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1 Introduction

Condensed matter systems tuned to quantum critical points can often exhibit universal

quantum physics [1]. For example, dissipative processes involving the collective low en-

ergy degrees of freedom are robustly described within an effective quantum critical theory.

Linear response conductivities at low temperatures and frequencies are prototypical in-

stances of low energy dissipative observables. The Kubo formula, in particular, gives the

d.c. conductivities in terms of the low energy spectral weight of conserved densities [2]. If

the d.c. electrical conductivity of quantum critical metals could be successfully related to

a scale invariant quantum field theory, it would potentially explain intriguing similarities

in transport observed across a range of quantum critical systems [3, 4].

There is, however, an interesting obstruction to relating conductivities directly to

universal dissipative dynamics. If there is a conserved quantity (typically the momentum)

that overlaps with any currents of the conserved charges, then the corresponding d.c.

conductivities are infinite. A simple example of this phenomenon, relevant to our discussion

below, is transport in a conformal field theory (CFT) with a conserved electric charge (but

in a state with zero charge density). Such theories arise at quantum critical points such

as the Bose-Hubbard model at integer filling [1]. The conserved quantities are the total

energy, total charge and total momentum. The corresponding currents are the heat current

JQ (equal to the momentum in a CFT because T ti = T it), the electrical current J and the

momentum current JP . Hydrodynamic arguments give the low frequency conductivities

σJQJQ(ω) = sT

(
π δ(ω) +

i

ω

)
, σJJ(ω) = σQ , σJP JP (ω) = η . (1.1)
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Here s is the entropy density of the system and T is the temperature. The charge and

momentum conductivities are given by the first order hydrodynamic transport coefficients

σQ (the universal conductivity) and η (the shear viscosity) of the state. The thermal

conductivity, in contrast, is infinite. To render this conductivity finite, momentum must

relax. Under weak translational symmetry breaking, π δ(ω) + i/ω → 1/(−iω + Γ). The

momentum relaxation rate Γ is then determined by irrelevant (in the renormalization group

sense) corrections to the universal low energy physics. While this situation leads to an

elegant description of transport that can be of practical use, see for instance [5–9], it also

means that that the d.c. thermal conductivity is not a fully universal quantity.1 One way to

recover universal conductivities is to consider circumstances where momentum conservation

is very strongly broken in the low energy theory, as in these cases the conductivity is

captured through ‘incoherent’ universal diffusive dynamics [14–16].

The starting point of this paper will be the observation [17] that even in clean systems

with a fully conserved momentum and a nonzero charge density (i.e. in ‘metallic’ systems),

there is a diffusive mode that can be decoupled from the conserved momentum (which

is associated to sound modes). This mode has a corresponding finite d.c. conductivity

that can be computed entirely within the universal low energy physics. In equation (1.1)

the universal conductivities are decoupled from the non-universal thermal conductivity.

For a CFT deformed by a nonzero charge density ρ, the decoupling is not so immediate.

Hydrodynamic arguments give the thermoelectric conductivities [5]

σJQJQ(ω) =
s2T 2

ε+ P

(
π δ(ω) +

i

ω

)
+ µ2σQ ,

σJJ(ω) =
ρ2

ε+ P

(
π δ(ω) +

i

ω

)
+ σQ ,

σJJQ(ω) = σJQJ(ω) =
ρsT

ε+ P

(
π δ(ω) +

i

ω

)
− µσQ ,

(1.2)

while the momentum conductivity is unchanged from (1.1). Here ε and P are the energy

density and pressure of the state respectively and µ the chemical potential. The heat

current is now JQi = T ti−µJ i. The first few observations in this paper will be that (i) the

‘incoherent current’

J inc ≡ sT J − ρ JQ

ε+ P
, (1.3)

carries no momentum and therefore (ii) from the equations (1.2) together with the ther-

modynamic identity ε+ P = sT + µρ, has a universal d.c. conductivity given by

σJ incJ inc(ω) = σQ . (1.4)

In fact, we will see shortly that (iii) this current is associated to a conserved density that

obeys a decoupled diffusion equation and σQ consequently satisfies an Einstein relation. In

1An interesting exception to this statement arises when the weak momentum relaxing processes are

themselves captured in the low energy hydrodynamic theory [10–13]. In such cases the momentum relaxation

rate is determined by the transport coefficients, including the viscosity.
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section 3 we obtain this universal conductivity explicitly in certain examples that are de-

scribed by holographic duality [18, 19] and then give a general discussion of the temperature

scaling of σQ in section 4.

Although we will mainly concentrate on the case of a CFT deformed by a nonzero

charge density, many of our observations are applicable more generally. In a system whose

only conserved vectorial quantity is the total momentum P , there is an incoherent current

J inc = J − χJP
χPP

P , (1.5)

where χ denotes the static susceptibility. By construction, this current does not overlap

with the momentum (χJ incP = 0), and so has a finite conductivity. In the case of a CFT

at nonzero charge density, the current in (1.5) is equal to that in (1.3).

A work very much in the same spirit as this one is [20], which studied universal trans-

port in bilayer metals with two conserved charges. In that case a current operator carrying

no momentum can also be constructed.

2 Diffusion in CFT hydrodynamics

The framework of our discussion will be the hydrodynamics of a CFT. Hydrodynamics

is the effective theory describing the long wavelength and small frequency properties of

a state near thermal equilibrium. The basic equations of relativistic hydrodynamics are

firstly the conservation laws for the energy momentum tensor Tµν and U(1) current Jµ:

∂µT
µν = 0 , ∂µJ

µ = 0 . (2.1)

Secondly, the constitutive relations for parity-invariant relativistic hydrodynamics to first

order in derivatives, and in Landau frame, are [21]

Tµν = εuµuν + P∆µν − η∆µα∆νβ

(
∂αuβ + ∂βuα −

2

d
ηαβ∂λu

λ

)
− ζ∆µν∂λu

λ + . . . ,

Jµ = ρuµ − σQT∆µν∂ν

(
µ

T

)
+ . . . ,

(2.2)

where ∆µν = ηµν + uµuν is the projector, ε is the energy density, P is the pressure, ρ is

the charge density, and d is the number of spatial dimensions. There are three first order

dissipative transport coefficients: shear viscosity η, bulk viscosity ζ and ‘conductivity’ σQ.

The constitutive relations above have been constrained by Lorentz invariance, but we have

not yet imposed the constraint of scale invariance.

Before proceeding to solve these equations, we should note that there are two senses

in which these equations can describe quantum critical systems. Firstly, we can think of

the CFT itself describing the dynamics of a quantum critical point, such as the superfluid-

insulator transition in the Bose-Hubbard model at integer filling [1]. The charge density

ρ appearing in (2.2) then corresponds to a deformation away from the quantum critical

point. A second perspective is that the CFT is not itself the system of primary interest

but is a useful starting point to construct quantum critical finite density systems or more
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generally ‘compressible phases’ in the language of [22, 23]. A weakly coupled example

would be doping graphene away from its particle-hole symmetric point. If the doped CFT

flows at low energies to a new finite density fixed point (that will typically not be Lorentz

invariant), then the above equations of hydrodynamics will still apply except that now

both the thermodynamics and transport coefficients (η, ζ, σQ) will be properties of the low

energy quantum critical metal, not the original CFT (note however that the high energy

CFT implies that the bulk viscosity ζ = 0 at all scales).

If the conserved charges are perturbed away from equilibrium by {δT tt, δT tx, δJ t},
standard hydrodynamic manipulations give the following equations of motion in the longi-

tudinal channel [21]

∂t

δT ttδT tx

δJ t

+

 0 ikx 0

ikxβ1 γsk
2
x ikxβ2

σQα1k
2
x ikx

ρ
ε+P σQα2k

2
x


δT ttδT tx

δJ t

 = 0 , (2.3)

where the various thermodynamic quantities are

α1 =

(
∂µ

∂ε

)
ρ

− µ

T

(
∂T

∂ε

)
ρ

, β1 =

(
∂P

∂ε

)
ρ

,

α2 =

(
∂µ

∂ρ

)
ε

− µ

T

(
∂T

∂ρ

)
ε

, β2 =

(
∂P

∂ρ

)
ε

,

(2.4)

and

γs =
2d−2
d η + ζ

ε+ P
. (2.5)

The solutions of the above equations give the coupled hydrodynamic modes. Let us

now decouple the diffusive mode. It is straightforward to verify that the linear combination

δQdiff = δJ t − ρ

ε+ P
δT tt + σQ

α1 + ρ
ε+P α2

β1 + ρ
ε+P β2

∂iδT
ti +O(∂2) , (2.6)

obeys the diffusion equation

∂tδQ
diff +Dk2δQdiff +O(k3) = 0 , (2.7)

where the diffusion constant is (in agreement with [21])

D = σQ
α2β1 − α1β2

β1 + ρ
ε+P β2

. (2.8)

Here we have worked to the order in wavevector k consistent with the first order hydrody-

namic constitutive relations above.

In (2.6) we see that the diffusing quantity involves not only the original fluctuations

of the conserved densities, but also derivatives of these densities. However, so far we have

not used conformal invariance. An interesting simplification occurs in this case. Scale

invariance implies that the equation of state is ε = dP and hence in (2.4) we have β2 = 0.

Employing further thermodynamic manipulations on (2.4):

α2

α1
= −

T
(
∂ε
∂T

)
µ

+ µ
(
∂ε
∂µ

)
T(

∂ε
∂µ

)
T

= −ε+ P

ρ
. (2.9)
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It follows that in conformal relativistic hydrodynamics, the incoherent charge density (2.6)

becomes simply (writing δJ t = δρ and δT tt = δε)

δQdiff = δρ− ρ

ε+ P
δε =

sT δρ− ρ Tδs
ε+ P

=
Ts2

ε+ P
δ

(
ρ

s

)
. (2.10)

For the second equality we used the thermodynamic identity ε+P = sT +µρ as well as the

first law δε = Tδs + µδρ. Equation (2.10) makes explicit that this combination of charge

densities indeed corresponds to the incoherent current in (1.3), so that

∂

∂t
δQdiff +∇ · J inc = 0 . (2.11)

Recall here that the entropy current is the heat current JQ divided by the temperature.

Thus we see that the incoherent conductivity σQ in (1.4) is indeed the universal conduc-

tivity associated with diffusion of a conserved charge δQdiff. More generally, the standard

manipulations of Kadanoff and Martin [21, 24] now imply that the hydrodynamic retarded

Green’s function for the current will be

GRJ inc
x J inc

x
=

ω2σQ
−iω +Dk2

. (2.12)

The conductivity is obtained from the Green’s function for the current by the usual ex-

pression σinc(ω) = GR
J incJ inc(ω, 0)/(iω).

The diffusivity (2.8) can be written — even without assuming conformal invariance —

in the form of an Einstein relation

D =
σQ
χinc

. (2.13)

Here the susceptibility χinc for the incoherent density fluctuation δQdiff is

χinc = χδQdiffδQdiff = χδρ δρ −
2ρ

ε+ P
χδρ δε +

ρ2

(ε+ P )2
χδε δε . (2.14)

The derivation of (2.14) from (2.8) using thermodynamic identities can be found in [21].

Our contribution here is to emphasize that the diffusive mode should be understood as

transporting a conserved density whose current carries no momentum. We have seen that

this interpretation is especially crisp in the presence of conformal invariance.

Having clarified the physics of σQ, we proceed to obtain σQ in a few examples. These

will be cases in which the strongly interacting CFT doped to a nonzero charge density

admits a dual holographic gravity description. It should be emphasized again that σQ
is not a property of the particle-hole symmetric CFT. Instead, it is a property of the

low energy compressible phase to which the CFT flows upon deformation by a chemical

potential.

3 Holographic formula for σQ

From (1.2) we see that a clean way to obtain σQ is to compute

σQ = lim
ω→0

ImGRJxJx(ω)

ω
. (3.1)
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Note that this formula does not care about any delta function that may be present at ω = 0.

A rather general holographic formula for this quantity can be obtained. In holographic

duality, the retarded Green’s function of a current Jx is obtained by solving the dual bulk

Maxwell equations for perturbations of the bulk field ax about a background spacetime [25].

Both the background and the fluctuation equations must come from some bulk action. A

broad class of holographic actions take the form of Einstein-Maxwell theory coupled to

matter fields, which at this point we can allow to be charged and to couple non minimally

to the Maxwell field:

L = R− Zmat.

4
FµνF

µν + Lmat. (3.2)

Here, both Zmat. and Lmat. are functions of the matter fields. We will obtain a formula for

σQ in this class of theories.

For translationally invariant, isotropic solutions of the equations of motion, the back-

ground metric and electrostatic potential take the form

ds2 = −D(r)dt2 +B(r)dr2 + C(r)(dx2 + dy2) , At(r) = A(r) . (3.3)

We will specialize to d = 2 boundary spatial dimension in the explicit holographic compu-

tations, although we will give results for general d. All that is required of the remaining

fields in the action is that they be functions of r only. In particular, evaluated on the

solution

Zmat. = Z(r) . (3.4)

For the first part of the computation we do not need to know anything about the matter La-

grangian Lmat. beyond the fact that it does not depend on derivatives of the Maxwell field.

A non-derivative dependence on the Maxwell field itself is allowed and means that this part

of the analysis applies to cases with charge outside the horizon, such as holographic super-

conductors and electron stars [19]. With the above assumptions, the linearized equation

of motion for a spatially homogeneous (k = 0) perturbation ax(t, r) about the background

takes the form
1√
BD

(√
D

B
Za′x

)′
− Z

D

∂2ax
∂t2

=

(
Z2A′2

BD
+ · · ·

)
ax . (3.5)

Here the · · · terms depend on the possible mass terms for the vector potential due to

screening by charged matter in the bulk.

All we need to know about the background metric at this point is that asymptotically,

as r →∞, it tends to AdS4, i.e.

ds2 → −r2dt2 +
dr2

r2
+ r2(dx2 + dy2) . (3.6)

The metric must furthermore have a regular horizon as r → r+, so that

ds2 → −4πT (r − r+)dt2 +
dr2

4πT (r − r+)
+

s

4π
(dx2 + dy2) . (3.7)

Furthermore we take Z → 1 at the asymptotic boundary (this amounts to choosing the

normalization of charge) and Z → Z+ at the horizon (assumed finite and nonzero).

– 6 –
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3.1 General formula in terms of horizon data

With the above assumptions at hand, we can follow the elegant argumentation in [26]

to obtain a formula for σQ in terms of horizon data of the equation (3.5) with no time

dependence, ∂t = 0. Firstly, let a
(0)
x (r) be the time-independent solution of (3.5) that

tends to one at the asymptotic boundary and which is regular on the horizon. The second

solution is then, using the Wronskian method to find the second solution of (3.5) in terms

of the first,

a(1)
x (r) = a(0)

x (r)

∫ ∞
r

[√
D

B
Z
(
a(0)
x

)2]−1

dr . (3.8)

As r →∞, using the asymptotic form (3.6) of the metric, we have

a(1)
x (r)→ 1

r
. (3.9)

At the horizon r → r+, from the near horizon form (3.7) of the metric we have

a(1)
x (r)→ − 1

Z+a
(0)
x (r+)4πT

log(r − r+) + finite . (3.10)

Near the horizon, the solution to (3.5) must satisfy infalling boundary conditions [25,

27]. Writing ax(t, r) = ax(r)e−iωt, this means that to leading order near the horizon [25]

ax(r) = a(0)
x (r+) e−

iω
4πT

log(r−r+) + · · · . (3.11)

Moving a little away from the horizon and then expanding to first order in small ω gives

ax(r) = a(0)
x (r+)

(
1− iω

4πT
log(r − r+)

)
+ · · · . (3.12)

The · · · terms here include order ω terms coming from the finite part of (3.10). However,

these will be real and will not contribute to the imaginary part of the Green’s function that

we are after. Recalling the form of the second solution (3.8), and only worrying about the

imaginary part of the response, it follows that the full solution everywhere (except right at

the horizon) to first order in ω must be

ax(r) = a(0)
x (r) + iω Z+

(
a(0)
x (r+)

)2
a(1)
x (r) , (3.13)

so that expanding near the boundary

ax(r)→ 1 + iωZ+

(
a(0)
x (r+)

)2 1

r
. (3.14)

From the usual AdS/CFT dictionary [25], the Green’s function is the ratio of the normal-

izable by the non-normalizable mode near the boundary, so that

σQ = Z+

(
a(0)
x (r+)

)2
. (3.15)

Many previous works on applied holography have expressed the imaginary part of the

retarded Green’s function in terms of quantities evaluated on the horizon (e.g. [27] is an

early instance). The argument we have followed here (from [26]) is rather tidy and does

not explicitly use the action. It holds with or without charge outside the horizon.
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3.2 Explicit formula for a massless bulk photon

In order to use the horizon formula (3.15) to get an explicit formula for σQ, it is necessary

to solve the perturbation equation (3.5) in the time-independent case. This equation can

be solved quite elegantly in the case where the · · · terms in (3.5) are absent. That is, when

there is no charged matter in the bulk. Any form of neutral matter is otherwise allowed in

the bulk so long as it does not couple directly to the Maxwell field, except through Z.

The important step for solving the equation is to express it as a total derivative. This

trick goes back to the work of Iqbal and Liu [28] for the case with no charge density (ρ = 0).

The argument we are about to give generalizing that result to the action (3.2) and finite

charge density states (with ρ 6= 0) has already appeared in the very nice papers [29, 30]. Our

presentation is perhaps slightly more streamlined, but it amounts to the same derivation.

To simplify the perturbation equation (3.5) we need two equations for the background

functions that hold independently of the matter fields, so long as the matter fields are not

charged. Firstly, the Maxwell equation is

d

dr

(
CZ√
BD

A′
)

= 0 ⇒ CZ√
BD

A′ = ρ . (3.16)

To evaluate the constant in the second equation we used the asymptotic expansion of the

metric functions (3.6) as well as the fact that, as per the standard holographic dictio-

nary [25], as r →∞ the Maxwell field behaves as A(r)→ µ− ρ/r.
The second equation needed is that

d

dr

(
C√
BD

(
ZAA′ − C

(
D

C

)′))
= 0

⇒ C√
BD

(
ZAA′ − C

(
D

C

)′)
= −sT . (3.17)

The second line comes from evaluating the constant on the horizon, as r → r+. We used the

near horizon form of the metric (3.7) together with the fact that A(r+) = 0 for regularity of

the Euclidean solution. The equation in the first line can be obtained as the conservation

of a Noether charge of a certain scaling symmetry of the action (3.2) on radially dependent

solutions, see [31]. The Noether symmetry argument goes through in the presence of matter

fields because the scaling symmetry leaves
√
−g, grr and gttA2

t invariant. For configurations

where the fields only depend on r, only these three combinations of the metric and Maxwell

field appear in the matter action (allowing even for charged fields) and hence the matter

fields themselves do not transform under the symmetry. Additional vector fields however

would lead to additional terms in (3.17).

Using the two equations just derived, the zero frequency perturbation equation (3.5)

for ax can be written in the ‘massless’ form

d

dr

(
C2Z

B

(
D

C

)′
a′x −

CZ2A′2

B
ax

)
= 0 . (3.18)

– 8 –
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This radially conserved quantity has an immediate physical meaning. It asymptotes to the

incoherent current J inc at the boundary r → +∞.2 From the fact that B diverges at the

horizon, we see that the solution that is regular at the horizon must in fact obey

C

(
D

C

)′
a′x − ZA′2ax = 0 . (3.19)

This equation is immediately integrated. Imposing that ax go to one at the asymptotic

boundary gives the solution

a(0)
x = exp

{
−
∫ ∞
r

ZA′2

C(D/C)′
dr

}
. (3.20)

Simple algebra using the two constants of motion (3.16) and (3.17) shows that the integral

in the exponent of (3.20) is∫ ∞
r

ZA′2

C(D/C)′
dr =

∫ ∞
r

A′

A+ sT/ρ
dr = log

ε+ P

A(r)ρ+ sT
. (3.21)

For the last equality we used the fact that A(∞) = µ and that ε+P = sT+µρ. This second

statement is the Smarr law and can be obtained from (3.17) by evaluating the constant at

r →∞, and extracting the energy density ε and pressure P from the normalizable falloffs

of the metric, in the standard way [25]. Therefore from (3.20)

a(0)
x (r) =

A(r)ρ+ sT

ε+ P
. (3.22)

Recall again that at the horizon A(r+) = 0. Thus

a(0)
x (r+) =

sT

ε+ P
. (3.23)

It now follows, using the previous result (3.15), that

σQ = Z+

(
sT

ε+ P

)2

. (3.24)

This is the result obtained in [29, 30] (and earlier in [32] for the case of Einstein-Maxwell

theory). The upshot is that the incoherent conductivity σQ is given, in these theories, by

thermodynamic quantities multiplied by a certain ‘horizon conductivity’ Z+ that appears

in the membrane paradigm description of horizons [28, 33]. The derivation given above

directly generalizes to d boundary spatial dimensions, with the result [29, 30]

σQ = Z+

(
s

4π

)(d−2)/d( sT

ε+ P

)2

. (3.25)

The extra factor of the entropy for d 6= 2 supplies the dimensionality to the conductivity.

2This fact provides a distinct avenue to calculating σQ than the one we are following here. One can use

the conserved quantity in (3.18) to obtain directly the d.c. limit of σinc(ω) using the method of [46].
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With the solution (3.22) at hand, we can also (re)obtain the coefficient of the delta

function in (1.2). Near the boundary

a(0)
x (r)→ 1− ρ2

ε+ P

1

r
. (3.26)

Given that σ(ω) = GRJJ(ω, 0)/(iω), from the holographic dictionary, we obtain

σ(ω) =
ρ2

ε+ P

(
π δ(ω) +

i

ω

)
, (3.27)

in addition to the finite part (3.25).

4 Scaling theory of σQ

In this section we will describe the scaling theory of σQ. That is, we will obtain the tem-

perature dependence of σQ in terms of various critical exponents. These will be exponents

characterizing the metallic quantum critical theory to which the doped CFT flows. The

analysis will be independent of holography, but will be substantiated by specific holographic

examples in which σQ takes the form given in equation (3.25). We should emphasize that

the reason it is possible to apply a scaling analysis to σQ is that it is an intrinsic dissipative

property of the universal low energy physics and not sensitive to irrelevant operators about

that fixed point.

A general scaling framework for quantum critical metals has recently emerged from

classifications of holographic geometries. To discuss nonzero density thermodynamics and

thermoelectric transport in general, three exponents are needed. The dynamical critical

exponent z determines the relative scaling of space and time. This is a well known expo-

nent [1] and first considered holographically in [34]. Thus

[k] = −[x] = 1 , [ω] = −[t] = [T ] = z . (4.1)

The hyperscaling violation exponent θ determines the anomalous scaling of the critical

contribution to the energy density and free energy (and hence also the entropy)

[ε] = [f ] = z + [s] = z + d− θ . (4.2)

Hyperscaling violation is a well known phenomenon in statistical mechanics. Hyperscaling

violation is less commonly invoked in quantum criticality, but is ubiquitous in holographic

theories [19, 35–37] and can also arises naturally in systems with Fermi surfaces [37].

Finally, there can also be an anomalous scaling exponent Φ for the critical contribution to

the charge density, beyond that implied by hyperscaling violation

[ρ] = d− θ + Φ . (4.3)

A nonzero Φ is common in holographic models [38–42]. It may also be necessary in order

to understand some scaling properties of strange metals [43]. From the above formulae
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it follows by dimensional analysis [40–43] that the critical, universal contribution to the

electrical conductivity scales as

σQ ∼ T (d−2−θ+2Φ)/z. (4.4)

We can check whether the general expectation (4.4) reproduces the explicit result

obtained in the previous section for a class of holographic models. In the holographic

systems the total charge is not tuned to some critical value. Indeed extremal black holes

typically seem to describe (‘deconfined’) quantum critical phases rather than quantum

critical points [19]. In particular, changing the chemical potential does not drive the system

away from criticality. This suggests that the chemical potential is a marginal or irrelevant

coupling in the low energy theory [6]. The scaling of the chemical potential follows from

[f ] = [ρ] + [µ] and from (4.2) and (4.3) above. Let us consider the marginal case first. For

µ to be dimensionless in the low energy scaling theory one must have

Φ = z . (4.5)

Thus in this case we expect

σQ
∣∣
µ marginal

∼ T 2+(d−2−θ)/z. (4.6)

It was noted in [6] that indeed the ubiquitous σQ ∼ T 2 scaling observed in holographic

models with d = 2 and θ = 0 required the charge density operator to be marginal. Let us

now see if this expectation (4.6) is realized more generally.

A well studied class of bulk theories are Einstein-Maxwell-dilaton theories with certain

exponential potentials. Low temperature solutions to these theories exhibit hyperscaling

violation, with s ∼ T (d−θ)/z [35, 37, 44, 45], as per equation (4.2). We can use this

temperature scaling directly in the holographic formula (3.25) for σQ, together with the

fact that ε+ P will be dominated by a temperature-independent high energy contribution

(this is the statement that at low temperatures ε + P ≈ µρ, which is a constant). We

then need to know how Z+ scales with temperature. It has been found in [35–37, 45],

by solving the Einstein-Maxwell-dilaton equations of motion, that Z+ ∼ T 2[(d−1)θ/d−d]/z.

Therefore (3.25) becomes

σQ
∣∣
holographic

∼ Z+s
(d−2)/d(sT )2 ∼ T 2+(d−2−θ)/z, (4.7)

in agreement with (4.6). This same scaling is also found in the frequency dependence of the

low frequency, T = 0 optical conductivity of these theories [35]. In the appendix we discuss

this match in a little more detail and also discuss the case of irrelevant charge density.

5 Discussion

In this paper we have discussed the physics of σQ, a charge transport coefficient that plays

a central role in doped CFTs. Several, although not all, of the results we have discussed

above have appeared previously scattered around the literature. We have placed these
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results within the context of current interest in identifying universal aspects of strongly

interacting transport. From this perspective, the most important fact about σQ is that

it is the conductivity of a certain ‘incoherent’ current that decouples from the conserved

total momentum and is hence completely intrinsic to the low energy physics. With this in

mind, σQ could reasonably be called the ‘universal’ or ‘incoherent’ or ‘diffusive’ conduc-

tivity. Perhaps the most accurate name, if a little clumsy, would be the ‘non-advective’

conductivity. This last option captures the essential fact that it quantifies conduction of

charge that is independent of the bulk fluid flow.

It is important to differentiate σQ from a different interesting quantity that appears

naturally in holographic formulae for the d.c. conductivity, once translation invariance

is broken. This latter quantity, which we denote as σ, is the d.c. electrical conductivity

measured with the boundary condition of vanishing thermal current [46, 47], and can

reasonably be called a ‘pair-production’ term (with the understanding that there are no

quasiparticles to pair produce). The quantity σ can be shown, in certain circumstances, to

be a lower bound on the d.c. electrical conductivity of the system with respect to different

ways of breaking translation invariance [16, 48]. Therefore σ can also be thought of as a

‘minimum conductivity’.

The distinction between σQ and σ is that the former is the electrical conductivity that

is independent of the bulk fluid flow in the translationally invariant limit, while the latter

is the electrical conductivity that is independent of heat flow in the d.c. limit. These two

different conductivities typically have a different temperature scaling. When translation

invariance is weakly broken and momentum relaxes over a long timescale τ , the physics of

the clean system will apply at timescales t � τ . In particular, over these timescales the

basis of currents {J inc, P = JQ+µJ} diagonalizes the conductivity matrix [17]. However, at

the longest timescales t� τ that control the d.c. conductivities, there is a reorganisation of

transport in a large class of holographic theories [16, 49, 50]: JQ takes the role of P [51, 52]

and the conductivity matrix is now diagonal in the basis {J inc, JQ}. Note, however, that

both σQ and σ can be defined in the clean theory. With strong breaking of translation

invariance, momentum is generically no longer a privileged operator and should not be

expected to play a significant role in transport.

This work has been in the framework of a CFT deformed by a charge density. However,

in the limit in which they are large, non-advective conductivities can be defined and dis-

cussed in complete generality — without Lorentz invariance — using the memory matrix

formalism [9]. In general there are three such conductivities, denoted σQ, αQ and κ̄Q in [9],

due to the existence of two independent incoherent currents. In addition to the incoherent

electrical current J inc of (1.5), there is an analogous incoherent heat current, given by

replacing J with JQ in (1.5). In a CFT deformed by a charge density, these currents are

equivalent (because momentum is equal to the energy current) and thus there is only one

non-advective conductivity σQ in that case.

Finally, because σQ is an intrinsic, incoherent conductivity associated to a diffusive

process in a metal, it may be a natural quantity to attempt to bound in the spirit of [14].

Such a bound may be relatively simple to explore, because σQ is defined in translation-

invariant (but finite density) systems and is physically similar to the shear viscosity [53].
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A Scaling analysis of Einstein-Maxwell-dilaton solutions

The match between the scaling expectation (4.6) and the holographic answer (4.7) indicates

that the charge density operator has become marginal in the IR fixed point of the Einstein-

Maxwell-dilaton spacetimes. It is instructive to see directly how this works out and, in

doing so, also discuss the case of irrelevant charge density. The IR fixed point is described

by an extremal (i.e. T = 0) near horizon geometry of the form3

ds2 =
1

r2θ/d

(
r2zdt2 +

dr2

r2
+ r2dx2

d

)
. (A.1)

This metric (A.1) geometrizes the critical exponents z and θ. Furthermore, in these solu-

tions the Maxwell field takes the general form

At = rz−ζ . (A.2)

This is the definition of the exponent ζ appearing in [38, 40, 41, 54–56], which we now wish

to relate to the anomalous dimension Φ of the charge density operator.

We now show that, depending on a choice of quantization, there are two possibilities

for the behavior of the Maxwell field as a function of the anomalous dimension of the charge

density operator:

(I) : At =
1

rdeff.+2(Φ−z) or (II) : At = rdeff.+2(Φ−z). (A.3)

Here the effective number of spacetime dimensions deff. = d + z − θ. In particular, the

dimensions of operators O and their corresponding sources g obey [g] + [O] = deff.. We are

presently considering the case O = ρ and g = µ. The electrostatic potential At will have

two independent modes, one given in (A.3) and the other being r0 (by gauge invariance,

this is always a solution). In holography, one of these modes must correspond to the

expectation value 〈O〉 and the other to the source g [25]. In particular, the difference

in the two exponents must be ±(2[O] − deff.). The ambiguity in the sign depends upon

3The reader should beware that here we are taking r → 0 in the IR — consistent with the coordinates

used in the main text — whereas many other discussions use an inverted coordinate in which r → ∞
towards the IR. For simplicity, we restrict ourselves to the parameter space θ < d, z > 1 where the location

of the IR in the metric (A.1) is unambiguous.
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which mode we consider to be the source and which to be the expectation value. The

expressions (A.3) are then obtained by recalling that [O] = [ρ] = deff. + Φ− z.

For marginality, Φ = z. The solutions in the literature [35–37, 45] have ζ = θ−d in the

Maxwell potential (A.2). Equating (A.2) and (A.3) with these values we can conclude that

the solutions can indeed be interpreted as being marginal if we use the quantization leading

to case (II) in (A.3). This corresponds to the natural quantization of the Maxwell field

(assuming deff. > 0) in this setting, in which the larger mode towards the UV boundary

of the IR geometry, r → ∞, is treated as the source while the subleading r0 mode is

the response. Note that this is different from the more familiar quantization (without an

anomalous dimension for the charge density) in which the constant r0 mode is the source.

In the case of an irrelevant charge density, one expects Lorentz invariance to be restored

and hence z = 1 at the low energy fixed point. The exponent Φ is then not fixed but

constrained to satisfy 1 < Φ. Such solutions have also been found in Einstein-Maxwell-

dilaton theory, in a different regime of parameter space to those above [41, 54]. For these

solutions, if we match the behavior of At to (A.3) to extract Φ, we find

(I) : 2Φ = ζ + θ − d or (II) : 2Φ = 2− d+ θ − ζ . (A.4)

The scaling result (4.4) then yields the predicted temperature scalings

(I) : σQ ∼ T ζ−2 or (II) : σQ ∼ T−ζ . (A.5)

On the other hand, from the holographic formula (3.25) we get

σQ ∼ T 2(d−θ)+ζ , ε+ P ∼ T 0, Z+ ∼ T ζ−d+θ− 2
d
θ, (A.6)

where we have assumed that ε + P goes to a constant at T = 0 and the scaling of Z+

is fixed by the solution. We see that the actual temperature dependence (A.6) of σQ
from the holographic solution does not match the scaling result (A.5) for either choice of

quantization. We suspect that this is because the irrelevance of the operator introduces

extra dimensionful scales into the IR solutions. We can note, however, that the scaling for

the choice of quantization (II) in (A.5) matches the T = 0, low frequency scalings derived

in [35, 56]. On the other hand, the scaling for the choice of quantization (I) matches

the temperature scaling of the DC conductivity derived in [41] for σ in the presence of

momentum relaxation.
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