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Most collaborative tasks require interaction with everyday objects (e.g., utensils while

cooking). Thus, robots must perceive everyday objects in an effective and efficient way.

This highlights the necessity of understanding environmental factors and their impact on

visual perception, such as illumination changes throughout the day on robotic systems in

the real world. In object recognition, two of these factors are changes due to illumination

of the scene and differences in the sensors capturing it. In this paper, we will present data

augmentations for object recognition that enhance a deep learning architecture. We will

show how simple linear and non-linear illumination models and feature concatenation can

be used to improve deep learning-based approaches. The aim of this work is to allow for

more realistic Human-Robot Interaction scenarios with a small amount of training data in

combination with incremental interactive object learning. This will benefit the interaction

with the robot to maximize object learning for long-term and location-independent

learning in unshaped environments. With our model-based analysis, we showed that

changes in illumination affect recognition approaches that use Deep Convolutional Neural

Network to encode features for object recognition. Using data augmentation, we were

able to show that such a system can be modified toward a more robust recognition

without retraining the network. Additionally, we have shown that using simple brightness

change models can help to improve the recognition across all training set sizes.

Keywords: object recognition, object learning, visual perception, data augmentation, human-robot interaction,

long-term engagement

1. INTRODUCTION

Using robotic companions in unconstrained, domestic environments poses new challenges to the
task of object recognition and learning. In this work, we focus on such use-cases in which one
cannot draw from a large set of images for training since the presentation of particular objects might
occur infrequently and only over short periods. Moreover, consumer-oriented robotic hardware
usually does not allow for computationally expensive training (e.g., state-of-the-art deep learning
networks). The learning needs to be fast enough, in the range of seconds rather than hours, to be of
value for the user. Additionally, the objects that will have to be learned are not necessarily known
upfront and might only get presented over time rather than all at once, which limits the possibility
of pre-training networks.

New developments in deep learning, computer vision and robotics research together with the
availability of highly integrated, powerful mobile computer systems has made it possible to create
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robotic systems that can operate in private households.
Interactive household robots have started to appear in consumer
stores, such as the Jibo1, the Buddy Robot2, or the robotic
kitchen3. Also, research is increasingly focusing on providing
assistance and companion robots for socially supporting children
or the elderly. All of these examples will lead to the availability
of personal robotic assistants in the near future, the research of
long-term engagement with such systems is still in its infancy.
A major obstacle for interaction is the real-world environment
since it is less controllable than a laboratory and therefore
presents new challenges to state-of-the-art approaches. The
ability to cope with changes in the environment will be an
important factor in the acceptance of interactive robotic systems.

In Human-Robot Interaction (HRI), triadic interactions (Imai
et al., 2003) are one of the most commonly studied problems
to create natural interaction between robots and humans. To
jointly manipulate objects, Moldovan et al. (2012) first requires
the robotic systems to recognize them reliably. Here, we focus
on improving object recognition in noisy environments to learn
to cope with real-world constraints. In particular, we research
the influence of illumination changes and their impact on object
recognition in the context of real-time capable recognition
systems without prior knowledge.

One state-of-the-art visual recognition systems for
incremental interactive object learning is provided by the
iCub community. The approach utilizes a combination of a
Deep Convolutional Neural Network (DCNN) for feature
generation with a Multiclass Support Vector Machine (SVM) for
classification of objects that were shown to the iCub (Pasquale
et al., 2015a). An exhaustive evaluation of the performance of the
combined networks can be found in Sharif Razavian et al. (2014).
The system provides a method for long-term object learning
due to its incremental training on images which are acquired
by interaction with the robot. Classifiers can be trained near
real-time and are usable in real-world scenarios in which novel
objects can appear at any time.

Training each robot individually on the objects of its particular
environment is inefficient and doesn’t scale. Therefore, pre-
trained robots that can expand their knowledge on-the-fly are
required for the real world. Hence, we looked into the re-
usability of existing datasets for training classification models
following the off-the-shelf approach for feature generation of
Sharif Razavian et al. (2014). Reusing feature generation models
across different robotic platforms would dramatically reduce
computational requirements and is preferred over training
individual robots. Therefore, we focus on global illumination
changes that might occur due to light changes throughout the
day, different viewpoints or sensors used. As indicated by our
previous work (Keller and Lohan, 2016), light changes have a
negative impact on state-of-the-art object recognition.

The contribution of this work is a systematic analysis
of the impact of light changes on using two different light
models over a wide range of parameters. The benefits of data

1https://www.jibo.com
2http://www.bluefrogrobotics.com
3http://www.moley.com

augmentation are analyzed for the mentioned feature generation
and classification methods. Both methods are treated as black-
box systems to provide a baseline for further research of methods
for illumination robustness in systems with low computational
resources for extensive retraining, such as the mentioned robot
companion systems.

In particular, we research recognition capabilities under the
assumption of a low number of input images corresponding
to short interaction durations. While the datasets used were
created throughout multiple training sessions in the lab, in real-
world scenarios, this amount of time to acquire the data might
not be available. Therefore, we want to increase the recognition
performance in circumstances that provide only a small set of
training examples. As will be discussed in section 3, we used
the ICUBWORLD28 dataset to identify the impact of illumination
changes on the object recognition pipeline. With the larger
ICUBWORLD TRANSFORMATION dataset, we transferred and
tested our method to a broader diversity of object manipulations,
background changes, and brightness variance.

2. BACKGROUND

2.1. Visual Features
Two approaches for feature generation on 2D images can be
distinguished in state-of-the-art object recognition. Methods,
such as SIFT, SURF, and ORB, use local, keypoint-based feature
sets that are generated from template images. These features are
robust against a variety of transformations, including scaling and
rotation. Recognition of 3D objects can then be achieved by
creating object feature databases based on different viewpoints
(Yu et al., 2014) and using matching techniques, such as
RANSAC (Fischler and Bolles, 1981) to determine if a given
object’s feature set can be considered a model for a set of features
found in a test image. While these approaches result in robust
recognition and are therefore widely used, they suffer from an
increase in computational cost in the cases of a high number of
objects or high resolution of images.

Another type of object recognition method utilizes Deep
Learning to generate features using pre-trained networks
(Sharif Razavian et al., 2014; Fischer et al., 2016). Networks, such
as the AlexNet (Krizhevsky et al., 2012) are trained on large image
datasets and, once trained, can be treated as black-box filters that
generate features from images. The benefit of this technique is
that the resulting feature vectors are of fixed-length, which allows
for the use of standard classification methods, such as SVMs.

We investigate the latter approach since it is used in a
real object recognition pipeline for incremental learning on
an existing humanoid robot platform (iCub) and due to the
availability of datasets with many different objects which were
captured during interactions with the robot. The next part
of this section will give an overview of the background of
illumination variations.

2.2. Illumination Variations
Dealing with illumination variations is a long-standing problem
for visual recognition systems, especially for the perception
of color. Ever since Land (1964) introduced the Mondrian
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experiment and proposed his Retinex model, it has become clear
that the human visual system perceives the color of an object not
only based on its photometric properties. The lighting condition
of the surrounding environment is taken into account by our
brains to tune our sense to perceive a certain color, even if it
is not physically present in the scene. This problem is known
as color constancy and has been addressed by computer vision
research in many ways. A comprehensive overview can be found
in Foster (2011). Furthermore, the perceived color of an object
can vary between people, and it is thought to depend on people’s
age, gender, and general light exposure habits (early birds vs.
night owls) (Lafer-Sousa et al., 2015). These findings indicate that
the human visual system is capable of adapting over time and
learning certain illumination scenarios, which it uses as priors to
adjust the perception of color.

To capture this ability of the human brain, a wide range
of methods have been proposed to tackle robustness against
illumination changes. However, methods that aim to take light
variations into account either suffer from a high computational
cost, which renders them infeasible to use in real-time systems
with limited computational resources, or make assumptions that
are not met by generic, natural images. The first case is presented
by state-of-the-art methods for object recognition, such as the
currently fastest object detector, YOLOv3 (Redmon and Farhadi,
2018). Deep Learning methods can achieve a high performance
but require the support of powerful GPUs which are usually
not available on the type of robot systems we are targeting (see
Reyes et al., 2018). The second class of methods can be found in
more specific areas. A prominent example is face recognition, in
which most illumination models make assumptions that do not
hold for general objects, such as Lambertian surface reflectance,
underlying facial models, or more generally the importance
of facial landmarks over general object features (e.g., Le and
Kakadiaris, 2019).

While state-of-the-art methods have advanced the standard
for illumination robustness, they are also usually computationally
expensive. Using pre-trained deep learning networks has become
feasible using onboard computing units but retraining them,
especially in an incremental and interactive way, is not yet
possible. In the next section, we are introducing a visual
pipeline that is capable of handling such constraints (real-
time capability, incremental/interactive object learning, and low
amount of training data) and describe our approach to improve
it afterwards.

2.3. Visual Recognition System
The Interactive Object Learning (IOL) system4 is part of the open
source software stack for the iCub robot5. Here, we focused on
the Feature Extractor and Classifier6 (Figure 1).

The Feature Extractor is based on the BLVC Reference
CaffeNet, which is provided by the Caffe library (Jia et al.,
2014). This network was trained on the ImageNet dataset
(Krizhevsky et al., 2012), which contained more than 1 million

4https://github.com/robotology/iol
5https://github.com/robotology
6https://github.com/robotology/himrep

FIGURE 1 | Our adaptation of the iCub’s recognition workflow includes the

illumination transformations.

high-resolution images from 1,000 object categories. The Feature
Extractor generates a feature vector that is characteristic for the
input image under a given DCNN. The vector corresponds to
the vector representation of the highest convolution layer of the
DCNN (Pasquale et al., 2015b). A Multiclass Linear SVM was
used for classification of feature vectors. The SVM is trained
with a one-vs-all strategy for 1,000 epochs and thus provides a
classifier for each object.

To use the given implementation without the robot involved,
we had to separate the recognition workflow from the rest of the
system to use the pipeline in a standalonemanner. The separation
was necessary to provide an analysis environment that resembles
the original system as closely as possible (see Pasquale et al.,
2015b). Since the provided solution is a highly integrated system,
we had to rearrange the workflow to fit our needs. This way,
we also decreased the processing time for the analysis. Due to
performance issues, we replaced the linearClassifiermodule from
the pipeline with the LinearSVC implementation from the sci-kit
package (Pedregosa et al., 2011) after ensuring that we achieve
comparable results. All feature vectors were generated upfront as
we did not require human interaction for our experiments.

2.4. Data Augmentation
Data augmentation or preprocessing is a way for recognition
methods to enhance input signals and to make the recognition
more robust against known transformations. It is a standard tool
for image recognition.

A wide variety of data augmentations have been used to
capture different types of invariance, such as translation, rotation,
mirroring, distortions, color, and light changes. Bhattacharyya
(2011) provided a brief overview of additional color image
preprocessing techniques. Ahmad et al. (2017) use detexturized,
decolorized, edge enhanced, salient edge map based, and
flip/rotate images to improve DCNN-based recognition in visual
searches. More specialized versions of preprocessing are available
if targeted tasks (e.g., in face recognition) can be narrowed down
and underlying information can be modeled more precisely (see
Zou et al., 2007; Han et al., 2013).

For general object recognition, computationally inexpensive
augmentations that handle light changes are limited and usually
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involve at least gamma and brightness corrections. For example,
Fischer et al. (2016) augment training samples with a gamma
adjustment (−0.5, 0.1) and a brightness adjustment (−0.2, 0.2).
Dosovitskiy et al. (2015) chose a gamma value between 0.7
and 1.5, incorporated an additive brightness with Gaussian
augmentation and a contrast modification. Kim et al. (2019)
use brightness and contrast in low-illumination scenarios for
video surveillance systems. Howard (2013) uses randomly
changed contrast, brightness, color, and random lighting noise
to capture light change variance. They base their modifications
on Krizhevsky et al. (2012), which also provides the DCNN
used in our work and should therefore already capture some
variance. However, as we will demonstrate, there is still room
for improvement.

So far, we discussed augmentations in data space, which are
well-established techniques. To a lesser degree, augmentation
methods in the feature space are explored. To understand
data augmentation for classification, Wong et al. (2016) used
warping in the feature space to improve recognition on
the MNIST dataset. For our approach, we take the idea
of image concatenation (e.g., Saitoh et al., 2017), apply it
as feature concatenation and combine it with gamma and
brightness modification.

While widely used, to the best of our knowledge, no systematic
analysis of the impact of gamma and brightness changes for
object recognition have been conducted. The parameters of these
modifications used in the literature vary and their separate effects
on the recognition are not determinable as they are usually
mixed with other types of augmentations and are not reported
separately. In our work, we want to provide a starting point for
a more systematic analysis. Also, we did not incorporate light
modification models, which come with a too high computational
cost for online learning, such as Gabor filters as suggested
by Welke et al. (2006). Additionally, we will demonstrate
that even though a DCNN was trained taking light change
augmentations into account, it still can benefit if used as a black-
box feature generator. Important to note is that we are not trying
to enhance the feature generator itself as this would involve
computationally expensive training. Instead, we are aiming to
generate enhanced feature vectors to help the classification step
under the assumption that creating multiple features from the
images can be done in parallel and therefore do not add much
to the computation time for the feature generation.

3. DATASETS AND METHODS

In this section, we describe the datasets, the models and the
experiments parameters. As mentioned, we are focusing on
global illumination changes as we consider them to be of greater
importance than local ones. While local illumination changes,
such as reflection or shadow can have a high negative impact
on the recognition as well, in the HRI scenario that we are
addressing they are not necessarily persistent across multiple
images during an interaction due to the changing orientation of
the objects. Thus, local illumination changes are not considered
in this paper.

The experiments are an extension of our earlier work which
can be found in Keller and Lohan (2016). In our previous
work, we used a small image dataset in combination with two
illumination models to simulate linear and non-linear brightness
changes to understand the impact of changes in light to the
DCNN/SVM-based learning approach. In this paper, we compare
the effect on a larger dataset with higher variability in object
presentations as well as present a method to make use of the
findings to improve the recognition process itself.

While a practical experiment could have been conducted
to show the method’s behavior under different illumination
conditions, we chose to start with modified sample images of
datasets for repeatability. This way, we are also able to look
separately at linear and non-linear changes while this is much
more difficult to achieve in an experimental setup. Both types of
changes might occur at the same time in an experimental setup in
a way that is not trivial to control. For example, a robot might use
consumer camera sensors with a Automatic Gain Control (AGC)
that influence the resulting image in a non-linear manner when
the surrounding illumination is changed (Fowler, 2004). Due to
the integration of current image sensors themselves, it can be
impossible to deactivate these assistance systems. Linear changes
might occur when blinds are used in different positions, limiting
the amount of light from the outside.

3.1. DS1—iCubWorld28
The first dataset is the ICUBWORLD28 dataset from Pasquale
et al. (2015a) referred to as DS1. It represents the visual
perception of the iCub. It was created during a 4-days interactive
session. It consists of nearly 40,000 images of 28 objects
distributed over 7 object classes with more than 1,300 images
per object.

The dataset comes separated by day and is split into a training
and test set per day. Since we were interested in the overall
performance of the approach, we merged all images per object
into one set as this gives the wide range of original illumination
changes and allows for analyzing the sample size dependency (see
subsection 4.1). From the merged sets a number of training and
test sets were randomly selected. First, the 400 images for four
test sets were chosen. Afterward, images for the different sized
training sets were selected. Thus, the results of the corresponding
training and test sets are comparable to each other and are based
on balanced sets for all objects.

3.2. DS2—iCubWorld Transformation
The second dataset is the ICUBWORLD TRANSFORMATION

(Pasquale et al., 2016) referred to as DS2. The dataset consists
of more than 600,000 images with at least 3,000 images per
object. It provides five different types of visual transformations;
2D, in-plane and 3D free rotations to provide the robot with
different viewpoints of the object, scaling transformation in
which the human moves the object either closer or further from
the robot’s position and a transformation in which the human is
moving in a circle around the robot to change the background
while keeping approximately the same distance from the robot.
Additionally, a mixed transformation was included in which the
object was presented in a free moving manner. All objects are
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captured during two different days each. The dataset contains
image sequences from 15 object categories with 10 objects in each
category giving a total of 150 objects (IROS 2016 subset from
Pasquale et al., 2016).

We chose this dataset as it contains more variability in the
presentation of the objects (e.g., a wider range of illumination
changes) and also contains more objects (150 vs. 28). This way we
can test our method on a more challenging task but can compare
the results as the acquisition of the second dataset was similar
to the first. The preparation of the second dataset follows the
method of the first one.

3.3. Illumination Change Models
To account for linear and non-linear light changes, we generated
new images from the dataset. We chose the value modification
from the HSV color space as an example of a linear model.
HSV stands for hue, saturation, and value, where value accounts
for brightness. The second model is given by the gamma
transformation which serves us as a non-linear modification.
The transformation was done using OpenCV (Bradski, 2000).
Figure 2 shows examples for both modifications. While these
changes seem to be easy for the human eye they have an impact
on recognition systems that operate on pixel values.

3.3.1. Linear Model

The images were transformed into the HSV color space for
modification. This allows for changes to the luminance without
interfering with the colors and is one of the common color
spaces for classical visual recognition. The model is defined as
Vout = Vin ± (Vmax ∗ Vc). After the color space transformation
Vc was changed to 5, 10, 15, and 25% for both lighter and darker
appearance. For the recognition task, the images are transformed
back into RGB color space before being fed to the DCNN.

3.3.2. Non-linear Model

The gamma correction is a non-linear transformation that is
often used to enhance the visual appearance of images that are

under- or overexposed. It is defined asVout = V
1/γ
in . For the γ we

chose 0.4, 0.5, 0.7 for darker and 1.5, 2.0, 2.5 for brighter images.

3.3.3. Parameter Selection

The choice of the parameter values is based on selected
representatives for non-trivial changes. If the transformation
effect gets much stronger differences in color can degrade toward
black or white areas destroying the included color information
and leading to unrecognizable images. While this is an effect that
image recognition approaches have to deal with, it is not the focus
of the paper in which we want to improve recognition under
different lighting conditions while being in a reasonably well-lit
environment. Table 1 gives an overview of the parameter sets we
chose and how they are named in our paper.

3.3.4. Measurement

For our experiments, we report the average accuracy. All reported
accuracies are an average over a 4-fold experiment run. Minimal
and maximal errors can be found in the diagrams but are not
reported for a clearer presentation of the findings. Due to their
small variability, they did not have an impact on the conclusions.

TABLE 1 | Naming convention for the modified sets.

Names Sets

LINEAR CONDITION

0 V = 0

-25:1:25 V ∈ {−25%, 0, 25%}

NON-LINEAR CONDITION

1 γ = 1

0.4:1:2.5 γ ∈ {0.4, 1, 2.5}

COMBINED CONDITION

Mix γ ∈ {0.4, 2.5} and

V ∈ {−25%, 25%} and

1 set of unmodified images

FIGURE 2 | The unaltered sample (middle) and its transformations toward the extreme values: (top) linear model—example value changes in HSV color space with

back-transformation into RGB color space, (bottom) non-linear model—example gamma value changes in RGB color space.
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All experiments were supported by test sets with 400 samples
per object.

4. EXPERIMENTS AND RESULTS

4.1. Sample Size Dependency
First, we established a baseline for the recognition task without
any modifications to analyze the performance depending on the
number of training samples used (Figure 3).

With 10 training samples, the method achieves an avg.
accuracy of 61.74% going up to 92.77% for 600 images on the
DS1 (28 classes) and avg. accuracy ranging from 53.50% for 10
images up to 89.88% for 600 images on the DS2 (150 classes).
The avg. accuracy is highly stable over all runs with a variation
of ±1.3% maximum in the worst case (10 training samples /
DS1). The baseline results show that the gain in recognition
performance using more than 100 training images becomes
comparably smaller (Figure 3). As expected, the recognition
pipeline performs similarly on both datasets and benefits from
larger training set sizes in the beginning. The absolute difference
between the datasets can be explained due to the second one
containing more challenging presentations as well as more
object classes.

Next, we tested how the recognition rate changed if the
visual pipeline has to recognize images with model-based
altered brightness images. The baseline training was used and
presented with altered test images based on the respective models
(Figures 4, 5). The modified test image sets always contain only
one modification to test the behavior on the modification limits.
The results show that with an increase or decrease in brightness
the recognition performs worse. The effect is consistent with
Keller and Lohan (2016) although we used a random training and
test sample selection this time.

Using a larger number of training samples seems preferable
due to better recognition and thus compensating the effects of
the illumination influence. However, it defeats the purpose of our

FIGURE 3 | Baseline: accuracy based on training samples per object.

approach which is meant to improve the recognition using small
training samples sets. Under real-world constraints, interactions
with the objects might only happen over a very brief period.
Additionally, we had to consider that the training time of a 1-
vs-all Multiclass-SVM increases quadratically with the number
of classes. The training with 600 samples per object results in
training on 16,800 feature vectors for DS1 and 90,000 for DS2
for each object classifier (28 for DS1 and 150 for DS2). We chose
to perform the following experiments on 100 training samples
per object since our focus is on small training sets. However, in
subsection 4.3, we will show that the results are generalizable and
independent of training set sizes.

4.2. Brightness Dependency
After identifying the influences of brightness on the recognition
process, we modified the training set to include altered images

FIGURE 4 | Influence of the linear model (Vc) on the accuracy showing the

loss toward stronger transformation values.

FIGURE 5 | Influence of the non-linear model (γ ) on the accuracy showing the

loss toward stronger transformation values.
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and tested the trained system against modified test sets (see
Figures 6, 7). In Keller and Lohan (2016), we showed that it
is sufficient to include only the modified images with the most
extreme changes. Adding the modified images, the size of the sets
increase from 10 to 30 and from 100 to 300 images, respectively.
In our previous work, we have shown that this is a sufficient
approach for a comparison (see Keller and Lohan, 2016).

For both models, we can show that adding these images
increases the avg. accuracy drastically; in the best case we
could achieve an increase from 58.26% up to 81.08% on DS1
and from 40.43% up to 69.01% on DS2 under the non-linear
model (see Table 2). Recognition against the baseline training

FIGURE 6 | Influence of the brightness change: using linear modified training

samples shows an increase in recognition accuracy toward the extreme values

while having a decrease for non-modified images.

FIGURE 7 | Influence of the gamma change: using non-linear modified training

samples shows an increase in recognition accuracy toward the extreme values

while having a decrease for non-modified images.

decreases slightly, suggesting that there is a trade-off between
generalization and specificity.

With our first set of experiments, we showed that the
investigated visual recognition pipeline is indeed susceptible to
variations in illumination. We also show that by using modified
training samples, the adverse effect of light changes can be
circumvented to some degree. While this improvement comes
at the cost of a small drop in recognition in the non-modified
condition the overall positive effect justifies this modification
as the recognition shows a much better generalization behavior
across model-based changes and hence can be considered
more robust.

4.3. Feature Fusion
In the last set of experiments, we want to make use of these
findings to increase the overall performance of the recognition.
So far, our experiments used the approach of training n sample
images and testing individually against independent m test
samples and relied on data augmentation in the input space.
However, since we know which modified images belong to
each other, we can make use of that additional knowledge to
further improve the recognition. Therefore, we employ data
augmentation in the feature space to bind the original images
with their modifications. All feature vectors corresponding to
one original image and its augmented versions are concatenated
and fed into the SVM; both for training and testing. Thus, the
dimensionality of the search space for the SVM increases and
captures different light changes within one data sample. For
example, the mix condition contains two feature vectors for
the linear model, two for the non-linear and the non-modified
feature vector hence the resulting feature vector is five times
bigger than the ones from our other previous experiments.

Table 3 shows the results of the experiment for 10 and 100
training samples. For both training set sizes, the recognition
improved taking the model-based modifications into account.
For 10 training samples per object an increase of the avg. accuracy
from 61.74% (baseline vs. baseline) up to 65.28% (mix vs. mix)
and for 100 samples an increase from 85.77 to 90.00% are found

TABLE 2 | Selected avg. accuracy values—modified training sets, 100 samples.

DS1

Linear condition −25% Not modified +25%

0 72.84% 85.77% 74.07%

−25:0:25 81.72% 84.18% 82.03%

Non-linear condition 0.4 Not modified 2.5

1 60.27% 85.77% 58.26%

0.4:1:2.5 78.64% 82.93% 81.08%

DS2

Linear condition −25% Not modified +25%

0 52.65% 79.54% 63.53%

−25:0:25 71.18% 76.37% 75.05%

Non-linear condition 0.4 Not modified 2.5

1 40.43% 79.54% 58.53%

0.4:1:2.5 69.01% 75.70% 74.21%
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for DS1. DS2 shows an improvement from 53.50% up to 57.53%
for 10 training samples and from 79.54% up to 85.41% for 100
training samples.

In the last step, we compared the baseline results with our
most optimal condition (mix vs. mix) (see Figures 8, 9). Here
we show that the improvement is present in all training set sizes
and that its effect is not dependent on the number of samples
per object.

TABLE 3 | Fused feature recognition avg. accuracy.

Training\ set Not Linear Non-linear

modified −25:0:25 0.4:1:2.5 Mix

DS1—10 SAMPLES

Not modified 61.74% 60.68% 58.72% 59.40%

Linear 60.72% 63.79% – –

Non-linear 59.56% – 65.09% –

Mix 60.19% – – 65.28%

DS1—100 SAMPLES

Not modified 85.77% 84.88% 83.35% 84.10%

Linear 83.14% 88.46% – –

Non-linear 80.67% – 89.68% –

Mix 81.54% – – 90.00%

DS2—10 SAMPLES

Not modified 53.50% 51.28% 50.86% 50.48%

Linear 50.59% 56.16% – –

Non-linear 50.07% – 57.35% –

Mix 49.69% – – 57.53%

DS2—100 SAMPLES

Not modified 79.54% 77.37% 76.59% 76.27%

Linear 73.80% 83.77% – –

Non-linear 71.46% – 84.74% –

Mix 71.31% – – 85.41%

FIGURE 8 | DS1 baseline vs. fused features: accuracy based on training

samples per object.

The results suggest that the additional information of
the altered images are beneficial for the recognition process
increasing the specificity of the method. While the individual
models already achieve an improvement, the biggest gain can be
seen while combining both models. However, the improvements
come at the cost of a larger feature vector for training which
increases the SVM’s training time.

5. DISCUSSION

As indicated by our previous work (Keller and Lohan, 2016),
we have shown that illumination changes have an impact on
state-of-the-art object recognition pipelines using DCNNs for
feature generation and Multiclass-SVMs for classification. As
expected, our results show that using more samples did improve
the performance. However, our focus was on training with a small
number of training samples to allow for very short interaction
periods for data acquisition.

By expanding our work to a second dataset, we have
shown that the impact of illumination changes from our
first paper is generalizable. Especially, since the ICUBWORLD

TRANSFORMATION dataset includes many more objects and
different types of object manipulations in front of the robot
together with higher variability in the background during
object presentation.

Training with the artificial illumination models results in
a slight drop of performance on the unmodified test sets but
results in a major improvement under model-based illumination
changes. While these findings are based on models and thus are
not directly translatable to natural light changes, it proves that
by using data augmentations in the input space the recognition
process can become more robust against light changes, resulting
in a better generalization of the recognition pipeline.

By adding knowledge about the data generation for data
augmentation in the feature space, namely concatenating

FIGURE 9 | DS2 baseline vs. fused features: accuracy based on training

samples per object.
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corresponding feature vectors, we have shown how to make use
of our findings to improve the recognition on both datasets which
results in a more specialized recognition.

The data augmentations increased the accuracy between
3.54% (DS1) and 4.03% (DS2) for 10 training samples and
between 4.23% (DS1) and 5.86% (DS2) for 100 training samples.
Also, a similar increase is present in all training sample sizes and
datasets. The effect might appear as a small improvement only.
However, the results show in a systematic way which benefit can
be expected from the used models and can serve as a baseline to
find better ones. It also shows that the impact increases withmore
diverse light conditions (DS1 vs. DS2).

Usually, improvements come at a cost. In our case, it is
the additional computation with the mix condition of the
fused feature approach adding the highest amount. It involves
generating four more images for the transformations and the
feature generation for them. The added computation for the
transformations is small compared to the feature generation.
Since the images are independent and thus the feature generation
can run in parallel the added time cost for this step is small and
easily fits into the online learning pipeline. The limiting process
is the second step as the SVM has to process a five-times-larger
feature vector. While this might render the data augmentation
unattractive for large training sample sizes per object, it is still
viable for our focus area of small sample sizes. For example,
in the case of 28 classes and 100 samples the computation
went up from 0.1 to 0.6 s on average still being viable for near
real-time purposes.

We believe that improving the recognition of objects with
our methods during short interactions (< 1min) will enhance
the reliability of the overall system and therefore enhance
the Human-Robot Interaction and hence, the acceptance of
the system.

6. CONCLUSION AND FUTURE WORK

With our model-based analysis, we showed that changes in
illumination affect recognition approaches that use DCNNs to
encode features for object recognition. Using data augmentation,
we were able to show that a system using DCNNs and
SVMs can be modified toward a more robust recognition even
though the used DCNN already included an augmentation step
toward intensity and color robustness. Additionally, we have
demonstrated that using simple brightness change models can
help to improve the recognition across all training set sizes.

With our approach, it is easy to adapt existing visual
recognition pipelines since only computationally inexpensive

data augmentations were used and no modification of either
the feature encoder or the classification is needed. Treating the
feature encoder as a black-box system allows to compare different
networks to the original setup which will be the subject of our
future research.

As the next step to improve this approach, we are looking into
combining the models and integrating more natural conditions
into them. While the artificial models already enhanced the
recognition, we believe that with a more realistic representation
of natural light changes our approach could be improved.
However, the choice of the simple models was due to their low
computational cost. This trade-off needs to be taken into account
for real-time capable systems like the one we investigation in
our paper.

To further improve the acquisition of training data for the
objects, the lighting conditions could be artificially altered to
generate more diversity that could help the recognition process.
When inspecting an object for the first time, a flashlight with
known spectral properties or RGB LEDs with defined colors
could be used. This might overcome the problem to find a model
for real-world light changes as the additional knowledge can be
used to inform the data augmentation process.

Additionally, this approach could be used in conjunction
with cloud robotics in which multiple robots with
different sensors and in different environments could
combine their acquired images to cover more diverse
illumination settings.
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