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Abstract

Electroencephalogram (EEG)-based decoding human brain activity is challenging, owing to

the low spatial resolution of EEG. However, EEG is an important technique, especially for

brain–computer interface applications. In this study, a novel algorithm is proposed to decode

brain activity associated with different types of images. In this hybrid algorithm, convolu-

tional neural network is modified for the extraction of features, a t-test is used for the selec-

tion of significant features and likelihood ratio-based score fusion is used for the prediction

of brain activity. The proposed algorithm takes input data from multichannel EEG time-

series, which is also known as multivariate pattern analysis. Comprehensive analysis was

conducted using data from 30 participants. The results from the proposed method are com-

pared with current recognized feature extraction and classification/prediction techniques.

The wavelet transform-support vector machine method is the most popular currently used

feature extraction and prediction method. This method showed an accuracy of 65.7%. How-

ever, the proposed method predicts the novel data with improved accuracy of 79.9%. In con-

clusion, the proposed algorithm outperformed the current feature extraction and prediction

method.

Introduction

Decoding brain activity involves the reconstruction of stimuli or brain state from the informa-

tion measured using different modalities like electroencephalogram (EEG) or functional mag-

netic resonance imaging (fMRI). Stimulus or brain state information is encoded in the brain

and is present in the form of neuronal activity. Decoding this recorded neural information and

associated changes in brain activity can be used to predict the specific tasks or stimuli that

caused the response in the brain. Different neuroimaging techniques can be used to find differ-

ences in brain activity during different tasks or conditions. For example, in fMRI, the mea-

sured signal is the blood-oxygen-level dependent signal. In contrast, EEG records electrical

signals that indicate activity and responses in the brain.
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EEG is a widely used technique that can measure the changes in electrical voltage on the

scalp, induced by cortical activity [1]. In EEG, data is collected from multiple channels (EEG

electrodes) that record the signals corresponding to the activity in different cortical regions.

EEG time-based and frequency-based features are extracted from a continuous time series and

supervised learning algorithms have been applied to find the discriminative features between

the states or stimuli. [2, 3]. However, the EEG signal is buried under noise, increasing the diffi-

culty in decoding brain activity. Moreover, decoding the neuronal activity is also dependent

upon the performance of machine learning algorithms used, which include support vector

machines (SVM) and logistic regression (LR) [4].

In a pioneer study, Haxby et al. [5] distinguished brain activity patterns for images of differ-

ent categories such as faces, houses, animals, chairs and tools using fMRI. Recent research in

brain decoding still has focused on fMRI for data collection [6], [7], [8], [9], [10], [11, 12], [13]

and [14]. However, EEG is well-established, for use in brain–computer interface (BCI) applica-

tions [15–19], epilepsy [20] and seizure detection [21]. It is also used for the application of con-

trolling robotics [22]. Due to low spatial resolution of EEG, only few studies are available in

brain decoding. While, in recent years, the spatial resolution has improved with 256- and

512-channel EEG caps, which provides a more detailed data with improved accuracy. A study

by Cruse et al. [23] monitored the consciousness of vegetative patients using EEG and com-

pared the obtained results with an existing fMRI results. The comparison showed that EEG

had better accuracy in detection of patients’ response to commands than fMRI. In the experi-

ment, the researchers checked the consciousness of the vegetative patients using EEG and

found better results compared with fMRI; however both of these studies were done separately.

Taghizadeh-Sarabi et al. [24] achieved 70% overall decoding accuracy in an experiment using

19 channel EEG equipment. In another study, Douglas et al. [25] stated that EEG data can out-

perform fMRI data in decoding the belief decision. Moreover, decoding the taste categories

was recently performed by Crouzet et al. [26] using EEG. The above mentioned studies suggest

the potential of EEG for decoding brain activity. However, more research is required to

increase the understanding of brain using EEG.

In this study, Convolutional neural network (ConvNet) is used to decode brain activity pat-

terns. ConvNet belongs to a broader family of machine learning methods; it is based on learning

from the representation of data. The primary advantage of ConvNet is the replacement of hand-

craft features with automatically derived features found in efficient algorithms. In contrast with

neural networks, deep neural networks have more than two hidden layers [27]. In recent years,

ConvNet has achieved great success in different applications for recognition tasks. These appli-

cations include video, images, text and speech [28–32]. ConvNet is a most popular architecture

of deep learning. ConvNet works better with images and video data compared with different

existing hand-crafted feature extraction methods. [33], and it has also performed well in many

other applications involving handwriting, speech recognition [29] and video classification [34].

ConvNet is a complete framework consisting of a convolutional layer, pooling layer and

fully connected layer which is used as a classifier. In other words, ConvNet is a structure which

takes raw data as input and gives the final classification/prediction results. There are many

advantages related to ConvNet which are detailed in the literature. The primary attribute of

interest in ConvNet is that it can directly classify the raw signal and can integrate signal pro-

cessing functions. It is easy to extract features in ConvNet because there is no need to know

about the type of the features. ConvNet extracts the most discriminative features by construct-

ing high level features over the whole data set. ConvNet can also be trained easily using tradi-

tional methods due to its constrained architecture, which is specific to input for which discrete

convolution is defined, such as signals and images. Due to all these advantages, especially easy

implementation and good accuracy, ConvNet is currently an active research area.

EEG based decoding using CNN & LRBSF
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ConvNet is successfully being used in many applications and it has also worked well with

moderate data sets both in EEG and fMRI [35–38] [39]. Cecotti et al. [40] used ConvNet for

P300 detection in a BCI application and obtained a high degree of accuracy. ConvNet can also

handle the variations present in EEG signals [41]. Plis et al. (2014) [35] showed that, by using

different layers of deep belief network, accuracy can be increased compared to other classifiers.

ConvNet has also been used to extract features from EEG time series [36, 37, 42]. These studies

have demonstrated potential benefits of the use of ConvNet in neuroimaging, even with mod-

erately sized data sets. ConvNet is the most popular method for all applications including

image and speech recognition. However, in the neuroimaging domain, it is relatively unex-

plored due to some shortcomings. It has high computational cost and requires too much train-

ing data, which is generally impossible in brain studies. Second, no well-established model of

ConvNet exists for brain studies [43]. Machine learning algorithms have become very popular

in recent years for training classifiers for decoding/prediction of stimuli, behaviors, mental

states and other purposes [44]. Since, machine learning algorithms have a key role in the pro-

cess of decoding; choosing the correct classifier and its parameters is very important for per-

formance. Support vector machine (SVM) is the most popular and widely used machine

learning approach. This approach is normally based on supervised learning algorithms [45].

Score fusion techniques can be another way to predict brain activity efficiently and are being

used in biometric systems parallel to SVM [46, 47].

Decoding the human brain is quite mature in case of fMRI and many studies were pre-

sented in last 15 years [5–14]. These studies used different fMRI scanners (3T-7T), models,

experiment design and number of subjects. These studies successfully decoded the human

brain activity with good accuracy, starting from simple visual task to complex natural images

and even with movies [48]. Currently fMRI has shown best results with available hardware.

Functional MRI measures the neural activities indirectly and the data is normally taken after

every 2 sec which means the temporal resolution of fMRI is limited. This restriction may be

overcome in the future with better machine for the collection of data. In case of EEG, this

research area is still progressing and only few studies have been reported in past years [24, 26]

which shows lack of research in this area. The same is stated by Agrawal et al., in an article

“EEG and NIRS offer portable solutions but with their signal quality no substantial results for

predicting brain activity have been reported” [49].

In this study, the purpose is to investigate the brain states using EEG. EEG is a portable and

cost effective solution to fMRI; if better or comparable results are achieved, it would be more

helpful in the research especially in medical field. It is easy to collect EEG data especially in

case of patients and neural activity can be detected promptly due to its high temporal resolu-

tion. Functional MRI is widely used in research and is considered to be a better modality for

brain decoding, as it can extract more information from specific regions of the brain compared

to EEG. In EEG, the quality of data is considered to be vulnerable compared to the quality of

fMRI data so it is difficult to extract more information from a specific brain region using EEG

[26]. Hence EEG is not a popular modality to decode brain activity from specific brain regions.

Some new studies have used multivariate pattern analysis (MVPA) to decode data on brain

activity which are acquired from the whole brain instead of from a particular brain region [11,

26, 50–52]. For decoding the brain activity patterns, MVPA is an emerging technique and has

proven as a highly useful technique for decoding of different patterns of brain activity [11, 53,

54]. This new concept of MVPA and more EEG channel device encourages neuroscientists to

decode brain activity using EEG, as EEG with a higher number of channels, also improves spa-

tial resolution. This is the reason we proposed an algorithm to improve the decoding accuracy

with EEG data which has new machine learning technique (ConvNet) and a different predic-

tion method likelihood ratio based score fusion (LRBSF) in neuroscience.

EEG based decoding using CNN & LRBSF
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The motivation for this study is to propose a hybrid algorithm. The proposed algorithm is

hybrid, which consists of different existing and proposed approaches in neuroscience includ-

ing data representation, CNN for feature extraction, t-test for feature selection and LRBSF for

prediction. The main focus is on three main aspects. First, decoding brain activity using EEG

data, which has been done in only a few previous studies. Second, modification of ConvNet

architecture according to a 1D EEG signal and use of the architecture with limited brain data.

The limited brain data consists of approximately 50 trials per category, which is quite less than

image recognition data sets such as the Mixed National Institute of Standards and Technology

(MNIST) data set which has a training set of 60,000 examples [55]. Last, the use of LRBSF

instead of SVM for prediction and validation of results by comparing the results with SVM. In

short, the main contribution/novelty of this study is an algorithm which consists of ConvNet

architecture and LRBSF along with conventional method (t-test) used for brain studies. In

addition, the filters used in ConvNet architecture are also designed according to EEG data,

moreover EEG data is arranged in such a way that instead of averaging the data, the data of

every image becomes the part of the final analysis directly. To validate the proposed algorithm

it is compared with widely used existing methods.

Material and methods

Participant information

Data were taken from 30 participants; however data from only 26 participants were used for

the final analysis after application of exclusion criteria. Data from two participants were

excluded due to the presence of a large number of artifacts, while two other participants

showed low accuracy during the initial analysis of baseline and the task. All participants sub-

mitted the written consent form before the start of the experiment. The age of all participants

was between 24 and 34 years and the mean age was 30 years. The study protocol was approved

by the Universiti Teknologi PETRONAS (UTP) ethics committee under UTP Reg. No: 13–10

and the EEG data was recorded at UTP.

Stimuli

A total of 260 grayscale photographs were presented in a single session (21 minutes). All

images were taken from the internet, freely available and had already been used in a previous

study [8]. Every image was of size 500�500 pixels with a 4�4 pixel fixation spot in the middle of

every image. All images were masked with a circle (20o diameter) and had the same contrast

and brightness.

Experimental procedure

The images were divided into five categories: human, animal, building, natural scenes and

fruits. Every stimulus (grayscale photograph) appeared on the screen for one second with 200

ms on and off, and with a rest period of one second after every stimulus. All images appeared

twice on the screen. Participants were instructed to focus on the screen and try to recognize

the category of the image. This was a non-response task. The participants were told that they

should only view and think about the category. The complete experiment paradigm is shown

in Fig 1.

EEG data collection

Continuous EEG data were recorded with a 128 channel Electrical Geodesics Incorporated

(EGI, Eugene, OR, USA) system with a sampling frequency of 250 Hz. Cz was the reference

EEG based decoding using CNN & LRBSF

PLOS ONE | https://doi.org/10.1371/journal.pone.0178410 May 30, 2017 4 / 23

https://doi.org/10.1371/journal.pone.0178410


Fig 1. Experimental paradigm: Images of five categories (humans; animals; buildings; natural scenes;

fruits) were presented for 1sec with a grey background and rest period of 1 sec. The stimuli consisted of

sequences of grayscale natural photos. a) Spatial characteristics. The photos were masked with a circle (20˚

diameter) and placed on a gray background. The outer edge of each photo (1˚ width) was linearly blended into the

background. A central white square (0.2˚ side length) served as the fixation point. b) Temporal characteristics.

The photos were presented for 1sec with a delay of 1 sec between successive photos. Each 1-s presentation

consisted of a photo being flashed ON-OFF-ON-OFF-ON where ON corresponds to presentation of the photo for

200 ms and OFF corresponds to presentation of the gray background for 200 ms [8].

https://doi.org/10.1371/journal.pone.0178410.g001
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electrode for all other electrodes. The raw EEG data were amplified with the EGI NetAmps

300 amplifiers with bandpass filter set from 0.1 to 100 Hz. The threshold for impedance was 50

KO. Net Station 5 Software [56] was used to record, save and display the online recordings of

EEG data.

Pre-processing of EEG data

The data were exported to Brain Electrical Source Analysis (BESA, Gräfelfing, Germany) soft-

ware for pre-processing where the signals were filtered from 0.3 to 30 Hz using a bandpass

filter. This was done to remove DC components and muscular artifacts which have high fre-

quencies; moreover, these were the most relevant frequencies during a visual task [57]. Eye

blink (EOG) artifacts were corrected using an adaptive artifact correction method present in

BESA. All data were visualized manually and any unwanted signals were corrected manually.

In BESA, we removed any type of artifact by selecting a default block epoch and removing the

unwanted patterns. The default block epoch is first need to define and will later be used for the

pattern search. In this way artifact is detected by defining a block with in a particular period of

time only, which can later be used to search the same artifact pattern from the whole data set.

After removing artifacts, the file was exported to MATLAB (MathWorks, Natick, MA, USA)

for further analysis. Data from every trial were separated in MATLAB and no single trial or

image was excluded from the analysis.

Proposed method

The analysis of EEG data consisted of the following steps: feature extraction, selection of the

best informative features and classification/prediction. The proposed algorithm/framework

consisted of the following different stages. EEG data were arranged in such a way that every

image became part of the final analysis directly. Features were extracted and enhanced using

ConvNet and the extracted EEG features were arranged in a row vector as is normally done in

fMRI analysis. Significant features were found statistically with a t-test and prediction was

done using a method novel in brain studies (LRBSF). Fig 2 explains the details of the proposed

method with complete steps for decoding along with the steps of compared methods. The

main contribution in this hybrid algorithm was the modification of the basic ConvNet model

(LeNet) for extraction of features from EEG data, the different arrangement of 128 channels of

EEG data and LRBSF for prediction.

Neural network architecture. Network topology is important in ConvNet. ConvNet has

three main layers: a convolutional layer, a pooling layer and a fully connected layer. In our pro-

posed algorithm, only two layers (one convolutional and one pooling layer) with several maps

were used. In this algorithm, the filters are vectors instead of matrices because the data are 1D.

Matrices are generally used in image recognition [40]. Different sizes of 1-D filters are used

Fig 2. Block diagram of proposed and compared methods for brain decoding. The proposed method is

shown in the green boxes while compared methods are shown in blue boxes.

https://doi.org/10.1371/journal.pone.0178410.g002
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along with large and small pooling layers; the best combination is reported in this study. The

idea of enhancing the features is to extract detailed information from different activity patterns

generated in association with the specific stimulus. Finally, the extended features are reduced

using a feature selection method. The dimension of convolutional and pooling layers are

dependent on the size of relevant filters, however there is no specific rule defined to select the

size of filters and number of ConvNet layers. This is mostly dependent on the model which is

being used. These models are mostly fixed with number of layers and size of input data. For

example the AlexNet came in 2012, and used 11�11 size filter at the first layer while ZF Net

came in 2013 with input image size of 224�224 (quite large) and 7�7 filter at first layer. This

means the models are mostly designed for specific applications. In different ConvNet architec-

tures, the number of layers are also different, for example GoogLeNet (2015) is considered to

be a one of the best model with 22 layers [58]. However, unfortunately in neuroscience there is

no such model exists since all the current models are designed with engineering goals and not

for brain computations [43]. One of the main reasons is that the number of samples are limited

in most of the neuroimaging datasets [59].

Learning. In this network, there was an initial input matrix of (128 × 250) for every stimu-

lus, in which the number of channels was arranged in the rows and number of samples in col-

umns as shown in Fig 3. If Ne is the number of electrodes and Ns is the number of samples,

then the input layer could be defined as 0� i� Ne and 0� j� Ns.

Let the neurons in this network be defined by f(l, m, p), where l, m, and p are the layer, map

and the position of neurons in the map, respectively. If there is only one map in the layer, then

the value of a neuron is yl
mðpÞ ¼ ylðpÞ. The general equation is

yl
mðpÞ ¼ gðsl

mðpÞÞ ð1Þ

Where g depends on the layer and is known as a sigmoid function. This sigmoid function is

approximately linear and its value lies between 0 and 1. This function is normally used at a

convolutional layer and represents the convolution of the input signal. In this study, the classi-

cal sigmoid function was used which is as follows.

g sð Þ ¼
1

1þ exp� s
ð2Þ

As discussed above, different vector filters were used, but results were reported for the filter

size of (1 × 130) as we have 128 channels and 250 samples. This was the best filter size for these

parameters. These filters were the neurons which had input weights and output values. In the

model, each filter was replicated throughout the entire visual field. These filters shared the

same weight vector and bias, which formed a feature map. The details of layers and maps of

Fig 3. Schematic of the deep neural network where L1 and L2 are the layers and M defines the maps of

convolutional layer.

https://doi.org/10.1371/journal.pone.0178410.g003
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every layer are shown in Fig 3. The input neurons and the weight connections are represented

by a scalar product which is denoted by sl
mðpÞ. These weight connections were between input

neurons (vectors in this study) and the neurons present in the map in the layer (vectors in this

study). The efficiency of learning could be increased by increasing the weight sharing, which

reduces the number of free parameters being learnt so that 100 weights were defined during

formation of a feature map, which is obtained as follows.

hk
ij ¼ tanhððWk � yÞij þ bk ð3Þ

Where hk defines the feature map at the kth layer and Wk and bk are the weights and bias of the

filters.

In the next step, pooling was performed. The pooling procedure was a simple down sam-

pling of the feature map. Pooling was done with 1�11 filter size because this was related to the

size of the feature map. Finally, for every row vector, an output of (1 × 1100) was obtained

which was reduced by applying feature selection techniques.

Feature selection. Feature selection is a method used to improve accuracy and decrease

training time. There are different feature selection methods such as region of interest (ROI),

principal component analysis (PCA), independent component analysis (ICA), t-test and many

more. In ROI based studies, [8, 13] EEG data are restricted to a few channels for further analy-

sis. There are some studies on EEG which have used MVPA, however in a recent study, Crou-

zet et al [26] showed that in EEG, MVPA performance is very good compared to individual

channels.

In this study, MVPA was used along with ConvNet and the number of features was large

due to the 128 channel EEG equipment. The dimensionality of the data was further increased

using the convolutional layer of ConvNet. Therefore, feature selection was necessary. During

feature selection, the n most significant features between the categories were extracted using a

t-test as follows.

tðjÞ ¼
m
ðjÞ
A � m

ðjÞ
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
ðjÞ
A
jAj þ

s
ðjÞ
B
jBj

r ð4Þ

Where μA and μB denote the average while σA and σB denote the variance of the data points A
and B respectively and j is one of the combinations between five categories.

In the t-test, the highest t-values or lower p-values were selected, which yields the significant

features in separating the classes. The features with lowest p values (p< 0.05) were considered

to be significant and were ranked with lowest p values. The subsets were made from 50 to

5,000 features and the features with p> 0.05 were excluded from the analysis because they do

not have much impact during analysis.

Because ConvNet is a complete framework, most of the studies have used the ConvNet clas-

sifier (softmax) for prediction/classification [37]. However, ConvNet is a complex structure,

especially with the fully connected layer. Thus, some studies have shown that, in ConvNet,

SVM at the top layer works better than softmax [60, 61]. In this study, prediction was done

using a new method (LRBSF) instead of SVM. In LRBSF, fusion of match scores was done

based on a likelihood ratio test. This method has never been used in brain decoding studies.

The results are compared with the most successful, reliable and popular classifier for brain

studies, SVM.

Likelihood ratio based score fusion. Likelihood ratio-based score fusion (LRBSF) is

based on density based score fusion and can be used to directly attain optimal performance. In

this procedure, a kernel density estimator (KDE) is used to estimate the densities of different

EEG based decoding using CNN & LRBSF
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classes using only training data and fusion is done between a match score and these densities.

The estimation of the class of the score is done using a likelihood ratio test (LRT) [46]. Score

based fusion is common in biometric systems but has never been used in prediction of brain

activity.

LRT is a method for evolving a hypothesis test, in which both the alternative and null

hypotheses exist. Let the null hypothesis be denoted by M0 and the alternative hypothesis

by M1; f0(x) and f1(x) are the conditional joint densities of the k match scores given the null

and alternative hypotheses respectively, where x = [x1,x2,x3,� � �,xk]. Let the match scores of K

different given matchers be represented by X = [X1,X2,X3,� � �,Xk]. The match score of the kth

matcher is represented by the random variable Xk where k = 1,2,� � �,K. The purpose of the test

is to assign the observed match score vector X to one of two classes i.e. M0 or M1. H0 is the null

hypothesis which should be rejected and H1 is the alternative hypothesis. According to Ney-

man-Pearson theorem, [62] for testing a hypothesis H0: f(x) = f0(x) against H1: f(x) = f1(x), the

likelihood ratio test which rejects H0 in favor of H1 has the form

CðxÞ ¼
f0ðxÞ
f1ðxÞ

� Z ð5Þ

PðCðxÞ � ZÞ ¼ a ð6Þ

If Eqs 5 and 6 are satisfied for threshold η, this is the most powerful test among all level α
tests.

KDE is a non-parametric way to estimate the probability density function (pdf) of a random

variable. Without any presumptive distributional properties, it is used for the estimation of a

distribution on a given set of data samples [63]. The advantage of non-parametric estimation

is that it does not have a fixed structure and does not depend upon all the data points for esti-

mation. KDE is widely used in many fields and applications [64, 65] [66, 67].

Fusion of match scores based on likelihood ratio test. As we have discussed earlier, five

different categories were used in this study. One to one decoding was done between all five

classes in a manner similar to the one against one method in multi class SVM, in which the

process is repeated k(k − 1)/2 times and every time the decoding accuracy is found between

only two conditions. After selecting the significant EEG features, the feature vector was rear-

ranged according to highest t-values and subsets of features were made. Every time the training

and testing data were separated out randomly; the probability density function of both classes

was estimated using a training data set and fused with the test vector to find the prediction

accuracy between two classes. The decision about the class of the test vector was done using

the likelihood ratio test described in Eq 1. In the first case of our experiment, there were two

conditions: human and animal. If M1 represented the human and M0 represented the animal

class, then quality based likelihood should be greater than 1 for the M1 and less than 1 for the

M0 class. In this technique, density based scores were fused for explicit estimation of M1 and

M0 match score densities. The advantage of this approach was that it could directly attain ideal

performance for any desired point and was based on the estimation accuracy of the scores.

The KDE was used to estimate the densities of the classes.

Fusion of match scores and their performance. To define the fusion of match scores

based on likelihood ratio, a vector of match scores and estimated densities was required to

compute the likelihood ratio fusion. Let K is match scores vector with different number of

features and f̂ 1ðxÞ and f̂ 0ðxÞ be the estimated densities of human class and animal class,
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respectively. The x should be assigned to the M1 class

if LRðxÞ � Z; where LRðxÞ ¼ f̂ 1ðxÞ=f̂ 0ðxÞ ð7Þ

and η is the decision threshold which is found based on the overall accuracy.

The Eq 7 can be re-written as

f̂ ðxÞ ¼
QK

k¼1
f̂ kðxkÞ ¼

PK
k¼1

logf̂ kðxkÞ ð8Þ

During analysis of multi-class decoding, LRBSF is applied to all five classes simultaneously

by extending the two classes method. Let c1, c2, . . .., cm are different classes then the likelihood

ratio for every class is found using

f̂ ðxÞ ¼
Pp

j¼1
log f̂ ck;j

ðxÞ ¼ Sk ð9Þ

For the right choice of the decision among all five classes, the following rule is applied,

which allows a decision about the right class based on the maximum value.

Rule : Assign to class ko iff max
1�k�m

Sk ¼ Sko
ð10Þ

Significance test. In this study, a Monte-Carlo cross validation (CV) procedure was

applied to check the performance of SVM and the proposed method. In Monte-Carlo CV, data

are divided into k equal sized folds, which is the same as in k-fold CV. However, unlike k-fold

CV, in which there is no repetition of any sample in different folds because the division of

folds is sequential, in Monte-Carlo CV the division of folds is random, which means there is a

chance of repetition of samples in different folds. The advantage of Monte-Carlo CV is that it

can explore many possible partitions and give extra variations in the analysis which produces

more reliable results. The process of Monte-Carlo CV is repeated 100 times and every time the

entire data are divided randomly into a 90% training set and 10% testing set. The average per-

formance of 100 repetitions is reported in the study.

Results

In this section, results are reported for different methods of feature extraction and prediction/

classification. However, the arrangement of EEG data and the method of feature selection is

the same for all the methods. The classification accuracy of MVPA may depend on the number

of selected features [6] so we chose the n most active features per class. The value of n lies

between 50 and 5,000 features in discrete steps which start from 50 and finish at 5,000 with an

increase of 50 features every time, so there are 100 levels of feature selection.

In all the presented results data of every image was analyzed separately. In the experiment,

every image appeared twice means there were two presentations of every image.; Initially data

from every presentation (trial) of every image was separated out. Every presentation of image

was appeared on the screen for 1 sec followed by a rest period of 1 sec. The EEG data had sam-

pling frequency of 250 Hz, so every presentation (trial) of image and its corresponding rest

period had 250 samples. In this way every presentation of image and rest period had a matrix

of size 128�250; 128 are representing the number of channels in the rows and 250 are samples

in the column. For further analysis we took average data of both presentations for every image.

In this way instead of single trial analysis we did analysis by taking the average of two trials

which can give better quality of data. This averaging technique is used in previous fMRI studies

[8, 10, 13] related to decoding the human brain. In all presented results, analysis of every

image means the average of both presentations (trials) of the image.
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Decoding results between task vs baseline

Initially, a basic analysis is done in which the statistical difference of the task with respect to

the baseline is found. The features are extracted from every image and compared with the cor-

responding baseline. These Features are extracted using a discrete wavelet transform (DWT), a

t-test is applied for the selection of significant features, and SVM is used for classification. An

average accuracy of 96% is achieved in this analysis with an average number of 712 features,

because the results are found with a different number of features ranging from 50 to 5,000. We

have also found which EEG channels out of 128 are more significant in this simple task or in

other words which have more significant information for a visual task. These significant chan-

nels are mostly from the occipital and temporal regions and these channels are later used for

further analysis.

Decoding results of five classes using existing methods

In the main analysis, instead of two conditions i.e. task and baseline, the data are divided into

five categories and one against one (pairwise) SVM classification is done for all conditions. In

pairwise classification, k(k − 1)/2 SVMs are trained for k classes to distinguish the samples of

one class from the other. Decoding accuracy is achieved by classifying the correct test vectors

and a confusion matrix is made to assess the performance of the classifier.

The most common and popular feature extraction and prediction/classification methods in

EEG data analysis are the wavelet transform (WT) and SVM, respectively. They are imple-

mented separately and also with a half contribution of the proposed method; decoding results

for the combination of ConvNet & SVM and WT & LRBSF are also found. The average result

from all participants is shown in Fig 4 along with the existing methods, which show that even a

half contribution of the proposed method is better than the existing one.

Fig 4. Pairwise decoding results of five classes using existing methods and combination of existing and proposed methods.

https://doi.org/10.1371/journal.pone.0178410.g004
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Decoding results using proposed method

In the previous section, both ConvNet and LRBSF were individually implemented with SVM

and WT, respectively for five different conditions which were classified using pairwise classifi-

cation. In this subsection, the results from the combined ConvNet and LRBSF method are

discussed, which are far better than all previous cases. During the analysis of the proposed

method, accuracy, sensitivity and specificity of all 26 participants were found using the con-

fusion matrix and the final results were averaged across participants for each category. The

average accuracy, sensitivity and specificity along with the best and worst accuracy of any par-

ticipant for each category is mentioned in Table 1. These results are one-versus-one (pairwise)

classification of all five categories.

After one-versus-one classification analysis of five categories using proposed method and

128 EEG channels; the same procedure of one-versus-one classification analysis was repeated

with only limited significant channels that were found earlier during the baseline task in sec-

tion 3.1. However, the results for all channels are better than the significant channels and the

results for all channels are the only results shown in manuscript. The average accuracy of all

participants against the conditions is shown in Fig 5 which is far above than the “pure” chance

level (50% chance performance) and “permutation based” chance level which is 57–61% for all

conditions after 1000 repetitions. Average accuracy, pure chance level and permutation based

chance level is shown in Fig 5 which is almost same as discussed in the study [68]. According

to this study for p-value p<0.05 and with approximately 100 samples, the accuracy between

pair wise classification should be around 58%.

Comparison of existing methods with proposed method

The proposed method was compared with raw EEG data and other combinations. Initially, we

took features based on ConvNet and used an SVM classifier. Second, we used raw EEG data

and performed prediction using LRBSF. The complete ConvNet model (LeNet) was also used

to find the prediction accuracy. In this way, raw data was given to the ConvNet model and

final prediction accuracy was found. It also showed lower accuracy because all current models

of deep learning are designed with engineering goals and are not suitable to model brain com-

putations [43]. Finally, in the proposed method, features were extracted using ConvNet,

selected using a t-test, and predicted using LRBSF. The proposed method was also applied to

another EEG data set, which is a response based task with colored images and has shown very

Table 1. Performance for all categories using the proposed method (ConvNet & LRBSF). Best and worst performance of individual participant is also

mentioned.

Average of 26 participants Individual participant

Feature selection with two sample t-test Accuracy Sensitivity Specificity Best accuracy Worst accuracy

Human vs Animal 77.1% 77.2% 76.9% 87.1% 73.1%

Human vs Building 79.1% 83.7% 75.4% 86.2% 72.2%

Human vs Natural Scenes 80.1% 79.07% 80.7% 86.3% 73.8%

Human vs Fruit 78.7% 75.5% 81.2% 89.1% 73.3%

Animal vs Building 81.5% 76.56% 88.88% 87.4% 72.5%

Animal vs Natural Scenes 83.1% 88.6% 76.6% 85.9% 73.6%

Animal vs Fruit 77.4% 74.5% 81.6% 83.8% 73.4%

Building vs Natural Scenes 79.4% 83.9% 75.6% 86.2% 75.7%

Building vs Fruit 81.5% 85.4% 78.5% 89.7% 73.6%

Natural Scenes vs Fruit 81.1% 74.4% 85.97% 88.8% 74.2%

https://doi.org/10.1371/journal.pone.0178410.t001
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good accuracy (90%) against this task. The comparison of all methods is shown in Fig 6. All

these comparisons are based on one-versus-one (pairwise) classification results. Last two

higher accuracies are with proposed method (PM). The 79.9% results are for grey level non

response based task while 90% results are for response based color image task.

For EEG signals, there are many time and frequency based methods for the extraction of fea-

tures; however the most popular and reliable way to extract the features is with a wavelet trans-

form (WT), which has information in both the time and frequency domains [24]. In the wavelet

transform, the data are decomposed in different frequency components by using scaling and

shifting, which give coefficients for the signals. Similarly, the most popular method for classifi-

cation/prediction is SVM, because it is used in most of the decoding studies [6, 11, 14, 24, 69].

Fig 5. One-vs-one decoding accuracy among all participants for different conditions. Average chance level and permutation based chance level

(upper boundary of a 95% confidence interval for chance based on a permutation test) are shown along with the accuracy found using proposed method.

https://doi.org/10.1371/journal.pone.0178410.g005

Fig 6. One-vs-one decoding accuracy of different methods including the proposed method for grey

scale images and response based colored images.

https://doi.org/10.1371/journal.pone.0178410.g006
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The proposed algorithm is compared with complete ConvNet model, a combination of

raw data & SVM, WT & SVM, ConvNet & SVM and finally a combination of WT & LRBSF.

In this study, a modification in ConvNet was done; that is why the proposed algorithm is

compared with the complete ConvNet model. Similarly, WT and SVM are the most popular

methods in EEG data analysis as discussed above, so their combination is also compared

with the proposed algorithm. Because we have extracted the features from raw data, a com-

parison between the proposed method and combination of raw data & SVM was also done.

The combination of WT and SVM produced an average accuracy of 65%. Moreover, WT

was also used with LRBSF and ConvNet with SVM. In both cases the average accuracy was

around 70%, which is less than the complete proposed algorithm but better than all previous

comparisons. This shows that just half of the proposed algorithm is better than the most

popular current methods (WT & SVM).

As discussed earlier, the accuracy was found with a different number of features for all

results. The number of features for maximum accuracy in the proposed and existing methods

is also different. This is because initially, the number of features were increased by using Con-

vNet which increased the data dimension. Initially there were 250 samples in 1 sec data means

there were 250 features per image (appeared for one sec on the screen)for raw data and 282 for

WT while ConvNet had 1100 features after applying different random kernels at convolutional

layer which gave same number of feature maps. Due to large number of feature maps, the

dimension of the data was increased in ConvNet. The accuracies are plotted against the num-

ber of voxels for the proposed method and WT only, as there is a smaller difference in number

of features between WT and raw data (Figs 7 and 8).

Fig 7 shows the decoding accuracy with the number of features for a single participant

and condition while Fig 8 is the average decoding accuracy with the number of features for all

Fig 7. Graph of the decoding accuracy with the number of features for single participant and condition. Dotted

line shows results for wavelet transform while solid line for proposed method.

https://doi.org/10.1371/journal.pone.0178410.g007
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participants and conditions. The pattern is the same in both figures; the blue line shows the

number of features vs accuracy for WT and the red line shows the same information for the

proposed method. The accuracy difference between WT and the proposed method is shown

along the y-axis which has already been discussed; however this difference is also seen along

the x-axis in both figures. This is due to the greater number of features used in the hybrid (pro-

posed) algorithm compared to WT and can be seen in Figs 7 and 8. The results clearly show

that by enhancing the features using ConvNet, the accuracy is increased significantly. As dis-

cussed earlier, ConvNet works by enhancing the original features many times (WT and raw

data in this case) which gives better results. This is the main purpose of using ConvNet [27]. In

both Figs 7 and 8, results with accuracy of greater than 50% are shown.

To check whether the accuracy differences were statistically different or not, classification

accuracies of all conditions were used in a standard paired t-test between the proposed method

and all others. Significant p values were found between the proposed and other methods for

each comparison. In every case, a significant p value of p< 0.0001 was observed. ANOVA was

also applied between the results of all methods simultaneously, which revealed significant

results with a p-value of p< 0.00001. In both types of statistical tests, classification accuracy of

all categories was used. The significant difference of accuracies between other methods and the

proposed one is mentioned in Table 2.

Fig 8. Graph of average decoding accuracy with the number of features for all participants and conditions. Dotted line

shows results for wavelet transform while solid line for proposed method.

https://doi.org/10.1371/journal.pone.0178410.g008

Table 2. Significant difference (p-value) of accuracies between the proposed and other methods.

Raw data & SVM vs

Proposed Method

WT & SVM vs

Proposed Method

ConvNet features & SVM vs

Proposed Method

Raw data & LRBSF vs

Proposed Method

ANOVA (between the results of all

methods simultaneously)

8.34695E-10 1.49134E-10 1.32536E-08 1.08466E-09 4.99E-28

https://doi.org/10.1371/journal.pone.0178410.t002

EEG based decoding using CNN & LRBSF

PLOS ONE | https://doi.org/10.1371/journal.pone.0178410 May 30, 2017 15 / 23

https://doi.org/10.1371/journal.pone.0178410.g008
https://doi.org/10.1371/journal.pone.0178410.t002
https://doi.org/10.1371/journal.pone.0178410


Multi-class decoding results using proposed method

For multi-class decoding, LRBSF was applied to all five classes simultaneously. The average

result among all participants is 40% which is far above than the “pure” chance level (20%

chance performance) and “permutation based” chance level which is 25% after 1000 repeti-

tions. In Fig 9, the accuracy is shown for different numbers of features along with the pure and

permutation based chance levels, while the accuracy distribution of the permutation based esti-

mation of the chance level is shown in Fig 10.

Discussion

The current study investigated the activity of the brain against different categories of stimuli

using EEG recordings. A novel algorithm was developed to decode human brain activity with

higher accuracy. This algorithm is a constructive addition in EEG data analysis, because accu-

racy has always been a primary issue in EEG. The proposed algorithm is a complete framework

based on MVPA and is the combination of new and existing techniques. It consists of compre-

hensive data arrangement, a modification of the ConvNet model, a t-test and LRBSF, which

predicts the novel data of different object categories with an average prediction accuracy of

79.9%. The novelty in the proposed algorithm for decoding using EEG data is the use of new

techniques, which includes modification in ConvNet model, the introduction of LRBSF in

EEG data analysis and the processing of EEG data in a new way so that every image is directly

part of the final analysis.

In recent years, ConvNet became popular due to its capability of automatic feature extrac-

tion and best results compared to other machine learning methods. ConvNet architecture has

Fig 9. Multiclass decoding accuracy is shown averaged among all participants with respect to number of features. The red dotted line

shows the pure chance level while blue line shows the permutation based chance level (upper boundary of a 95% confidence interval for chance

based on a permutation test).

https://doi.org/10.1371/journal.pone.0178410.g009
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different layers which brings the data into deeper and detailed form and extracts more sig-

nificant features using different feature maps. In ConvNet, the connectivity pattern between

the neurons is inspired by the organization of the animal visual cortex. In visual cortex, the

response to stimuli is in a restricted region which is known as receptive field. There is an over-

lapping between the receptive fields which covers the visual field. In ConvNet, the response

of neurons against the stimuli in the receptive field can be found approximately using con-

volution operation. The convolutional network is inspired by biological processes and need

minimal amount of pre-processing with wide applications especially in video and image re-

cognition. In image processing, the dimension of data is quite high so existing ConvNet

architectures have many layers (normally 15–20); more deep layers give better accuracy. In

neuroscience, due to lack of existing models [43] some studies have done modifications in

existing models for better results [70, 71]. At convolutional layer, different kernels can be

defined which give same number of features maps. In this way more and detailed information

can be extracted with new features which gives better accuracy, however due to many kernels,

feature maps and layers, the dimension of the data is increased. This needs a lot of computa-

tion especially for new ConvNet models which require extra hardware for processing. In this

study, ConvNet model is modified with limited number of layers and no extra hardware is

used to run the algorithm even with more feature maps.

The aim of using LRBSF in parallel to SVM is to see its performance for neuroscience appli-

cations as in biometric system, this method has already been proved better than SVM [46, 72].

In LRBSF, KDE is used for the estimation of densities and LRT to do decision about the class.

The primary benefit of using KDE is that it is a non-parametric estimator and have no fixed

structure, that’s why it depend upon all the data points to reach an estimate. It can also deal the

non-Gaussian data in a better way and a flexible way to estimate the densities; moreover it is

not very sensitive to the shape of the kernel [73]. Although, most of the models assume that the

Fig 10. Multiclass accuracy distribution of the permutation based estimation of the chance level for decoding.

https://doi.org/10.1371/journal.pone.0178410.g010
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neuroimaging data (EEG/fMRI) is Gaussian like general linear model; this assumption is

mostly not true. The dealing with non-Gaussian data is an advantage of KDE and may be the

reason of better performance compared to SVM. This method does not need the optimization

of parameters like C and gamma in SVM; in this way the validation data can also be saved. In

short, KDE is a non-parametric and non-Gaussian method in which instead of normal distri-

bution we are estimating the densities by finding the density histogram. Moreover kernel esti-

mator smooth out the contribution of each observed data point over a local neighborhood of

that data point.

Unlike conventional EEG studies, in this study the data is arranged in a different way.

Mostly in EEG, ERP analysis or averaging of data among categories is done, however in this

study we have found significant features against every image separately so that every image

becomes the part of final analysis. In short, in this study the EEG data is arranged in a better

way along with the modified ConvNet architecture and LRBSF. Since both ConvNet and

LRBSF are considered as best methods in other areas and are not popular in neuroscience

especially LRBSF which has never been used for EEG data before. The proposed algorithm

which consists of ConvNet and LRBSF proved that it is a better addition in neuroscience. The

main outcome of this study is the decoding analysis of five different categories. These catego-

ries are human, animal, building, natural scenes and fruits. This experiment consists of an

event related design in which trial order is randomized, which is more accurate and consumes

less time because images appeared only for one second with the same duration of rest period.

Images of all five categories are presented randomly. It is always a challenging task to differen-

tiate between categories in EEG data analysis; however EEG is commonly used to differentiate

the brain states of patients’ vs normal participants or during any task and baseline. There are

some studies in EEG which decode brain activity for different types of categories means same

type of images but belongs to different groups like animal and humans. In these studies, accu-

racy is quite low [23, 24, 26] because EEG is mostly used for ERP analysis or for simple tasks in

which any task is simply compared with the baseline (eyes open). In a recent study, Crouzet,

et al. [26] used MVPA and EEG data for one to one decoding between four categories of taste:

salty, sweet, bitter and sour. These researchers achieved decoding accuracy between all catego-

ries of 61–65%.

Another finding of this study is the decoding accuracy of the WT and SVM combination

during task and baseline, which is 96%. The reason for lower accuracy in the case of five cate-

gories is the smaller differences in brain activity between images of different tasks. On the

other hand, the difference in brain activity between task and baseline is quite noticeable. The

above discussed accuracy difference shows that it is difficult for simple methods like WT and

SVM to identify significant differences between the categories. However, the proposed algo-

rithm has extracted detailed information and did prediction effectively. In Figs 7 and 8, it is

shown that the proposed algorithm used more significant features compared to the WT which

improved the results significantly. In single participant analysis, the WT showed maximum

accuracy of 80% with 250 features while the proposed method used 1450 features for an accu-

racy of 90%. In the average result from all participants, WT used approximately 250 features

for an average accuracy of 65% while the proposed method used approximately 1200 features

for an average accuracy of 80%.

In another study, Taghizadeh-Sarabi et al. [24] decoded basic objects using EEG and

achieved an average accuracy of 70%. In this experiment, color images were shown and the

participants had to respond regarding the right and wrong category. The images of one class

appeared simultaneously with non-target images. We had also implemented this method on

our data and achieved an average accuracy of 71% which was almost same as mentioned in

this study. Although we had an advantage of 128 channels data but on the other hand our
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experiment design was non response based and had grey scale photos. The mentioned study

was response based and had color photos (images). To extend our work and to check the exact

performance of our proposed algorithm on a response based task with color photos, we rede-

signed the same experiment and collected EEG data from 12 more participants. The colored

images of every class were taken from internet. Unexpectedly, an average decoding accuracy

of 90% (Fig 6) was achieved, which is far better than the above mentioned study. In addition

to the use of the proposed algorithm, one more factor might have helped in achieving good

results. This additional factor is EEG equipment, considering that we have recorded EEG data

with a 128 channel EGI system while the previously mentioned study used only 19 channel

equipment.

Conclusion

The present study developed a novel algorithm for discrimination of brain states using nonin-

vasive EEG. The experimental results demonstrated that by using this algorithm the decoding

accuracy is increased significantly and shows better percentage accuracy compared to other

methods. A combination of the WT and SVM produced good results during task and baseline,

however their performance decreased among different categories. In short, the promising

results show that the proposed algorithm has the ability to extract more significant information

and can predict brain activity efficiently. Secondly, the proposed method worked best with 128

channel equipment and produced an average decoding accuracy of 90% for colored images

compared to 70% in the previous study. We conclude that the proposed algorithm has outper-

formed all the most popular existing methods for brain decoding. To further improve the

results, an extension can be done in ConvNet by changing the number and size of filters and

pooling layers.
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