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Abstract

We investigate whether the dynamical lattice supersymmetry discussed for various Hamiltonians,
including one-dimensional quantum spin chains, by (Fendley et al 2003 J. Phys. A 36, 12399424; Yang
and Fendley 2004 J. Phys. A 37, 893748; Hagendorf and Fendley 2012 J. Stat. Phys. 146, 112255) and
(Hagendorf et al 2013 J. Stat. Phys. 150, 60957; Hagendorfand Liénardy 2017 J. Phys. A 50, 185202;
Hagendorfand Liénardy 2018 J. Stat. Mech. 033106) might also exist for the Markov matrices of any
one-dimensional exclusion processes, which have the additional constraint of zero column sums by
comparison with the spin chains. We find that the DiSSEP (Dissipative Symmetric Simple Exclusion
Process), introduced by Crampe et al in (Crampe et al 2016 Phys. Rev. E 94, 032102; Vanicat
[arXiv:1708.02440]), provides one such example for suitably chosen parameters. The DiSSEP Markov
matrix admits the supersymmetry in these cases because it is conjugate to Ising (\* = 1)and A = —1/
2 XXZ (A\* = —3) spin chain Hamiltonians which also possess the supersymmetry. The consequences
for the spectrum of the DiSSEP Markov matrix are discussed. We also note that the length-changing
supersymmetry relation for the DiSSEP Markov matrix M " and the supercharge Q" for L sites,
MLQLT = QML is reminiscent of a ‘transfer matrix’ symmetry that has been observed in other
exclusion processes and discuss the similarity.

1. Lattice SUSY

A dynamical, exact lattice supersymmetry in one dimensional lattice fermion systems and spin chains was first
observed by Fendley et al [1-3]. A lattice Hamiltonian for L sites with such a supersymmetry can be written as

HL = QLTQL + QL+1QL+1T (1)
where H" acts on the vector space VL, with V ~ C2. The lattice supercharges Q*, Q' act on chains oflength L

andL — 1respectivelyas QL: V&L — V®(I-Dand QL: V&L= — VL1 Foran open chain, these may be
expressed in terms of local supercharges as

-1 -1

QL — Z(_l)k+lqk,k+l’ Q” — Z(_l)k+1q£ (2)
k=1 k=1

whereq: V® V — Vand q: V — V ® V and the subscripts denote the lattice sites on which the operators

act[4]. Qlisdefined for L > 2.Inamatrix representation qand q are thus 2 x 4and4 X 2 matrices

respectively. Satisfying the standard nilpotency conditions for the global supercharges

Q'Qt =0, QM'QM =0, 3)
gives the following associativity condition on the local supercharge q for open chains [5, 6]
9@ @ DY) = q@ @ @ly), V) eV )

1 . . . . . . . . . -
The choice of Q' and q to be creation operators, which seems appropriate in this context, is the opposite of that used in [4, 5, 7] but agrees
with thatin [6].

©2019 The Author(s). Published by IOP Publishing Ltd
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or the equivalent coassociativity condition on ¢

(@ ® Dq'ly) =A@ HdqlY), YY) e V. Q)
The condition on ¢ (and similarly for q) for closed chains of length L is modified to
(¢ @ Dq — T NdlY) =Ix) ® W) — [¥) @ Ix), YI¥) €V (6)

where|y) € V ® V issome fixed vectorand L > 3 asa consequence of the definition of Q.

Ifa supercharge of the form equation (2) satisfying equations (4), (5) or equation (6) is inserted into
equation (1) all the non-nearest-neighbour terms in the anticommutator cancel due to the alternating sign
factors and the resulting nearest-neighbour bulk Hamiltonian is of the form

h=—@@qﬂi@b—wq®m@®q6+¢q+§md®ﬂ+ﬂ®q®, %)

supplemented by boundary terms (1,/2)qq' for open chains. For a closed spin chain of length L an additional
local charge qg is defined which either shifts the action of qif to the left or qz to the right. Demanding the
compatibility of these two possibilities restricts the supersymmetric construction of the Hamiltionian to
particular eigenspaces of the translation operator in this case. The supersymmetry for the open chains is thus
somewhat simpler than for the closed chains since no restriction to special subsectors in necessary to
implement it.

Using the nilpotency conditions in equation (3) shows that the supercharges relate the Hamiltonians of
chains of different length, i.e.

HLleL — QI‘HL, HLQLT — QLTHLfll (8)

Various choices of q, qf leading to well-known Hamiltonians have been explored. Fendley and Yang [2]
noted that

q10) = @ q1) = |00) ©)
gave (up to a constant term) the XXZ Hamiltonian at its combinatorial point with diagonal boundary conditions

-1
1 1
Hcamb = - EZ (O—%Uerl + J{U{JA - E(Uiai+l - H)) - Z(Ulz + Ui) (10)
k=1
with 0™ ” “being the standard Pauli matrices. We have dropped the superscript L on the Hamiltonian above,

and henceforward, for notational conciseness. In the above, the basis vectors are |0) = (é) and|1) = ((1)),

[00) = |0) ® |0)and thelocal supercharge qis

_10 000
q_[l 00 o]‘ an
Hagendorf et al [5] observed that this supercharge can be combined with its image under spin reversal
(0) — 1)
_ 0001
4= [o 00 0] (12)
and a gauge supercharge which acts on any vector [¢)) € V as
qv) = 19) @ [¥) + [¥) @ |6), (13)
where | @) is some vector in V, to give a one parameter family of supercharges
Yy =yt =y
qa() [ LSy oy (14)

with x = (1 + |y|°)~'/2. These still produced the same XXZ bulk Hamiltonian when inserted into equation (7)
but gave identical left and right, now non-diagonal, boundary terms that depended explicitly on y. The
supercharge Q" resulting from equation (14) can be further elaborated to give a limited class of non-identical
boundary terms [5]. The approach readily generalises to higher spin models [4, 8] and gl(N|M)

Hamiltonians [9].

There is a close relation between one-dimensional quantum spin chains and various one-dimensional
exclusion processes, so a natural question to pose is whether the dynamical lattice supersymmetry might also
exist in such models. The Markov matrices of the exclusion processes possess the additional constraint by
comparison with the spin chain Hamiltonians of having zero column sums (for continuous processes), both for

2
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Figure 1. Allowed DiSSEP moves and their rates.

the bulk and boundary matrices, so this must also be satisfied. Even with the additional constraint at least

one model, the Dissipative Symmetric Simple Exclusion Process (DiSSEP) can be shown to possess the
supersymmetry for a particular choice of the model parameters. The DiSSEP is described in the next section and
its local supercharges are explicitly constructed in the sequel. The consequences of the supersymmetry for the
DiSSEP spectrum are then outlined and parallels drawn with a ‘transfer matrix’ symmetry that has been
observed in other exclusion processes.

2. The DiSSEP

The DiSSEP was presented in [10] as an integrable deformation of the Symmetric Simple Exclusion Process
(SSEP) which still allowed a solution via the matrix product ansatz [11]. A concise way to describe the dynamics
in such systems is to use Dirac braket notation to describe the state. For an open system with L sites, introduce an
indicator variable n; € {0, 1} at each site i to denote the presence or absence of a particle and denote the
probability of finding a configuration n;..., nip at time tby B (n;,...,n;). The evolution of the ket vector |P)

|Pt> = Z Pt(nl)-”snL) |T’l]...7’lL>, (15)

where |n;...n;) = |n)® ... ®|ny) is given by master equation
d|R)

20— M |R). 16
ir |P) (16)

The basis vectors are again, as for the spin chains, [0) = ((1)) and|1) = ((1)) The Markov matrix M appearing in

the master equation is given for the DiSSEP by
-1
M) =B+ Y mge1 + By (17)
k=1

with boundary transition matrices B, B and bulk transition matrix m given by

X 0 0 X 5 s
(o v o 11 o o (-
B_(a —7)’ "=lo 1 -1 o B_(é —B)' (18)

X0 0 =X

The bulk Markov matrix #1, ;1 | acts between nearest neighbour sites k, k + 1, giving forward and backward
hops and pair addition and annihilation in the bulk, while the boundary matrices B, B allow the addition and
removal of particles at both ends of the system. The stochastic nature of the model is evident from the column
sums of the various matrices being zero, since they describe rates. This is the distinguishing feature of this class
of models. The various allowed processes for particle moves and their associated rates are shown in figure 1.
The Markov matrices of such one-dimensional exclusion processes and one-dimensional quantum spin
chains can be related by conjugation. For the case of the DiSSEP, the Markov matrix M(\*) is conjugate to the
Hamiltonian Hyx (\*) of an open XXZ spin chain with upper diagonal boundary conditions, both with L sites,

via[12]
Hixy (W) =-U U.QUMMW) Ul Ul.oU! (19)
where
1L /11
U‘f(l 1) 20
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and
2 o0ty L 0+8 .
Hxxz (X)) = —(ov — y)o + T(Ul +D — (6= P + T(JL +D
N1 = N1
+ Z Ok Ok + U{UZH - 2—(0i‘7i+1 =D 2D
2 & X -1
where 0~ = o* + io” are raising and lowering matrices”. It is clear from equation (21) that \*> = 1isa

particularly simple, diagonal Ising limit for the bulk Hamiltonian in the model. Similarly, if « = «yand § = 6 the
XXZHamiltonian boundary conditions also become diagonal. The simplicity is reflected in the solution of the
conjugate DiSSEP when A\* = 1[10].

3. The DiSSEP at ) = 1and lattice SUSY

Itis straightforward to see that

_]101 10
4= [1 00 1] (22)
and its image under spin reversal
[t o001
4= [o 11 o] (23)
satisfy equations (4), (5) and that both generate the negative of the bulk DiSSEP Markov matrix
1 0 0 -1
10 1 =1 0|_ /[ .« x
m=ly 2y 1 ol= (c*®0o I) (24)
-1 0 0 1

for \* = 1 when employed in equation (7). Inserting an overall minus into the relation between the supercharges
and the Hamiltonian, now Markov matrix, in equation (1) does not change any of the ensuing discussion, so the
change in sign is immaterial for the existence of the lattice supersymmetry. The boundary matrix (1,/2)qq',
however, obtained from both of these supercharges is diagonal
o 10
B=B= 25
5 Y] (25)
and therefore non-stochastic.
For the XXZ Hamiltonian of equation (10) ¢ and q' anti-commute up to boundary terms

(—d @I+I1® 3 + (-3 @I+ 1@ aHqlv) = Ix) @ [¥) — [¥) @ |x) (26)

V |¢)) € V and where |x) is explicitly calculable, so additional gauge terms are needed to combine them into
equation (14) to give a q(y) that will satisfy equations (4), (5). In the case of the DiSSEP ¢ and g from
equations (22), (23) anti-commute without boundary terms

(¢ @I+I®qg + (-3 @ I+1I®q"Hqlly) =o. (27)

This allows them to be directly combined without introducing any gauge terms to give a one-parameter family of
supercharges q(y) which continue to satisfy the (co)associativity conditions of equations (4), (5)
1 vy y 1

y1 1y ], (28)
where x = (1 + |y*)~!/?in this case. When inserted into equation (7) q(y) still gives the (negative) DiSSEP
Markov matrix in the bulk of equation (24) but the boundary terms are modified to

q(y) = x[

2R(y)
1+ [yl
2R(y)
1+ [yl

B(y) = B(y) = (29)

2 We have included minus signs in both the conjugation in equation (19) and the Hamiltonian in equation (21) by comparison with [12] (ina
similar manner to [13]) to facilitate comparison with various Hyx, Hamiltonians and Markov matrices later, where the natural choice is to
take the minus sign in front of the Hamiltonians. We have also chosen U to be unitary to simplify some of the ensuing numerical factors
when discussing conjugating supercharges.
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We are thus able to obtain stochastic boundary matrices by takingy = —1, corresponding to the zero bias case of
a = 3 = v = 6 = 1 when the overall minus sign is taken into account.
The DiSSEP supercharge q(y) can be translated to its conjugate, q,(y), using the U matrix from
equation (20)
9N=Uan U e U"!
A(N=Ue UJ(p U, (30)

which gives the supercharge for the \> = 1 XXZ Hamiltonian (i.e. Ising Hamiltonian H,) that is conjugate to
A* = 1 DiSSEP Markov matrix. We find

0.0 = ﬁx[ygl 00y 1] G
and
7-1 0
i =v2x| oo (32)
0 j41

When q,(y), qi( y) are inserted into equation (7) they give the simple diagonal bulk and boundary Hamiltonians

_ 2Re(y) 0000

o 1+ [y lo200
Bp=Bo1=| swen | ™ =0 0 2 of (33)

1+|)’|2 0 0 0 0

som, = —(0% ® ¢ — I). Consistently, this is the bulk term for Hyx(A\* = 1) in equation (21), which is just
the Ising Hamiltonian, or Hy.
The results of this section could thus equivalently be construed as stating that q (), qZ( y) of equation (31),

(32) provide a one parameter family of supercharges for the diagonal Ising Hamiltonian H,

-1

Hz(y) = =>_(0f0%s1 — D + Bea(y) + Ber (). (34)

k=1
This Hamiltonian is conjugate to the (negative of the) A? = 1 DiSSEP Markov matrix, H «(¥), generated by
supercharges q(), q'()

L-1
Hy(y) = =>_(0foi — D + Bi(») + Bu(y), (35)
k=1
via
Hz(y) =U® U..QU Hx(y) U"' ® U 1..@U"! 36)

(since Hx(y) = —M) and both therefore display the supersymmetry.

Regarding equation (34) purely as an Ising chain there is no reason to fix a particular value of y, so the
supersymmetry exists for the entire one-parameter family of Hamiltonians. However, demanding that the
boundary terms B;( — 1) and B; (—1) in the conjugate DiSSEP Hamiltonian of equation (35), Hy, are stochastic
forcesy = —1 since then

Bi(—1) = By(—1) = (_11 —11) (37)
These stochastic boundary terms are conjugate to
5 20
Bua(-D = B(-0 = (] )=+ 1. (39)

which can be seen to be the boundary terms in equation (21) whena = = 6§ = v = 1.

4. The DiSSEP at \* = 1, lattice SUSY and the spectrum

The principal physical consequences of the dynamical lattice supersymmetry are a singlet zero energy state and a
spectral degeneracy between chains of length Land L + 1 for either a Hamiltonian H or a Markov matrix M.

5
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These features are a direct consequence of the definition of the Hamiltonian in equation (1)
HL = QL'[‘QL 4 QL+ 1QL+1T (: _ML)

and the observation [5] that H|+)) = E|t)) then implies that (dropping L superscripts for brevity)
QUM P + 11QT) 1P = EllIIP (39)

giving zero and positive (negative) eigenstates for the Hamiltonian (Markov matrix). If E = 0 these states are
doublets (superpartners) of the form

1), QlY) (40)

with Q|¢)) = 0, asisstandard in supersymmmetric theories. The unusual feature for the dynamical lattice
supersymmetry is that these states are for chains of different length. There are thus spectral degeneracies between
chains oflength Land L + 1. A zero energy state, on the other hand, requires

Q) =0, Q¥)=0 (41)

which implies that it must be a singlet [5].

It is possible to see both of these features straightforwardly in short DiSSEP chains at A*> = 1and
o = = 6 = v = 1byusingequations (1), (2) to construct the Markov matrix M explicitly to obtain its
eigenvalues. Taking L = 2, 3 asillustrative examples, the respective Markov matrices are given by

-3 1 1 1
2 1 -3 1 1
M=ty 0 5 (42)
1 1 1 -3
with eigenvalues 0(1), — 4(3), where the degeneracy is indicated in parentheses, and
-4 1 0 1 1 0 1 O
1 -4 1 0 0 1 0 1
0 1 —4 1 1 0 1 O
s 1 0o 1 =40 1 0 1
M=11 01 0 41 0 1 43)
0 1 0 1 1 -4 1 0
1 0 1 0 0 1 -4 1
6o 1 0 1 1 0 1 -4

with eigenvalues 0(1), —8(1), —4(6). Both M*and M’ possess a zero eigenvalue singlet and the eigenvalues —4
for L = 2 have partners in the L = 3 spectrum. M " is diagonalized by the conjugation relation in equation (19)
when \*> = o = 8 = v = § = 1. Forinstance, when L = 2 the conjugation gives

—4 0 0 0
veumuleut=|0 "4 0 0L (44)
0 0 0 0

Itis also possible to build the Markov matrices by hand for short chains by simply putting the rates for the
allowed transitions into the correct positions in the matrix. The process can be automated for larger L. In this
construction the boundary rates are not restricted toa = 3 = § = v = 1, but can take on generic values. In
principle \* can also take on generic values when building the Markov matrices in such a manner, but we limit
the discussion here to the simpler case of A> = 1 (it is also unclear if the supersymmetry is present for X2 = 1).
The Markov matrix for L = 2, M, is given by

—l—-—a-9¢ 16 5y 1
o —l—-—a-p0 1 vy
e 1 —1—7-=9 I3 (45)
1 @ 6 -1-0-7

with eigenvalues0, =2 — 3 — §,—2 — a@ — yand —a — 3 — vy — 4. The conjugation transformation in
equation (19) now upper diagonalizes M*

? We would like to thank Arvind Ayyer for pointing this out, and doing it.

6



I0OP Publishing J. Phys. Commun. 3 (2019) 105011 D A Johnston

—a—0Ff—-0—v o6—0 o — 0
U UMXU '@ U= 0 -y 0 ¢ (46)
0 0 —2-6—-08 6—-p
0 0 0 0
but still allows the eigenvalues to be read off directly. Similarly, for L? the Markov matrix M? is given by
-2 —-—a-—-96 16} 1 y 0 1 0
5 2-a-p 1 0 0 v 0 1
0 1 —2—-—a-—-946 15} 1 0 v 0
1 0 6 —2—-—a-—-p 0 1 0 y
«a 0 1 0 -2 —-79-96 16} 0 1
0 o 0 1 s —2—B—~ 1 0
1 0 @ 0 0 1 —2—-79-96 154
0 1 0 «@ 0 6 —2—-0—-x

with eigenvalues —4,0,—2 — 3 -6 (2),2 —a—~v(2),-4—a—-[F—v—dand—a — B — v — dand
is again upper diagonalized by the conjugation of equation (19).

Since the DiSSEP is a free fermion model when \> = 1 even for generic , (3,7, 6, the eigenvalues and the
eigenvectors can be computed for any L [10, 14]. For L > 3, the oL eigenvectors and eigenvalues are
characterized by € = (¢}, €5...,¢1) with; = %1, giving the eigenvalues

L-2
Ae) =f(e, e a4+ 7))+ D (cjeir— D + f (e, e-1, 6 + ), (47)

=2

where the boundary terms are

fle, €,7)=€' — 1 — g(l — ). (48)

This can be seen to be in agreement when L = 3 with the explicit calculation for M above. A(e) can also be

written as
L—1
o+ + 6
A = - 0+ Dieern— D+ b 2 e = ) (49)
=1

where additional fictitious boundary spins €y = ¢ = 1 have been introduced. The DiSSEP spectrum for
length L is thus equivalent to that of an Ising model of length L + 2 with fixed boundary conditions and an
inhomogenous bond at each end.

equations (47), (49) make it clear that the eigenvalues for a chain of length L will have partners in a chain
oflength L + 1 even for generic a, (3, 7, . The boundary terms containing a, 3, 7, 0 are, as one might expect,
unaffected by the length of the chain (for L > 3) and the bulk bond terms add minus two or zero to these.
The discussion in this section shows that this can be interpreted as the consequence of a dynamical lattice
supersymmetrywhen o = 3 = v = § = 1 by putting the DiSSEP in correspondence via conjugation with an
open Ising chain which manifests the supersymmetry. For generic a, (3, 7, 6, on the other hand, it can be put itinto
correspondence with a longer Ising chain with fixed boundary conditions. In this case a construction of the
Hamiltonian from local supercharges, if it exists, is not known. Nonetheless, the spectral degeneracies between
chains of different lengths persist. Since the origin of these when o = 3 = 7 = 6 = 1isthelocal supersymmetry,
their presistence for generic o, 3,7, § is suggestive of supersymmetry in that case also.

For a non-equilibrium model the fact that there is a zero energy singlet with (unbroken) supersymmetry
guarantees the existence of a unique non-equilibrium steady state. The spectral degeneracy visible for both
o = =~ = 6 = landgeneric , 3, v, d means that the possible values of first excited state eigenvalue, which
gives the relaxation rate of the system, are already visible in very short chains. For the DiSSEP the greatest non-
vanishing eigenvalueis —4,—2 — § — §,—2 — @ — yor—a —  — v — 6, depending on the parameter
values and all of these are already present in M.

5.The DiSSEP at \> = —3 and lattice SUSY

The exact dynamical lattice supersymmetry also exists in the DiSSEP at the unphysical value of \* = —3, since
the conjugate Hamiltonian in this case is a multiple of the XXZ Hamiltonian at its combinatorial point, which
possesses the supersymmetry.
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If we define

e o

the (co)associativity conditions equations (4), (5) are satisfied and the corresponding bulk Markov matrix
obtained from equation (7) is

1 0 0 3 3 0 0 -3
o 5 —10|_ Jo -1 1 o
m=1o 215 ol [o 1 -1 ofT¥ D
30 01 -3 0 0 3
which is minus the DiSSEP Markov matrix at \> = —3 along with a constant term, together with stochastic
boundary matrices (1/2)§q"
_a_]1 -1
B_B_L1 1]. (52)
When \*> = —3 the bulk XXZ Hamiltonian conjugate to the DiSSEP
n X1 R, D =
HXXZ()\): Z 0k0k+1+‘7k0k+17 ﬁ(o—kgk-‘rliﬂ) (53)
k=1 -
is four times the XXZ Hamiltonian at its combinatorial point, H,,,,;, in equation (10), i.e.
-1 1
Hyxxz(—3) = 4Hpppy = —2 Z(Jfofﬂ + ojoh, — z(oiaiﬂ — ]I)). (54)
k=1
On the other hand, the conjugates of the supercharge g and §' from equation (50) which give the \*> = —3
DiSSEP are
e T0O0O0 1
4, =UqU'eU —2[0000]. (55)
and
00
At strr-1_50 0
q=UUq'U 200. (56)
10

4, q; are multiples of the spin reversed supercharge §, ' for H,,,,,;, in equation (12), so substituting them into
equation (7) gives 4H ;> consistently with equation (54).

Thus, just as for the A*> = 1 DiSSEP, the supersymmetry observed in the \> = —3 DiSSEP is a consequence
of the Markov matrix being conjugate to a spin chain Hamiltonian which displays the supersymmetry. As a
DiSSEP at an unphysical value of A this is simply a curiousity, but it might be interesting to change perspective
and inquire if results from the DiSSEP side had any implications for the conjugate XXZ spin chain at its
combinatorial point.

6. Conclusions

A brute force scan by computer of possible integer entries {...£2, +1, 0, =1, £2 ... }in qreveals that while
itis relatively easy to generate solutions of equations (4), (5), demanding that these should represent bulk
stochastic matrices (column sum zero, up to a possible constant term) and that the boundary matrices also be
stochastic leaves only the two DiSSEP cases discussed here, \> = 1and the unphysical value of \* = —3. Itis
possible that exploring conjugations and equivalences systematically along the lines of [ 15] might show that
other stochastic Markov matrices are accessible from known supersymmetric Hamiltonians.

The investigations here were motivated by the observation that a ‘transfer matrix’ symmetry which takes the
form

MLTLF = TLipE-1 (57)

exists in several stochastic models, which is analogous to the length changing SUSY relation of equation (8). T+
was explicitly presented via a recursion relation for the asymmetric annihilation process (ASAP), whose bulk and
boundary Markov matrices are given by
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Figure 2. Allowed ASAP moves and rates.

00 0 N 5

_(-a 0 oo 1 o = (0

B_(a o)’ "loo -1 o B_(o —ﬁ)' (58)
00 0 =N

in [16]. The allowed moves for the ASAP are shown in figure 2. It is tempting to regard the transfer matrix
symmetry as evidence for a similar dynamical lattice supersymmetry to the one discussed here for the DiSSEP.
However, the bulk Markov matrix in equation (58) is not amongst those generated by scanning through various
potential q’s here. The algorithm for determining T in [16] is based on the recursive properties of the Markov
matrix and is a global construction rather than alocal formulation.

A similar situation exists for the Totally Asymmetric Exclusion Process (TASEP) [17]. For this a relation
between the Markov matrices for systems of different lengths is of the form

MLTE = TLipE—1, (59)
where T and TL are now two different matrices. Again, the Markov matrix for the TASEP
00 0 O
100 1 O
"Zloo -10 (60)
00 0 O

is not produced by the paricular class of q’s we have examined here.

In summary, we have shown that the DiSSEP possesses a dynamical lattice supersymmetry in the sense of
[1-5,7]for X* = 1, —3anda = 8 = v = § = 1. Both A\ values represent simplifying values for the model
parameters since the bulk Markov matrices for A> = 1, — 3 are conjugate to a diagonal Ising Hamiltonian and
an XXZ Hamiltonian at its combinatorial point respectively, which are themselves supersymmetric. As we saw in
the section 4, the physical consequences of the dynamical lattice supersymmetry are a zero energy singlet and
degeneracies in the spectra between chains of length Land L + 1. These were observed explicitly in the spectrum
of the DiSSEP Markov matrix at the supersymmetric point \> = landa = 3 = y = § = 1. These spectral
degeneracies still appear for generic boundary rate values, although in this case a supersymmetric formulation of
the corresponding Ising spin chain is not known. A consequence of the degeneracy is that the possible values of
the relaxation rate are already visible in short chains.

The formal similarity between the length changing supersymmetry for various spin chains in equation (8)
and the global transfer matrix symmetry in equations (57), (59) in the ASAP [16] and TASEP [17] is intriguing
and it would be an interesting challenge to see if this was evidence of a hidden supersymmetry in these
models too.
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