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A B S T R A C T

We studied the evolution of an asymmetric solitary vortex in a two-dimensional Bose-Einstein condensate starting
from a quasi-one dimensional state with external harmonic trapping potential modulation. We derived the ana-
lytical solution of the asymmetric solitary vortex based on the two-dimensional Gross-Pitaevskii equation model
and variational method. Furthermore, we identified the oscillation mode between the extreme asymmetric state
and circular symmetric state for the derived solitary vortex. The obtained theoretical results can be used as guides
for relevant experimental studies of asymmetric solitary vortices under similar physical conditions.

Introduction

Nonlinear physical phenomena in ultracold atomic systems have
been popular research topics even since the first experimental realization
of Bose-Einstein condensation (BEC). The typical nonlinear features of
solitons and vortices have been extensively investigated [1] in ultracold
systems because of the flexible controllability of the system. Ultracold
atomic systems can be easily modulated by controlling the external
trapping potential. In addition, the nonlinear interactions can be
modulated via the Feshbach resonance experimental technique [2,3]. It
has been demonstrated theoretically as well as experimentally that stable
solitons can exist only in one-dimensional settings. In contrast, solitary
vortices typically exist in two-dimensional settings. Prior theoretical [4]
and experimental investigations [5] have revealed that, in systems with
dominant leading-order nonlinear interactions, modulational instabilities
[6] are suppressed. Furthermore, when the nonlinear interaction strength
is less than a certain threshold value, stable solitary vortices [5] are
obtained that exist in quasi-stable, breathing, or rotating states.
The Gross-Pitaevskii equation (GPE) [7–14] model has been proven

to be reliable for a quantitative description of the two-dimensional dy-
namics of BECs. For the one-dimensional system, analytical soliton so-
lutions have been strictly derived, while in the two-dimensional setting,
circular symmetric solitary vortices have been analytically studied in
prior investigations. However, circular asymmetric solitary vortices have
rarely been investigated. Asymmetric solitary vortices can be generated
from axial disturbances of initially circular symmetric settings, or by

cross-dimensional modulations that can change the external trapping
potentials of quasi-one dimensional matter waves. In this study, we have
investigated the evolution of asymmetric solitary vortices in isotropic
harmonic trapping potentials from initial quasi-one dimensional states.
Using the two-dimensional GPE model and variational method [15,16],
we have derived analytical solutions for the solitary vortices that exhibit
circular asymmetric features, with the resulting solitary vortex oscillating
between the extreme asymmetric and circular symmetric states under
typical leading-order nonlinear interactions. The derived theoretical re-
sults can be used as guides for relevant experimental studies of asym-
metric solitary vortices in two-dimensional ultracold atomic systems.
The remainder for this paper is organized as follows. In section II,

we first formulates the physical settings that initiates the evolution of
an asymmetric solitary vortex. Next, we describe the procedural details
of the derivation of the asymmetric solitary vortex solution based on the
two-dimensional GPE model. The theoretical results and possible ex-
tensions for the analysis are also discussed. Finally, we present the
concluding remarks in the final section.

Asymmetric solitary vortex and its evolutionary patterns based on
the two-dimensional GPE model

Generation of asymmetric solitary vortex state

We first consider the two-dimensional Bose-Einstein condensate
system under the quasi-one dimensional setting in anisotropic harmonic
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trap. The harmonic trap take the form: = +V x y m x y( , ) ( )x y
1
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2 2 2 2

( y x).The quasi-one dimensional system is assumed to stay at first
excited state along the x direction described by the following wave
function:
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To generate the asymmetric vortex, we rotate the system within very
short time so that the system achieve the angular speed = = m0 .
The system’s initial wave function changes to:
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The wave function (2) is in the format of asymmetric solitary vortex
with asymmetric distribution in the x and y direction. Also, we switch
the external trapping strength y in the y direction to x so that external
trapping is isotropic starting from time =t t20. We will investigate the
evolution of the asymmetric solitary vortex starting from state (2). This
is the topic for the next subsection.

The solitary vortex solution of the two-dimensional GPE for the ensuing
evolution of the asymmetric solitary vortex

Starting from time =t 020 , we study the evolution of the state de-
scribed by (2) based on the following two-dimensional GPE,
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The derivation of the analytical solitary vortex solution of Eq. (3) is
based on the variational methodology by working on the action

= rS d dtL with the Lagrangian density taking the following format,
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In order to identify the analytical solitary vortex solution for
x y t( , , ), we assume the following variational ansatz for the wave

function,
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which takes the form of the solitary vortex with vorticity number =S 1
[In ]. The inherent asymmetry of the solitary vortex is incorporated in
the formulation by redefining t t( ), ( )x y and t( ) as follows;

= +t t t( ) ( ) 1 cos ( )x (6a)

=t t t( ) ( ) 1 cos ( )y (6b)

=t t( ) 1
2

cos ( ) (6c)

where the system evolves from extreme asymmetric state starting from
time =t 0, = =t t( )x x20 0, = =t t( )y y20 0, = =t t( ) 020 . It is not
hard to see that the system’s ensuing dynamic evolution are determined
by the time dependent parametric functions t t( ), ( ) and t( ). We will
show immediately that the three parametric functions are not actually
independent and two constraint formulae are reached showing that t( )
and t( ) are functions of t( ). The two constraint formulae were de-
rived by plugging Eq. (5) into Eq. (3) and consider the imaginary
portion [15] (proportional to i or +i x iy E E( ) , is defined in the

ensuing steps) of Eq. (3) first, which require that all the coefficients of
these imaginary terms are zero as

+
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and plugging Eq. (7c) into ×x y Eq. (8) gives,
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Making the equation’s imaginary part equal to zero also establishes that
the coefficient formula of the 2nd asymmetric term of Eqs. (7d) and (7e)
take zero value, this gives

=t( ) 1
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1 1
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Combining Eqs. (7d) and (9) generates the 1st constraint formula

+ =B t G t t A[ cos ( ) sin ( )]sin ( )0 0 0 (12)

where G A0 0 is the integral constant.
Combining Eq. (10) and (11), and utilizing Eq. (7a) and (7b) pro-

duces the second constraint formula
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The two derived constraint Eqs. (12) and (13) formulate t( ) and t( ) as
functions of t( )

= =t t t t( ) ( ( )), ( ) ( ( )) (14)

In combination with Eq. (7), we reach the following formulae:

=t t( ) ( ( ))x x (15a)

=t t( ) ( ( ))y y (15b)

=t t t( ) ( ( ), ( ))x x (15c)
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=t t t( ) ( ( ), ( ))y y (15d)

=t t( ) ( ( )) (15e)

After plugging Eq. (14 and (15) into the Eq. (5), then integrating the
Lagrangian density Eq. (4), over the spatial variables, we reach
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Working on the action =S dt( , )L , the Euler-Lagrangian equation

for t( ) = 0d
dt

L L reads

=m V¨ ( )
(17)

We identify that the ensuing evolutionary dynamics of the system de-
pends on the explicit formulation of V ( ). The evolution of t( ) (and
also for t( ) and t( )) will be determined by Eq. (17) with the boundary
condition = = = = = =t t t t t t( ) , ( ) , ( ) 0x x y y20 0 20 0 20 .
We proceed by making a prior analysis of the analytical form of

V ( ). Assume that 0 is the local minimum of V ( ) and oscillation
amplitude according to Eq. (17) is small, the resultant Lagrangian
density can be expressed as,
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where C0 is the normalization constant of the wave function, is
coefficient of the first-order expansion of t( ) arising from the para-
metric functions t( ) and t( ). The V ( ) in the corresponding Euler-
Lagrangian of Eq. (17) takes the following form

= + +V
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The existence of 0 with the local minimum ofV ( ) for small g is shown
in Fig. 1. For typical BEC system where the inter-particle nonlinear
interaction and the system deviation from isotropic parametric setting
is very small (g 0, 0), by plugging Eq. (19) into Eq. (17), we can
get the approximate analytical solution of t( ) as

= +t P t P( ) sin2
1 2 (20)

where

Fig. 1. Variation of V ( ) with (in units of 0
2
) for nonlinear interaction con-

stants with three different strength values: = 0, 0.01, 0.05 in units of as
m

4 2
,

and as is the interaction s-wave scattering length.

Fig. 2. Three dimensional plots of the solitary vortex evolution with snapshot images recorded at four timings (when =t 0, cos( ) cos( ) 0 holds): (a) =t 0, (b)
t=T/4, (c) =t T/2, and (d) =t T3 /4 (T is the evolution period of the vortex, both the horizontal and vertical axises are in units of /20 ).
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which show the oscillatory behavior of t( ) with period =T 2 around
0. The evolutionary behaviors for t( ) and t( ), which are determined
by the Eqs. (12) and (13), are not generally analytically solvable. By
numerically solving Eqs. (12) and (13) for typical small =g 0.02 (in
units of h a

m
4 2 0 , and a0 is the s-wave scattering length). We identify the

periodic variation of t( ) and t( ) in this situation and the evolutionary
patterns are shown in Fig. 2 at four timing locations
( = =t i, 0, 1, 2, 3i

i
2 ). We can see the solitary vortex takes the circular

symmetric shape at time =t t2. We can see that solitary vortex oscillates
between the extreme asymmetric shape (quasi-one dimensional soliton
pair) and the circular symmetric case periodically.
The periodic feature of the asymmetric vortex arises from the os-

cillation of t( ) around the local minimum 0 of V ( ). For asymmetric
vortex with higher vorticity N 2, the wave function is proportional to

= +r iN x iyexp( ) ( )N N with other components in ansatz (5) un-
changed. In this case, we will also reach the dynamical evolution
equation for that is similar to Eq. (17) with potential functionV ( ). If
local minimum 00 of V ( ) exists and oscillates around 00, we an-
ticipate the occurrence of asymmetric vortex with periodic evolution in
this scenario. We leave these as extended work for future investigation.
The theoretical results derived in this work can be used to guide the

experimental observation of the dynamical vortex modes for two-di-
mensional Bose-Einstein condensate with variable harmonic trapping
strength, specifically the evolution of the dynamical vortex mode from
quasi-one dimensional setting to the isotropic two-dimensional setting
via the adjustment of harmonic strength y from y x to the setting

=y x .

Conclusion

We studied the evolutionary pattern of an asymmetric vortex in a
two-dimensional BEC; the vortex was initiated from a quasi-one di-
mensional state via external harmonic trapping potential modulation.
Based on the two-dimensional GPE model and variational method, we
analytically derived the solution of the asymmetric solitary vortex.
Furthermore, we established that the asymmetric vortex exhibits

periodic features and oscillates between and extreme asymmetric and
circular symmetric states. The theoretical results derived here can be
used as guides for corresponding experimental investigations of the
generation and evolution of asymmetric solitary vortices under similar
physical settings.
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