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Abstract
We investigate whether the dynamical lattice supersymmetry discussed for variousHamiltonians,
including one-dimensional quantum spin chains, by (Fendley et al 2003 J. Phys. A 36, 12399424; Yang
and Fendley 2004 J. Phys. A 37, 893748;Hagendorf and Fendley 2012 J. Stat. Phys. 146, 112255) and
(Hagendorf et al 2013 J. Stat. Phys. 150, 60957;Hagendorf and Liénardy 2017 J. Phys. A 50, 185202;
Hagendorf and Liénardy 2018 J. Stat.Mech. 033106)might also exist for theMarkovmatrices of any
one-dimensional exclusion processes, which have the additional constraint of zero column sums by
comparisonwith the spin chains.We find that theDiSSEP (Dissipative Symmetric Simple Exclusion
Process), introduced byCrampe et al in (Crampe et al 2016Phys. Rev. E 94, 032102; Vanicat
[arXiv:1708.02440]), provides one such example for suitably chosen parameters. TheDiSSEPMarkov
matrix admits the supersymmetry in these cases because it is conjugate to Ising (λ2= 1) andΔ=−1/
2XXZ (λ2=−3) spin chainHamiltonians which also possess the supersymmetry. The consequences
for the spectrumof theDiSSEPMarkovmatrix are discussed.We also note that the length-changing
supersymmetry relation for theDiSSEPMarkovmatrixML and the superchargeQL† for L sites,
M Q Q ML L L L 1= -† † , is reminiscent of a ‘transfermatrix’ symmetry that has been observed in other
exclusion processes and discuss the similarity.

1. Lattice SUSY

Adynamical, exact lattice supersymmetry in one dimensional lattice fermion systems and spin chains wasfirst
observed by Fendley et al [1–3]. A latticeHamiltonian for L sites with such a supersymmetry can bewritten as

H Q Q Q Q 1L L L L L1 1= + + + ( )† †

whereHL acts on the vector spaceV LÄ , withV 2 . The lattice supercharges Q Q,L L† act on chains of length L
and L−1 respectively as Q V V:L L L 1Ä Ä -( ) and Q V V:L L L1 Ä - Ä† ( ) 1. For an open chain, thesemay be
expressed in terms of local supercharges as
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where V V V: Ä q and V V Vq :  Ä† and the subscripts denote the lattice sites onwhich the operators
act [4]. QL is defined for L 2 . In amatrix representation q and q† are thus 2 4´ and 4×2matrices
respectively. Satisfying the standard nilpotency conditions for the global supercharges

Q Q Q Q0, 0, 3L L L L1 1= =- + ( )† †

gives the following associativity condition on the local supercharge q for open chains [5, 6]

Vq q q , 4 y y yÄ ñ = Ä ñ " ñ Î( )∣ ( )∣ ∣ ( )q
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or the equivalent coassociativity condition on q†

Vq q q q , . 5 y y yÄ ñ = Ä ñ " ñ Î( ) ∣ ( ) ∣ ∣ ( )† † † †

The condition on q† (and similarly for q) for closed chains of length L ismodified to

Vq q q q , 6  y c y y c yÄ - Ä ñ = ñ Ä ñ - ñ Ä ñ " ñ Î[( ) ( ) ]∣ ∣ ∣ ∣ ∣ ∣ ( )† † † †

where V Vcñ Î Ä∣ is some fixed vector and L 3 as a consequence of the definition ofQ.
If a supercharge of the form equation (2) satisfying equations (4), (5) or equation (6) is inserted into

equation (1) all the non-nearest-neighbour terms in the anticommutator cancel due to the alternating sign
factors and the resulting nearest-neighbour bulkHamiltonian is of the form

h q q q q
1

2
q q , 7     = - Ä Ä - Ä Ä + + Ä + Ä( )( ) ( )( ) ( ) ( )† † † † †q q q q

supplemented by boundary terms 1 2 q( ) †q for open chains. For a closed spin chain of length L an additional
local charge q0

† is definedwhich either shifts the action of q1
† to the left or qL

† to the right. Demanding the
compatibility of these two possibilities restricts the supersymmetric construction of theHamiltionian to
particular eigenspaces of the translation operator in this case. The supersymmetry for the open chains is thus
somewhat simpler than for the closed chains since no restriction to special subsectors in necessary to
implement it.

Using the nilpotency conditions in equation (3) shows that the supercharges relate theHamiltonians of
chains of different length, i.e.

H Q Q H H Q Q H, . 8L L L L L L L L1 1= =- - ( )† †

Various choices of q, q† leading towell-knownHamiltonians have been explored. Fendley andYang [2]
noted that

q 0 q 1 00 9ñ = Æ ñ = ñ∣ ∣ ∣ ( )† †

gave (up to a constant term) theXXZHamiltonian at its combinatorial point with diagonal boundary conditions
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withσ x, y, z being the standard Paulimatrices.We have dropped the superscript L on theHamiltonian above,

and henceforward, for notational conciseness. In the above, the basis vectors are 0 1
0

ñ = ( )∣ and 1 0
1

ñ = ( )∣ ,

00 0 0ñ = ñ Ä ñ∣ ∣ ∣ and the local supercharge q is

q 0 0 0 0
1 0 0 0

. 11=
⎡
⎣⎢

⎤
⎦⎥ ( )

Hagendorf et al [5] observed that this supercharge can be combinedwith its image under spin reversal
( 0 1ñ  ñ∣ ∣ )

q 0 0 0 1
0 0 0 0

12=
⎡
⎣⎢

⎤
⎦⎥¯ ( )

and a gauge superchargewhich acts on any vector Vyñ Î∣ as

q , 13y f y y fñ = ñ Ä ñ + ñ Ä ñf∣ ∣ ∣ ∣ ∣ ( )†

where fñ∣ is some vector inV, to give a one parameter family of supercharges
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with x y1 6 1 2= + -( ∣ ∣ ) . These still produced the sameXXZ bulkHamiltonianwhen inserted into equation (7)
but gave identical left and right, nownon-diagonal, boundary terms that depended explicitly on y. The
superchargeQL resulting from equation (14) can be further elaborated to give a limited class of non-identical
boundary terms [5]. The approach readily generalises to higher spinmodels [4, 8] and N M( ∣ )gl

Hamiltonians [9].
There is a close relation between one-dimensional quantum spin chains and various one-dimensional

exclusion processes, so a natural question to pose is whether the dynamical lattice supersymmetrymight also
exist in suchmodels. TheMarkovmatrices of the exclusion processes possess the additional constraint by
comparisonwith the spin chainHamiltonians of having zero column sums (for continuous processes), both for
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the bulk and boundarymatrices, so thismust also be satisfied. Evenwith the additional constraint at least
onemodel, theDissipative Symmetric Simple Exclusion Process (DiSSEP) can be shown to possess the
supersymmetry for a particular choice of themodel parameters. TheDiSSEP is described in the next section and
its local supercharges are explicitly constructed in the sequel. The consequences of the supersymmetry for the
DiSSEP spectrum are then outlined and parallels drawnwith a ‘transfermatrix’ symmetry that has been
observed in other exclusion processes.

2. TheDiSSEP

TheDiSSEPwas presented in [10] as an integrable deformation of the Symmetric Simple Exclusion Process
(SSEP)which still allowed a solution via thematrix product ansatz [11]. A concise way to describe the dynamics
in such systems is to useDirac braket notation to describe the state. For an open systemwith L sites, introduce an
indicator variable niä {0, 1} at each site i to denote the presence or absence of a particle and denote the
probability offinding a configuration n1..., nL at time t by P n n, ,t L1 ¼( ). The evolution of the ket vector Ptñ∣

P P n n n n, , ... , 15t
n n

t L L
, , 0,1

1 1

L1

åñ = ¼ ñ
¼ Î

∣ ( ) ∣ ( )
{ }

where n n n n... ...L L1 1ñ = ñÄ Ä ñ∣ ∣ ∣ is given bymaster equation

d P

dt
M P . 16t

t
ñ
= ñ

∣ ∣ ( )

The basis vectors are again, as for the spin chains, 0 1
0

ñ = ( )∣ and 1 0
1

ñ = ( )∣ . TheMarkovmatrixM appearing in

themaster equation is given for theDiSSEP by

M B m B 17
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with boundary transitionmatricesB, B and bulk transitionmatrixm given by
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The bulkMarkovmatrix mk k, 1+ acts between nearest neighbour sites k k, 1+ , giving forward and backward
hops and pair addition and annihilation in the bulk, while the boundarymatrices B B, allow the addition and
removal of particles at both ends of the system. The stochastic nature of themodel is evident from the column
sums of the variousmatrices being zero, since they describe rates. This is the distinguishing feature of this class
ofmodels. The various allowed processes for particlemoves and their associated rates are shown infigure 1.

TheMarkovmatrices of such one-dimensional exclusion processes and one-dimensional quantum spin
chains can be related by conjugation. For the case of theDiSSEP, theMarkovmatrixM(λ2) is conjugate to the
HamiltonianHXXZ (λ

2) of an openXXZ spin chainwith upper diagonal boundary conditions, bothwith L sites,
via [12]

H U U U M U U U... ... 19XXZ
2 2 1 1 1l l= - Ä Ä Ä Ä- - -( ) ( ) ( )

where

U
1

2
1 1

1 1
20= -( ) ( )

Figure 1.AllowedDiSSEPmoves and their rates.
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where ix y,s s s= + - are raising and loweringmatrices2. It is clear from equation (21) thatλ2=1 is a
particularly simple, diagonal Ising limit for the bulkHamiltonian in themodel. Similarly, ifα=γ andβ=δ the
XXZHamiltonian boundary conditions also become diagonal. The simplicity is reflected in the solution of the
conjugateDiSSEPwhenλ2=1 [10].

3. TheDiSSEP at 12l = and lattice SUSY

It is straightforward to see that

q 0 1 1 0
1 0 0 1

22=
⎡
⎣⎢

⎤
⎦⎥ ( )

and its image under spin reversal

q 1 0 0 1
0 1 1 0

23=
⎡
⎣⎢

⎤
⎦⎥¯ ( )

satisfy equations (4), (5) and that both generate the negative of the bulkDiSSEPMarkovmatrix

m

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

24x x s s- =
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⎠
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forλ2=1when employed in equation (7). Inserting an overallminus into the relation between the supercharges
and theHamiltonian, nowMarkovmatrix, in equation (1) does not change any of the ensuing discussion, so the
change in sign is immaterial for the existence of the lattice supersymmetry. The boundarymatrix 1 2 q( ) †q ,
however, obtained fromboth of these supercharges is diagonal

B B 1 0
0 1

25= =
⎡
⎣⎢

⎤
⎦⎥¯ ( )

and therefore non-stochastic.
For theXXZHamiltonian of equation (10) q† and q̄† anti-commute up to boundary terms

q q q q q q 26    y c y y c- Ä + Ä + - Ä + Ä ñ = ñ Ä ñ - ñ Ä ñ[( ) ¯ ( ¯ ¯ ) ]∣ ∣ ∣ ∣ ∣ ( )† † † † † †

Vy" ñ Î∣ andwhere cñ∣ is explicitly calculable, so additional gauge terms are needed to combine them into
equation (14) to give a yq( ) that will satisfy equations (4), (5). In the case of theDiSSEP q† and q̄† from
equations (22), (23) anti-commutewithout boundary terms

q q q q q q 0. 27    y- Ä + Ä + - Ä + Ä ñ =[( ) ¯ ( ¯ ¯ ) ]∣ ( )† † † † † †

This allows them to be directly combinedwithout introducing any gauge terms to give a one-parameter family of
supercharges yq( )which continue to satisfy the (co)associativity conditions of equations (4), (5)

y x
y y

y y
q
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, 28=
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⎦⎥( ) ( )

where x y1 2 1 2= + -( ∣ ∣ ) in this case.When inserted into equation (7) yq( ) still gives the (negative)DiSSEP
Markovmatrix in the bulk of equation (24) but the boundary terms aremodified to
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2
Wehave includedminus signs in both the conjugation in equation (19) and theHamiltonian in equation (21) by comparisonwith [12] (in a

similarmanner to [13]) to facilitate comparisonwith variousHXXZHamiltonians andMarkovmatrices later, where the natural choice is to
take theminus sign in front of theHamiltonians.We have also chosenU to be unitary to simplify some of the ensuing numerical factors
when discussing conjugating supercharges.
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Weare thus able to obtain stochastic boundarymatrices by taking y=−1, corresponding to the zero bias case of
α=β=γ=δ=1when the overallminus sign is taken into account.

TheDiSSEP supercharge yq( ) can be translated to its conjugate, yqc( ), using theUmatrix from
equation (20)

y U y U U

y U U y U

q q

q q , 30

c

c

1 1

1

= Ä

= Ä

- -

-

( ) ( )
( ) ( ) ( )† †

which gives the supercharge for theλ2=1XXZHamiltonian (i.e. IsingHamiltonianHZ) that is conjugate to
λ2=1DiSSEPMarkovmatrix.Wefind

y x
y

y
q 2
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When y yq , qc c( ) ( )† are inserted into equation (7) they give the simple diagonal bulk and boundaryHamiltonians
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so mc
z z s s= - Ä -( ). Consistently, this is the bulk term forHXXZ(λ

2=1) in equation (21), which is just
the IsingHamiltonian, orHZ.

The results of this section could thus equivalently be construed as stating that yqc( ), yqc( )† of equation (31),
(32) provide a one parameter family of supercharges for the diagonal IsingHamiltonianHZ

H y B y B y . 34Z
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k
z

k
z
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1

1 ,1 ,å s s= - - + +
=

-
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ThisHamiltonian is conjugate to the (negative of the)λ2=1DiSSEPMarkovmatrix,HX(y), generated by
supercharges yq( ), yq ( )†

H y B y B y , 35X
k

L

k
x

k
x

L
1

1

1 1å s s= - - + +
=

-

+( ) ( ) ( ) ¯ ( ) ( )

via

H y U U U H y U U U... ... 36Z X
1 1 1= Ä Ä Ä Ä- - -( ) ( ) ( )

(sinceHX(y)=−M) and both therefore display the supersymmetry.
Regarding equation (34) purely as an Ising chain there is no reason tofix a particular value of y, so the

supersymmetry exists for the entire one-parameter family ofHamiltonians. However, demanding that the
boundary termsB1(−1) and B 1L -¯ ( ) in the conjugateDiSSEPHamiltonian of equation (35),HX, are stochastic
forces y=−1 since then

B B1 1 1 1
1 1

. 37L1 - = - = -
-( )( ) ¯ ( ) ( )

These stochastic boundary terms are conjugate to

B B1 1 2 0
0 0

, 38c c L z,1 , s- = - = = +( )( ) ¯ ( ) ( )

which can be seen to be the boundary terms in equation (21)whenα=β=δ=γ=1.

4. TheDiSSEP atλ2=1, lattice SUSY and the spectrum

The principal physical consequences of the dynamical lattice supersymmetry are a singlet zero energy state and a
spectral degeneracy between chains of length L and L+1 for either aHamiltonianH or aMarkovmatrixM.
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These features are a direct consequence of the definition of theHamiltonian in equation (1)

H Q Q Q Q ML L L L L L1 1= + =-+ + ( )† †

and the observation [5] that H Ey yñ = ñ∣ ∣ then implies that (dropping L superscripts for brevity)

Q Q E 392 2 2y y yñ + ñ =∣∣ ∣ ∣∣ ∣∣ ∣ ∣∣ ∣∣ ∣∣ ( )†

giving zero and positive (negative) eigenstates for theHamiltonian (Markovmatrix). If E 0¹ these states are
doublets (superpartners) of the form

Q, 40y yñ ñ∣ ∣ ( )†

with Q 0yñ =∣ , as is standard in supersymmmetric theories. The unusual feature for the dynamical lattice
supersymmetry is that these states are for chains of different length. There are thus spectral degeneracies between
chains of length L and L+1. A zero energy state, on the other hand, requires

Q Q0, 0 41y yñ = ñ =∣ ∣ ( )†

which implies that itmust be a singlet [5].
It is possible to see both of these features straightforwardly in short DiSSEP chains atλ2=1 and

α=β=δ=γ=1 by using equations (1), (2) to construct theMarkovmatrixM explicitly to obtain its
eigenvalues. Taking L=2, 3 as illustrative examples, the respectiveMarkovmatrices are given by

M

3 1 1 1
1 3 1 1
1 1 3 1
1 1 1 3

422 =

-
-

-
-

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ ( )

with eigenvalues 0(1),−4(3), where the degeneracy is indicated in parentheses, and

M

4 1 0 1 1 0 1 0
1 4 1 0 0 1 0 1
0 1 4 1 1 0 1 0
1 0 1 4 0 1 0 1
1 0 1 0 4 1 0 1
0 1 0 1 1 4 1 0
1 0 1 0 0 1 4 1
0 1 0 1 1 0 1 4

433 =

-
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-
-

-
-

-
-

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

( )

with eigenvalues 0(1),−8(1),−4(6). BothM2 andM3 possess a zero eigenvalue singlet and the eigenvalues−4
for L=2 have partners in the L=3 spectrum.ML is diagonalized by the conjugation relation in equation (19)
whenλ2=α=β=γ=δ=1. For instance, when L=2 the conjugation gives

U U M U U

4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 0

. 442 1 1Ä Ä =

-
-

-
- -

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ ( )

It is also possible to build theMarkovmatrices by hand for short chains by simply putting the rates for the
allowed transitions into the correct positions in thematrix. The process can be automated for larger L3. In this
construction the boundary rates are not restricted toα=β=δ=γ=1, but can take on generic values. In
principleλ2 can also take on generic valueswhen building theMarkovmatrices in such amanner, butwe limit
the discussion here to the simpler case ofλ2=1 (it is also unclear if the supersymmetry is present for 12l ¹ ).
TheMarkovmatrix for L=2,M2, is given by

1 1
1 1

1 1
1 1

45

a d b g
d a b g
a g d b

a d b g

- - -
- - -

- - -
- - -

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟
( )

with eigenvalues 0,−2−β−δ,−2−α−γ and−α−β−γ−δ. The conjugation transformation in
equation (19)now upper diagonalizesM2

3
Wewould like to thankArvindAyyer for pointing this out, and doing it.
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U U M U U
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0 0 2
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but still allows the eigenvalues to be read off directly. Similarly, for L3 theMarkovmatrixM3 is given by

2 0 1 0 1 0
2 1 0 0 0 1

0 1 2 1 0 0
1 0 2 0 1 0

0 1 0 2 0 1
0 0 1 2 1 0
1 0 0 0 1 2
0 1 0 1 0 2

a d b g
d a b g

a d b g
d a b g

a g d b
a d b g

a g d b
a d b g

- - -
- - -

- - -
- - -

- - -
- - -

- - -
- - -

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

with eigenvalues−4, 0,−2−β−δ (2),−2−α−γ (2),−4−α−β−γ−δ and−α−β−γ−δ and
is again upper diagonalized by the conjugation of equation (19).

Since theDiSSEP is a free fermionmodel whenλ2=1 even for genericα,β, γ, δ, the eigenvalues and the
eigenvectors can be computed for any L [10, 14]. For L 3 , the 2L eigenvectors and eigenvalues are
characterized by , , , L1 2   = ¼( )with òi=±1, giving the eigenvalues

f f, , 1 , , , 47
j

L

j j L L1 2
2

2

1 1      åa g d bL = + + - + +
=

-

+ -( ) ( ) ( ) ( ) ( )

where the boundary terms are

f , , 1
2

1 . 48   t
t

¢ = ¢ - - -( ) ( ) ( )

This can be seen to be in agreementwhen L=3with the explicit calculation forM3 above. L( ) can also be
written as

2
1 1

2
1 49

j

L

j j L L0 1
1

1

1 1      åa g b d
L =

+
- + - +

+
-

=

-

+ +( ) ( ) ( ) ( ) ( )

where additionalfictitious boundary spins 1L0 1 = =+ have been introduced. TheDiSSEP spectrum for
length L is thus equivalent to that of an Isingmodel of length L+2withfixed boundary conditions and an
inhomogenous bond at each end.

equations (47), (49)make it clear that the eigenvalues for a chainof lengthLwill have partners in a chain
of lengthL+1 even for genericα,β,γ, δ. The boundary terms containingα,β,γ, δ are, as onemight expect,
unaffected by the length of the chain (for L 3 ) and the bulk bond terms addminus twoor zero to these.
Thediscussion in this section shows that this can be interpreted as the consequence of a dynamical lattice
supersymmetrywhenα=β=γ=δ=1byputting theDiSSEP in correspondence via conjugationwith an
open Ising chainwhichmanifests the supersymmetry. For genericα,β, γ, δ, on the other hand, it can beput it into
correspondencewith a longer Ising chainwithfixed boundary conditions. In this case a construction of the
Hamiltonian from local supercharges, if it exists, is not known.Nonetheless, the spectral degeneracies between
chains of different lengths persist. Since theorigin of thesewhenα=β=γ=δ=1 is the local supersymmetry,
their presistence for genericα,β,γ, δ is suggestive of supersymmetry in that case also.

For a non-equilibriummodel the fact that there is a zero energy singlet with (unbroken) supersymmetry
guarantees the existence of a unique non-equilibrium steady state. The spectral degeneracy visible for both
α=β=γ=δ=1 and genericα,β, γ, δmeans that the possible values offirst excited state eigenvalue, which
gives the relaxation rate of the system, are already visible in very short chains. For theDiSSEP the greatest non-
vanishing eigenvalue is−4,−2−β−δ,−2−α−γ or−α−β−γ−δ, depending on the parameter
values and all of these are already present inM3.

5. TheDiSSEP at 32l = - and lattice SUSY

The exact dynamical lattice supersymmetry also exists in theDiSSEP at the unphysical value ofλ2=−3, since
the conjugateHamiltonian in this case is amultiple of theXXZHamiltonian at its combinatorial point, which
possesses the supersymmetry.
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the (co)associativity conditions equations (4), (5) are satisfied and the corresponding bulkMarkovmatrix
obtained from equation (7) is

m

1 0 0 3
0 5 1 0
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3 0 0 3
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4 51= -
-

= -

-
-

-
-

+

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
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which isminus theDiSSEPMarkovmatrix atλ2=−3 alongwith a constant term, together with stochastic
boundarymatrices 1 2 q( ) ˆ ˆ†q

B B 1 1
1 1

. 52= = -
-

⎡
⎣⎢

⎤
⎦⎥¯ ( )

Whenλ2=−3 the bulkXXZHamiltonian conjugate to theDiSSEP

H
1

2

1

1
53XXZ
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is four times theXXZHamiltonian at its combinatorial point,Hcomb, in equation (10), i.e.

H H3 4 2
1

2
. 54XXZ comb

k
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k
y
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1

1
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On the other hand, the conjugates of the supercharge q̂ and q̂† from equation (50)which give theλ2=−3
DiSSEP are

U U Uq 2 0 0 0 1
0 0 0 0

. 55c
1 1= Ä =- - ⎡

⎣⎢
⎤
⎦⎥ˆ ˆ ( )q

and

U U Uq q 2

0 0
0 0
0 0
1 0

. 56c
1= Ä =-

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

ˆ ˆ ( )† †

qcˆ , qc
ˆ† aremultiples of the spin reversed supercharge q̄, q̄† forHcomb in equation (12), so substituting them into

equation (7) gives 4Hcomb, consistently with equation (54).
Thus, just as for theλ2=1DiSSEP, the supersymmetry observed in theλ2=−3DiSSEP is a consequence

of theMarkovmatrix being conjugate to a spin chainHamiltonianwhich displays the supersymmetry. As a
DiSSEP at an unphysical value ofλ2 this is simply a curiousity, but itmight be interesting to change perspective
and inquire if results from theDiSSEP side had any implications for the conjugateXXZ spin chain at its
combinatorial point.

6. Conclusions

Abrute force scan by computer of possible integer entries 2, 1, 0, 1, 2¼    ¼{ } in q reveals that while
it is relatively easy to generate solutions of equations (4), (5), demanding that these should represent bulk
stochasticmatrices (column sumzero, up to a possible constant term) and that the boundarymatrices also be
stochastic leaves only the twoDiSSEP cases discussed here,λ2=1 and the unphysical value ofλ2=−3. It is
possible that exploring conjugations and equivalences systematically along the lines of [15]might show that
other stochasticMarkovmatrices are accessible fromknown supersymmetric Hamiltonians.

The investigations hereweremotivated by the observation that a ‘transfermatrix’ symmetry which takes the
form

M T T M 57L L L L 1= - ( )† †

exists in several stochasticmodels, which is analogous to the length changing SUSY relation of equation (8).TL†

was explicitly presented via a recursion relation for the asymmetric annihilation process (ASAP), whose bulk and
boundaryMarkovmatrices are given by
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in [16]. The allowedmoves for the ASAP are shown infigure 2. It is tempting to regard the transfermatrix
symmetry as evidence for a similar dynamical lattice supersymmetry to the one discussed here for theDiSSEP.
However, the bulkMarkovmatrix in equation (58) is not amongst those generated by scanning through various
potential qʼs here. The algorithm for determining TL† in [16] is based on the recursive properties of theMarkov
matrix and is a global construction rather than a local formulation.

A similar situation exists for the Totally Asymmetric Exclusion Process (TASEP) [17]. For this a relation
between theMarkovmatrices for systems of different lengths is of the form

M T T M , 59L L L L 1= -˜ ( )† †

whereT L˜ † andTL† are now two differentmatrices. Again, theMarkovmatrix for the TASEP

m

0 0 0 0
0 0 1 0
0 0 1 0
0 0 0 0

60=
-

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ ( )

is not produced by the paricular class of qʼs we have examined here.
In summary, we have shown that theDiSSEP possesses a dynamical lattice supersymmetry in the sense of

[1–5, 7] forλ2=1,−3 andα=β=γ=δ=1. Bothλ2 values represent simplifying values for themodel
parameters since the bulkMarkovmatrices forλ2=1,−3 are conjugate to a diagonal IsingHamiltonian and
anXXZHamiltonian at its combinatorial point respectively, which are themselves supersymmetric. Aswe saw in
the section 4, the physical consequences of the dynamical lattice supersymmetry are a zero energy singlet and
degeneracies in the spectra between chains of length L and L+1. Thesewere observed explicitly in the spectrum
of theDiSSEPMarkovmatrix at the supersymmetric pointλ2=1 andα=β=γ=δ=1. These spectral
degeneracies still appear for generic boundary rate values, although in this case a supersymmetric formulation of
the corresponding Ising spin chain is not known. A consequence of the degeneracy is that the possible values of
the relaxation rate are already visible in short chains.

The formal similarity between the length changing supersymmetry for various spin chains in equation (8)
and the global transfermatrix symmetry in equations (57), (59) in the ASAP [16] andTASEP [17] is intriguing
and it would be an interesting challenge to see if this was evidence of a hidden supersymmetry in these
models too.
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