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We introduce a systematic approach to construct configuration interaction (CI) wavefunctions through a
variant of the Monte-Carlo CI (MCCI) method termed systematic-MCCI. Within this approach the entire
interacting space is systematically considered in batches, with the most important configurations across
all batches becoming potential additions to the wavefunction. We compare this method to MCCI and a
novel pruned-FCI approach. For the ground state of neon, as described by the cc-pVTZ basis, we observe
no apparent difference between systematic-MCCI, pruned-FCI and MCCI, with all recovering 99% of the
correlation energy and producing a very similar wavefunction composition. We then consider the potential
energy surface corresponding to the symmetric double hydrogen dissociation of water within a cc-pVDZ
basis. Once again MCCI performs comparably to the systematic approaches. Despite systematic-MCCI
having longer run times across the number of processors considered we do observe very good scalability. We
then extend this comparison to the first A1 excited energy of carbon monoxide using the cc-pVDZ basis where
the MCCI methods perform similarly, approximating this aforementioned energy to within 0.1 eV despite vast
reduction in the wavefunction size. Finally we consider the chromium dimer with the cc-pVTZ basis and 18
frozen orbitals. Here we find that the systematic approach avoids being trapped in the same local minimum
of configuration space as MCCI, yet MCCI can reach a lower energy by repeating the calculation with more
processors.

I. INTRODUCTION

The accurate description of electron-electron interac-
tions has long been the crux of electronic-structure meth-
ods. In Hartree-Fock (HF) theory this repulsive force is
reduced to an averaged one-electron problem, resulting
in higher absolute energies and shorter predicted bond
lengths, due to the uncorrelated motion of electrons.
Within a full configuration interaction (FCI) approach,
electron correlation can be accounted for exactly, albeit
within the space spanned by the one-electron basis. Cur-
rently, such treatments are computationally intractable
for all but the smallest of systems and basis sets, due to
the rapidly increasing dimensionality of the Hamiltonian
matrix (HFCI) as both the number of basis functions
(M) and electrons (n) increase. To the best of our knowl-
edge the largest number of configurations for the wave-
function in a published FCI calculation remains at 1010

for the nitrogen molecule1 while exploratory calculations
with a new parallel multi-configurational self-consistent
field implementation have demonstrated one CI iteration
using almost a trillion determinants.2

This limitation, and acknowledged sparseness of
HFCI , has led to the development of approximate meth-
ods which consider only a portion of the configurational
space, significantly reducing the computational costs,
and thus allow for the application of these methods to
a greater range of chemical problems whilst still reaching
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b)Electronic mail: M.J.Paterson@hw.ac.uk

a sufficient level of accuracy, despite this vast reduction
in the number of variationally optimizable parameters.

Elegant methods built around a single reference, such
as coupled-cluster (CC) singles and doubles, have known
problems when the single determinant approach breaks
down and thus can deviate quite substantially from FCI
results. The multi-reference (MR) method of complete
active space self consistent field (CASSCF), attempts to
recover this missing static correlation, from which MRCI
or a perturbative approach may be employed to recover
the remaining dynamic portion. However, CASSCF
eventually suffers from similar scaling problems to FCI
as the active space increases, and also requires consid-
erable knowledge of both the system of interest and the
problem at hand as the determination of an appropriate
active space is crucial.

Systematically improvable approximations to the FCI
energy have been created by considering the convergence
of its many-body expansion. For example, the methods
of incremental FCI,3 and many-body expanded FCI4,5

where multiple complete active space configuration inter-
action calculations are performed with increasing num-
bers of orbitals. This is inherently parallel and coupled
with a screening protocol has allowed highly-accurate en-
ergies to be calculated without the FCI wavefunction.

To remove the need to diagonalize the Hamiltonian
matrix, methods that use projector or diffusion Monte
Carlo in configuration space6,7 to allow improvable es-
timates of the FCI wavefunction and energy have been
developed. Although ultimately still constrained by the
scaling of the FCI wavefunction, it is highly paralleliz-
able and requires less memory than FCI. The approach
of FCIQMC has, for example, enabled8 approximate cal-
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culations of excitations of butadiene when the FCI space
has 1029 determinants.

There is renewed interest in the development and use
of approaches that iteratively select configurations (se-
lected CI) to build up compact wavefunctions that can
describe MR problems sufficiently well. This includes
methods based on using perturbation theory and select-
ing configurations by their coefficient in the perturbed
wavefunction or their contribution in the perturbative
correction to the energy. An early example of this was
configuration interaction using a perturbative selection
made iteratively (CIPSI).9 A modern implementation of
CIPSI within the Quantum Package 2.0 program10 con-
siders the perturbation of the energy to second order.
This has been used to provide trial wavefunctions for
highly accurate diffusion Monte Carlo calculations in-
cluding formaldehyde11 and FeS,12 for benchmark ex-
cited state calculations on small molecules,13 and has
been built upon to create dressed perturbation calcula-
tions of cyanine dyes14 or spin adapted wavefunctions.15

CIPSI has also led to the creation of the adaptive sam-
pling CI approach16 that only uses those configurations
with sufficiently large coefficients to generate members of
the singles and doubles space for the perturbation calcu-
lation of the wavefunction to first order. Heat bath CI17

uses an approximation as a simpler, faster alternative to
the full first-order perturbation calculation of coefficients
when selecting configurations and has been successfully
used to model Cr2. The approach of MC3I uses diffusion
Monte Carlo in configuration space to sample the first-
order correction to the wavefunction and has successfully
been demonstrated on excited potential curves for C2.18

As an alternative to perturbation theory, the recently
developed approach of machine learning configuration
interaction19 uses an artificial neural network that learns
on-the-fly to select important configurations in an it-
erative process. While configurations are chosen using
their energy expectation value in the Λ-CI approach.20

A combination of a perturbation estimate of the energy
coupled with the coefficients in the configuration interac-
tion wavefunction is used in the adaptive configuration
interaction method.21 This approach has been further
developed22 to allow the efficient calculation of vertical
excitations of methylene, LiF and, when using an active
space, polyenes.

Stochastic selection of configurations is used in
the method of Monte Carlo configuration interaction
(MCCI).23–25 This iteratively constructs a compact wave-
function by eventually removing those configurations
with an absolute coefficient less than a cutoff value
(cmin). MCCI has been demonstrated to produce wave-
functions that use a very small fraction of the FCI space
yet can successfully describe dissociation energies,26

ground-state potential energy surfaces,27 electronic ex-
citation energies,28 and transition metal dimers.29 This
method has been built upon to calculate multipole
moments,30 excited potential energy surfaces including
conical intersections,31 hyperpolarizabilities,32 dissocia-

tion energies when using perturbative corrections,33 X-
ray absorption values,34 energy levels in molecular tunnel
junctions35 and spin-orbit coupling.36

Although the compact wavefunctions resulting from
MCCI have been demonstrated to capture properties of
the FCI wavefunction with sufficient accuracy and reli-
ability for small systems, whether these compact wave-
functions are near to optimal has not been investigated.
This raises questions such as can we find a similarly sized
wavefunction with a substantially lower energy or can
we find a significantly reduced wavefunction with a simi-
lar energy? To systematically and exhaustively check all
possible combinations of configurations is not computa-
tionally possible for the usual sizes of wavefunctions and
configuration spaces encountered. Even if we only con-
sider one iteration of a selected CI calculation and limit
ourselves to finding the optimum 20 configurations, from
the 1000 configurations that can interact with the ex-
isting wavefunction (singles and doubles space), then we
still have

(
1000
20

)
≈ 1041 combinations and a diagonaliza-

tion to perform for each one. Yet in actual calculations
the singles and doubles space is often orders of magnitude
larger.

To approximate a systematic approach we have cre-
ated the computationally tractable method of system-
atic-MCCI which considers all configurations, albeit not
in every possible combination, as potential additions to
the current wavefunction. Systematic-MCCI looks for the
best iadd configurations to include by randomly ordering
the singles and doubles space (Nsd) on every iteration
then working through this list in batches (ibatch) to be
added to the current set of configurations. Although this
creates a large number of diagonalizations (∼ Nsd/ibatch)
to find the overall iadd most important configurations on
each iteration, this is a huge reduction compared with
considering all combinations and furthermore the mul-
tiple diagonalizations can be run in parallel. Also as
the Nsd is randomly ordered within each iteration dif-
ferent combinations will be considered as the computa-
tion progresses. Hence systematic-MCCI can be viewed
as a hybrid approach that guarantees every candidate
configuration is tested while avoiding the computational
intractability of systematically considering every possible
combination to be added on a single iteration.

As a further comparison we also consider pruning the
normalized FCI wavefunction to remove all configura-
tions with an absolute coefficient less than cmin. The
pruned-FCI wavefunction is then found by diagonaliza-
tion using the remaining configurations. Although this
can only be applied to small systems and basis sets where
FCI is possible, it takes into account all configurations in
creating a compact wavefunction and contrasts with the
MCCI approaches of iteratively building up the wave-
function.

In this paper we first discuss the computational meth-
ods and provide details of the systematic-MCCI ap-
proach. We then use the neon atom with the cc-pVTZ
basis as a test case to calibrate the parameters for system-
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atic-MCCI. This allows us to compare the accuracy and
wavefunction size from the systematic-MCCI approach
and pruned -FCI with MCCI for this system. The scal-
ings of calculation time with the number of processors for
systematic-MCCI and MCCI are also investigated. Next
we turn to the potential curve for the double hydrogen
dissociation of the water molecule, which includes vary-
ing levels of MR character as the bond length changes.
This allows us to compare the accuracy of the MCCI po-
tential curve and average size of the wavefunction with
the systematic approaches. An investigation of the meth-
ods when dealing with an excited state of carbon monox-
ide in the cc-pVDZ basis is then presented. Finally the
chromium dimer with the cc-pVTZ basis is considered at
a particularly challenging geometry.

II. COMPUTATIONAL METHODOLOGY

A FCI wavefunction (
∣∣ΨFCI

〉
) can be represented as a

linear combination of all potential n-electron Slater de-
terminants (SDs). It is common to express each SD as an
N -tuple excitation relative to the restricted closed-shell
HF wavefunction (

∣∣ΨHF
〉
), as outlined below:

∣∣ΨFCI
〉

= cHF
∣∣ΨHF

〉
+

k,M−k∑
a,r

cra |Ψr
a〉

+

k,M−k∑
a<b,r<s

crsab |Ψrs
ab〉+ . . . (1)

where a and b run over all k occupied MOs, with r
and s pertaining to the M − k virtual MOs. Therefore,
within this notation |Ψr

a〉 would correspond to a single
excitation, substituting the ath occupied MO with the
rth virtual MO, the subsequent coefficient of this config-
uration would be cra.

A. Conventional Monte-Carlo Configuration Interaction

Within the context of this study we utilize the MCCI
version 4 algorithm,25 which builds upon a reference
wavefunction through an iterative stochastic sampling
procedure. It is common to transition from SDs to con-
figuration state functions (CSFs) due to the reduction
in optimizable parameters and also ensuring the result-
ing MCCI wavefunction

∣∣ΨMCCI
〉

is a pure spin state;
however, added complexity is introduced in creating H
and the overlap matrix (S) needs to be calculated as in
MCCI different CSFs are not necessarily orthogonal.24

This non-orthogonal relation between CSFs exists be-
cause they are created via a projection method followed
by a random walk through the spin path diagram to en-
sure linear independence.24 A brief overview of the al-
gorithm follows, in which the superscripts relate to the
specific iteration.

The beginning reference wavefunction (
∣∣Ψ(0)

〉
) is aug-

mented with a number of random, symmetry preserv-

ing, CSFs (N
(1)
new) which is approximately equal to the

size of the previous wavefunction, via single and double-
excitations, such that the initial modification of the wave-

function
∣∣∣Ψ(1)

new

〉
has the form of equation 2 - this pro-

cess is referred to as branching. In early iterations, to
ensure the wavefunction builds at a sufficient rate, Nnew
is varied such that the modified wavefunction contains
100 configurations. The wavefunction is checked for du-
plicate configurations which are subsequently removed.

∣∣∣Ψ(1)
new

〉
= cHF

∣∣ΨHF
〉

+

N(1)
new∑
k=1

ck |Ψk〉 (2)

The next step involves diagonalization to determine
the expansion coefficient of each CSF within this reduced

basis by solving H(1)c(1)=S(1)c(1)E(1)
new, where c(1) and

E(1)
new are the coefficient vector and the energy, respec-

tively. The newly added CSFs are only retained if the
relevant coefficient is larger than a user defined cut-off
value, |cp| ≥ cmin, else discarded. Every Pf iterations a
full-prune is implemented so that all CSFs contained are
subject to this selection criterion as per equation 3.

∣∣∣Ψ(Pf t)
〉

=
∣∣∣Ψ(Pf t−1)

〉
+

N
(Pf t)
new∑
k=1

ck |Ψk〉︸ ︷︷ ︸
All subject to prune

(3)

This pruned wavefunction (
∣∣Ψ(1)

〉
) then forms the ref-

erence space for the next iteration, and the process of
branching, diagonalization and pruning is repeated until
convergence is achieved.

The convergence criteria is implemented on iterations
which follow a full-prune only (those of the form Pf t+1,
with t = 1, 2, 3 . . .), and checks against both the energy
(convE) and number of configurations (convl). It should
be noted that in both MCCI and the following systematic
approach a full-prune iteration is always performed on
the initial cycle, however, this point is not included in the
convergence check. A moving average over L successive
cycles is introduced.

Ēb =
1

L

b∑
t=b+1−L

E(i=Pf t+1)
new (4)

The convergence criteria is fulfilled when the last J differ-
ences between Ēb and Ēb−1 are lower than the convergence
threshold.

max
i=b+1−J, b

|Ēi − Ēi−1| ≤ conv. thres. (5)

For this work we set L = J = 3 and for MCCI we run a
full-prune every 10th iteration (Pf = 10) this means that
convergence checking begins on iteration 61, i.e., when
there is sufficient previous data.
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MCCI also has the ability to be performed in parallel
across multiple processors (Nproc). Within this approach
each processor independently performs a branching, diag-
onalization, and pruning procedure with ∼ Nnew/Nproc
new CSFs. The set of new configurations stored on each
processor after this cycle are then shared amongst all
others using MPI so they each contain the same wave-
function for the subsequent iteration, all duplicates that
may be present are also removed.

B. Systematic Monte-Carlo Configuration Interaction

A truly systematic approach would require consider-
ation of the entire single and double-excitation space,
not solely a random assortment of coupled configura-
tions, subjecting all to a pruning procedure and contin-
uing within this regime for at least n/2 iterations. As
the configurational space expands, and subsequently the
potential excitation space, the aforementioned approach
would suffer from a similar issue to FCI. A possible al-
ternative to this, as mentioned in the introduction, is by
evaluating all the possible ways of adding a certain num-
ber of configurations. However this replaces the problem
of the diagonalization rapidly becoming computationally
intractable with the issue of the number of diagonaliza-
tions quickly becoming computationally intractable. A
third way would involve working through the randomly
ordered entire excitation space in smaller, computation-
ally viable, batches, storing only the largest weighted
configurations when combined with the reference space.

In this work we explore such a way as a modified ver-
sion of MCCI, referred to herein as systematic-MCCI
(sMCCI). The algorithm is depicted in Fig. 1. As with
MCCI the starting point is

∣∣Ψ(0)
〉
, from which branching

is performed once again ensuring symmetry is preserved,
but now generating the entire single and double space
(Nsd). This is achieved by looping through each con-
figuration in the current set and storing all symmetry
allowed single and double substitutions. However, as the
same new configuration may be created from different
configurations in the current set, whether using SDs or
CSFs, we implement the approach of Ref. 37 to remove
these duplicates using the quicksort algorithm. The set
of singly and doubly excited configurations are then ran-
domly ordered and placed into batches. The number of
configurations allocated to each batch is specified by the

parameter ibatch, generating N
(1)
sd /ibatch batches and pos-

sibly one extra batch containing the remainder. Each
batch is tested as an addition to the current reference
wavefunction, where the coefficients are determined via
an analogous procedure to that in MCCI, and the pro-
gram keeps track of the best iadd configurations which
are defined as those with the largest absolute coefficients.
When all batches have been considered then the best iadd
configurations are added to the current reference wave-
function, and the coefficients recomputed. As all singles
and doubles are being considered then, rather than prun-

ing every 10 iterations as in MCCI, all configurations
present are subject to the pruning criterion after every
iteration. However for the convergence check we can still
vary Pf . Thus, iadd defines an upper limit to the number
of configurations that can be added per iteration. This
process is continued in an iterative fashion until the con-
vergence check is satisfied.

The bottle-neck of sMCCI will thus be the stage at
which approximately Nsd/ibatch diagonalisazions are to
be performed sequentially, due to the increasing refer-
ence and potential excitation space. However, as this
can be performed independently for each batch one can
share this workload across multiple processors. Within
this regime each processor would receive approximately
an equal integer number of batches to work through, with
one processor receiving a reduced batch containing any
remainder. The parallel algorithm determines a lead pro-
cessor that generates Nsd and subsequently shares the
batches to the remaining processors, the lead processor
also retains batches to be diagonalized. When all batches
have been worked through each processor then sends its
best iadd configurations to the lead processor, which then
selects the overall best iadd configurations.

This sharing procedure ensures that results are inde-
pendent of the number of processors, with each processor
receiving a similar workload.

In addition to considering all possible interacting con-
figurations the procedure would also eventually consider
all possible combinations of ibatch configurations if run
for long enough and Nsd is fixed. To quantify this we es-
timate how many iterations would be necessary for two
configurations to have a high probability of being tested
in the same batch. If we assume that ibatch exactly di-
vides Nsd then we have B = Nsd/ibatch batches. As the
ordering of the batches and the ordering within a batch
does not matter then the total number of ways to put
the configurations into batches is

Wtotal =
Nsd!

B!(ibatch!)B
, (6)

while for two determinants always together (e.g. 1 and
2) the combinations are

W1,2 =
(Nsd − 2)!

(B − 1)!(ibatch!)B−1(ibatch − 2)!
. (7)

The probability of finding the determinants together is
then

P1,2 =
W1,2

Wtotal
=
ibatch(ibatch − 1)B

Nsd(Nsd − 1)
=
ibatch − 1

Nsd − 1
. (8)

As Nsd and ibatch are much greater than one and if we
want the probability of 1 and 2 never occurring together
to be less than 5% over K iterations then we can write(

1− ibatch
Nsd

)K
. 0.05. (9)
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Batch 𝑖
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Store	  largest	  overall	  𝑖%&&
across	  𝑁()*+

Hamiltonian	  Matrix	  
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Full-‐prune
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Branching

Convergence

Analysis

No

Yes

Reference	  SpaceInitialization	  
(basis,	  orbitals)

Configurations
(CSFs	  or	  SDs)

Eigenvalue	   Solver

FIG. 1. General overview of sMCCI algorithm running in parallel. NB1 and NBj represent the number of batches on processor
1 and j respectively.

If Nsd >> ibatch then we can use ln(1− x) ≈ −x for
small x to give

K &
3Nsd
ibatch

. (10)

For example with a batch size of 5000 and 105 inter-
acting configurations then if we run for 60 iterations we
would expect that any pair of configurations are eventu-
ally tested together. The number of iterations unfortu-
nately increases linearly with the interacting space and
we will see in the next section that increasing ibatch does
not necessarily make the calculation more efficient.

C. Pruned FCI

The other systematic approach we consider is to start
with the normalized FCI wavefunction, calculated using

MOLPRO,38 then any configurations whose absolute co-
efficients are less than cmin are removed. The pruned-
FCI wavefunction (p-FCI) is then found by diagonaliza-
tion using the remaining configurations. Although this
can only be applied to small systems and basis sets, it
offers an alternative systematic approach to building up
the wavefunction and allows another way of investigating
the optimality of the MCCI wavefunction.

All FCI computations were performed with
MOLPRO38 and truncated-CI computations per-
formed with Gaussian 09 (Revision D.01).39 At each
geometry the HF orbitals were re-optimized, within
the one-electron basis, with the one-electron and
two-electron integrals obtained from MOLPRO.38
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III. RESULTS & DISCUSSION

A. Neon

To initially establish a protocol for this systematic ap-
proach we consider the neon atom with a cc-pVTZ ba-
sis [4s 3p 2d 1f ], implementing the frozen-core approx-
imation for the lowest-energy molecular orbital. Neon
is constrained to the D2h point group with the ground
state pertaining to Ag symmetry. The FCI energy of
this system was found to be -128.802534 Hartree with∣∣ΨFCI

〉
containing 7.05 × 107 SDs, resulting in an Ecorr

of -169.849 kcal mol−1. Truncated-CI calculations were
also performed for comparison. In most instances we pro-
vide energies in terms of ∆E = EFCI − Emethod and, un-
less stated otherwise, computations were run in parallel
across 8 processors.

1. ibatch and iadd

The ibatch parameter was altered from 10 → 20000
CSFs, in various increments, whilst limiting the CSFs
added per iteration to no more than 100 (iadd = 100
CSFs). Each computation was allowed to run for 61 it-
erations, with a cmin value of 10−4, thus providing an
upper configurational limit of 6101 CSFs on each wave-
function. For this inherently single-reference system the
percentage of electron correlation recovered was 99.1 %
for {ibatch}, with

∣∣ΨsMCCI
〉

containing on average (x̄)
5658 CSFs. The standard deviation (σ) of the energy
and coefficient vector length (l) was 7.25 × 10−3 kcal
mol−1 and 43 CSFs, respectively, highlighting the neg-
ligible dependence on ibatch. The sMCCI approach was
found to outperform CISDT by 2.685 kcal mol−1, but not
CISDTQ, as the sMCCI energy was higher by 1.326 kcal
mol−1, however, these methods contain orders of magni-
tude more configurations. The CPU time on the other
hand drastically differs across ibatch, initially lowering to
a minimum around 2000 CSFs before steadily increasing
(see Fig. 2).

We can also estimate the ibatch that would result in
the fastest calculation by considering the scaling of the
Davidson algorithm which is given as O(kX2) in, e.g.,
Ref. 40. Here X is the number of determinants and k is
the number of Davidson vectors which are limited to a
maximum of 30 in this work. If we assume that the im-
plementation of the Davidson algorithm for CSFs in the
MCCI code perfectly follows this scaling and any over-
heads are negligible, then for each iteration of sMCCI

there are approximately B(ν) = N
(ν)
sd /i

(ν)
batch diagonaliza-

tions each with N (ν) + i
(ν)
batch configurations, where N (ν)

represents the number of configurations contained within
the reference space for iteration ν. The relative time in-
crease upon going from iteration ν to ν + 1 is given by

0 1000 2000 3000 4000 5000

50

100

150

200

C
PU

 T
im

e 
(h

rs
.)

-5

-4

-3

-2

-1

0

Δ
𝓔 

(k
ca

l m
ol
⁻¹)

CISDT
CISDTQ
sMCCI
CPU Time sMCCI

𝑖𝘣𝑎𝑡𝒸𝘩  (CSFs)

FIG. 2. CPU time (hrs.) and ∆E (kcal mol−1) as a function of
ibatch (CSFs) for neon within a cc-pVTZ basis, cmin = 10−4,
iadd = 100 CSFs and allowed to run for 61 iterations. The
methods of CISDT and CISDTQ also included. The CPU
Time sMCCI data set is with respect to the x1 axis with all
others pertaining to x2.

the following:

T =
(N (ν+1) + i

(ν+1)
batch )2B(ν+1)

(N (ν) + i
(ν)
batch)2B(ν)

. (11)

Hence the value of i
(ν+1)
batch that minimizes this relative time

is found by setting the derivative

∂T

∂i
(ν+1)
batch

=
N

(ν+1)
sd

B(ν)(N (ν) + i
(ν)
batch)2

(
1− (N (ν+1))2

(i
(ν+1)
batch )2

)
(12)

to zero. This leads to the general adaptive i
(ν+1)
batch =

N (ν+1) as that expected to result in the fastest calcula-
tion. We find that this adaptive approach takes 32.3 pro-
cessor hours so would reside amongst the shorter times
shown in Fig. 2 thereby suggesting that this estimate is
reasonable. The overall fastest calculation (ibatch = 2000
CSFs) required slightly less time at 30.7 processor hours
and its order of magnitude fits in with the adaptive ap-
proach and the average size of the wavefunction given
that the converged wavefunction consisted of around
5600 configurations. There is also the issue of the fi-
nal energy being affected by the batch size but as shown
previously in Fig. 2 the difference with FCI is essentially
constant on the scale of the graph. As ibatch = 2000
CSFs gave the quickest time we therefore use this value
in subsequent calculations.

Based upon this, we now vary iadd from 10 → 1000
CSFs, once again subjecting to 61 full prune iterations
with a cmin of 10−4. As was to be expected increasing
iadd lowers the resulting energy more per iteration, with
the contrary observed in regards to the CPU time upon
completion of iteration 61. However, for this increasing
iadd we also observe a larger discrepancy between the
maximum and computed size of the wavefunction from
61 iterations. The difference for iadd = 100 CSFs is 447
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CSFs, increasing to 53,938 CSFs for iadd = 1000 CSFs.
Hence many more configurations are pruned for larger
iadd. This was due to convergence being achieved for an
iadd ≥ 200 CSFs well before iteration 61 therefore leading
to essentially redundant cycles. When examining an iadd
of 10 CSFs we find that the energy is still lowering, with
a difference of 0.131 kcal mol−1, between iteration 60
& 61. This can be attributed to adding no more than
10 CSFs per iteration, therefore only subtly correcting
the energy at each stage and requiring more iterations
to reach convergence. We observe a similar trend for an
iadd of 100 CSFs, when reducing the plotted energy range
(see inset of Fig. 3). As mentioned previously all other
iadd values are well converged within 61 iterations, with
the CPU time required to reach this decreasing with an
increasing iadd: 9.47, 14.00 and 29.75 CPU hours for an
iadd of 1000, 500 and 200 CSFs respectively.
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FIG. 3. Energy (Hartree) of each iteration as a function of
iadd (CSFs) for neon within a cc-pVTZ basis, cmin = 10−4,
ibatch = 2000 CSFs and allowed to run for 61 iterations.

Based on these exploratory calculations we continue
with iadd and ibatch values of 1000 and 2000 CSFs, re-
spectively, implementing the convergence-check proce-
dure outlined above at early stages of the computation.
Herein, all values of L and J are held constant at 3 and
Pf = 1, therefore the check could begin at iteration 7
but this version of sMCCI implements 10 iterations be-
fore checking for convergence. The value for convE was
varied from 10−3 to 10−4 Hartree with convl held fixed
at 100 CSFs, this value of convl was used throughout.
The energy varied by less than 4× 10−3 kcal mol−1, re-
covering 99.3 % of Ecorr, despite the former taking 55%
more CPU hours.

2. MCCI vs. sMCCI

Following on from this we compare our systematic ap-
proach to that of MCCI. The convergence criterion means
that there are at least 7 full-prune iterations, which oc-
cur every 10th iteration for MCCI and every iteration
for sMCCI, before beginning the convergence check en-
suring a level of consistency between the two methods,
with cmin = 10−4 and convE = 10−3 Hartree. We briefly

explore the statistical nature, x̄ and σ, of ∆E , l and run
time (t) for both approaches. We initially explore subsets
of 5, 10 and 20 individual runs.

For sMCCI we observe properties (Table I) that are
essentially invariant between the various subsets, high-
lighting the high level of consistency between individual
runs. In regards to MCCI we see in Table II that x̄∆E
varies between samples to a greater extent in comparison
to sMCCI. However these variations are still somewhat
insignificant and σ∆E was found to vary by only 3.8×10−2

and −2.2×10−2 kcal mol−1 for successive increasing sam-
ple sizes. As a result of this we allow a sample size of 20
to represent the population of both sMCCI and MCCI to
make for a fair comparison.

TABLE I. Resultant sMCCI properties of varying sample size
for neon with a cc-pVTZ basis, ibatch = 2000 CSFs, iadd =
1000 CSFs and cmin = 10−4. All energies are in terms of kcal
mol−1 and l pertains to CSFs.

Sample size x̄∆E σ∆E x̄l σl x̄t (sec.) σt (sec.)
5 -1.252 10−3 6897 9 4273.8 18.9
10 -1.252 10−3 6899 7 4281.3 17.8
20 -1.252 10−3 6900 6 4276.8 18.0

TABLE II. Resultant MCCI properties of varying sample size
for neon with a cc-pVTZ basis, cmin = 10−4. All energies are
in terms of kcal mol−1 and l pertains to CSFs.

Sample size x̄∆E σ∆E x̄l σl x̄t (sec.) σt (sec.)
5 -1.697 1.98× 10−1 6914 53 486.4 37.0
10 -1.719 2.36× 10−1 6926 57 497.7 39.6
20 -1.711 2.14× 10−1 6932 61 500.5 48.8

For the populated data despite containing 32 fewer
CSFs sMCCI captures 4.59 × 10−1 kcal mol−1 more of
Ecorr, indicating a slightly more compactness within the
resulting wavefunction. This can be attributed to sMCCI
considering the entire single and double space at each it-
eration, therefore it is more likely that all the important
configurations will be located. As would be expected a
systematic approach has a greater degree of consistency
between individual runs, highlighted by a lower σl and
σ∆E . This should not detract from the σ∆E of 2.14×10−1

kcal mol−1 for MCCI as this is still a highly consistent
spread of values for an inherently stochastic technique.
The full consideration of Nsd, and minimal energetic de-
crease, comes at the expense of wall time as sMCCI takes
7.5 times longer than MCCI (cf. 4276 sec. and 500.5 re-
spectively).

3. Scaling of sMCCI & MCCI

The scalability of the sMCCI and MCCI algorithm was
then explored (see Fig. 4), ranging from 8 to 72 proces-
sors. In regards to our computational resources each node
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contains 12 processors therefore we must utilize a multi-
node algorithm for Nproc > 12, which involves additional
communication of individual nodes with the head node,
upon completion of each cycle, subsequently affecting the
observed timings. This difference was tested on 12 pro-
cessors and found to increase computational time by 4
seconds therefore we do not expect this to be an issue.
As the relative timings of sMCCI are far larger than σt
for 8 processors we compare a single run of each. How-
ever this is not the case for MCCI as the separation of
successive wall times is well within the aforementioned
σt, therefore we compare the results over 20 runs.
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FIG. 4. Wall time (sec.) as a function of Nproc for sMCCI and
MCCI computations of neon within a cc-pVTZ basis, cmin =
10−4, ibatch = 2000 CSFs, iadd = 1000 CSFs and convE =
10−3 Hartree. Inset: an enlarged view of the y1 axis between
300 → 590 seconds. The error bar relates to ±σt.

Increasing the number of processors from 8 to 72 re-
sults in a wall time decrease of 78.8 and 26.0 % for sM-
CCI and MCCI respectively. For sMCCI we observe very
promising scaling factors upon changing from 8 to 36 pro-
cessors, with the total wall time reducing by 68.8 %. For
MCCI we do not observe this level of scaling with no
benefit for this system of going above 36 processors. As
a result of the small run time difference when increasing
the number of processors, as shown in Fig. 4, and the
stochastic nature of the method it is entirely possible for
slightly fewer processors to result in faster computations.

We note that the sMCCI energy is independent of the
number of processors while the energy of MCCI may vary.
This is because the equivalent of the batch size in MCCI
depends on the number of processors. Of course both
methods can give slightly different results from run to
run, as discussed previously, unless the seed is fixed for
the random number generator. We did not see that sM-
CCI could run in less time than MCCI when considering
up to 72 processors, but the scaling suggested that this
may be possible with a sufficiently large number of pro-
cessors. However the removal of duplicates in Nsd may
become the bottle-neck that prevents this.

4. SDs vs CSFs

To compare the methods of sMCCI and MCCI with
that of pruned -FCI where the FCI wavefunction is calcu-
lated using MOLPRO38 we must transition to SDs, as up
until this point we have solely considered wavefunctions
consisting of CSFs. When using SDs the resulting sMCCI
energy is 4.64× 10−1 kcal mol−1 larger than the CSF re-
sult, with the converged

∣∣ΨsMCCI
〉

containing 2811 more
configurations - all other computational parameters were
kept the same as III A 2 and again averaged over 20 runs.
The total wall time of the aforementioned computations
also increased by 76.2 % upon this transition. In regards
to MCCI, we observe a similar outcome as the energy
from a SD approach is larger by 2.21× 10−1 kcal mol−1

and contains 2338 more configurations. However the to-
tal wall time was found to decrease by 20 % when using
SDs. For SDs the energy difference between sMCCI and
MCCI is lowered to 2.15×10−1 kcal mol−1, with the for-
mer now containing 441 more configurations (see Table
III).

TABLE III. Resultant MCCI properties for a sample size of 20
for neon with a cc-pVTZ basis, ibatch = 2000 SDs, iadd = 1000
SDs and cmin = 10−4. All energies are in terms of kcal mol−1

and l pertains to SDs.

Method x̄∆E σ∆E x̄l σl x̄t (sec.) σt (sec.)
sMCCI -1.716 10−4 9711 2 7531.1 29
MCCI -1.931 8.5× 10−2 9270 46 400.7 23.9

5. Comparison with pruned-FCI

For a cmin = 10−4 the pruned-FCI wavefunction con-
tained 9679 SDs with a resulting ∆E of -1.729 kcal mol−1.
This is very similar to the sMCCI and MCCI result.
Hence for the neon atom efficiently building up a compact
wavefunction with random selections is suggested to be
comparable with the systematic but computationally ex-
pensive approach of beginning with the FCI wavefunction
and pruning configurations. One approach to broadly
compare the wavefunctions is by quantifying their multi-
reference character. We use MRchar (see Refs. 29 and
41) which is defined as

MRchar =
∑
i

|ci|2 − |ci|4 (13)

where ci are the normalized coefficients of the SDs in
the wavefunction. MRchar ranges from zero, for a wave-
function consisting of a single determinant, to one as the
number of important configurations increases. For this
system we find that, in addition to the energies being very
similar, the wavefunction’s multi-reference character was
6.7× 10−2 for all three methods.
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The composition of each wavefunction was then ex-
plored in terms of the number and relative contributions
of each substitution level. For sMCCI and MCCI we
take one single run and not an average as was done
previously. As shown in Fig. 5 the wavefunctions are
dominated by double, triple and quadruple excited con-
figurations. However, when looking at the importance
of each substitution level it is essentially dominated by∣∣ΨHF

〉
with some contribution from double-excited con-

figurations (see Fig. 6). The only major discrepancy
between the wavefunctions is with respect to quadruple
excited configurations as MCCI contained 423 and 407
fewer when compared with sMCCI and pruned -FCI, re-
spectively.
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FIG. 5. The % composition of each wavefunction in terms of
configurations from each substitution level for neon with a cc-
pVTZ, ibatch = 2000 SDs, iadd = 1000 SDs and cmin = 10−4.
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FIG. 6. The sum of c2i for each substitution level present in the
various wavefunctions for neon with a cc-pVTZ, ibatch = 2000
SDs, iadd = 1000 SDs and cmin = 10−4.

We also increased the cmin value by an order of magni-
tude to 10−3. The pruned-FCI wavefunction resulted in
an energy of −128.790810 Hartree with a vector length
of 1137 SDs. The sMCCI and MCCI energies are both
higher by 1.971×10−1 and 5.806×10−1 kcal mol−1, once
again the sMCCI wavefunction contained fewer configu-
rations. Despite increasing the cmin to 10−3, we still
capture between 95.3 - 95.7 % of Ecorr, with a MRchar
of 6.2 × 10−2. For this cmin no method contains quin-

tuply excited configurations and above. Once again the
composition of each wavefunction is very similar across
all methods (see Fig 7 and 8).
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FIG. 7. The % composition of each wavefunction in terms of
configurations from each substitution level for neon with a cc-
pVTZ, ibatch = 2000 SDs, iadd = 1000 SDs and cmin = 10−3.
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FIG. 8. The sum of c2i for each substitution level present in the
various wavefunctions for neon with a cc-pVTZ, ibatch = 2000
SDs, iadd = 1000 SDs and cmin = 10−3.

B. H20

We now turn our attention to the double-hydrogen
dissociation of water with a cc-pVDZ [7s 4p 1d ] basis,
once again invoking the frozen-core approximation for
the lowest-energy MO. The distance between the oxy-
gen and hydrogen atom (ROH) was varied symmetrically
from 1.0 to 4.6 Bohr, in 0.2 Bohr increments, with the H-
O-H angle held constant at 104.5o therefore maintaining
c2v symmetry along the potential energy surface (PES).
A previous study37 provides FCI energies which we will
use for comparison.

1. ibatch and iadd parameters

Initially the same protocol as section III A of varying
ibatch and iadd was explored for an ROH of 4.0 Bohr,
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allowing us to investigate this dependence on a system
expected to have a great deal more multi-reference char-
acter than neon. The FCI energy for this separation is
-75.932598 Hartree with

∣∣ΨFCI
〉

containing 1.96 × 107

SDs, giving an Ecorr of -250.841 kcal mol−1. For ibatch
we once again observe no energy dependence for the range
of values considered (0→ 2000 CSFs). Fig. 9 displays the
effect of varying iadd for sMCCI when cmin = 10−4. The
results are somewhat analogous to the neon system there-
fore we once again utilize an ibatch and iadd of 2000 and
1000 CSFs, with the convergence check beginning after
iteration 10. When examining convE values of 10−3 and
10−4 Hartree we find an energy difference of 3.89× 10−1

kcal mol−1, with the latter having a CPU time 5.1 times
that of the former. The respective wavefunctions for the
convergence thresholds contained 10301 and 14901 CSFs.
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FIG. 9. Energy (Hartree) of each iteration as a function of
iadd (CSFs) for H2O (ROH = 4.0 Bohr) within a cc-pVDZ
basis, cmin = 10−4, ibatch = 2000 CSFs and allowed to run
for 61 iterations.

2. sMCCI vs. MCCI

For the 4.0 Bohr ROH system we also explored the
statistical nature of the MCCI and sMCCI results over
20 individual runs with iadd = 1000 CSFs, ibatch = 2000
CSFs, convE = 10−3 Hartree and cmin = 10−4. As was
the case with neon, sMCCI shows little variation between
various subsets. In regards to MCCI the difference be-
tween σ∆E was 1.2 × 10−2 kcal mol−1 for the samples
containing 10 and 20 subsets , this value was lower than
its neon counterpart, despite containing 8789 more con-
figurations. Therefore we allow the subset of 20 compu-
tations to represent the population statistics.

Once again, sMCCI shows a greater degree of consis-
tency between individual runs when compared to MCCI
(σ∆E of 10−3 and 1.9 × 10−2 kcal mol−1, respectively).
However, the resulting MCCI energy was found to be
lower by 3.951× 10−1 kcal mol−1, containing 5409 more

CSFs. The discrepancy in configurations can be at-
tributed to the varying Nnew added configurations in
MCCI, and also starting the convergence procedure after
at least 7 full prune iterations, equating to the 61st cycle
in MCCI. As the reference space increases so does Nnew,
therefore the wavefunction can increase at a far superior
rate for MCCI at large values, contrary to sMCCI which
has an upper limit of adding 1000 configurations per it-
eration. Upon lowering convE to 10−4 the MCCI energy
varies by only 2.97× 10−2 kcal mol−1, far lower than the
aforementioned sMCCI difference. At a convE of 10−4

both MCCI and sMCCI capture 99.7 % of the electron
correlation energy, with the latter containing 1013 fewer
CSFs.

3. Scaling of sMCCI and MCCI

We compare computations employing an energy-
convergence threshold of 10−4 Hartree, due to the sig-
nificant discrepancy between the number of CSFs in the
resulting MCCI wavefunctions for a threshold of 10−3

Hartree. We still observe a difference of 1013 CSFs
for the lower convergence threshold, with the

∣∣ΨsMCCI
〉

once again the more compact of the two, which must
be remembered when comparing wall times of the MCCI
methods. We compare a single run of increasing pro-
cessors. Upon increasing the number of processors, once
again from 8 to 72, we find wall times that decrease by
78.2 and 18.7 % for sMCCI and MCCI respectively.
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FIG. 10. Wall time (sec.) as a function of Nproc for sMCCI
and MCCI computations of H2O (ROH = 4.0 Bohr) within a
cc-pVDZ basis, cmin = 10−4, ibatch = 2000 CSFs, iadd = 1000
CSFs and convE = 10−4 Hartree.

When running on 8 processors the sMCCI computa-
tion is 403 % longer than the MCCI counterpart (24680
and 4905 seconds, respectively). If we then compare the
wall time differential when utilizing 72 processors, this
significantly lowers to 35 % (5370 and 3987 seconds, re-
spectively). Once again for MCCI we do not observe a
smooth convergence as the number of processors are in-
creased.
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4. SDs vs CSFs

Once again we must transition from CSFs to SDs. We
compare the results of a single computation at convE val-
ues of 10−3 and 10−4 Hartree, with a cmin = 10−4. All
resulting energies from wavefunctions containing CSFs
are found to be lower in energy than their SD counter-
parts. For the computations using SDs we observe the
same general trend, as was found for CSFs in Section
III B 1 and III B 2, upon differing convE . However, the
energy difference between sMCCI at these varying con-
vergence values was larger at 1.317 kcal mol−1. At a
convE = 10−4 Hartree sMCCI and MCCI have a ∆E of
-1.070 and -1.089 kcal mol−1 respectively.

5. Potential energy surface

We now calculate the PES as the bonds are symmet-
rically stretched using a cmin and convE of 10−3 for the
method comparison.
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FIG. 11. The PES for the double-hydrogen dissociation of
H2O using the cc-pVDZ basis, one frozen orbital and 104.5o

for the H-O-H angle when calculated with FCI, pruned-FCI,
MCCI and sMCCI.

As shown in Fig. 11 all methods are found to be in
good agreement with the FCI curve, with the % of Ecorr
recovered ranging between 94 - 98 %. In order to pro-
vide a quantitative account of the differences in accuracy
between individual curves we compare the nonparallelity
error (NPE) and σ∆E . The NPE is defined as42 the dif-
ference between the largest and smallest absolute error
for the calculated curve.

NPE = max|∆E| −min|∆E|. (14)

The standard deviation of the energy difference with FCI,
σ∆E , was introduced in Ref. 37 as a way of quantifying
the error in a potential energy curve that incorporates
the feature of the NPE that the curves may be shifted by
a constant, but also takes into account all of the points
used for the calculated PES. It is defined as

σ∆E =

√√√√1

d

d∑
j=1

(∆Ej −∆E)2, (15)

where there are d points in the potential curve and ∆E is
the mean value for ∆E . Previously in this paper we used
σ∆E for multiple runs at a single geometry to indicate
the consistency of the methods, but emphasize that now
it is being used for single runs at a range of geometries
to quantify the accuracy of the potential curve.

TABLE IV. NPE and σ∆E for the various computational
methods (cmin = 10−3), all points of the PES were included.

Method NPE (kcal mol−1) σ∆E (kcal mol−1) x̄%Ecorr

sMCCI 5.262 1.607 95.32
MCCI 6.479 2.156 94.87

pruned FCI 4.971 1.501 95.46

In Table IV we see that the NPE is 1.217 kcal mol−1

lower for sMCCI when compared to MCCI with ∆Es also
closer to one another by on average 5.49 × 10−1 kcal
mol−1. The most accurate PES is that approximated
by a pruned -FCI approach as the lowest NPE and σ∆E
values are obtained. The pruned -FCI and sMCCI meth-
ods capture a similar % of Ecorr over the PES.

For the three methods, at the equilibrium geometry
the system is single reference with a MR character of
9.7×10−2 increasing to 0.72 for a separation of 4.0 Bohr.
For these two geometries we also explore the composi-
tion of each converged wavefunction from the individ-
ual methods, see Fig. 12 and 13. For an ROH of 1.8
Bohr, doubly-excited configurations consist of 89.8 - 92
% of the wavefunction, with the remaining percent essen-
tially quadruples. However, as was the case with neon,
in terms of importance we find that only the HF and
double-excited configurations have any real contribution.
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FIG. 12. The sum of c2i for each substitution level present in
the various wavefunctions for H2O with an ROH = 1.8 Bohr
and cc-pVDZ basis, ibatch = 2000 SDs, iadd = 1000 SDs and
cmin = 10−3. Inset: The % composition of each wavefunction
in terms of configurations.

If we consider an ROH = 4.0 Bohr, we observe the ef-
fect of the drastically increased MR character. For this
separation, in terms of configuration amount, the wave-
functions consist of up to sextuple excited determinants.
However, now the contribution of the HF wavefunction
has been drastically lowered, from 95 % for the equilib-
rium geometry, to 50 %. For this increased separation
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the double excited configurations are extremely impor-
tant with a contribution of around 40 %. The singly,
triply and quintuply excited configurations also have non-
negligible contributions.
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FIG. 13. The sum of c2i for each substitution level present in
the various wavefunctions for H2O with an ROH = 4.0 Bohr
and cc-pVDZ basis, ibatch = 2000 SDs, iadd = 1000 SDs and
cmin = 10−3. Inset: The % composition of each wavefunction
in terms of configurations.

C. Carbon Monoxide

We now consider the first excited state of A1 sym-
metry for carbon monoxide (1Σ+), within c2v symme-
try, with a cc-pVDZ basis [6s 4p 2d ] and the two low-
est energy MOs doubly occupied in all configurations.
The experimental bond length for the excited state was
used (2.116 Bohr). At this geometry, the FCI energy
of the ground and excited A1 state was -113.055014 and
-112.666416 Hartree respectively, giving an excitation en-
ergy of 10.574 eV. For the A1 excited state we ensure that
the wavefunction always contains all configurations from
the converged MCCI A1 ground state wavefunctions to
prevent instabilities in the excited state calculation aris-
ing from the pruning of important ground-state config-
urations. For a cmin of 10−3, convE = 10−3 Hartree,
ibatch = 2000 CSFs and iadd = 1000 CSFs, the ground
state MCCI and sMCCI wavefunctions contained 1770
and 1919 CSFs with the latter 6.45 × 10−1 kcal mol−1

lower in energy. For the excited state both wavefunc-
tions increase in size, by a factor of 1.6 for MCCI and
1.5 for sMCCI, with sMCCI again the lower of the two
by 4.06× 10−1 kcal mol−1. Both sMCCI and MCCI pro-
vide good approximations to the exact excitation energy
of 10.574 eV, only slightly overestimating this quantity
by less than one tenth of an eV. The respective absolute
excitation value of the sMCCI and MCCI approaches are
10.658 and 10.668 eV. We then employed the approach of
recomputing the corrected ground state energy within the
space spanned by the excited state wavefunction. Within
this approach the MCCI and sMCCI gave excitation en-
ergies of 10.745 and 10.744 eV respectively, due to the
lowering of the A1 ground state energy via inclusion of
the important excited CSFs. In order to investigate the

MR character we employ SDs, with all other parame-
ters analogous to that above. The MCCI and sMCCI
wavefunctions contained 3104 and 3168 SDs respectively,
with the latter 4.32 × 10−1 kcal mol−1 lower in energy.
Once again in regards to the A1 excited state both wave-
functions increase in size by a factor of 1.5, with sMCCI
again the lower of the two by 2.03 × 10−1 kcal mol−1.
We do not observe the same agreement as that of the
CSF variant with the excitation energy underestimated
by > 1.6 eV. In regards to the MR character the excited
state is far larger than that of the ground state with val-
ues of 0.17 and 0.80 respectively. Upon correction of the
ground state energy this was found to slightly improve
the excitation energies with values of 9.039 and 9.045 eV
for MCCI and sMCCI, respectively. Upon lowering the
cmin to 10−4 the approximated excitation energies lower
by 1.73×10−1 and 1.77×10−1 eV for MCCI and sMCCI
respectively, despite vastly increased wavefunctions. Ap-
plying the aforementioned correction results in excitation
energies of 8.805 and 8.831 eV for this lower cmin.

D. Chromium dimer

The potential energy curve of the chromium dimer was
investigated with MCCI in Ref. 29 using the cc-pVDZ
and cc-pVTZ basis sets with 18 frozen orbitals. For the
cc-pVTZ results, a cutoff of cmin = 2 × 10−4 was used.
However for a larger cutoff and a stretched bond length
of 2.75 Å we have found that the cc-pVTZ result can
get trapped in a local minimum of configuration space.
We attribute this to the large configuration space for
cc-pVTZ (∼ 1018 determinants) and the very strongly
multi-reference character that was demonstrated for this
system.29

This calculation is therefore very appropriate as a test
of systematic-MCCI where the consideration of all single
and double substitutions should reduce the chance of be-
ing trapped in a local minimum of configuration space.
We use CSFs, cmin = 5 × 10−4 (with the same value
for the convergence threshold) and initially implement
the calculations on 12 processors with iadd = 100 CSFs.
We see in Fig. 14 that the systematic approach reaches a
lower energy than MCCI in less time. The systematic ap-
proach did not run until convergence due to the number
of singles and doubles surpassing the maximum allocated
for this calculation (200 million). This occurred after 28
iterations compared with the 1044 iterations for MCCI
to reach convergence. The final MCCI wavefunction used
34629 configurations while that of sMCCI needed only
2588. This demonstrates how the systematic approach
can produce wavefunctions that are more accurate and
more compact in less time. For balance we emphasize
that it is possible that multiple runs of MCCI would yield
lower energies however such an approach is less feasible
for this system due to the long computation time.

We next increase the number of processors to 144 for
sMCCI and 36 for standard MCCI. We implement these
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FIG. 14. Energy (Hartree) against time (hours) for MCCI and
systematic-MCCI 12 processor calculations of the chromium
dimer at a bond length of 2.75 Å using CSFs, the cc-pVTZ
basis with 18 frozen orbitals and a cutoff of cmin = 5× 10−4.

larger parallel calculations on one of the EPSRC Tier-2
National HPC facilities (Cirrus) and we now set iadd to
200 CSFs with the aim of getting more improvement in
the sMCCI energy per iteration. This increase in iadd

means that by iteration 28 the energy is now −2086.606
Hartree compared with −2086.569 Hartree for iadd = 100
CSFs. Due to allocating more space for the singles and
doubles then the calculation continues until it runs out
of time on iteration 38 when there are more than half
a billion singles and doubles configurations. However as
there are twelve times as many processors then this calcu-
lation is faster than the previous iadd = 100 CSFs result.
Fig. 15 shows that despite the larger iadd lowering the
final energy for the systematic calculation and the MCCI
energy being higher in the early stages, the converged
MCCI energy is now lower than the systematic result
and takes less time even when using one quarter of the
processors. The systematic result now only used 7181
configurations while MCCI, similarly to 12 processors,
needed 1113 iterations and 33507 configurations.

Due to the size of the singles and doubles space
growing so fast then large enough numbers of proces-
sors would eventually confer an advantage to systematic-
MCCI. However for the parallel calculations considered
here the lowest energy was due to MCCI for a run on
36 processors confirming again that the stochastic selec-
tion of configurations in MCCI can provide a high qual-
ity result. Yet the highest energy also occurred for the
result of an MCCI calculation on 12 processors which
was noticeably improved upon in a relatively short time
and with significantly fewer configurations when using
the systematic-MCCI approach for this system. Coupled
with the more predictable behavior of systematic-MCCI
this suggests that the current incarnation of the approach
can be used to indicate if a single MCCI result is reliable
or if further, and more costly, MCCI calculations are nec-
essary.
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FIG. 15. Energy (Hartree) against time (hours) for MCCI
and systematic-MCCI calculations using 36 and 144 proces-
sors respectively when applied to the chromium dimer at a
bond length of 2.75 Å using CSFs, the cc-pVTZ basis with 18
frozen orbitals and a cutoff of cmin = 5× 10−4.

IV. CONCLUSION

We introduced the approach of systematic-Monte Carlo
configuration interaction (sMCCI) where all interact-
ing configurations are randomly ordered then tested in
batches as additions to the current wavefunction, albeit
not in every possible combination, in iterated diagonal-
izations to build up a compact wavefunction. In contrast
to this selected CI scheme, we looked at removing con-
figurations from the full configuration interaction (FCI)
wavefunction if their absolute coefficient is less than a
cutoff to give a pruned-FCI approach. These systematic
approaches allowed us to investigate whether the stochas-
tically generated MCCI wavefunction appears close to
optimum for a range of systems.

The neon atom in the cc-pVTZ basis was first used to
calibrate sMCCI. There it was found that a batch size
of 2000 and adding 1000 configurations on each itera-
tion was most efficient. The order of magnitude of the
batch size was in line with our estimate based on the scal-
ing of the diagonalizations. We found that when using
the systematic approaches the energy, wavefunction size
and multi-reference character were similar to MCCI. The
form of the approximate wavefunctions were also com-
parable which we analyzed by looking at the weighted
excitation level of the configurations. sMCCI exhibited
much better scaling with the number of processors al-
though it was not demonstrated to be faster than MCCI
when employing up to 72 processors.

We next considered the water molecule in a cc-pVDZ
basis and calculated its potential energy curve when both
bonds are symmetrically stretched. The FCI curve was
well approximated by all the methods and when quan-
tifying the accuracy pruned-FCI had the lowest error
followed by sMCCI but there was not a strong differ-
ence between the approximate methods. For the equilib-
rium geometry and a stretched bond length we found all
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three approaches gave very similar wavefunctions, con-
taining ∼ 1600 and ∼ 2700 configurations respectively.
The MRchar of these geometries were also found to be
9.7× 10−2 and 0.72.

For the first A1 excitation energy of carbon monoxide
in a cc-pVDZ basis, we then found that the energy was
similar whether sMCCI or MCCI was used and in good
agreement to the exact excitation energy.

Finally we looked at a particularly challenging geom-
etry of the already difficult electronic structure problem
of the chromium dimer. With the cc-pVTZ basis and 18
frozen orbitals, we found when using a reasonable cutoff
that the systematic approach could result in a noticeably
lower energy in less time than MCCI despite using less
than a tenth of the configurations. This used 12 proces-
sors, but when we increased the number of processors to
36 for MCCI then the MCCI result was lower in energy
than the systematic value.

We have seen that by stochastically building up a
compact wavefunction, MCCI generally produces ener-
gies and wavefunctions that are similar to the two sys-
tematic approaches created here to select configurations.
This suggests that, for most of the systems considered
here (covering equilibrium geometries, stretched bonds
and excited states) the MCCI wavefunction was likely to
be reasonably close to the optimum wavefunction for the
number of configurations used. The exception to this was
the chromium dimer where systematic-MCCI avoided be-
ing trapped in the same local minimum of configuration
space as MCCI when running on 12 processors. How-
ever another run of MCCI with more processors reached
a lower energy in less time than sMCCI.

Although systematic-MCCI shows better parallel scal-
ing than MCCI it was not demonstrated to be faster over-
all at this stage in its development. Hence we are not
suggesting that the systematic approach supplants the
stochastic method, rather that it can be used to demon-
strate the likely optimality of the MCCI wavefunction.

Furthermore, as have we seen for the chromium dimer,
it can also be used to indicate relatively quickly if MCCI
has become trapped in a local minimum of configuration
space and therefore repeated, more costly, MCCI calcula-
tions are necessary to create a wavefunction of sufficient
accuracy. In the future we wish to explore the large scale
parallelization of sMCCI, due to the degree of scalability
observed in the aforementioned neon and water computa-
tions, and also alternative approaches to generating the
entire single and doubles space that currently must be
stored in available memory at each iteration. This would
allow larger systems and configurational spaces to be ex-
plored.

ACKNOWLEDGMENTS

We thank the EPSRC for funding through the platform
grant EP/P001459/1.

V. REFERENCES

1E. Rossi, G. L. Bendazzoli, S. Evangelisti, and D. Maynau, “A
full-configuration benchmark for the N2 molecule,” Chem. Phys.
Lett. 310, 530 (1999).

2K. D. Vogiatzis, D. Ma, J. Olsen, L. Gagliardi, and W. A.
de Jong, “Pushing configuration-interaction to the limit: To-
wards massively parallel MCSCF calculations,” J. Chem. Phys.
147, 184111 (2017).

3P. M. Zimmerman, “Incremental full configuration interaction,”
J. Chem. Phys. 146, 104102 (2017).

4J. J. Eriksen, F. Lipparini, and J. Gauss, “Virtual Orbital Many-
Body Expansions: A Possible Route towards the Full Configura-
tion Interaction Limit,” J. Phys. Chem. Lett. 8, 4633 (2017).

5J. J. Eriksen and J. Gauss, “Many-Body Expanded Full Con-
figuration Interaction. I. Weakly Correlated Regime,” J. Chem.
Theory Comput. 14, 5180 (2018).

6Y. Ohtsuka and S. Nagase, “Projector Monte Carlo method based
on configuration state functions. Test applications to the H4 sys-
tem and dissociation of LiH,” Chem. Phys. Lett. 463, 431 (2008).

7G. H. Booth, A. J. W. Thom, and A. Alavi, “Fermion Monte
Carlo without fixed nodes: A game of life, death, and annihila-
tion in Slater determinant space,” J. Chem. Phys. 131, 054106
(2009).

8C. Daday, S. Smart, G. H. Booth, A. Alavi, and C. Filippi, “Full
Configuration Interaction Excitations of Ethene and Butadiene:
Resolution of an Ancient Question,” J. Chem. Theory Comput.
8, 4441–4451 (2012).

9B. Huron, J. P. Malrieu, and P. Rancurel, “Iterative perturba-
tion calculations of ground and excited state energies from multi-
configurational zeroth-order wavefunctions,” J. Chem. Phys. 58,
5745 (1973).

10Y. Garniron, T. Applencourt, K. Gasperich, A. Benali, A. Ferté,
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