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Abstract

Color centers with long-lived spins are established platforms for quantum sensing and quantum 
information applications. Color centers exist in different charge states, each of them with distinct optical 
and spin properties. Application to quantum technology requires the capability to access and stabilize 
charge states for each specific task. Here, we investigate charge state manipulation of individual silicon 
vacancies in silicon carbide, a system which has recently shown a unique combination of long spin 
coherence time and ultrastable spin-selective optical transitions. In particular, we demonstrate charge 
state switching through the bias applied to the color center in an integrated  silicon carbide opto-
electronic device. We show that the electronic environment defined by the doping profile and the 
distribution of other defects in the device plays a key role for charge state control. Our experimental 
results and numerical modelling evidence that control of these complex interactions can, under certain 
conditions, enhance the photon emission rate. These findings open the way for deterministic control 
over the charge state of spin-active color centers for quantum technology and provide novel techniques 
for monitoring doping profiles and voltage sensing in microscopic devices. 
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Individual spins associated with quantum emitters in semiconductors are an established platform for 
quantum metrology and quantum information processing 1–5. The possibility to manipulate individual 
spins builds on the capability to control the number of charges in a system, at the level of single electrons 
or single holes. This has been achieved with great success in the case of semiconductor quantum dots, 
through the Coulomb blockade effect 6–8. Alternatively, color centers can provide a system where 
individual spins can be controlled and detected, even at room temperature. Color centers can exist in 
different charge states, each with a specific electronic structure featuring unique optical and spin 
properties.  For example, the negative charge state of the nitrogen-vacancy (NV) center in diamond 
hosts a coherent electronic spin which can be polarized and readout optically 1. These properties have 
been exploited for quantum sensing 9,10,2,3 with nanoscale spatial resolution 11 and for seminal 
demonstrations of quantum networking 12–14. Techniques have been developed to stabilize the color 
center charge state  15–18, as its fluctuations due to either noisy environment in solids or applied 
electromagnetic fields for control and readout is responsible for inefficiency in various applications 19–

21,22. Undesired switching to a different charge state precludes interfacing the electronic spin to photons. 
The fidelity of spin-photon interfacing can be preserved by triggering the experiment to start only when 
the color center is in the required charge state 14,23. This, however, reduces protocol efficiency,  
decreasing the overall quantum communication rate 14. In some applications, the possibility to switch 
between different charge states can enable novel functionalities, such as protecting a nuclear spin 
quantum memory by converting the color center to a spin-less charge state 24,25. In general, precise 
control the charge state of the spin-active color center enables selecting the optimal properties relevant 
for the specific task 26–29. 

Electrical control, by the bias applied through an electronic device, is a convenient and potentially 
deterministic way to access and manipulate any available charge state of a color center 29,30. However, 
this is difficult in insulators and many wide-bandgap semiconductors like diamond. In this respect, 
silicon carbide (SiC) is a promising alternative since it uniquely combines the availability of several 
different color centers featuring excellent quantum properties 30–35, with doping  over a wide range of 
carrier densities 36,37, n-type as well as p-type. In addition, SiC features mature CMOS-compatible 
fabrication processes 38, which is a great benefit for scalable applications.

Recently, de las Casas et al. demonstrated charge state control of divacancies in SiC by biasing top gate 
electrodes. While such top-gate devices can be fabricated conveniently, only a limited area not covered 
by top gates can be optically accessed. In order to fabricate a device which has no limited optical access, 
we elucidate mature fabrication capability of SiC to prepare a p-i-n junction device. Highly doped, thin 
p- and n-type layers, sandwiching an intrinsic layer, enable optical access to color centers in the i-layer 
and electrical biasing as well. Because this type of device can also be used for electrical driving of color 
centers and improving efficiency of photoelectrical spin state readout, which is based on charge-state 
conversion and has been demonstrated in both diamond and SiC, it can be a basis for a multi-functional 
quantum device. In this work, we focus on the single silicon vacancy (VSi) in 4H-SiC and demonstrate 
electrical switching between the negatively-charged (VSi

(-)) and the neutral (VSi
(0)) charge states. The 

VSi
(-) has recently gained attention for its  long spin coherence times 32,35,39–41, a strong optically-detected 

spin signal at cryogenic temperature 42,43,44, and ultrastable spin-selective optical transitions 44,45. This 
combination of properties make it an extremely promising system to demonstrate efficient spin-to-
photon interfacing for quantum networking 1. However, very little is known about how the VSi charge 
state can be established and what the charge conversion mechanisms are. Here, we integrate single VSi 
centers into the intrinsic region of a 4H-SiC p-i-n diode and experimentally demonstrate electrical 
switching of the charge state of a single VSi by controlling the applied bias which appears as switching 
of the photon emission rate. In addition, enhancement of the photon emission is observed as well under 
specific applied bias values and optical excitation energies. To understand the microscopic nature of 
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the phenomena observed experimentally, we present and test a model which reveals a complex interplay 
between the quasi-Fermi level tuning and optical excitation of the vacancy and other nearby defects.

Charge state switching of the silicon vacancy 

The SiC p-i-n diode structure (see Figure 1a,b) is grown by chemical vapour deposition (CVD) and 
consists of highly nitrogen-doped n-type and aluminum (Al)-doped p-type regions embedding a 50-µm-
thick intrinsic layer. This intrinsic region is slightly p-type due to the residual Al and boron (B) 
impurities (see Supporting Information). 

Figure 1. VSi in SiC p-i-n junction device. (a) Schematic of the p-i-n diode structure. The 
metallic base plate is Al. Red and green layers are the heavily doped n- and p-type layer, 
respectively. The pastel green layer is the intrinsic region, which is slightly p-doped. The 
indium tin oxide (ITO) layer, which requires to form a transparent electrical contact, is on 
top of the p-type layer. (b) Detailed schematic of the device showing the thickness and the 
doping concentrations of each layer. (c) Room temperature confocal scan through the 
intrinsic layer. 

In the first experiment, we perform a two-dimensional confocal scan of the device across the growth 
direction (z-axis) and one lateral axis (x-axis), at zero applied voltage (Figure 1c). Using optical 
excitation at a wavelength of 730 nm (1.70 eV), we find isolated emitters across the intrinsic layer, 
which are identified as silicon vacancies in the negatively-charged state (VSi

(-)) at the cubic lattice site 
(k) (see Supporting Information). The optically detected spin Rabi oscillations of a single VSi

(-) as shown 
in Figure 2d (see Supporting Information) not only provide an evidence for VSi

(-) but also demonstrate 
that the capability of coherent spin manipulation and readout is maintained in the tested junction device. 
In the following we focus on the depletion region near the i-n junction of the diode structure. Strong 
band bending in this region gives the possibility to electrically control the charge states of the VSi center 
simply when applying different bias voltages. We find that, while VSi

(-) in the intrinsic layer do not show 
significant changes in their density, the VSi

 center near the i-n interface strongly respond to the applied 
bias: Figure 2a shows confocal raster scans of the same x-y plane near the i-n interface (which is at a 
depth of about 47 μm) under reverse, zero and forward biases. At the reverse bias, several emitters are 
turned on, while the forward bias turns off the emitters that are bright at zero bias. We attribute this to 
switching of the charge state of the VSi from single negative to other dark charge states, which will be 
discussed in the subsequent sections. 
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Figure 2. Electrical charge-state switching of single silicon vacancies. (a) Confocal scans at three 
bias voltages obtained at 1.5 mW (λ = 730 nm) optical excitation illustrating the charge state 
switching of VSi centers near the i-n interface. The labels “i” and “n” indicate the intrinsic and n-type 
layers, respectively. (b) PL intensities of two selected single VSi centers as a function of the bias 
voltage, illustrating the electrical switching of the charge states. (c) Dependence of the SB for 
individual VSi centers on their position along the z-axis. Each circle indicates the position of the tested 
VSi(-) and the bias voltage at which the switching occurs. For every center, the SB is extracted from the 
PL intensity vs applied bias curve similar to that shown in panel (b). (d) Optically detected spin-Rabi 
oscillations of a single VSi plotted at the expected resonant RF frequency. For (b) and (c), the optical 
excitation power is 5.5 mW (λ = 660 nm). See the text for details.

We also find that the newly switched-on emitters at reverse bias are located at a slightly further distance 
from the n-type layer. To test if the switching depends on the position of the VSi center, we monitor the 
PL intensity of each bright emitter, while sweeping the bias voltage. Two selected results are shown in 
Figure 2b. The PL intensity is completely turned off at forward bias, while it is bright at reverse bias. 
A sharp increase in the PL intensity is observed at the bias value inducing the switching, namely the 
switching bias (SB). Figure 2b shows that the two tested emitters show different SB. To check if there 
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exists a relation between the SB and the emitter position, we perform several confocal z-scans around 
each emitter and find the exact z-position (see Supporting Information). By repeating this procedure on 
many emitters, we obtain a relation between the depth and the SB of each emitter as shown in Figure 2c. 
This plot demonstrates that a stronger reverse bias is necessary to switch on VSi

(-) emitters located farther 
from the i-n interface.

To test how optical excitation is related with the observations in Figure 1 and 2, we test 18 VSi centers 
and monitor their PL intensity as a function of the applied voltage. 

Figure 3. Optical excitation dependence of charge state conversion. (a-c) Bias dependent PL 

intensity curves under different excitation energies ℏω: (a) 1.70 eV (730 nm), (b) 1.62 eV 

(765.5 nm), (c) 1.60 eV (773 nm). Arrows in a illustrate the width of increased PL (see text). 

(d) Optical saturation curves at 0 and -5 V, respectively, under 660 nm excitation. Solid lines 
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are fit using , where  and  specify the saturated count rate and the saturation power I = αP/(β + P) 𝛼 𝛽

which are fit parameters. At 0 V, =5.2±0.3 kcts and = 10±1 mW, and at -5V, = 2.0±0.3 kcts and 𝛼 𝛽 𝛼 𝛽
= 0.90±0.01 mW.
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In Figure 3a, the integrated PL intensity for the selected single VSi near the i-n interface is plotted versus 

the bias voltage for ℏω = 1.7 eV (λ = 730 nm). Again, charge-state switching is observed at 

around 0 V together with a sharp peak in the PL intensity. To understand the origin of the 

enhanced PL intensity around the SB (≈0 V for the VSi center in Figure 3), we vary the wavelength 

of the pump laser. Figure 3b shows that similar curves are obtained at ℏω > 1.60 eV (λ < 773 nm). 

However, the peak in the PL intensity at the SB disappears at ℏω ≲ 1.60 eV (λ ≳ 773 nm) (Figure 3c) 
(see Figure S6). Figure 3d shows that the PL intensity under optical saturation is 2 times stronger at 0 
V than that at -5 V. Other tested VSi center show the same behaviour, except that the SB is different for 
each center. These results suggest that an optical excitation energy larger than 1.60 eV triggers an 
additional process, resulting in an abrupt increase of the PL intensity, in addition to the electrical charge 
state switching. In the following, we discuss underlying mechanisms for the observations above. 

Charge states of the silicon vacancy

In thermal equilibrium, the occupation of the neutral (0), single (-1), double (-2) and triple (-3) charged 
states are determined by the position of the Fermi level with respect to the valence band edge. 

Figure 4. Charge states of the VSi and VC centers. Charge state transition levels of the 
(a) VSi at the cubic lattice site and (b,c) VC defects in 4H-SiC adopted from Refs. 26,46 . 
Note that we follow the recent assignment of the cubic and hexagonal defect of VSi in Ref. 
47.  Generic values are provided in panels (b) and (c). The green line schematically shows 
the Fermi level. The black (red) arrows indicate the optical ionization energy towards 
higher (lower) charged states. 

The known transition levels among the charge states of the VSi, which have a deep-acceptor nature, are 
depicted in Figure 4a. (see Supporting Information). Figure 5a shows the simulated energy band 
diagram of the fabricated p-i-n diode in equilibrium (see Supporting Information). In the p++- and p+-
type layers and in most of the intrinsic layer, which is slightly p-type, the Fermi level is below the (0|-) 
transition level. Hence, in these regions, the VSi is expected to be in the VSi

(0) state in equilibrium. 
However, under optical excitation, it may be ionized and converted into the VSi

(-) charge state. From the 
absorption spectrum of the VSi

(0) calculated using the CI-CRPA approach (see Supporting Information), 
we obtain an optical excitation threshold 0.9 eV (1380 nm) for the conversion of the VSi

(0) into the VSi
(-). 

Because the optical excitation energy in this work is larger than ℏω = 1.58 eV (785 nm), the VSi
(-) can 

be observed.
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In the region near the i-n junction, in equilibrium, the Fermi level crosses all three charge state transition 
levels of the VSi center (see Figure 5a). Hence, the VSi center are expected to be in different charge 
states depending on their positions along the z-axis. For the charge state conversion in this region, we 

also have to take into account optical ionization. The conversion VSi
(-)→VSi

(0)+e- is not likely since, it 
requires photon energy higher than 1.97 eV (629 nm), assuming only a single photon absorption 
process (see Figure 4a), whereas the highest energy used in this study is 1.8 eV. In addition, optical 
ionization of other defects located in the vicinity of the studied VSi should also be considered, in 
particular, carbon vacancies (VC), which are the most abundant intrinsic defects in 4H-SiC (Figure 4b,c). 
Due to optical ionization, excess electrons and holes are released from defects to the conduction and 
valence bands. These carriers can be captured by VSi and other defects 48. In our sample, the density of 
VC is in the range from 5×1012 to 1×1013 cm-3 (see Supporting Information). Since this density 
corresponds to an average distance between VC of ~300 nm, there is a good chance for a VC to be located 
near the studied VSi. This complexity is further increased by the non-equilibrium induced by the applied 
bias as we will discuss in the next sections. 

Electrical control of the charge state

To explain the mechanism of electrical switching between the charge states of the VSi, we self-
consistently simulate the 4H-SiC p-i-n diode shown in Figure 1b (see Supporting Information). 
Figure 5b shows the simulated energy band diagram at a bias voltage of -15 V applied to the device, 
which corresponds to a voltage drop across the p-i-n diode of -3 V due to non-ideality of the fabricated 
device (see Supporting Information). 

Figure 5. Charge state conversion by applied bias. (а,b) Simulated energy band diagrams of the 
fabricated device in thermal equilibrium (a) and at a reverse bias voltage of -15 V (b). Black solid 
lines show the positions of the charge transition levels (0|-) and (-|2-). The (2-|3-) transition level is 
not shown since it is located very close to the (-|2-) transition level. (c) Simulated evolution of the 
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spatial distribution of the time-averaged charge (i.e., averaged occupation of the neutral, (-1), (-2) and 
(-3) charge states as denoted by the color scale) of single silicon vacancies <QVSi> with the reverse 
voltage applied to the device. Open dots represent the results of the experimental measurements 
shown in Figure 2c. (d) Energy band diagram at around z = 48 μm at V = -0.3 V. Inset: Populations of 
the (-1) charge state of the silicon vacancy and (+2) charge state of the carbon vacancy at z = 48.3 μm 
versus bias voltage. The yellow area shows the voltage range of the increased PL.

As the reverse bias increases, the band bending in the depletion region near the i-n junction increases 
and the depletion region expands towards the p-i junction. At the same time, the applied bias perturbs 
the carrier equilibrium , which splits the Fermi level EF into two quasi-Fermi levels Fn and Fp for 
electrons and holes, respectively. Accordingly, the occupation of the charge states cannot be identified 
as easily as in equilibrium. One has to closely consider the processes of electron and hole capture and 
release by the VSi in a manner similar to that used for the description of electroluminescence of color 
centers 34,49–51. In the region where we observe switching of the charge state of the VSi (see Figure 2c), 
we find that the density of holes is many orders of magnitude higher than that of electrons, even at 
significantly high voltages (seeFigure S9). In addition, there are no minority carriers in the reverse 
biased diode. Therefore, in the band bending region the occupation of the charge states of the VSi is 
mainly determined by the hole capture and hole release processes. This situation is the same as in a p-
type material in equilibrium. Thus, we can use the same expressions for the charge states populations 
of the VSi as in equilibrium by replacing EF with Fp. In other words, the transition between the charge 
states occurs when the quasi-Fermi level for holes crosses the corresponding transition level. Figure 5c 
shows the corresponding calculations based on this quasi-equilibrium approach,  predicting electrical 
switching between the VSi

(0) and VSi
(-) states. According to calculations (see Supporting Information) , 

VSi
(0) is expected to emit in the near-infrared, with photon energies less than the ionization threshold 

(~0.9 eV). Emission, however, is expected to be weak due to competing non-radiative processes. Since 
the detectors used in the experiment are not sensitive for wavelengths larger than ~1000 nm, switching 
to the  VSi

(0) charge state corresponds to a suppression of the PL signal.  Together with these simulation 
results, the data in Figure 2b and Figure 3 show that the p-i-n diode structures allows to switch the 
charge state between VSi

(0) and VSi
(-)  by applying a moderate voltage. 

Reinitialization of the silicon vacancy

Finally, we turn to the origin of the increased PL at around the SB as shown in Figure 2b and Figure 3. 
For simplicity, we focus on the particular VSi center located at a depth of about 48 μm, for which the 
measurements are shown in Figure 3. However, this analysis can be applied with no change to any 
observed VSi in the studied 4H-SiC diode. As discussed in the previous section, around the SB voltage 
the occupation of the VSi

(0) steadily decreases from 100% to 0 and the occupation of the VSi
(-) increases 

from 0 to 100% as the bias voltage decreases (see Figure 3c). However, at optical excitation energies 
above 1.6 eV, we observe an increased PL rate in the voltage range from -1.1 V to 2.0 V (Figure 3a,b). 
This observation is confirmed by the PL spectra at 0 and -5 V which have identical shape but the total 
intensity at 0 V is larger (see Supporting Information). If the PL at voltages below -1.1 V corresponds 
to 100% occupation of the (-1) charge state, why does the PL rate at voltages between -1.1 V and 1.3 V 
become higher (see Figure 3a,b)? This is counterintuitive, since the occupation of the negative charge 
state (-1) cannot increase further. To resolve this contradiction and find an additional process that can 
trigger an increase in the PL intensity, we emphasize that the increased PL of the VSi is accompanied 
with the charge state switching from (0) to (-1), and therefore we can expect that complex electron and 
hole capture and release processes may happen at around the SB. Additionally, the peak at the SB is 
observed only at optical excitation energies higher than 1.6 eV, which approximately coincides with the 
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optical ionization threshold of VC
(2+)→VC

(+)+h (Figure 4b,c). This suggests that, holes released by VC 
under optical excitation may be captured by the VSi

(-).

To understand how VC can affect the VSi charge state, we simulate the energy band diagram in the 
vicinity of the VSi at V = -0.3 V applied to the device (see Supporting Information), which corresponds 
to the voltage drop across the p-i-n diode of -0.06 V . Since at z = 48 μm, Fp lies above the VSi (0|-) 
level, the considered VSi is in the (-1) charge state. At the same time, at z=48 μm, Fp is below the VC 
(2+|+) level. Accordingly, the VC at z = 48 μm is in the (+2) charge state, so are all VC defects at z < 48 

μm. We assume a VC in the vicinity of the VSi can be ionized by the excitation laser, if ℏω ≳1.64 eV 

(see Figure 4b,c), and release a hole to the valence band, i.e., VC
(2+)→VC

(+)+h. This hole can be 

captured by the considered VSi, thus VSi
(-)+h→VSi

(0). As an increased PL is evident, the VSi
(0) rapidly 

returns back into VSi
(-). There are two possibilities for this transition. (I) The excitation laser can ionize 

the VSi
(0), which is possible at photon energies 1.6-1.8 eV as shown in Figure S7), and bring the VSi 

back to the VSi
(-) ground state. However, this cannot result in increased luminescence. (II) The VSi

(0) can 
capture an electron from the conduction band. This electron can be provided due to the non-ideality of 
the device, and consequently non-zero electron current, or by the photoionization of another defect 
located nearby the VSi. The free electron is captured by the VSi into the VSi

(-) excited state 34,49, which 
then relaxes to the VSi

(-) ground state via photon emission increasing the luminescence rate dramatically 
34,49–51, thus, VSi

(-) is re-initialized. This mechanism explains the experimentally observed threshold 
optical energy of 1.6 eV and supports that the release of a hole by VC ionization followed by its capture 
at the VSi

(-), which promotes the reinitialization of VSi
(-), is very likely. For a larger reverse bias, the 

band bending is steeper (see Figure 5b), so is the VC (2+|+) level, which repeats the profile of the 
conduction and valence bands. Therefore, the point of intersection between the VC (2+|+) level and Fp 

shifts toward the p-i interface. At V < -1.4 V, all carbon vacancies at z ≥ 48 μm are in the (+1) charge 

state and consequently VC
(2+)→VC

(+)+h is not possible. This essentially stops the reinitialization of the 
VSi

(-). Thus, according to our theoretical model and numerical simulations, for the VSi center at z = 48 
μm, the enhanced PL should be observed in the voltage range from -1.4 to 1.5 V, which is in good 
agreement with the experimental values (from -1.1 to 2.0 V). Even better coincidence with the 
experimental results can be obtained assuming the VSi to be at z = 48.3 μm (see inset in Figure 5d). In 
this case, the voltage range of the enhanced PL is from -1.1 to 2.4 V. Although the experimental 
observations can be qualitatively explained by our model, the proposed mechanism may not be the only 
explanation. Further understanding could be achieved  by combining the method used in this study with 
other junction spectroscopic methods, such as deep level transient spectroscopy 52.

Conclusions

The results presented in this work show for the first time electrical manipulation of the charge states of 
single silicon vacancies centers in silicon carbide optoelectronic device. We demonstrate switching of 
the silicon vacancy in the i-region of the 4H-SiC p-i-n diode between the neutral and single negatively 
charged states. We also find that the optical ionization of the silicon vacancy and other nearby defects 
such as carbon vacancies play an important role in charge state switching. When the ionization of carbon 
vacancies re-initializes the silicon vacancy, we observe even an enhancement of the PL intensity of the 
silicon vacancy. Our work demonstrates not only a convenient way to control the charge state of atomic-
scale defects in semiconductor quantum optoelectronic devices but also potential applications using the 
atomic-scale color centers as a probe for local Fermi levels. This may open a new pathway to design 
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efficient and robust quantum interfaces for quantum-repeater applications 44 and may improve 
efficiency of quantum internet protocols 14 since idling time in an unfavoured  dark state  can be 
minimized. The demonstrated method may be extended to other color centers in silicon carbide 1 and 
similar materials 53,54, and used as an atomic-scale probe to characterize the distributions of defects 
states at the junctions of optoelectronic devices. By further optimization of the device structure and 
doping, such as lateral p-i-n junction devices 55,56 , much steeper changes of the PL intensities at around 
the switching bias will lead to new methods to sense electrostatic potentials at the nanoscale.
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