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Abstract  

The energy separation in a vortex tube is a combined result of different factors and its 

explanation remains debatable. As a classical fluid mechanics phenomenon, understanding 

of the complex helical flow mechanism within a vortex tube is a necessary foundation. The 

small scale of an industrial vortex tube and the extremely complex flow conditions are the 

two main challenges in obtaining the internal flow properties. This paper reports the results 

of an experimental investigation on the flow behaviour within a confined cylindrical system 

having different configurations corresponding to the actual flow field in a vortex tube at 

different conditions. Transparent devices were used to enable flow visualisation and Particle 

Image Velocimetry (PIV) measurement. The results of the flow visualisation and PIV 

experiments show that a precessing vortex core is significant only in a specific range of 

swirling strength. A good agreement between the observed flow characteristics and 

previously published results was observed.  

1. Introduction 
A vortex tube is a simple thermal device that can separate a single injection of compressed 

gas into two streams of different temperatures. As shown in Figure 1, a typical counter-flow 

vortex tube consists of a tangential inlet, a central cold nozzle and a peripheral hot exit. Once 

the compressed gas is injected into the tube tangentially, it forms a strong swirling flow. Due 

to the tube structure, two streams emanate from the central nozzle near the injection and the 

peripheral gap at the other end of the tube. The two exhausts are defined as cold flow and hot 

flow because of their temperature difference from the inlet temperature, respectively. 
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Compared to conventional thermal devices the vortex tube has many advantages: no moving 

parts, no electric or chemical elements, lightweight, low in cost, maintenance free, instant 

cold and hot air, and adjustable temperatures [1]. These advantages make the vortex tube an 

attractive device for instant cooling [2-4], dehumidification [5], mixture separation [6] and 

other applications [7]. Since its invention, different explanations for the energy separation 

phenomenon of a vortex tube have been proposed, but none is well-accepted due to lack of 

high-fidelity experimental data [7-11].  

 

Figure 1. Structure of a typical counter-flow vortex tube and the internal dominating flow structure 

The performance of a vortex tube is a complex result of several factors, such as tube 

geometry, inlet and outlet conditions, and working fluids. A detailed discussion of these 

factors has been reported [12, 13]. For a certain vortex tube, the energy separation is only 

caused by the strong swirling flow. Therefore, to be able to explain the energy separation 

phenomenon in a vortex tube, it is important to understand the underlying mechanisms and 

flow features inside the vortex tube. To investigate this flow mechanism, Xue et al., 

visualized the flow in a water-operated vortex tube [14]. They presented a qualitative analysis 

of the flow characteristics which significantly contributed to the understanding of the flow 

mechanism and energy separation process within the vortex tube. The high-fidelity 

measurement of the flow properties within a vortex tube is very challenging due to the small 

dimensions of a typical tube (diameter of 10 mm) [15] and the strong swirling flow (angular 

frequency of up to 106 Hz has been estimated) [16]. Therefore, large scale vortex tubes have 

been used to obtain detail information of the internal flow mechanism. Pressure, velocity and 

temperature profiles in such large tubes were measured by Hartnett [17] and later by Lay [18, 

19] and Bruun [20]. In another study, Takahama reported the existence of a forced vortex and 
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measured its swirl velocity [21]. The existence of a secondary flow in a vortex tube was 

explained and demonstrated by the measurement of both tangential and axial velocity 

components within a vortex tube by Ahlborn and Groves [22]. In their work, the swirl 

velocity distribution was measured and described as a Rankine vortex, consisting of a forced 

vortex in the centre and a free vortex in the periphery. Further on, Gao [16] reported 3-D 

velocity distribution of the internal flow measured in a 2.5 meter-long vortex tube. A forced 

vortex was reported through the whole tube except in the vortex chamber where a Rankine 

vortex was observed. Xue et. al., measured the 3-D velocity profiles within a large scale 

vortex tube focusing on the radial component and turbulence intensity [23]. It was found that 

the radial velocity, which had been considered negligible in previous studies, was an essential 

component of the flow structure inside a vortex tube. They also found that in the central 

region of the tube, the free vortex at the hot end was transformed to a forced vortex near the 

injection, and energy is transferred from the central to the peripheral zone in this process [24]. 

The vortex breakdown and the precessing vortex core (PVC) in a vortex tube were 

investigated in recent numerical simulations [25, 26]. The oscillation of the boundary was 

reported as the primary mechanism for energy transfer. They also reported a different 

statement of the axial stagnation point location in a vortex tube as a function of the cold mass 

fraction from previous experimental and analytical work [13, 16].  

In all of the previous measurements of the flow properties within the vortex tube, an intrusive 

technique was used where a probe was inserted into a large-scale tube, hence resulting in an 

induced disturbance of the flow. The strong turbulence and lack of information about the 

flow direction in the central region of the tube imply the requirement of a nonintrusive 

technique for collection of a high-quality and accurate measurement data-set. For the first 

time, Liew et al. attempted to measure the velocity within a vortex tube using an optical 

method [5, 27, 28]. In their LDA (Laser Doppler Anemometry) experiments, water droplets 

were used as seeding particles. Water was sprayed through a high-pressure nozzle to generate 

small droplets with the mean diameter of about 10 µm. Effective measurements of the 

velocity profile were performed only near the inlet of the vortex tube due to the strong 

swirling of the flow. Two other issues in the measurement process were reported in their 

studies, i.e., the Stokes number and evaporation of the water droplets. Based on the droplet 

dimension and the inlet velocity, the Stokes number at the inlet was estimated, which could 

exceed 1. This implied that the particles did not follow the flow properly and the accuracy of 

the measurement results remained debatable. The second issue was the short lifetime of the 
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water droplet. It was noticed that the droplets evaporated after a short distance from the 

injection (about 0.1L from the injection, here L is the total length of the tube) and an LDA 

measurement was only possible in this very specific location of the tube.  

The different configuration of a vortex tube system causes different flow feature within the 

tube and hence results in different working performance. To date, there are only a few studies 

on the velocity characteristics of the swirling flow in a vortex tube with different 

configurations. A better understanding of the internal flow mechanism is still required in 

order to effectively explain the separating processes in the tube and improve the tube 

performance. This paper reports the results of an experimental study focusing on the swirling 

flow structure inside a confined water-operated vortex system that corresponding to the 

vortex tube with different configurations using the Particle Image Velocimetry (PIV) and 

flow visualisation techniques. The results of the experiments give important insights into the 

underlying flow behaviour inside the vortex tube. 

2. Methods and apparatus 

2.1. The vortex tube 
To enable PIV measurement and flow visualisation within the vortex tube, transparent acrylic 

tubes were used. Figure 2 shows the configuration of a typical vortex tube used in this 

research, including the variable parameters. Two tangential nozzles were located at one end 

of the tube to allow the injection of fully developed turbulent flow which was notified by the 

inlet velocity and the nozzle configuration. A 5 mm central nozzle was positioned near the 

injection port to form the cold exit and a 1 mm peripheral gap was used at the other end of the 

vortex tube as the hot exit. It should be noted that there is negligible temperature change in 

the current experiments and hence the cold exit and hot exit in this work are only named for a 

consistency in the field. The effects of the flow condition and tube configurations on the 

working performance of a vortex tube have been systematically discussed in previous 

research [13]. In order to have comparable results, different configurations were selected in 

this work for a systematic investigation of the characteristics of the internal swirling flow 

(Figure 3). Key parameters of these configurations are summarised in Table 1. 
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Figure 2. The schematic of the vortex tube used in this work for PIV experiments (details are listed in table 1). 

 

Figure 3. Different configurations of the investigated tubes used in current work (dimension in mm). 

Table 1. Key parameters of the investigated tubes in the current work. 

 Key parameters of the tube 
Model Length 

(L), 
mm 

Diameter 
(D), mm 

Inlet 
length 
(Lin), 
mm 

Inlet 
diameter 
(Din), mm 

Cold 
nozzle 
diameter 
(Dc), mm 

Hot exit gap 
(Gh), mm 

Measurement 
location,l/L 

(a) 80 30 50 5 5 1 
(peripheral) 

𝑁𝑁
8
, N=1, 2, 3, 

4, 5, 6, 7, 7.8 
(b) 300 30 50 5 5 1 

(peripheral) 
2𝑁𝑁−1
30

, N=1,2, 
3, …,15 

(c) 80 30 50 5 5 5 (diameter, 
central) 

𝑁𝑁
8
, N=1, 2, 3, 

4, 5, 
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(d) 80 30 50 5 5 30 (fully 
open) 

𝑁𝑁
8
, N=1, 2, 3, 

4, 5, 6, 7, 7.8 
(e) 80 30 50 5 0 (closed) 30 (fully 

open) 
𝑁𝑁
8
, N=1, 2, 3, 

4, 5, 6, 7, 7.8 
 

2.2. Experimental arrangement and PIV setup 
The experimental campaign was performed at a standard room temperature and pressure 

using water as the working fluid. The difference in the fluid compressibility in the current 

work is noticed. The similarity of the flow structure in air/water-operated vortex tube [14, 29] 

and gas/liquid-cyclone [30-32] supports the usage of incompressible water and the results 

from this work will also be compared with previously published experimental data in an air-

operated vortex tube for further validation and analysis. In the entire experiment, the tube was 

fully submerged in a rectangular transparent water tank to reduce the influence of ambient 

pressure and gravity on the working fluid. Water was pumped into the tube via the tangential 

inlets from a round pipe with a length-to-diameter ratio of 10 to ensure fully-developed flow 

conditions at the inlet. The total inlet volume flow rate was set at 3.4 L/min, which resulted in 

an inlet jet velocity of vin = 1.4 m/s and an inlet jet Reynolds number of 7000. The water 

discharged from the outlets was recirculated back into the water tank, resulting in a closed 

system, as shown in Figure 4.  

 

Figure 4. Experimental arrangement for the PIV measurement and flow visualisation. 

Particle Image Velocimetry (PIV) was used to measure the instantaneous and mean velocity 
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field within the tubes. The flow was seeded with hollow spherical glass with a mean diameter 

of dp =10 μm and a specific gravity of γ=1.05. The resultant characteristic Stokes number was 

Stk ≈10-5, which is sufficiently low to enable the particles to faithfully follow the flow down 

to the smallest scales which can be resolved by the PIV measurement. As the experimental 

arrangement was a closed system, continuous seeding of particles was not required.   

The source of illumination for the PIV experiments was a 532 nm Nd-YAG double-pulsed 

laser, which was used to generate a 1 mm thick laser sheet. PIV images were recorded using a 

Kodak Megaplus ES2093 CCD camera, with a spatial resolution of 1920×1080 pixels. 

Multiple measurements were performed at different axial locations along the tube as shown 

in Figure 2. For each measurement station, a minimum of 100 PIV image pairs were recorded. 

To obtain these parallel sheets, the laser and the optics were kept stationary and the entire 

experimental system, including the water tank, was shifted precisely using a mechanical 

traverse. Optical distortion in the PIV measurement was minimised by the complete 

submersion of the tube in water and the subsequent selection of acrylic, which has a similar 

refractive index to that of water (1.49 and 1.33, respectively), as the construction material for 

both the tube and the water tank. Any remaining optical distortion was corrected during post-

processing of PIV images. This was done by first computing the spatial distortion in an image 

of a square grid that was inserted into the reactor prior to the experiment and then applying an 

inverse-distortion transformation to the recorded images. The PIV vectors were calculated 

using a 32 by 32-pixel interrogation window (IW) size with a 50% overlap. The mean particle 

seeding density was approximately 20 particles per IW. To maintain sufficient particle pairs 

within the IW, the laser pulse time delay was reduced which resulted in an in-plane particle 

displacement of about 2 pixels. Using an estimated PIV sub-pixel accuracy of 0.1 pixels [33], 

the maximum error in the measurement of instantaneous velocity was calculated to be 5%. 

For the 30 mm tube, the flow field was recorded at about 600 × 600 PPI with the equivalent 

resolution being about 5 μm, which ensures the successful capture of the displacement of the 

vortex centre. The overall flow field within the vortex tube was also visualized employing 

hydrogen bubbles and air bubbles. A video camera (frame rate of 30 fps, resolution of 

3648×2736) was used to provide still and video recordings of the bubble-laden flow.  
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3. Results and analysis 

3.1. Swirl velocity profile in the tubes  
Figure 5 presents a time-average velocity vector field of the internal flow (a) and its velocity 

profiles normalized by the inlet velocity (U=u/vin, V=v/vin, I=(u2
rms+v2

rms)0.5/vin ) along the 

centreline (b) within the tube “a” at l/L=0.75. As can be seen, the flow along this plane is 

predominantly structured as a vortical flow. The swirl velocity profile reveals a Rankine 

vortex in the tube and reaches a maximum of 0.43 at |r/D|≈0.42. The boundary flow is clearly 

shown by the sharp decrease of the swirl velocity and the increased turbulent intensity near 

the wall. The non-zero radial component of the velocity profile indicates the complexity of 

the vortex flow and existence of three-dimensional flow structure. One of the most significant 

features of the flow is the strong turbulence in the central region, with a turbulent intensity up 

to about 20%. Considering the small magnitude velocity profile in the central region, this 

strong turbulence indicates the existence of a precessing vortex core. The oscillation of the 

vortex core around the centre represents a strong fluctuation of the flow velocity and regular 

change of the flow direction near the centre, hence results in a strong turbulent flow. The 

existence and effects of the precessing vortex core will be further discussed later.  

 

Figure 5. A typical PIV velocity vector field (a) and its velocity distributions along the centreline in tube “a” at l/L=0.75 for 

the condition of vin = 1.4 m/s (b). 

Figure 6 presents the normalized time-averaged swirl velocity (U=u/vin), in the short vortex 
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tube (case “a”) at different axial locations. The velocity data are plotted against the radial 

locations normalized to the tube diameter, r/D. From Figure 6, it can be observed that the 

swirl velocity of the flow within the tube does not change significantly with the axial location, 

although there is a relatively small reduction towards the hot end. A major flow feature in the 

tube can be characterised as a Rankine vortex, with a “forced” vortex in the core within the 

region of |r/D|≤0.45, surrounded by the boundary layer flow. The swirl velocity reaches a 

maximum at |r/D|=0.45 in the front part of the tube, i.e., l/L≤0.625.While, in the rear part of 

the tube, the flow is further developed and the maximum velocity reduces to 0.42 and 0.36 at 

l/L=0.75 and l/L=0.975, respectively. 

 

Figure 6. Non-dimensional swirl velocity distribution along the short vortex tube (case “a”), normalized by inlet velocity. 

The development of the boundary layer flow is noted from the velocity profiles and estimated 

using the following relationship [34] as: 

𝑘𝑘𝑠𝑠+ =
𝑢𝑢𝜏𝜏,𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘𝑠𝑠,𝑀𝑀𝑀𝑀𝑀𝑀

𝑣𝑣
≈

2 × 0.1 × 5 × 10−6

1 × 10−6
= 1 ≲ 4 

Here, 𝑘𝑘𝑠𝑠+is the Roughness Reynolds Number, uτ,Max is the maximum friction velocity within 

the tube, estimated as 10% of the maximum velocity (2 m/s for case “c”), ks,Max is the 

estimated maximum characteristic roughness of the tube (0.005 mm), v is the kinematic 

viscosity. Therefore, the flow within the vortex tube can be considered to be hydraulically 

smooth for 𝑘𝑘𝑠𝑠+ ≲ 4  and the effect of surface roughness is negligible in this work. As 

presented in the figure, the thickness of the boundary flow increases from 0.05 D (1.5 mm) 
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near the injection to 0.075 D (0.225 mm) near the hot end. The velocity gradient of the 

boundary layer flow that indicated by the slope of the swirl velocity in boundary layer 

(0.45≤|r/D|≤0.5) decreases by 63.7% from l/L=0.125 to l/L=0.975. The velocity profile at 

l/L=0.625 is particularly interesting, as it shows an offset of the flow centre from the 

geometrical centre of the tube. This implies the existence of a vortex precession in the tube 

which will be discussed later. The normalised radial velocity presented in Figure 7 indicates 

the small magnitude of the radial component along the tube (except at l/L=0.125), which was 

always ignored in previous research [11]. The negative radial velocity at l/L=0.125 indicates 

the inwards flow from the peripheral layer to the central region.  

 

Figure 7. Non-dimensional radial velocity distribution along the short vortex tube (case “a”), normalized by inlet velocity. 

The normalized swirl velocity profile along the long vortex tube (case “b”) is presented in 

Figure 8. Comparing to the flow in the short tube (case “a”), several common flow features 

can be seen which are summarized as follows. Firstly, the maximum swirl velocity decreases 

from 0.614 to 0.598 for the same inlet velocity. Secondly, the boundary layer flow pattern can 

be clearly seen in the figure indicated by the sharp drop of the velocity profile near the wall. 

Indeed, similar boundary layer flow behaviour was observed in all different cases in this 

work. Thirdly, as shown by the non-zero velocity profiles along the tube centreline, the 

position of the vortex core does not coincide with the geometrical centre of the tube. As the 

tube is 2.75 times longer than the first case, different flow behaviour is also noted. The most 

significant feature is the transformation from a forced vortex at the injection to a free vortex 

near the hot end, which has been reported in the air-operated vortex tube [23, 24] (Figure 14 
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(a)). It is worthwhile to note that the precessing of the unsteady vortex core in the long tube is 

more significant than that in the short tube. Presented in Figure 9, the radial component of the 

swirling flow shows the outwards movement of the central flow at l/L=0.767, which indicates 

the existence of the multi-circulation hypothesised in a previous investigation [13]. 

 

Figure 8. Non-dimensional swirl velocity distribution along the long vortex tube (case “b”), normalized by inlet velocity. 

 

Figure 9. Non-dimensional radial velocity distribution along the long vortex tube (case “b”), normalized by inlet velocity. 

The swirl velocity profile in case “c” presented in Figure 10 shows different flow features 

from the first two cases. Due to the optical limitation in this case, i.e., the conical plug, the 

effective measurement was not available in the rear part of the tube, i.e., near the hot end. In 
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contrast to the previous cases, the most significant flow feature within the tube is the 

dominating free vortex. This dramatic difference is caused by the different geometry of hot 

end plug. The cold mass fraction is an important parameter in the investigation of vortex tube 

and is defined as the ratio of the cold mass flow rate over the inlet mass flow rate. This 

fraction in case “c” is approximately 0.5, which is much greater than that in the previous two 

cases, i.e., 0.17. Furthermore, at l/L=0.625, the maximum swirl velocity in the central region 

of the tube reaches about 1.4 in the central region of the tube. This implies the injected flow 

was accelerated inside the tube due to the blockage of the hot end plug as described in [13]. It 

is also found that the maximum swirl velocity at the different measurement planes decreases 

towards the inlet. Hence, it is reasonable to predict that the maximum swirl velocity can be 

observed near the hot end of the tube. 

Based on the velocity profile, the internal flow feature near the hot end can be explained as 

follows. As mentioned in previous discussion [13], the peripheral swirling flow moves from 

the injection point to the hot end and as it reaches the plug it is forced back through the 

central region of the tube due to the blockage of the hot end plug. As the rotation radius 

decreases at the plug, the swirl velocity increases to preserve the mass flow rate, hence it 

results in the formation of a free vortex. The dominating free vortex within the tube, the 

acceleration of the injected fluid and the reduction of the swirl velocity towards the inlet are 

in a good agreement with the flow feature within vortex tubes with large cold mass fraction 

[23, 24, 35] and cyclones [36-38]. Moreover, the velocity profile in the central region also 

shows that a strong precessing vortex core does not exist in this case. 
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Figure 10. Non-dimensional swirl velocity distribution along the tube (case “c”), normalized by inlet velocity. 

Figure 11 and 12 show the swirl velocity profiles in case “d” and case “e”, respectively. As 

the hot end of the tubes were fully opened, the tube “d” and tube “e” behave very similar to a 

vortex tube at negative or zero cold mass fraction, respectively. These two figures clearly 

present some distinctive flow features, including the deceleration of the peripheral flow, the 

thickening of the boundary layer from the inlet towards the hot end, and the acceleration of 

the central fluid, which are mainly caused by the flow viscosity. Figure 13 compares the 

velocity profile at different positions in the tube “d” and “e”. It is clearly shown that there is a 

negligible difference between the flow patterns in the front part of the two tubes. While, in 

the rear part of the tube, the swirl velocity in case “d” has a greater decrease such that the 

maximum velocity at l/L=0.975 is approximately 20% slower. As the fluid flows towards the 

hot end, the swirl velocity decreases because of the friction. The existence of the central hole 

in case “d” enables the suction of ambient fluid, which then flows to the other end of the tube. 

This induced extra mass in the central region leads to a greater decrease of the swirl velocity 

in the rear part of the tube in case “d” to keep the constant momentum. This suction from the 

central hole agrees well with the extreme operational condition of the air-operated vortex tube 

reported in [13, 23], i.e., suction of ambient air from the cold nozzle. 
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Figure 11. Non-dimensional swirl velocity distribution along the tube (case “d”), normalized by inlet velocity. 

 

Figure 12. Non-dimensional swirl velocity distribution along the tube (case “e”), normalized by inlet velocity. 
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Figure 13. Comparison of the nondimensional swirl velocity profiles in the tube “d” and “e”. 

Presented in Figure 14, the normalized swirl and radial velocity distributions in a long air-

operated vortex tube (L/D=21) enable comparisons between the current work and previous 

experimental results [23, 24]. A good similarity of the main flow pattern in the water-operated 

vortex tube and an air-operated vortex tube is observed. Dominating forced vortex in the 

central part is found all along the short vortex tube (case “a”, Figure 6), while transformations 

from a forced vortex near the injection to a free vortex near the hot end are shown in long 

vortex tubes (case “b”, Figure 8 and Figure 14 (a)). In the short vortex tube (Figure 7, 

L/D=2.6), the inwards flow that indicated by the negative radial velocity is significant in the 

central region, while in the long vortex tubes (Figure 9 and Figure 14 (b), L/D=10, 21 

respectively) the inwards flow are found significant in the peripheral region. Another similar 

flow feature in the long vortex tube that presented by the positive radial velocity in the rear 

part is the outwards flow from the central to the peripheral region which indicates the 

existence of the multi-circulation (Figure 9 and Figure 14 (b)). Corresponding to a large cold 

mass fraction in previous discussion [13], the flow feature in case “c” indicates the 
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dominating free vortex near the hot end and hence results in a smaller scale of the multi-

circulation. The existence of the suction of ambient fluid in case “d” and its effect on the flow 

feature comparing with case “e” agree well with the flow mechanism within a vortex tube at a 

small cold mass fraction as discussed in [13]. Therefore, the observed flow features in 

different cases are consistent with the proposed flow mechanism in a vortex tube at different 

conditions and hence provide further support to the hypothesis.  

 

Figure 14. Non-dimensional swirl (a) and radial velocity (b) distribution along the air-operated vortex tube reported in 
[23], normalized by the inlet velocity. 

3.2. The vortex precession in the cavity  
As mentioned above, the offset between the vortex centre and the geometrical centre of the 

tube observed in both the instantaneous and average swirl velocity datasets can be attributed 

to the formation of the vortex precession. It has been reported that the precessing vortex core 

(PVC) contributes to the energy separation in Kurosaka’s experiment [39]. A vortex core has 

previously been defined as the reverse flow in the axial direction or the forced vortex flow of 

a Rankine vortex in previous investigations [40]. In this work, the vortex core is defined as 

the centroid of the vortex flow that is oscillating around the geometrical centre. 

Flow visualisation was used to identify several key features of the flow structure within the 

tube. These features were identified based on both “still” images and video recordings of the 

flow. From video recordings of the flow, it was observed that the vortex oscillates unstably 

around the geometrical centre of the tube, which proves the existence of a Precessing Vortex 

Core. Figure 15 presents three consecutive frames of the visualized vortex core from a video 

recording (at 30 Hz). Due to the centrifugal force, the continuously generated hydrogen 
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bubble at the hot end (case“b”, l/L≈0.975) concentrates in the core of the swirling flow. 

Because of the continuous hydrogen generation, the visualized vortex core grows, which is 

indicated by the “cloud” in the images. The clockwise oscillation of the vortex core is clearly 

shown in this figure and the precessing frequency of this vortex core was estimated to be 

approximately 2 Hz from the video recording. According to the velocity profile at the hot end 

presented in Figure 8, the angular velocity of the vortex core at l/L=0.975 is about 12.2 rad/s, 

which gives the precession frequency of 1.94 Hz which demonstrates a good agreement 

between the visualisation and PIV measurement.  

 

Figure 15. Three continuous frames from the video recording of the visualized precessing vortex core by the 

concentrated hydrogen bubbles at the hot end plug (case “b”, l/L≈0.975). 

The precessing vortex core in a vortex tube was firstly studied numerically in recent work [25, 

26], its existence and effects on separation have been discussed. The iso-surface of the 

instantaneous axial velocity was used to show the flow structure of the vortex core as shown 

in Figure 16 (a). Figure 16 (b) and (c) are two images taken by the Kodak Megaplus camera 

showing the oscillating vortex core in case “b” and “c” using concentrated hydrogen bubbles 

and air bubbles, respectively. Hydrogen bubbles were generated by a short wire at the centre 

of the hot end and moved towards the cold end through the central region of the tube. The 

concentrated bubbles clearly indicate the existence of the PVC in the tube, except the region 

near the cold end due to the dissipation of the bubbles and decrease of the swirl velocity of 

the central flow (Figure 16, (b)). Due to the tube structure in case “c”, air bubbles were 

introduced through the hot nozzle. The concentrated air core, in this case, is very stable, 

hence implies a weak precession of the vortex core. This observation agrees well with the 

swirl velocity profile reported in Figure 10. The existence of the PVC, which is a three-

dimensional, unsteady quasi-periodical fluid-dynamic instability, helical in nature, within the 
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current cavity has also been observed in other similar cavities [13, 14, 40-43]. This implies 

that the PVC is a common flow characteristic in a vortex flow and fundamental research on 

the nature of precessing vortex core is recommended. 

 

Figure 16. Visualized iso-surface of the instantaneous axial velocity showing the flow structure of the vortex core in a 

numerical simulation [25] (a); visualized precessing vortex core along the long vortex tube, case “b” (b); concentrated air 

cone showing the vortex core in the tube, case “c” (c). 

A snapshot of the PIV vector (case “b”, l/L=0.1) presented in Figure 17 shows the 

instantaneous location of the vortex core does not coincide with the geometrical centre of the 

tube. As shown in the figure, two parameters, i.e., the linear and angular displacements of the 

vortex core were used to evaluate the precession. The displacement of the vortex core (rPVC) 

is the distance between the vortex core and the geometry centre of the tube and can be used to 

indicate the strength of the precession. The relative angular displacement (θPVC) is defined as 

the angular difference between the “X” axis and the instantaneous location of the vortex core. 

These two parameters were successfully used to track the vortex core locations in a swirling 

jet flow [44]. To have better identification of the vortex centre in the instantaneous vector and 

to identify any coherent structures, a snapshot Proper Orthogonal Decomposition (POD) of 

the PIV results is performed here. Mode information of the snapshot POD and its 

mathematical process can be found in [45, 46]. 

Figure 18 presents the distribution of the contributions from the POD modes to the total 

energy at different locations of the short tube (case “a”). The lower modes contain most of 

the energy for the PODs, particularly for l/L=0.125, while the contribution from the higher 

modes is very small. However, based on the eigenvalues, it is not sufficient to claim any 

dominating large-scale strongly coherent structures. In other words, it is reasonable to 

conclude form the eigenvalue distribution that the turbulent flow structure in a short vortex 



19 
 

tube is complex and consisted of small-scale structures. A decrease of the eigenvalues of the 

lower modes from the cold end to the hot end can be also observed in the figure, which 

implies the transformation of large-scale fluctuating structure to small-scale turbulent 

structure along the tube and the similar contribution to the total turbulent energy from 

different modes.  

 

Figure 17. A typical instantaneous PIV vector field at l/L=0.1, case “b” shows the offset between the vortex core and the 

geometrical centre of the tube. 

 

Figure 18. The percentages of the POD eigenvalues in total energy at different location of the short tube (case “a”). 
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Figure 19 presents the distribution of the contributions from the POD modes to the total 

energy at different locations of the long tube (case “b”). The eigenvalue distribution at 

l/L=0.1 shows dominating large-scale coherent structures with the first two modes contain 

about 20.4% of the total turbulent energy. With the flow moves to the other of the tube, the 

decrease of the eigenvalues indicates the dissipation of these large-scale coherent structures. 

 

Figure 19. The percentages of the POD eigenvalues in total energy at different location of the short tube (case “b”). 

The first three modes and the reconstruction of the flow vector are presented in Figure 20. 

POD modes 1 and 2 shown in figure 20 are significantly stronger than the remaining modes. 

They each represent 11.5% and 8.9% of the energy in the velocity fluctuations, whereas 

modes 3 represents only 3.6% and even less for the remaining modes. These two energetic 

modes are mainly consisted of two vortices and owing to the axisymmetry of the mean flow, 

mode 2 is obtained from mode 1 by a -90 degree rotation. This is in good agreement with the 

POD analysis of a vortex flow in a cylinder duct [47]. Based on the first three modes, the 

velocity filed can be reconstructed as shown in the figure which shows a clearer view of the 

velocity field by removing the small-scale fluctuations. Figure 21 shows the reconstructed 

velocity field having a clearer view of the linear and angular displacements of the vortex 

centre which can improve the identification and location of the vortex centre. According to 

the eigenvalue distributions, the first ten modes are selected to reconstruct the velocity filed 

for all the locations and different cases for further detection of vortex position on snapshots 

and track of vortex in time. 
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Figure 20. First three POD modes with their eigenvalues and reconstruction of the flow vector based on the first three 
modes. 

 

Figure 21. Reconstruction of the velocity vector for vortex centre identification showing a clearer view of the linear and 
angular displacements of the vortex centre. 

Different methodologies have been used to identify the vortex core, such as velocity gradient, 

vorticity, Q criteria, Δ criteria, and λ2 criteria [48]. In this work, the velocity gradient is found 

sufficient to locate the vortex centre in the snapshots and hence obtain the linear and angular 
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displacement of the vortex centre. Figure 22 presents the time-series of the vortex core 

angular displacement, relative to the mean location, at l/L=0.1, case “b”. As can be seen, the 

angular displacement appears to fluctuate periodically, which supports the existence of the 

precession. However, it is also noticed that due to the limited frequency of the laser, direct 

detection of the PVC in time series from the PIV snapshots is not available in the current 

work and high frequency time-resolved measurement is required for future investigation. 

 

Figure 22: The time-series of the vortex core angular displacement at l/L=0.1, case “b”. 

The calculated average vortex core radial displacements along the tube (relative to the 

location of the mean vortex core centre), normalized by the tube diameter, is shown in figure 

23. The results clearly show that there is a non-zero value for ∆𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃 throughout the cavity in 

case “a” and “b”, which strongly indicates the existence of the precession. While, in case “c”, 

“d” and “e”, the much smaller average vortex core displacements imply the stable swirling 

flow in these cases. This observation shows a good consistency with the velocity profile and 

flow visualisation results discussed above. It is also noticed that the average vortex core 

radial displacements in both case “a” and “b” fluctuate along the tube. In contrast, the 

displacements in the other three cases are all smaller than 0.02D. This different appearance of 

the precession is dominated by the swirl velocity profile within the cavity. Swirl number is 

usually found effective in describing the flow feature of a swirling flow. But in the current 

case, due to the lack of axial velocity profile and unsteady reverse flow within case “a”, “b” 

and “c”, angular velocity of the central flow is used to quantify the swirling flow strength. 

The central flow is defined as flow within the region |r/D|≤0.12 in all cases, except for tube 
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“c”, in which the central flow should be limited in |r/D|≤0.06. Based on the velocity profiles 

reported in previous section, the average angular velocity within different tubes are about 6 

rad/s (case “a”), 12 rad/s (case “b”), 120 rad/s (case “c”), 0.5 rad/s (case “d”) and 0.5 rad/s 

(case “e”), respectively. Hence, the frequencies of the swirling flow in these tubes are 0.95, 

1.9, 19, 0.079, and 0.079 Hz, respectively. Therefore, it can be concluded that the precession 

of the vortex core is a function of the swirl strength. When the flow is swirling very slowly 

(case “d” and case “e”), the vortex core in the central region does not oscillate around the 

geometrical centre but remains steady. When the flow is rotating faster, in order of 10 rad/s in 

this work, the vortex core oscillates around the tube centre with the maximum average 

displacement of about 0.11D. Once the swirling flow is further strengthened, 120 rad/s in 

case “c”, the vortex become centrosymmetric again. This tendency is clearly shown in the 

top-right figure which is the averaged value of the normalized vortex core offset against the 

average angular velocity in each case and agrees well with the observed oscillating vortex 

core at an angular velocity of 40 rad/s in an water-operated vortex tube [14] and negligible 

offset of the vortex core from the tube centre at an angular velocity of 2000 rad/s in an air-

operated vortex tube [23]. In an industrial vortex tube, the angular velocity varies from 104 to 

105 rad/s, which means the vortex flow within the cavity is highly symmetrical. However, the 

detailed relationship between the vortex flow and the precession of the core, and the 

influence of this precession on the heat and mass transfer within the vortex tube still require 

further study. 
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Figure 23: The average vortex core radial displacement along the tube (relative to the mean location) as a function of the 

nondimensional length of the tube in different cases and the averaged value of the radial displacement as a function of 

the average angular velocity of each case. 

4. Conclusion  
The velocity profile within a vortex tube system was investigated in this work. Several 

transparent tubes were employed to allow flow visualisation and PIV measurement. Different 

configurations of the tube were selected corresponding to the geometries reported in previous 

discussion to allow a comparison of the flow behaviour [13]. Both qualitative and 

quantitative results were obtained and post-processed. The observed flow features in different 

cases are consistent with the proposed flow mechanism in a vortex tube at different 

conditions. 

The dominating flow feature inside a vortex tube (case “a” and “b”) is found to be a forced 

vortex and decays towards the hot end. In the central part of the flow in the long vortex tube, 

a transformation from a forced vortex to a free vortex is observed which is consistent with 

previously published work [13]. The strength of the central free vortex which flows towards 

the cold end is controlled by the hot exit, which also controls the cold mass fraction. This 

central flow plays an important role in transferring energy from inner flow towards the 

peripheral flow and improving the tube efficiency. 

Corresponding to a large cold mass fraction in previous discussion [13], the flow feature in 

case “c” indicates the dominating free vortex near the hot end and hence results in a smaller 

scale of the multi-circulation. The existence of the suction of ambient fluid in case “d” and its 

effect on the flow feature comparing with case “e”, agree well with the flow mechanism 

within a vortex tube at a small cold mass fraction as discussed in [13].  

Snapshot Proper Orthogonal Decomposition is used to evaluate the fluctuating energy 

associated with vortex and the turbulence kinetic energy excluding the vortex movements. 

The turbulent flow structures in the short vortex tube and in most of the long tube are found 

complex and consisted of small-scale structures. A decrease of the eigenvalues of the lower 

modes from the cold end to the hot end implies the transformation of large-scale fluctuating 

structure to small-scale turbulent structure along the tube. The reconstructed velocity vector 

is found helpful to detect and track the vortex centre in time. 

The precessing vortex core is clearly observed in the flow visualization and PIV 
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measurement and agrees well with the previous numerical results [25]. The precession of the 

vortex core is found a function of the swirl strength. With the strengthening of the swirl, the 

magnitude of the precession increases to a maximum and then decreases with further 

strengthening. Further detailed investigation of the PVC in a vortex tube and its impacts on 

the tube performance is highly recommended. 
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