized
catch time series (Venables and Dichmont, 2004)
that reflects any potential impact since that fish-
ery was exposed to the MPA, and (2) a synthetic
control time series based on the relationship
between fisheries productivity and the driving
environmental factor fitted to the pre-interven-
tion data and then predicted post-intervention
(Smith et al. 2006). The synthetic control can also
comprise multiple time series such as other tar-
get species not impacted by the MPA (were never
caught within the MPA prior to establishment),
spatially replicated standardized catch series,
and other regional environmental series that
affect the dynamics of the fisheries.

The synthetic control comprising a single ser-
ies or multiple related series that are not
impacted by the MPA can then be fitted using
Bayesian structural time series state-space mod-
eling techniques with weakly informative or non-
informative priors (Brodersen et al. 2015) on the
data series prior to the intervention. The poten-
tial temporal and spatial correlation of the data
series can then be accounted for as well—which
has not been accounted for in previous assess-
ments of marine spatial closures (Davies et al.
2017). The fitted structural time series model is
then predicted well beyond the intervention to
derive the counterfactual prediction (the tempo-
ral trend without any MPA). The same structural
time series model is also fitted to the standard-
ized catch times series exposed to the interven-
tion. The difference between the two time series
(the standardized catch and the synthetic con-
trol) is the measure of the effect (if any) of the
MPA.

This Bayesian inference approach then sup-
ports probabilistic statements about interven-
tion-attributable impact once a suitable model
has been fit to adequate pre- and post-interven-
tion time series (see also Conner et al. 2016). This
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approach is also informative about the apparent
temporal evolution of any post-intervention
effect—for instance, was it abrupt or gradual,
was it temporary or permanent, and was there a
delay before any apparent effect?

The counterfactual-based scenario modeling
approach is readily extended to evaluate retro-
spective (what ecological effects did an MPA
cause?) and prospective (what ecological effects
would an MPA cause?) changes in ecosystem
structure and dynamics attributable to an MPA
(Fulton et al. 2015). Population, stock, multi-
species, and ecosystem models can be fit to data,
for example, on biomass of functional groups,
species- and ontogenetic stage-specific biomass,
diet/trophic interactions, oceanographic vari-
ables, life history attributes, components of total
fishing mortality, size structure of the catch, and
immigration and emigration to assess ecological
effects of actual and theoretical MPAs (e.g., Salo-
mon et al. 2002, Le Quesne et al. 2008, Sibert
et al. 2012, Brochier et al. 2013, Dueri and Maury
2013, Plaganyi et al. 2014). Models can also eval-
uate socioeconomic and ecological effects from
alternative management strategies, such as vari-
ous MPA designs (Christensen and Walters 2004,
Le Quesne et al. 2008, Weijerman et al. 2016).
The challenge is to fit such process-based ecosys-
tem models to long-term datasets of standard-
ized catch records (an index of relative, local
abundance)—preferably within a Bayesian mod-
eling framework to derive probabilistic state-
ments about any intervention-attributable
impacts at the ecosystem scale.
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