
EVERY GROUP IS THE OUTER AUTOMORPHISM GROUP
OF AN HNN-EXTENSION OF A FIXED TRIANGLE GROUP

ALAN D. LOGAN

Abstract. Fix an equilateral triangle group Ti = 〈a, b; ai, bi, (ab)i〉 with
i ≥ 6 arbitrary. Our main result is: for every presentation P of every
countable group Q there exists an HNN-extension TP of Ti such that
Out(TP) ∼= Q. We construct the HNN-extensions explicitly, and exam-
ples are given. The class of groups constructed have nice categorical and
residual properties. In order to prove our main result we give a method
for recognising malnormal subgroups of small cancellation groups, and we
introduce the concept of “malcharacteristic” subgroups.

1. Introduction

Every group can be realised as the outer automorphism group of some group
[Mat89]. One can ask what restrictions can be placed on the groups involved.
Several authors have achieved results in this vein [Koj88] [GP00] [DGG01]
[BG03] [FM06] [Log15] [Log16] [Log19]. Notably, Bumagin–Wise proved that
every countable group Q can be realised as the outer automorphism group
of a finitely generated group GQ [BW05] (here GQ is the kernel of a short
exact sequence inspired by Rips’ construction [Rip82]), and Minasyan proved
that GQ can additionally be taken to have 2-conjugacy classes and Kazdhan’s
property T [Min09] (here GQ is one of Osin’s monster groups [Osi10]).

We therefore say that a class of finitely generated groups C possesses the
Bumagin–Wise property if for every countable group Q there exists a group
GQ ∈ C such that Out(GQ) ∼= Q. Hence, Bumagin–Wise prove that a cer-
tain class of groups related to Rips’ construction possesses the Bumagin–Wise
property. Minasyan proved that the class of Osin’s monster groups possesses
the Bumagin–Wise property. These two classes of groups are well-known to
possess pathological properties. Therefore, the results of Bumagin–Wise and
Minasyan suggest that the Bumagin–Wise property is a pathological property.

The main result of this paper is Theorem A, below, which proves that certain
classes of “nice” HNN-extensions of “nice” groups possess the Bumagin–Wise
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property. Theorem B then says that this construction is functorial. These
results are in stark contrast to the results of Bumagin–Wise and Minasyan,
and suggest that the Bumagin–Wise property is not pathological. By a “nice”
HNN-extension we mean an automorphism-induced HNN-extension; we define
these HNN-extensions in Section 2. By a “nice” group we mean a triangle
group, defined below; such groups are extremely well studied [Mag74].

The proof of Theorem A has two main innovations. Firstly, we give a method
for recognising malnormal subgroups of small cancellation groups (Theorem F
says that if the presentation 〈x; r, s〉 and the set s possess certain properties
then 〈s〉 is a malnormal subgroup of G = 〈x; r〉). Secondly, we introduce and
study the notion of “malcharacteristic” subgroups (which generalise malnormal
subgroups). The key idea of this paper is that the existence of malcharacter-
istic subgroups in certain triangle groups implies Theorem A.

Main theorems. A triangle group is a group with a presentation of the
following form.

Ti,j,k := 〈a, b; ai, bj, (ab)k〉
If i = j = k we shall write Ti := Ti,i,i for the corresponding equilateral triangle
group. Theorem A reveals a certain universal property possessed by equilateral
triangle groups Ti with i ≥ 6.

By a countable group presentation we mean a presentation P = 〈x; r〉 where
|x| ≤ |N| (and hence |r| ≤ |N|). All our presentations are countable so we
shall often omit the adjective “countable”. For a group presentation P we
write π1(P) for the group defined by P . We often abuse notation and write
Q = 〈x; r〉 for Q a group (as we did above with Ti,j,k). Note that a group
Q is countable if and only if there exists a countable presentation P with
Q ∼= π1(P).

Theorem A. Fix an equilateral triangle group Ti with i ≥ 6. For every
countable group presentation P there exists an automorphism-induced HNN-
extension TP of Ti such that Out(TP) ∼= Q and Aut(TP) ∼= TP o Q, where
Q := π1(P).

We construct the groups TP from Theorem A in Section 4. We discuss why
we require i ≥ 6 in Theorem A after the proof of Lemma 7.7.

In Section 4 we study properties of the construction underlying Theorem A.
This analysis leads to Theorems B, C and E. Firstly, in Section 4 we note that
countable group presentations form a category Pres, with morphisms P1 → P2

corresponding to certain surjective homomorphisms of the groups π1(P1) and
π1(P2). Theorem B then says that the construction of Theorem A is functorial.

Theorem B. The map defined by P 7→ TP is a functor from the category of
countable group presentations Pres to the category of groups Grp.



HNN-EXTENSIONS OF TRIANGLE GROUPS 3

Theorem B follows from Theorem 4.3. We note after the proof of Theorem
4.3 that if an appropriate subcategory of Pres is chosen then this functor may
be extended to a functor from a subcategory of Grp to Grp.

The construction of Theorem A possesses the following residual property.

Theorem C. Let TFin be the class of groups TQ where π1(Q) is finite. If π1(P)
is residually finite then TP is residually-TFin.

Theorem C follows from Theorem 4.4. In Section 8 we prove the following
corollary of Theorem C. Bumagin–Wise asked if every countable group Q can
be realised as the outer automorphism group of a finitely generated, residually
finite group GQ [BW05, Problem 1]. Corollary D gives a positive answer to this
question of Bumagin–Wise for all finitely generated, residually finite groups Q
by taking Q := π1(P) and GQ := TP .

Corollary D. If the presentation P has a finite generating set and the group
π1(P) is residually finite then the group TP is residually finite.

The construction of Theorem A has a certain flexibility. It allows a choice
of certain subgroups Mn, and this choice may be made in such a way that we
obtain easy examples or additional properties of the groups TP . The above
theorems do not require these subgroups to be chosen in any particular way.
However, the subgroups Mn may be chosen in such a way that the following
result holds, where for presentations P = 〈x; r〉 and Q = 〈y; s〉 we write P ∗Q
for the presentation 〈x,y; r, s〉 (so π1(P ∗ Q) ∼= π1(P) ∗ π1(Q)).

Theorem E. The subgroups Mn, n ∈ N, in the proof of Theorem A may be
chosen in such a way that for every presentation P with finite generating set
and for every countable group presentation Q there exists a surjection TP �
TP∗Q.

Theorem E follows from Theorem 4.5. The chosen subgroups Mn are spec-
ified in Theorem 4.5.

Examples. We now give some simple examples of our construction. These ex-
amples illustrate the simplicity of the construction itself (examples of Bumagin–
Wise’s groups and of Minasyan’s groups are much harder to construct) as well
as the construction’s functorial properties. Let P∞ = 〈z;−〉 and Pk = 〈z; zk〉
for k ∈ N (we will always assume 0 6∈ N). Theorem A then outputs the follow-
ing groups: Fix i ≥ 6. By φ we mean the automorphism φ : a 7→ b, b 7→ (ab)−1

of Ti = 〈a, b; ai, bi, (ab)i〉 which has order three. By x and y we mean specific
words over a and b given at the end of Section 3 (see also Lemma 7.7).

TP∞ = 〈Ti, t; ty−jxyjt−1 = φ(y−jxyj),∀ j ∈ Z〉
TPk

= 〈Ti, t; tykt−1 = φ(yk), ty−jxyjt−1 = φ(y−jxyj), ∀ 0 ≤ j < k〉
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Note that the words y−jxyj, j ∈ Z, generate the kernel of the map F (x, y)→
π1(P∞), x 7→ 1, y 7→ z, while the words yk and y−jxyj, 0 ≤ j < k, generate
the kernel of the analogous map F (x, y) → π1(Pk). It is clear that the map
Z/kZ 7→ TPk

, k ∈ N ∪ {∞}, is a functor from a subcategory of Grp to Grp.

Triangle groups. In Theorems 7.9–7.12 we obtain results analogous to The-
orems A, B, C and E where the base group H is any triangle group Ti,j,k,
i, j, k ≥ 6. The price we pay in allowing for more base groups is that the
“Out(TP) ∼= Q” condition of Theorem A is weakened to “Q embeds with
index one or two in Out(TP)”.

The constructions of Theorem A and Theorem 7.9 are specific cases of The-
orem 4.2. This more general theorem potentially allows for other base groups
H to be taken in Theorem A, and not just triangle groups. However, it is
a highly non-trivial task to apply Theorem 4.2, and so our proofs of Theo-
rem A and Theorem 7.9 use properties of triangle groups throughout. We
focus on triangle groups because they are well-studied groups with many nice
properties. It would be extremely surprising if the universal properties of The-
orem A and Theorem 7.9 were to disappear if we replaced the groups H with
less well-behaved groups (for example Thompson’s groups F , T or V ). We
therefore record a quasi-conjecture: If a group H has a suitably rich subgroup
structure (e.g. contains a non-abelian free subgroup) then the class CH of
HNN-extensions of H possesses the Bumagin–Wise property.

Malcharacteristic subgroups. This paper introduces malcharacteristic sub-
groups, and most of the paper is devoted to their study. Malnormal subgroups
are central objects in geometric group theory, and malcharacteristic subgroups
generalise malnormal subgroups in the same way that characteristic subgroups
generalise normal subgroups.

We formally define malcharacteristic subgroups in Section 3 (the definition
of malnormal subgroups can be found there too). Our focus on malcharacter-
istic subgroups is because of Theorem 4.2, which can be interpreted as saying
“Theorem A holds if each group Ti, i ≥ 6, contains a malcharacteristic sub-
group which is free of rank two”.

In Proposition 5.4 we provide concrete examples of malcharacteristic sub-
groups in the free group F (a, b). We use these to provide, in Proposition 7.8,
concrete examples of malcharacteristic subgroups in the triangle groups Ti,j,k
with i, j, k ≥ 6. Theorem A then follows from Theorem 4.2.

Malnormal subgroups of small cancellation groups. In order to obtain
concrete examples of malcharacteristic subgroups we first need concrete ex-
amples of malnormal subgroups. To find these we apply Theorem F, stated
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below. Theorem F gives a new method for recognising malnormal subgroups
of small cancellation groups. We refer the reader to Lyndon–Schupp’s classic
text for the definitions of the metric C ′(1/6) and C ′(1/4)−T (4) small cancel-
lation conditions [LS77, Section V]. A word W in F (x) is a proper power if
there exists another word U ∈ F (x) and an integer n > 1 such that W = Un.
For a group G = 〈x; r〉, Theorem F links the malnormality of a subgroup M
generated by a set of words s, so M = 〈s〉, with properties of the presen-
tation 〈x; r, s〉. Note that Theorem F allows for the explicit construction of
malnormal subgroups of small cancellation groups.

Theorem F. Suppose that 〈x; r, s〉 is a C ′(1/6) or C ′(1/4)− T (4) small can-
cellation presentation, and that no element of the set s is a proper power. Then
the subgroup 〈s〉 of the small cancellation group G = 〈x; r〉 is malnormal and
free with basis s.

The assumption that no element of the set s is a proper power is necessary,
as if Un ∈ s with n > 1 then U 6∈ 〈s〉 (by small cancellation) but 〈Un〉 ≤
(U−1〈s〉U ∩ 〈s〉).

Theorem F follows from two more general theorems, Theorems 6.6 and 6.7.
These two theorems give a new method for recognising, for A and B subgroups
of a small cancellation group G, if Ag ∩ B = 1 for all g ∈ G. Also related
is Lemma 6.3, which gives a new method for recognising free subgroups of
small cancellation groups. Note that fibre products of Stalling’s graphs [Sta83,
Theorem 5.5] solve for free groups the underlying decision problems of Theorem
F and of Theorems 6.6 and 6.7.

Outline of the paper. In Section 2 we prove Lemma 2.2, a result on
automorphism-induced HNN-extensions which underpins the construction of
Theorem 4.2. In Section 3 we define, and present basic results about, malchar-
acteristic subgroups. In Section 4 we prove Theorem 4.2; this gives the con-
struction underlying Theorem A. This section also contains the proofs of
various properties of this construction relating to Theorems B, C and E. In
Section 5 we give concrete examples of malcharacteristic subgroups of the free
group F (a, b). In Section 6 we give concrete examples of malnormal subgroups
of triangle groups Ti,j,k, i, j, k ≥ 6, and in particular we prove Theorem F. In
Section 7 we combine the results of the previous sections to give concrete ex-
amples of malcharacteristic subgroups of triangle groups Ti,j,k, i, j, k ≥ 6, and
in particular we prove Theorems A, B, C and E. In Section 8 we apply The-
orem C to the question of Bumagin–Wise regarding residually finite groups,
and in particular we prove Corollary D. In Section 9 we pose certain questions
which arose in the writing of this paper.
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2. Automorphism-induced HNN-extensions

The main result of this section is Lemma 2.2, which gives certain iso-
morphisms underpinning Theorem A. We also define automorphism-induced
HNN-extensions and explain why they are “nice”.

Automorphism-induced HNN-extensions. Let H be a group, K � H a
proper subgroup and φ ∈ Aut(H) an automorphism.1 Then the automorphism-
induced HNN-extension of H with associated subgroup K and with associated
automorphism φ is the group with relative presentation

H∗(K,φ) = 〈H, t; tkt−1 = φ(k), k ∈ K〉.

The groups TP in Theorem A are automorphism-induced HNN-extensions.
The fact that they are automorphism-induced is crucial to our paper. For ex-
ample, to prove Theorem B we apply the following fact particular to automorphism-
induced HNN-extensions: if K < K0 < H then H∗(K,φ) � H∗(K0,φ).

Automorphism-induced HNN-extensions are “nice”, in the sense that they
are an easy class of groups to work with and possess nicer properties than gen-
eral HNN-extensions. The simplest examples of HNN-extensions are Baumslag–
Solitar groups (HNN-extensions of the infinite cyclic group), and these also pro-
vide the standard examples of badly-behaved HNN-extensions. For example,
Baumslag–Solitar groups can have non-finitely generated outer automorphism
group [CL83]. However, if a Baumslag–Solitar group is automorphism-induced
then it has virtually cyclic outer automorphism group [GHMR00].

As another example of the tractability of automorphism-induced HNN-
extensions, we note that the notation H∗(K,φ) emphasises that the second
associated subgroup φ(K) can, in practice, be ignored when studying these
groups. This in demonstrated in Theorem 2.1 and Lemma 2.2, where the
descriptions of Out(H∗(K,φ)) mention K but not φ(K).

1If H = K then G = H oφ Z is the mapping torus of φ. Here the outer automorphism
group is very different because φ extends to an inner automorphism.
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Describing Out(G). For G = H∗(K,φ), Theorem 2.1 now describes Out(G)
subject to certain conditions. One of the conditions required by Theorem 2.1
is that the group H has Serre’s property FA, that is, every action of H on
any tree has a global fixed point. This is an extremely natural property (see,

for example, [Ser80, Theorem 15]). For δ ∈ Aut(H) we write δ̂ to mean the
outer automorphism δ Inn(H) ∈ Out(H). For g ∈ H we write γg for the inner
automorphism of H acting as conjugation by g, so γg(h) = g−1hg for all h ∈ H.
We define the subgroup A(K,φ) of Aut(H) as follows:

A(K,φ) := {δ ∈ Aut(H) : δ(K) = K, ∃ a ∈ H s.t. δφ(k) = φδγa(k) ∀ k ∈ K}

Theorem 2.1 follows immediately from two results from our previous paper
[Log19, Theorems 4.7 & 6.2].

Theorem 2.1. Let G = H∗(K,φ) be an automorphism-induced HNN-extension.
Assume that:

(1) H has Serre’s property FA;
(2) there does not exist any b ∈ H such that φ(K) � γb(K) and there does

not exist any c ∈ H such that γc(K) � φ(K); and
(3) Z(H) = 1.

Then there exists a short exact sequence:

1→ CH(K)o
NH(K)

K
→ Out0(G)→

A(K,φ) Inn(H)

Inn(H)
→ 1

where either Out0(G) = Out(G) or there exists some δ ∈ Aut(H) and some
a ∈ H such that δ(K) = φ(K), δ2γa(K) = K and δφ−1(k) = φδγa(k) for all
k ∈ K, whence Out0(G) has index two in Out(G).

The assumption that Z(H) = 1 means that the short exact sequence here is
easily-digestible. A more extensive description of this sequence in our previous
paper requires no such assumption [Log19, Theorem 5.6].

Lemma 2.2 now refines the description of Out(G) given by Theorem 2.1.
We shall often use Out0(G) to mean an index-one or-two subgroup of Out(G).
Then by Aut0(G) we shall mean the full pre-image of Out0(G) in Aut(G) under
the natural map (see Lemmas 2.2 and 4.1, and Theorem 4.2).

Lemma 2.2. Suppose H, K and φ are such that the following hold:

(1) H has Serre’s property FA;
(2) CH(K) is trivial;
(3) δ(K) ∩K = 1 for all automorphisms δ 6∈ Inn(H); and
(4) φ 6∈ Inn(H).
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Let G = H∗(K,φ). Then there exists an index-one or-two subgroup Out0(G)

of Out(G) such that Out0(G) ∼= NH(K)/K. Moreover, Aut0(G) = Inn(G) o
Out0(G), and so Aut0(G) ∼= G o NH(K)/K. Suppose, in addition, that the
following holds:

(5) φ̂ has odd or infinite order in Out(H).

Then Out0(G) = Out(G) and Aut0(G) = Aut(G).

Proof. The three conditions of Theorem 2.1 hold here, with the second condi-
tion following from Conditions (3) and (4) here as Conditions (3) and (4)
imply that φ(K) ∩ γh(K) = 1 for all h ∈ H. Hence, the description of
Out0(G) given by Theorem 2.1 holds here. It is therefore sufficient to prove
that A(K,φ) ≤ Inn(H), that Aut0(G) = Inn(G)o Out0(G), and that if Condi-

tion (5) holds then Out0(G) = Out(G).
Condition (3) implies that δ(K) 6= K for all δ 6∈ Inn(H), and so A(K,φ) ≤

Inn(G) as required.
That Aut0(G) = Inn(G) o Out0(G) follows from the fact that A(K,φ) ≤

Inn(H) [Log19, Lemma 6.4].
Suppose that Condition (5) holds and that Out0(G) 6= Out(G). Then there

exists δ ∈ Aut(H) and a ∈ H such that δφ−1(K) = K = δ2γa(K). Now,

δφ−1(K) = K implies that δ̂ = φ̂, by (3). Therefore, δ2 6∈ Inn(G), by (4) and
(5). On the other hand, δ2γa(K) = K implies that δ2 ∈ Inn(H), by (3), a
contradiction. Hence, Out0(G) = Out(G) as required. �

3. Malcharacteristic subgroups

In this section we define malcharacteristic subgroups, and present basic re-
sults about them. We also state a subgroup M of Ti,j,k which is malcharac-
teristic and free of rank two. Theorem 4.2 reduces the proof of Theorem A
to proving that this subgroup M is indeed malcharacteristic and free of rank
two; the purpose of Sections 5–7 is to prove these two properties of M .

Definition of malcharacteristic subgroups. A malnormal subgroup in-
tersects its conjugates trivially apart from in the obvious place in the obvious
way. More formally, a subgroup M ≤ H is malnormal in H if the following
implication holds, where hg := g−1hg and M g := {hg;h ∈M}.

M g ∩M 6= 1⇒ g ∈M
Similarly, a malcharacteristic subgroup intersects its automorphic orbit triv-
ially apart from in the obvious place in the obvious way. More formally, a
subgroup M ≤ H is malcharacteristic in H if for all δ ∈ Aut(H) the following
implication holds, where Inn(M) := {γh;h ∈M}.

δ(M) ∩M 6= 1⇒ δ ∈ Inn(M)
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Malcharacteristic subgroups may also be characterised as follows. It is charac-
terisation (3) of the following lemma which we apply in this paper (see Lemmas
7.1 and 7.7, or the proof of Lemma 5.3).

Lemma 3.1. Let M be a subgroup of H. The following are equivalent.

(1) M is malcharacteristic in H.
(2) Inn(M) is malnormal in Inn(H).
(3) M is malnormal in H and the following implication holds:

δ(M) ∩M 6= 1⇒ δ ∈ Inn(H).

The proof of Lemma 3.1 is routine and so omitted.

Basic results. We now make two observations which are applied in, respec-
tively, Lemma 3.4 and Section 4. The proofs of these observations are routine
and so omitted. Lemma 3.2 is dual to the well-known result that if N is normal
in H and C is characteristic in N then C is normal in H.

Lemma 3.2. If M is malcharacteristic in H and A is malnormal in M then
A is malcharacteristic in H.

Note that we may replace the word “malnormal” in Lemma 3.3 with the
word “malcharacteristic”.

Lemma 3.3. If M is malnormal in H and K 6= 1 is a normal subgroup of M
then NH(K) = M .

Free, malcharacteristic subgroups. Lemma 3.4 constructs free, malchar-
acteristic subgroups from a single “seed” subgroup M . This lemma is central
to Theorem 4.2. We use ∞ to denote the first infinite cardinal |N|.

Lemma 3.4. If a group H contains a malcharacteristic subgroup M which is
free of rank m > 1 (possibly m =∞) then for each n ∈ N ∪ {∞} the group H
contains a malcharacteristic subgroup Mn which is free of rank n.

Proof. Suppose M = 〈x〉 is a malcharacteristic subgroup of H which is free on
the set x, where |x| = m. Let x1, x2 ∈ x and consider A = 〈x1, x2〉 (clearly A
is free of rank two). Now, A is malnormal in M and so A is malcharacteristic
in H, by Lemma 3.2. Therefore, again by Lemma 3.2, it is sufficient to prove
that A ∼= F (x1, x2), the free group of rank two, contains malnormal subgroups
of arbitrary rank (possibly countably infinite).

To see that F (x1, x2) contains malcharacteristic subgroups of arbitrary rank
n ∈ N∪{∞}, first note that for each such n there exists a C ′(1/6) small cancel-
lation set sn ⊂ F (x1, x2) which has cardinality n and where no element of sn is
a proper power [BW05, Lemma 6]. If n <∞ then Mn := 〈sn〉 is a malnormal
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subgroup of F (x1, x2) which is free of rank n [Wis01, Theorems 2.11 & 2.14].
If n =∞ then denote by yi for i ∈ N the elements of s∞, so s∞ = {y1, y2, . . .},
write Mi = 〈y1, . . . , yi〉, and write M∞ := 〈s∞〉. As M∞ is the union of the
chain of subgroups M1 < M2 < . . ., any identity of the form U0(s∞) = 1 or
W (x1, x2)

−1U1(s∞)W (x1, x2) = U2(s∞) which holds in M∞ also holds in Mi

for some i ∈ N. Therefore, as each Mi with i ∈ N is free and malnormal in
F (x1, x2) it follows that M∞ is a malnormal subgroup of F (x1, x2) which is
free of countably-infinite rank. �

A malcharacteristic subgroup. Let i, j, k ≥ 6. We record here that the
subgroup M = 〈x, y〉, x and y as below with ρ� max(i, j, k), is a malcharac-
teristic subgroup of Ti,j,k = 〈a, b; ai, bj, (ab)k〉 which is free of rank two.

x := (ab−1)3(a2b−1)3(ab−1)3(a2b−1)4 . . . (ab−1)3(a2b−1)ρ+2

y := (ab−1)3(a2b−1)ρ+3(ab−1)3(a2b−1)ρ+4 . . . (ab−1)3(a2b−1)2ρ+2

This fact is proven in Lemma 7.7.

4. The construction underlying Theorem A

In this section we prove Theorem 4.2, which proves Theorem A modulo the
existence of a free, malcharacteristic subgroup M of rank two in the group
Ti for each i ≥ 6. We also prove Theorems 4.3–4.5, which are the results
underlying Theorems B, C and E.

The construction. In the construction of Theorem 4.2 we simply specify the
subgroups Mn and K in Lemma 4.1. Recall that by Aut0(G) we mean the full
pre-image of Out0(G) in Aut(G) under the natural map.

Lemma 4.1. Suppose that H and φ ∈ Aut(H) are such that Conditions (1)
and (4) of Lemma 2.2 hold. Suppose that Mn is a malcharacteristic subgroup
of H which is free of rank n > 1, and K 6= 1 is a normal subgroup of Mn.

Let G = H∗(K,φ). Then there exists an index-one or-two subgroup Out0(G)

of Out(G) such that Out0(G) ∼= Mn/K. Moreover, Aut0(G) = Inn(G) o
Out0(G), and so Aut0(G) ∼= GoMn/K.

Suppose, in addition, that φ is such that Condition (5) of Lemma 2.2 holds.
Then Out0(G) = Out(G) and Aut0(G) = Aut(G).

Proof. By Lemma 3.3, NH(K) = Mn. Therefore, to prove the result it is
sufficient to prove that H, K and φ satisfy Conditions (2) and (3) of Lemma
2.2.

The subgroup Mn is malcharacteristic in H, so (3) holds. We now prove
that CH(K) is trivial, so (2) holds. Suppose that g ∈ H is such that [k, g] = 1
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for all k ∈ K. Then g ∈ Mn, by malnormality of Mn, and so CH(K) ≤ Mn.
As Mn is free we have that K is cyclic. Now, non-trivial normal subgroups of
non-cyclic free groups can never be cyclic. Thus, as Mn is free of rank n > 1
we conclude that CH(K) is trivial, as required. �

If r ⊆ F (x) then we write 〈〈r〉〉 for the normal closure of the set r in F (x),
so F (x)/〈〈r〉〉 = π1(〈x; r〉). We say that 〈y; s〉 is a quotient presentation of
〈x; r〉 if x = y and 〈〈r〉〉 � 〈〈s〉〉. We now have the main result of this section.

Theorem 4.2. Suppose that the group H has

(1) Serre’s property FA;
(2) non-trivial outer automorphism group; and
(3) a malcharacteristic subgroup which is free of rank two.

Then:

i. For every countable group presentation P there exists an automorphism-
induced HNN-extension HP of H such that Out0(HP) ∼= π1(P), where
Out0(HP) is an index-one or-two subgroup of Out(HP). Moreover, Aut0(HP) =
Inn(HP)oOut0(HP), and so Aut0(HP) ∼= HP o π1(P).

ii. For P1 and P2 countable group presentations, if P2 is a quotient presen-
tation of P1 then there is a surjection HP1 � HP2.

Suppose, in addition, that the group H has

(4) a non-inner automorphism φ such that φ̂ ∈ Out(H) has odd or infinite
order.

Then Out0(HP) = Out(HP) and Aut0(HP) = Aut(HP).

Proof. By Lemma 3.4, and as H contains a malcharacteristic subgroup which
is free of rank two, the group H contains malcharacteristic subgroups Mn

which are free of rank n for any given n ∈ N∪{∞}. Fix for each n ∈ N∪{∞}
such a subgroup Mn.

Let P = 〈x; r〉 be a given presentation. Let HP be the automorphism-
induced HNN-extension H∗(KP ,φ) of H where φ ∈ Aut(H) is a non-inner au-

tomorphism (with φ̂ of odd or infinite order if such an automorphism exists)

and where KP is as follows: Consider the presentation P̂ = 〈x, p, q; r, p, q〉,
p, q 6∈ x±1, and we shall write x̂ = xt{p, q} and r̂ = rt{p, q} (so P̂ = 〈x̂; r̂〉).
Note that π1(P) ∼= π1(P̂), that |x̂| > 1, and that r̂ is non-empty. Choose
M|x̂| to be malcharacteristic in H of rank |x̂| and take KP to be the normal
subgroup of M|x̂| associated with 〈〈r̂〉〉, the normal closure in F (x̂) of r̂.

By Lemma 4.1, this construction proves Point (i) of the theorem. Also by

Lemma 4.1, if there exists φ̂ ∈ Out(H) which has odd or infinite order then
Out0(HP) = Out(HP) and Aut0(HP) = Aut(HP).
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To see that this construction proves Point (ii) of the theorem, note that as
P2 = 〈x; s〉 is a quotient presentation of P2 = 〈x; r〉 we have that 〈〈r, p, q〉〉 �
〈〈r, s, p, q〉〉 ≤ F (x, p, q). Therefore, adding the relators tUt−1φ(U)−1 to HQ,
where U ∈ M|x̂| corresponds to an element of 〈〈r, s, p, q〉〉 \ 〈〈r, p, q〉〉, induces
the required group homomorphism HP1 � HP2 . �

Note that because the subgroup KP in the proof of Theorem 4.2 is free,
the presentation of the HNN-extension HP = H∗(KP ,φ) is aspherical, and so
minimal [CCH81, Theorem 3.1]. Thus, for P = 〈x; r〉, the group HP in the
construction is finitely presented if and only if the set x and the group π1(P) ∼=
Out(HP) are both finite.

Proving Theorem A. To obtain the groups TP from Theorem A, take
in Theorem 4.2 the group H to be Ti, the automorphism φ to be a 7→ b,
b 7→ b−1a−1, and the malcharacteristic subgroup in Condition (3) to be the
subgroup M := 〈x, y〉 stated in Section 3, above.

Theorem 7.9 is a related construction, and also follows from Theorem 4.2.
Indeed, Theorem 4.2 proves Theorem A and Theorem 7.9 modulo proving that
the subgroup M = 〈x, y〉 of Ti,j,k, i, j, k ≥ 6, is malcharacteristic and free of
rank two; that is, modulo proving that Condition (3) of Theorem 4.2 holds
for these triangle groups. This is because the groups Ti,j,k are well-known
to possess Conditions (1) and (2), while the groups Ti additionally possess
Condition (4) (the map φ : a 7→ b, b 7→ b−1a−1 is non-inner of order three).
Note that non-equilateral triangle groups have outer automorphism groups of
order two or four (see Lemma 7.3), so Condition (4) does not hold for the
triangle groups of Theorem 7.9. Theorem A and Theorem 7.9 are formally
proven in Section 7.

Functorial properties. Countable group presentations form a category in
the following sense: We define the equivalence relation ∼ on presentations as
〈x; r〉 ∼ 〈y; s〉 if x = y and 〈〈r〉〉 = 〈〈s〉〉. Form the category Presx whose
objects are group presentations with generating set x, under the equivalence
relation ∼ and with morphisms Pj → Pk if Pk is a quotient presentation of
Pj. Note that the normal subgroups of F (x) form a category, with morphisms
obtained from the usual subgroup partial order, and this category is naturally
isomorphic to the category Presx. Note also that the categories Presx and
Presy are isomorphic if |x| = |y|. Therefore, there exists a well-defined category
of n-generator presentations Presn, n ∈ N ∪ {∞}. The category of countable
group presentations Pres is the union of the categories Presn for n ∈ N∪{∞}.
Theorem 4.3 now says that the construction of Theorem 4.2 is functorial.
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Theorem 4.3. The map defined by P 7→ HP is a functor from the category
of countable group presentations Pres to the category of groups Grp.

Proof. If there exists a morphism Pj → Pk then Pk is a quotient presentation
of Pj. Therefore, HPj

� HPk
by Theorem 4.2.ii. �

Let Q be a fixed group and let Q be the category whose objects are quotient
groups Q/Nk and whose morphisms correspond to inclusion of kernels, so
Q/Nj → Q/Nk if Nj � Nk. Fixing a presentation of P of Q, the category
Q is isomorphic to the subcategory of Pres with initial object P . Hence, the
functor of Theorem B also encodes information about quotient groups.

Write Pk for the image of Q/Nk under the aforementioned isomorphism of
categories. Suppose that the group Q is such that Q/Nj

∼= Q/Nk implies
Nj = Nk. Then Q is isomorphic to a subcategory of Grp and hence the map
Q/Nk 7→ TPk

is a functor from a subcategory of Grp to Grp.
On the other hand, it is impossible to choose for each group Q a presentation
P with π1(P) = Q such that the map Q 7→ TP , factoring as Q 7→ P 7→ TP , is
functorial; this is because there exist non-isomorphic groups Q1 and Q2 such
that Q1 � Q2 � Q1. This is why Theorem 4.3 is about a functor from Pres
to Grp rather than from Grp to Grp. Indeed, Q1 and Q2 can be taken to
be 2-generator, 1-relator groups [BM06], so if we fix n > 1 and restrict to all
finitely presentable n-generator groups then the map Q 7→ TP can still not be
made functorial. The examples from the introduction show that if n = 1 then
this map can be made functorial.

Residual Properties. Let HFin be the class of groups HP where π1(P) is
finite. Note that these presentations P are countable presentations of finite
groups. In particular, if the input presentation P = 〈x; r〉 in Theorem 4.4 has
infinite generating set, so |x| =∞, then the presentations Pg = 〈x; r, s〉 in the
following proof are presentations of finite groups but with infinite generating
set x. It follows that if |x| =∞ then the associated subgroups KPg cannot be
finitely generated. If U and V are words then we write U ≤ V to mean that
U is a subword of V .

Theorem 4.4. If π1(P) is residually finite then HP is residually-HFin.

Proof. Recall that HP is an HNN-extension H∗(KP ,φ). Let g ∈ H ∗(KP ,φ)
\{1} be arbitrary. By Britton’s lemma, g is represented by a word W =
h0t

ε1h1 · · · tεmhm which does not contain any subwords of the form tkt−1 or
t−1φ(k)t for any k ∈ KP . For those hi in NH(KP) such that thit

−1 ≤ W , write
hi := hiKP ∈ Mn/KP , and for those hi in NH(φ(KP)) such that t−1hit ≤ W ,
write hi := φ−1(hi)KP ∈ Mn/KP . As Mn/KP ∼= π1(P) is residually finite
there exists a finite group Pg and a homomorphism σg : Mn/KP → Pg such



14 ALAN D. LOGAN

that σg(hi) 6= 1 for each hi (if there are no hi, so for example if every hi 6∈
NH(KP)∪NH(φ(KP)), then we may take Pg to be trivial). Now, there exists a
quotient presentation Pg = 〈x; r, s〉 of P = 〈x; r〉 which corresponds to the map
σg. Consider the group TPg = H∗(KPg ,φ) from Theorem A. Then, the map σg :

TP � TPg from Theorem 4.2.ii is obtained by adding the relators tUt−1φ(U)−1,
where U corresponds to an element of 〈〈r, s, p, q〉〉 \ 〈〈r, p, q〉〉 ⊆ F (x, p, q). In
particular, this map naturally corresponds to the map σg, and so if hi ∈
NH(KP) and thit

−1 ≤ W then hi 6∈ KPg , and similarly if hi ∈ NH(φ(KP)) and
t−1hit ≤ W then hi 6∈ φ(KPg). Note also that NH(KP) = NH(KPg).

We now prove that σg(g) 6= 1, which proves the result. Suppose thit
−1 ≤

W . If hi ∈ NH(KP) then hi 6∈ KPg by the above. On the other hand, if
hi 6∈ NH(KP) then hi 6∈ KPg ≤ NH(KP). Hence, W does not contain any
subword of the form tkt−1 for any k ∈ KPg . Similarly, W does not contain any
subword of the form t−1φ(k)t for any k ∈ KPg . That σg(g) 6= 1 now follows
from Britton’s Lemma. �

Choosing the subgroups Mn. Let M0 = 〈x0, y0〉 denote the malcharacter-
istic subgroup of H which is free of rank two from Theorem 4.2. Now, the
subgroup Mn in the proof of Theorem 4.2 may be taken to be any subgroup of
M0 which is generated by a small cancellation subset sn of F (x0, y0), such that
|sn| = n and sn contains no proper powers. This flexibility allows for concrete
examples of this construction to be written down (for example, the groups
TP∞ and TPk

from the introduction). Theorem 4.5 now demonstrates that if
we are more strict in our choice of the subgroups Mn then we can obtain more
properties of the groups HP from Theorem 4.2.

Suppose x ⊂ y, and let r ⊂ F (x). Then we write 〈〈r〉〉F (x) for the normal
closure of r in the free group F (x), and 〈〈r〉〉F (y) for the normal closure of r
in the free group F (y). Note that if we view F (x) as a subgroup of F (y) in
the natural way then 〈〈r〉〉F (x) ≤ 〈〈r〉〉F (y).

Theorem 4.5. Let H be as in Theorem 4.2.
Then H contains a malcharacteristic subgroup 〈p, q, z1, z2, . . .〉 which is free

on the infinite set {p, q, z1, z2, . . .}. Suppose that the subgroups Mn, n ∈ N, in
the proof of Theorem 4.2 are taken to be the subgroups Mn := 〈p, q, z1, . . . , zn〉,
and that the subgroup M∞ is taken to be 〈p, q, z1, z2, . . .〉. Then for every
presentation P with finite generating set and for every countable group pre-
sentation Q there exists a surjection HP � HP∗Q.

Proof. Write zn := {z1, z2, . . . , zn} for n ∈ N and z∞ := {z1, z2, . . .}. Suppose
P = 〈x; r(x)〉 and Q = 〈y;−〉. Note that HP has associated subgroup KP =
〈〈r(z|x|), p, q〉〉F (p,q,z|x|) (we identify the symbols p, q here with the symbols

p, q in Theorem 4.2). Then HP∗Q is obtained from HP by adding the relators
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tUt−1φ(U)−1 toHP , for all U ∈ 〈〈p, q, r(z|x|)〉〉F (p,q,z|xty|)\〈〈p, q, r(z|x|)〉〉F (p,q,z|x|).
This induces the required group homomorphism HP � HP∗Q. The result then
follows for all Q from Theorem 4.2.ii. �

The free product is the coproduct in the category of groups, and so The-
orem 4.5 hints at the notion of a coproduct in our setting. However, in gen-
eral HP∗Q 6= HQ∗P and so it is not clear whether or not HQ always surjects
onto HP∗Q, even if Q has a finite generating set. Consider the subcategory
Pres<∞ := ∪n∈N Presn of Pres. If the surjection HQ � HP∗Q always exists for
Q ∈ Pres<∞ then adding the morphisms P → P ∗ Q and Q → P ∗ Q to the
category Pres<∞ produces a new category Pres<∞ (possibly with a coproduct),
and then the map Pres<∞ → Grp given by P 7→ HP is still functorial.

5. Malcharacteristic subgroups of free groups

In this section we find concrete examples of malcharacteristic subgroups
of the free group F (a, b). To find such subgroups we use fibre products of
Stallings’ graphs to obtain an algorithm which decides whether or not the
malcharacteristic property holds for certain subgroups of F (a, b).

The examples we obtain are used to find similar examples in triangle groups.
Indeed, at the end of Section 3 we gave two specific words x and y and stated
that they generate a malcharacteristic subgroup M = 〈x, y〉 of Ti,j,k. Let

M̃ = 〈x, y〉 be the subgroup of F (a, b) generated by these words x and y. It

follows from Lemma 5.3 that M̃ is malcharacteristic in F (a, b). We later use the

fact that M̃ is malcharacteristic in F (a, b) to prove that M is malcharacteristic
in Ti,j,k.

Maps of graphs. The principal device applied in this section is that of
maps of graphs; see Stallings’ paper for more details as well as for the relevant
definitions and terminology [Sta83].

The key tool when studying maps of graphs is Stallings’ folding algorithm
[Sta83, Section 3.2]. The algorithm begins with a map of graphs Γ1 → Γ,
and factors this map as a composition Γ1 → Γ2 → · · · → Γk → Γ such that
Γk → Γ is a locally injective map of graphs (and therefore is π1-injective [Sta83,
Proposition 5.3]), and such that for 1 ≤ j < k the map Γj → Γj+1 is a folding
map. The graph Γk is uniquely determined, although in general the individual
foldings maps are not unique. A map of graphs Γ1 → Γ is folded if it cannot
be factored using the above algorithm.

Let F (x) be a free group with basis x. The basis x corresponds naturally to
a bouquet of circles Γx, which are directed and labeled by the letters xi ∈ x.
Any word in F (x) determines a closed path in Γx. Let s = {W1,W2, . . . ,Wn}
be a set of words in F (x). Then this set corresponds naturally to a bouquet
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Γs of n circles, with circles corresponding to the Wi ∈ s. There exists a
natural map Γs → Γx which sends the i-th loop of Γs to the closed path of
Γx corresponding to Wi. The Stallings’ graph of s is the graph Γs equipped
with the natural labeling induced by the map Γs → Γx. A Stallings’ graph Γs

is folded if the corresponding map Γs → Γx is folded. We use Γ̂s to denote
the folded Stallings’ graph of s, so the unique folded graph, equipped with the

natural map, such that the map Γs → Γx factors as Γs → Γ̂s → Γ. If C = 〈s〉
and the graphs Γs and Γ̂s have the same rank (that is, π1(Γs) ∼= π1(Γ̂s)) then

the induced map π1(Γ̂s) ↪→ π1(Γx) corresponds to the map C ↪→ F (x).

Fibre products. The proofs in this section apply fibre products in the cat-
egory of graphs [Sta83, Theorem 5.5]. If C = 〈s〉 is a subgroup of F (x) then
C is malnormal in F (x) if and only if the non-diagonal components of the

fibre-product Γ̂s⊗ Γ̂s form a forest. Fibre products are computable for finitely
generated subgroups of free groups, and hence malnormality is decidable for
such subgroups of free groups.2 Also, if C = 〈s〉 and D = 〈t〉 are subgroups of

F (x) then D ∩Cg = 1 for all g ∈ F (x) if and only if the fibre-product Γ̂t⊗ Γ̂s

is a forest. In particular, if δ ∈ Aut(F (x)) then by computing Γ̂δ(s) ⊗ Γ̂s it is
decidable whether or not δ(C) ∩ Cg = 1 for all g ∈ F (x).

Length preserving automorphisms. An automorphism α ∈ Aut(F (a, b))
is length-preserving if |α(a)| = 1 = |α(b)|. We begin with the following lemma,
which follows immediately from a result of Cohen–Metzler–Zimmermann [CMZ81,
Statement 3.9]. For words s ∈ F (a, b) we write s+ to mean the subsemigroup
of F (a, b) generated by the words s.3

Lemma 5.1. For all δ ∈ Aut(F (a, b)) there exists an inner automorphism
γ ∈ Inn(F (a, b)), length-preserving automorphisms α1, α2, and an integer m ∈
Z such that one of the following occurs:

(1) δγ is length-preserving; or
(2) α2δα1γ(a) = abm, α2δα1γ(b) = b with m 6= 0; or
(3) δα1γ(a), δα1γ(b) ∈ {abm, abm+1}+.

The length-preserving automorphism α1 corresponds to trivial changes of
notation in the images of a and b, for example replacing {abm, abm+1}+ with
{bam, bam+1}+. The length-preserving automorphism α2 in Case (2) allows for
the images to be swapped, for example if δ is the map δ : a 7→ b, b 7→ abm then
we take α2 : a 7→ b, b 7→ a and take α1 and γ to be trivial.

2For a different proof of decidability see [BMR99].
3We use the “Kleene plus” s+ (subsemigroup) rather than the “Kleene star” s∗ (sub-

monoid) as we reserve the notation s∗ for the symmetrised closure (see Section 6).



HNN-EXTENSIONS OF TRIANGLE GROUPS 17

Determining the malcharacteristic property. Lemma 5.2 now gives an
algorithm which decides if a given subgroup from a certain class C of subgroups
of F (a, b) is malcharacteristic or not. Note that it is decidable if a finite set of
words s satisfies the conditions of Lemma 5.2 (hence, membership of the class
C is decidable). Note also that the subsemigroup {a2, a3, b2, b3}+ of F (a, b)
consists precisely of the freely reduced words W in F (a, b) which do not contain
a−1 or b−1 and such that every instance of a in W is part of an a2-term and
every instance of b in W is part of a b2-term. Therefore, in Lemma 5.2 every

instance of a in any circuit in the folded Stallings’ graph Γ̂s is part of an
a2-term, and similarly for b.

Lemma 5.2. Let s be a finite set of pairwise non-equal words contained in
the subsemigroup {a2, a3, b2, b3}+ of the free group F (a, b), and write C := 〈s〉.
Suppose that every circuit in the folded Stalling’s graph Γ̂s contains some a3-
term and some b3-term. Then C is malcharacteristic in F (a, b) if and only
if C is malnormal in F (a, b) and α(C) ∩ Cg = 1 for all non-trivial length-
preserving automorphism α ∈ Aut(F (a, b)) and all g ∈ F (a, b). In particular,
it is decidable whether C is malcharacteristic in F (a, b) or not.

Proof. First, suppose that C is malnormal in F (a, b) and that α(C) ∩ Cg = 1
for all length-preserving automorphisms α ∈ Aut(F (a, b)) and all g ∈ F (a, b).
We show that for all non-inner δ ∈ Aut(F (a, b)) the fibre product of the folded

Stallings’ graphs Γ̂δ(s) ⊗ Γ̂s is a forest; as C is malnormal this implies that C
is malcharacteristic in F (a, b). To show that this condition holds for all such
δ ∈ Aut(F (a, b)) we consider the three cases of Lemma 5.1. The result holds
by assumption if δ ∈ Aut(F (a, b)) is such that Case (1) of Lemma 5.1 holds.

Now, suppose δ ∈ Aut(F (a, b)) is such that Case (2) of Lemma 5.1 holds,
so α2δα1γ(a) = abm, α2δα1γ(b) = b for some m ∈ Z \ {0}, γ ∈ Inn(F (a, b))
and α1, α2 ∈ Aut(F (a, b)) length-preserving. Then

α2δα1γ(s) ⊆ {(abm)2, (abm)3, b2, b3}+

⊆ {abma, (abm)2a, b}+ =: s1.

However, no element of s1 contains an a3-term. Hence no circuit in the folded

Stallings’ graph Γ̂α2δα1γ(s) contains an a3-term, and as γ is inner the same holds
for Γα2δα1(s). As α1, α2 are length-preserving, we further have that either no

circuit in Γ̂δ(s) contains an a3-term or no circuit in Γ̂δ(s) contains a b3-term.

Therefore, the fibre product Γ̂δ(s) ⊗ Γs is a forest, as required.
Finally, suppose δ ∈ Aut(F (a, b)) is such that Case (3) of Lemma 5.1 holds,

so δα1γ(a), δα1γ(b) ∈ {abm, abm+1}+ for some m ∈ Z, γ ∈ Inn(F (a, b)) and
α1 ∈ Aut(F (a, b)) length-preserving. Then there exist positive words Ua and
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Ub such that:

δα1γ(s) = {Ua(abm, abm+1)2, Ua(ab
m, abm+1)3, Ub(ab

m, abm+1)2, Ub(ab
m, abm+1)3}

⊆ {abm, abm+1}+ =: s2.

If m 6= 0,−1 then no element of s2 contains an a3-term. If m = 0 or m = −1
then s2 = {a, abε}+, ε = ±1, and so no element of s2 contains a b3-term.

Hence, no circuit in the folded Stallings’ graph Γ̂δα1γ(s) contains an a3-term or

no circuit in Γ̂δα1γ(s) contains a b3-term. Therefore, as γ is inner and as α1 is

length-preserving, either no circuit in Γ̂δ(s) contains an a3-term or no circuit

in Γ̂δ(s) contains a b3-term. Hence, the fibre product Γ̂δ(s) ⊗ Γs is a forest, as
required.

The opposite direction is trivial. For the decidability statement, recall that
we can use fibre products of Stallings’ graphs to determine if C is malnormal
in F (a, b) or not, and also to determine for each non-trivial length-preserving
automorphism α whether α(C) ∩ Cg = 1 for all g ∈ F (a, b) or not. The
decidability statement then follows because there are only finitely many length-
preserving automorphisms α ∈ Aut(F (a, b)). �

Examples of malcharacteristic subgroups. Lemma 5.3 now gives an ex-
ample of a malcharacteristic subgroup L of F (a, b).

Lemma 5.3. Let L be the subgroup of F (a, b) which is generated by the fol-
lowing elements, with ρ� 1.

ωx := a3b3a3b4 . . . a3bρ+2

ωy := a3bρ+3a3 . . . a3b2ρ+2

Then L is a non-cyclic malcharacteristic subgroup of F (a, b).

Proof. First, note that s = {ωx, ωy} ⊆ {a2, a3, b2, b3}+, and that every circuit

in the folded Stalling’s graph Γ̂s contains some a3-term and some b3-term.
Therefore, we may apply Lemma 5.2. Now, the words ωx and ωy satisfy
Wise’s c(5) small cancellation condition for ρ � 1, and so the subgroup L is
non-cyclic and malnormal in F (a, b) [Wis01, Theorems 2.11 & 2.14].

Suppose that α ∈ Aut(F (a, b)) is non-trivial and length-preserving, and
that α(L) ∩ Lg 6= 1 for some g ∈ F (a, b). Then the fibre product Γα(s) ⊗ Γs

is not a forest. If we pick a circuit in this fibre product Γα(s) ⊗ Γs then this
circuit contains a subpath with label U = (a3bpa3bp+1a3bp+2a3bp+3a3bp+4a3)ε,
where p > 3 and ε = ±1, as every circuit in Γs contains a subpath with a
label of this form. By traversing our chosen circuit in the opposite direction
if necessary, we may assume ε = 1.
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The set α(s) is C ′(λ) small cancellation, with λ arbitrarily small (as ρ� 1).
Therefore, U is either a subword of an element of α(s)±1 (so of α (ωx)

±1 or
of α (ωy)

±1), or a subword of the product of two elements of α(s)±1. Hence a

subword a3bqa3bq+1a3 of U is a subword of either α (ωx)
±1 or of α (ωy)

±1, q > 3.
It is then clear that α is trivial (one way to see this is to note that α−1 is length-
preserving and then to apply each non-trivial length-preserving automorphism
to a3bqa3bq+1a3 and to a3bqa3bq+1a3; the result is never a subword of ωx nor of
ωy). This is a contradiction, so α(L)∩Lg = 1 for all g ∈ F (a, b) as required. �

The subgroup M̃ = 〈x, y〉 of F (a, b) mentioned at the start of this section is

in the same Aut(F (a, b))-orbit as L. Hence, by Lemma 5.3, M̃ is malcharac-
teristic in F (a, b). In Lemma 7.7 we use this fact to prove that the subgroup
M = 〈x, y〉 of Ti,j,k is malcharacteristic in Ti,j,k.

Lemmas 3.4 and 5.3 combine to prove the following result.

Proposition 5.4. The free group F (a, b) contains malcharacteristic subgroups
Ln of arbitrary rank n (possibly countably infinite).

Indeed, the subgroup Ln is generated by n finite subwords satisfying C ′(1/6)
of the following infinite word:

ωxωy
(
ωxω

2
y

)
ωxωy

(
ωxω

2
y

)2
ωxωy

(
ωxω

2
y

)3 · · · .
6. Malnormal subgroups from small cancellation presentations

The main results of this section are Theorems 6.6 and 6.7. We also prove
Theorem F, which is a special case of these two theorems. Theorem 6.7 is
applied in Section 7 to prove that the subgroup M of Ti,j,k, i, j, k ≥ 6, as
stated at the end of Section 3, is a free and malcharacteristic subgroup of
Ti,j,k; Theorem A and Theorem 7.9 then follow by Theorem 4.2.

The results of this section lift conjugation in groups 〈x; r〉 to conjugation
in the ambient free group F (x). Our principal tool here is small cancellation
theory (see [LS77, Section V] for the basic definitions and results), and our key
innovation is to prove results about the subgroup 〈s〉G of the group G = 〈x; r〉
by studying the presentation 〈x; r, s〉. Theorems 6.6 and 6.7 give a new method
for recognising, for L and M subgroups of a small cancellation group G, if
Lg ∩M = 1 for all g ∈ G.

Theorem 6.6 is not applied in this paper. It is included for the sake of
completeness, and because we believe that Theorem F and Theorems 6.6 and
6.7 are of general interest. These results can be viewed as a generalisation
of results of Wise, who applied small cancellation conditions on graphs to
give a method of recognising malnormal subgroups of free groups [Wis01].
We conclude this section by noting that our proofs can be adapted to Wise’s
graphical small cancellation setting.
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6.1. Free subgroups of small cancellation groups. We start with Lemma
6.1, which describes how to view elements of the subgroup 〈s〉 of 〈x; r〉 as
diagrams over the presentation 〈x; r, s〉. We then apply this view to prove
Lemma 6.3, below, which gives a new method for recognising free subgroups
of small cancellation groups.

If r is a subset of F (x) then we write r∗ for the symmetrised closure of r,
that is, r∗ is the set of all cyclic shifts, inverses, and cyclic shifts of inverses
of elements of r. By an r∗-diagram we mean a diagram over the presentation
〈x; r〉. Note that an r∗-diagram is also an (r ∪ s)∗-diagram. By an r∗-disk
diagram we mean a diagram ∆ where R \∆ has exactly one component. By
an r∗-region R we mean an r∗-diagram which corresponds to a single relator
R ∈ r∗. We call R a region if the set of relators is understood. By an r∗-piece
we mean a piece relative to the set r∗. A word W ∈ F (x) is cyclically reduced
if every cyclic shift of W is freely reduced.

Lemma 6.1. Let 〈x; r, s〉 be a C(m) presentation, m ≥ 3. For every word
U = Sε11 · · ·Sεnn , Si ∈ s, there exists an s∗-disk diagram DU with boundary
labels precisely the cyclically reduced cyclic shifts of U , and which has n s∗-
regions Si, 1 ≤ i ≤ n. For each such region Si the intersection of Si with the
boundary ∂DU is connected and contains an edge, so pi := Si ∩ ∂DU is a path.
Each such path pi is the product of at least m− 2 (r ∪ s)∗-pieces.

Proof. First form the bouquet of n petals labeled clockwise with the words
S1, . . . , Sn respectively (different petals may have the same label). This defines,
in the obvious way, an s∗-disk diagram ∆U with n regions Si such that Si
is a label of Si. Form the s∗-disk diagram DU by taking ∆U and folding
small-cancellation pieces in adjacent petals together, that is, perform certain
Stallings’ folds on the edges of ∆U . Applying the C(m) condition, pi :=
Si ∩ ∂DU is connected and contains at least m − 2 (r ∪ s)∗-pieces. Clearly
some, and hence every cyclically reduced cyclic shift of U is a label of ∂DU ,
and the result follows. �

Suppose that two diagrams ∆1 and ∆2 have a paths on their boundaries
with a common label, so there exist paths I1 ⊂ ∂∆1 and I2 ⊂ ∂∆2 such I1
and I2 have the same label. Then we may form a new diagram ∆ = ∆1 ∪∆2

where we equate the paths I1 and I2. We call the image I ⊂ ∆ of the paths
I1 and I2 the attaching path of ∆ over ∆1 and ∆2, or just the attaching path
if ∆, ∆1 and ∆2 are understood.

If I is a path in a diagram then we use ι(I) and τ(I) to denote, respectively,
the initial and terminal vertex of I. If I and J are paths with τ(I) = ι(J)
then we write IJ for the concatenation of the paths I and J . A path J ι is
an initial subpath of the path J if there exists a path K with τ(J ι) = ι(K)
and J ιK = I. Similarly, a path Jτ is a terminal subpath of the path J if there



HNN-EXTENSIONS OF TRIANGLE GROUPS 21

exists a path K with τ(K) = ι(Jτ ) and KJτ = I. If I is a path in the diagram
∆ and (J1, . . . , Jn) is a sequence of paths in ∆ with τ(Ji) = ι(Ji+1), 1 ≤ i < n,
then the path I straddles the sequence of paths (J1, . . . , Jn) if Jτ1 J2 · · · Jn−1J ιn
is a subpath of I, where Jτ1 is a non-empty terminal subpath of J1 and J ιn is a
non-empty initial subpath of Jn.

Lemma 6.2. Let 〈x; r, s〉 be a C(4) presentation and let U ∈ F (x). Suppose
that ∆ is an (r ∪ s)∗-diagram containing the subdiagram DU , formed as in
Lemma 6.1. If R is an r∗-region of ∆ which attaches to DU over an attaching
path I then I cannot straddle a sequence of three paths (pi, pi+1 (mod n), pi+2 (mod n))
of DU .

Proof. Suppose I straddles the sequence (pi, pi+1 (mod n), pi+2 (mod n)). Then
pi+1 (mod n) consists of a single (r∪s)∗-piece asR corresponds to a single relator
R ∈ r∗. Now, by taking m = 4 in Lemma 6.1 we see that pi+1 (mod n) cannot be
written as the product of fewer than two (r ∪ s)∗-pieces, a contradiction. �

For a word W ∈ F (x) and a rational number c we write W > cr to mean
that there is a relator R ∈ r∗ such that W is a subword of R with |W | > c|R|.
A word U ∈ F (x) is called r∗-reduced if U is freely reduced and there is
no subword W of U with W > 1

2
r. We call U cyclically r∗-reduced if every

free reduction of every cyclic shift of U is non-empty and r∗-reduced. Note
that a non-cyclically reduced word may be cyclically r∗-reduced. We call W
(cyclically) Dehn reduced, rather than (cyclically) r∗-reduced, if the underlying
set of relators r is understood.

Note that for s ⊂ F (x), if a word U ∈ 〈s〉 is freely/cyclically reduced as
a word over s±1 then it is not necessarily freely/cyclically reduced over F (x).
We therefore have to be careful what we mean by “free reduction”. If s ⊂ F (x)
we shall write Us(s), Vs(s), and so on, to mean words over the set s±1 which
are freely reduced over s, and we shall write Ux(s), Vx(s), and so on, to mean
words over the set s±1 which are freely reduced over x.

If G is given by the generating set x and s ⊂ F (x) then we use 〈s〉G to
denote the subgroup of G generated by the words s.

Lemma 6.3. Let G be given by a C ′(1/6) or C ′(1/4) − T (4) presentation
〈x; r〉. Suppose that 〈x; r, s〉 is a C ′(1/4) presentation. Then every word Us(s)
over s which is freely reduced over s is cyclically r∗-reduced, and hence 〈s〉G is
a free subgroup of 〈x; r〉 with basis s.

Proof. Suppose that there exists a non-empty word U := Us(s) = Sε11 . . . Sεnn ,
Si ∈ s, which is cyclically reduced as a word over s±1 but is not cyclically
r∗-reduced. We obtain a contradiction.

Consider the (non-empty) diagram DU given by Lemma 6.1. As U is not
cyclically r∗-reduced the small cancellation conditions on the presentation
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〈x; r〉 mean that we may attach an r∗-region R to the boundary ∂DU of the
diagram DU over an attaching path I such that |I| > 1

2
|∂R| [LS77, Theorems

V.4.5 & V.4.6].
By Lemma 6.2, the attaching path I straddles at most two paths pi and

pi+1 (mod n) of ∂DU , and hence the path I contains at most two (r∪ s)∗-pieces.
Therefore, as 〈x; r, s〉 satisfies C ′(1/4) we have that |I| < 2

4
|∂R| = 1

2
|∂R|, a

contradiction. �

6.2. Conjugacy in small cancellation groups. We wish to lift conditions
on conjugation and intersections of subgroups in C ′(1/6) and C ′(1/4)− T (4)
small cancellation groups 〈x; r〉 to the analogous situation in the ambient free
group F (x). We do this in, respectively, Theorems 6.6 and 6.7 below. First we
use annular diagrams to describe conjugation in the relevant small cancellation
groups.

The conjugacy problem. Groups admitting C ′(1/6) or C ′(1/4)−T (4) pre-
sentations have soluble conjugacy problem, and we state here certain aspects
of the classical proof of this result which we use in this section. (For more
details of this classical proof see [LS77, Section V].)

An annular r∗-diagram A is an r∗-diagram such that R2 \A has exactly two
components. Such a diagram has an interior boundary ∂iA and an exterior
boundary ∂eA. Annular diagrams encode conjugation: Let U be a label of
∂iA read in a clockwise direction starting from a point a ∈ ∂iA, let V be a
label of ∂eA read in a clockwise direction from a point b ∈ ∂eA, and let W be
the label of a path I in A which starts at a and ends at b (so ι(I) = a and
τ(I) = b). When A is split along this path I we obtain a disc diagram D with
boundary label UW−1V −1W . Hence, two words U and V denote conjugate
elements of the group defined by the presentation 〈x; r〉 if and only if there
exists some annular r∗-diagram A such that U is a label for ∂iA and V is a
label for ∂eA, where labels are read in the same direction. For C ′(1/6) and
C ′(1/4) − T (4) small cancellation presentations there are extremely strong
structural theorems for annular diagrams; it is these structural theorems we
state below and apply in this section. There are two cases: either there exists
some region R of A which intersects both the internal and external boundaries
∂iA and ∂eA of A, or there exists no such region.

Firstly, we give the structure of A when there exists no region which in-
tersects both the internal and external boundaries of A. This theorem is
illustrated in Figure 1. An r∗-diagram ∆ is reduced if it does not contain a
subdiagram ∆′ which consists of precisely two regions and such that the label
on ∂∆′ reduces to the trivial element of the free group F (x). If R is a region
of an annular diagram A, then by an interior vertex of R we mean a vertex
which is not contained in the boundary of A, and by an interior piece of R
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C ′(1/6) C ′(1/4)− T (4)

Figure 1. Annular C ′(1/6) and C ′(1/4)− T (4) diagrams A with
no region intersecting both the internal and external boundaries.

we mean a connected subpath I of ∂R such that, when viewed as a subpath
of A, its initial and terminal vertices ι(I) and τ(I) have degree greater than
two while every other vertex in I has degree precisely two, and such that no
edges of I are contained in the boundary of A.

Theorem 6.4 (Lyndon–Schupp, Theorem V.5.3). Let G be given by a presen-
tation P = 〈x; r〉 which satisfies either

(1) C ′(1/6), or
(2) C ′(1/4)− T (4).

Assume the following three hypotheses.

(A) A is a reduced annular r∗-diagram.
(B) Each label of ∂iA is cyclically r∗-reduced, and each label of ∂eA is cyclically

r∗-reduced.
(C) A does not contain a region R such that both R∩∂iA and R∩∂eA contain

an edge.

Let (q, p) be (3, 6) or (4, 4) in Cases (1) and (2) respectively. Then A satisfies
all of the following conditions:

(i) For each region R, either R∩ ∂iA or R∩ ∂eA contain an edge.
(ii) Each region R contains precisely p/q + 2 interior pieces.

(iii) Each interior vertex of A has degree precisely q.

Secondly, we give the structure of A when there exists some region which
intersects both the internal and external boundaries of A. This theorem is
illustrated in Figure 2.

Theorem 6.5 (Lyndon–Schupp, Theorem V.5.5). Let G be given by a pre-
sentation P = 〈x; r〉 which satisfies either C ′(1/6) or C ′(1/4)−T (4). Assume
the following three hypotheses.
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(A) A is a reduced annular r∗-diagram.
(B) Each label of ∂iA is cyclically r∗-reduced, and each label of ∂eA is cyclically

r∗-reduced.
(C) A contains a region S such that both S ∩ ∂iA and S ∩ ∂eA contain an

edge.

Then every region R of A has edges on both ∂iA and ∂eA, and R has at most
two internal pieces.

Figure 2. An annular diagram A with a region intersecting both
the internal and external boundaries of A

Subgroup intersection. We now apply the above structural results for an-
nular diagrams to prove Theorems 6.6 and 6.7. These theorems lift conditions
on conjugation and intersections of subgroups in, respectively, C ′(1/6) and
C ′(1/4) − T (4) small cancellation groups 〈x; r〉 to the analogous situation in
the ambient free group F (x).

Theorem 6.6. Suppose that 〈x; r, s〉 is a C ′(1/6) small cancellation pre-
sentation. Let G be the group given by the sub-presentation 〈x; r〉, and let
ϕ : F (x)→ 〈x; r〉 be the natural map.

Suppose that t ⊂ F (x) is a set of words such that every word Vt(t) over
t which is freely reduced over t is cyclically r∗-reduced. For all U ∈ 〈s〉 and
V ∈ 〈t〉, if there exists g ∈ G such that g−1ϕ(U)g =G ϕ(V ) then there exists
W ∈ F (x) such that ϕ(W ) = g and W−1UW =F (x) V . In particular, there
exists g ∈ G such that 〈s〉gG ∩ 〈t〉G 6=G 1 if and only if there exists W ∈ F (x)
such that 〈s〉W ∩ 〈t〉 6=F (x) 1.

Proof. First note that every word Us(s) over s which is freely reduced over s is
cyclically r∗-reduced by Lemma 6.3. Therefore, suppose that A is an annular
r∗-diagram such that its interior boundary ∂iA has a label which is a cyclic
shift and free reduction (both in F (x)) of some word U := Us(s) = Sε11 · · ·Sεnn ,
Si ∈ s, and its exterior boundary ∂eA has a label which is a cyclic shift and
free reduction (both in F (x)) of some word Vt(t). It is sufficient to prove that
A contains no regions.
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Consider the disk diagram DU from Lemma 6.1. Each of the paths pk on the
boundary of DU contains at least five (r ∪ s)∗-pieces. Note that we can form
an (r ∪ s)∗-disk diagram ∆ by attaching the boundary ∂DU to the internal
boundary ∂iA of A. Suppose that A contains at least one region; we find a
contradiction.

As A contains a region, the boundary of DU connects to a region R of A
over an attaching path I such that I contains an edge.

First, suppose that R ∩ ∂eA is empty. By Theorem 6.4.(ii) we have that
|I| > 2

6
|∂R|. Hence, I cannot be written as the product of fewer than three

(r ∪ s)∗-pieces. Therefore, the path I straddles a sequence of three paths
(pi, pi+1 (mod n), pi+2 (mod n)), a contradiction by Lemma 6.2.

Next, suppose that R ∩ ∂eA is non-empty. By Theorem 6.5, every region
of A has an edge on ∂iA and an edge on ∂eA. Additionally, suppose that R
does not share an edge with any other region of A. Then (using the fact that
every label of ∂iA and of ∂eA is cyclically r∗-reduced) the boundary of R is
split equally between ∂iA and ∂eA, and so |I| = 1

2
|∂R|. Hence I cannot be

written as the product of fewer than four (r ∪ s)∗-pieces. Therefore, the path
I straddles a sequence of four paths (pi, . . . , pi+3 (mod n)), a contradiction by
Lemma 6.2. On the other hand, suppose that R shares an edge with some
region S of A. Now, as with the path I, the path J := S ∩ ∂iA contains
an edge. We may assume that the terminal vertex of I is the initial vertex
of J , so τ(I) = ι(J). The minimal possible length of I corresponds to when
|∂eA ∩R| = 1

2
|∂R| and R connects over a piece to an additional region T of

A. Hence, |I| > (1 − 1
6
− 1

6
− 1

2
)|∂R| = 1

6
|∂R|. Hence, the attaching path I

cannot be written as the product of fewer than two (r ∪ s)∗-pieces. Similarly,
|J | > 1

6
|∂S| so the attaching path J cannot be written as the product of fewer

than two (r ∪ s)∗-pieces. We therefore have that I straddles two paths pi and
pi+1 (mod n), with ι(I) ∈ pi and τ(I) ∈ pi+1 (mod n), and that J straddles two
paths pj and pj+1 (mod n), with ι(J) ∈ pj and τ(J) ∈ pj+1 (mod n). Recall that
each path pk is the product of at least five (r ∪ s)∗-pieces. As τ(I) = ι(J)
and as the path pi+1 (mod n) does not consist of a single (r ∪ s)∗-piece we have
that pi+1 (mod n) = pj. However, this means that pj decomposes into only two
pieces, a contradiction. �

We now prove the analogous result for C ′(1/4)− T (4) presentations. Note
that if 〈x; r, s〉 is a C ′(1/4)−T (4) presentation then the sub-presentation 〈x; r〉
is also a C ′(1/4)− T (4) presentation.

Theorem 6.7. Suppose that 〈x; r, s〉 is a C ′(1/4) − T (4) small cancellation
presentation. Let G be the group given by the sub-presentation 〈x; r〉, and let
ϕ : F (x)→ 〈x; r〉 be the natural map.
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Suppose that t ⊂ F (x) is a set of words such that every word Vt(t) over
t which is freely reduced over t is cyclically r∗-reduced. For all U ∈ 〈s〉 and
V ∈ 〈t〉, if there exists g ∈ G such that g−1ϕ(U)g =G ϕ(V ) then there exists
W ∈ F (x) such that ϕ(W ) = g and W−1UW =F (x) V . In particular, there
exists g ∈ G such that 〈s〉gG ∩ 〈t〉G 6=G 1 if and only if there exists W ∈ F (x)
such that 〈s〉W ∩ 〈t〉 6=F (x) 1.

Proof. First note that every word Us(s) over s which is freely reduced over s is
cyclically r∗-reduced by Lemma 6.3. Therefore, suppose that A is an annular
r∗-diagram such that its interior boundary ∂iA has a label which is a cyclic
shift and free reduction (both in F (x)) of some word U := Us(s) = Sε11 · · ·Sεnn ,
Si ∈ s, and its exterior boundary ∂eA has a label which is a cyclic shift and
free reduction (both in F (x)) of some word Vt(t). It is sufficient to prove that
A contains no regions.

Consider the disk diagram DU from Lemma 6.1. Each of the paths pk on the
boundary of DU contains at least three (r∪ s)∗-pieces. Note that we can form
an (r ∪ s)∗-disk diagram ∆ by attaching the boundary ∂DU to the internal
boundary ∂iA of A. Suppose that A contains at least one region; we find a
contradiction.

As A contains a region, the boundary of DU connects to a region R of A
over an attaching path I such that I contains an edge.

First, suppose that R ∩ ∂eA is empty. By Theorem 6.4.(ii) we have that
|I| > 1

4
|∂R|. Hence, I cannot be written as the product of fewer than two

(r∪s)∗-pieces. Therefore, the path I straddles two paths pi, pi+1 (mod n). Then
the vertex v = pi ∩ pi+1 (mod n) is an internal vertex of a C ′(1/4) − T (4) disc
diagram which has degree three, a contradiction.

Next, suppose that R ∩ ∂eA is non-empty. By Theorem 6.5, every region
of A has an edge on ∂iA and an edge on ∂eA. Additionally, suppose that R
does not share an edge with any other region of A. Then (using the fact that
every label of ∂iA and of ∂eA is cyclically r∗-reduced) the boundary of R is
split equally between ∂iA and ∂eA, and so |I| = 1

2
|∂R|. Hence I cannot be

written as the product of fewer than three (r∪s)∗-pieces. Therefore, the path I
straddles a seqence of three paths (pi, pi+1 (mod n), pi+2 (mod n)), a contradiction
by Lemma 6.2. On the other hand, suppose that R shares an edge with some
region S of A. Now, as with the path I, the path J := S ∩ ∂iA contains an
edge. We may assume that the terminal vertex of I is the initial vertex of
J , so τ(I) = ι(J), and note that this vertex is an internal vertex of the disc
diagram. Therefore, the vertex τ(I) = ι(J) has degree at least 4, by the T (4)
condition. Hence, there is a path pi of DU such that either pi is a subpath
of I or I is a subpath of pi. Recall that each path pk is the product of at
least three (r ∪ s)∗-pieces. If pi is a subpath of I then pi consists of a single
(r ∪ s)∗-piece, a contradiction. If I is a subpath of pi then |I| < 1

4
|∂R|. Now,
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|∂eA ∩ R| ≤ 1
2
|∂R|, and |R ∩ S| < 1

4
|∂R|, hence there exists an additional

region T of A which connects over a piece to R, and where K := T ∩ DU is
a non-empty path. We may assume that τ(K) ∈ I, and so τ(K) = ι(I). The
vertex τ(K) = ι(I) is an internal vertex of the disk diagram ∆, and hence has
degree four by the T (4) condition. Thus I = pi, but then pi consists of a single
(r ∪ s)∗-piece, a contradiction. �

Proof of Theorem F. We now prove Theorem F.

Proof of Theorem F. As the set s contains no proper powers and satisfies the
C(5) small cancellation condition, the set s also satisfies Wise’s c(5) small
cancellation condition [Wis01, Definition 2.3]. Hence, 〈s〉 is a malnormal in
F (x) with minimal basis s [Wis01, Theorems 2.11 & 2.14]. The result then
follows by taking t := s in Theorem 6.6 or in Theorem 6.7, as appropriate. �

C(m) − T (4) does not work. The C ′(1/6) and C ′(1/4)− T (4) conditions
are needed in Theorems 6.6 and 6.7 because they are metric conditions, in the
sense that pieces have bounded length. The following example demonstrates
that the conclusions of these two theorems do not hold in general if the set r∪s
satisfies the non-metric condition C(m) − T (4) for any m, even if r satisfies
C ′(λ) for arbitrarily small λ: Let x = {a, b, x1, y1, . . . , x2p, y2p}, and take

R = [x1, y1] · · · [x2p, y2p], and

S = [x1, y1] · · · [xp, yp]abab2 · · · abq.

Then 〈x;R〉 has the C ′ (1/(2p− 1)) small cancellation condition while 〈x;R, S〉
has the C(m)−T (4) condition, where m is arbitrarily large and dependent on
p and q (note that 〈x;R, S〉 has T (4) as R and S are positive words). Note
that R has a piece [x1, y1] · · · [xp, yp] which has length 1

2
|R|. Then the words

S and T = abab2 · · · abq ([xp+1, yp+1] · · · [x2p, y2p])−1 are both r∗-reduced, as are
all their powers, and neither of S nor T is a proper power of any element of x.
Moreover, S and T are conjugate in 〈x; r〉 but are not freely conjugate. Hence,
for all W (x) ∈ F (s) we have that 〈s〉∩ 〈t〉W (x) =F (X) 1, but there exists g ∈ G
such that 〈s〉G ∩ 〈t〉gG 6=G 1.

Wise’s graphical small cancellation theory. In the classical small can-
cellation theory, which underlies Theorems 6.6 and 6.7, we ensure that certain
conditions hold for all cyclic shifts of every R ∈ (r ∪ s)±1 (the symmetrised
closure (r ∪ s)∗). This is more powerful than is necessary for Theorems 6.6
and 6.7. In particular, we do not need all cyclic shifts of the elements of s±1
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because the diagram DU , given by Lemma 6.1, is constructed only by elements
of s±1.

We therefore introduce the following conditions, which sit between the clas-
sical small cancellation conditions and Wise’s graphical small cancellation con-
ditions [Wis01] (see also Gromov [Gro03]). We state below two theorems which
use these new conditions to generalise Theorems 6.6 and 6.7. We do not prove
these analogous theorems as the proofs are essentially identical to the proofs
of Theorems 6.6 and 6.7. This is because Wise’s small cancellation conditions
involve the use of a “distinguished vertex” for the boundary of each region R,
but these new conditions allow for this vertex to be placed arbitrarily on the
boundary of R. Therefore, in the proofs of Theorems 6.6 and 6.7 we can first
“place” the distinguished vertex of the region R where we want it to be in ∂R
(for example, we can choose that the distinguished vertex will be an internal
vertex of the annular diagram A of degree at least three, or will be the initial
vertex ι(I) of the attaching path I).

The new conditions are as follows; they can be roughly though of as Wise’s
graphical small cancellation conditions involving the symmetrised closure of a
subset of the relators. Let r = {R1, . . . , Rn}. We say that the presentation
〈x; r, s〉 has the graphical c′r∗(λ) condition if every set {RW1

1 , . . . , RWn
n } ∪ s,

where each RWi
i is cyclically reduced, has the graphical c′(λ) condition. The

cr∗(m) and tr∗(n) conditions are defined analogously.

Theorem 6.8. Suppose that G is given by the C ′(1/6) small cancellation pre-
sentation 〈x; r〉, and let ϕ : F (x) → 〈x; r〉 be the natural map. Suppose that
〈x; r, s〉 is a graphical c′r∗(1/6) small cancellation presentation.

Suppose that t ⊂ F (x) is a set of words such that every word Vt(t) over
t which is freely reduced over t is cyclically r∗-reduced. For all U ∈ 〈s〉 and
V ∈ 〈t〉, if there exists g ∈ G such that g−1ϕ(U)g =G ϕ(V ) then there exists
W ∈ F (x) such that ϕ(W ) = g and W−1UW =F (x) V . In particular, there
exists g ∈ G such that 〈s〉gG ∩ 〈t〉G 6=G 1 if and only if there exists W ∈ F (x)
such that 〈s〉W ∩ 〈t〉 6=F (x) 1.

Theorem 6.9. Suppose that G is given by the C ′(1/4)− T (4) small cancella-
tion presentation 〈x; r〉, and let ϕ : F (x)→ 〈x; r〉 be the natural map. Suppose
that 〈x; r, s〉 is a graphical c′r∗(1/4)− tr∗(4) small cancellation presentation.

Suppose that t ⊂ F (x) is a set of words such that every word Vt(t) over
t which is freely reduced over t is cyclically r∗-reduced. For all U ∈ 〈s〉 and
V ∈ 〈t〉, if there exists g ∈ G such that g−1ϕ(U)g =G ϕ(V ) then there exists
W ∈ F (x) such that ϕ(W ) = g and W−1UW =F (x) V . In particular, there
exists g ∈ G such that 〈s〉gG ∩ 〈t〉G 6=G 1 if and only if there exists W ∈ F (x)
such that 〈s〉W ∩ 〈t〉 6=F (x) 1.
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7. Malcharacteristic free subgroups of triangle groups

In this section we obtain examples of malcharacteristic subgroups of triangle
groups. In particular, Lemma 7.7 proves that the subgroup M of Ti,j,k, i, j, k ≥
6, stated in Section 3 is malcharacteristic and free of rank two. At the end of
the section we apply this to prove Theorem A and Theorem 7.9.

M is free and malnormal. Recall from Section 3 that the subgroup M of
Ti,j,k is defined as M := 〈x, y〉, with x and y as follows with ρ� max(i, j, k).

x := (ab−1)3(a2b−1)3(ab−1)3(a2b−1)4 . . . (ab−1)3(a2b−1)ρ+2

y := (ab−1)3(a2b−1)ρ+3(ab−1)3(a2b−1)ρ+4 . . . (ab−1)3(a2b−1)2ρ+2

We now prove that this subgroup M of Ti,j,k is free of rank two and malnormal.

Lemma 7.1. The subgroup M = 〈x, y〉 of Ti,j,k = 〈a, b; ai, bj, (ab)k〉, i, j, k ≥ 6,
is a malnormal subgroup of Ti,j,k and is free of rank two.

Proof. The set {ai, bj, (ab)k, x, y} has the C ′(1/4) − T (4) small cancellation
condition. The result then follows from Theorem F. �

The automorphisms of Ti,j,k. After Lemma 7.1, in order to prove that M
is malcharacteristic in Ti,j,k it is sufficient to prove that if δ ∈ Aut(Ti,j,k) is
such that δ(M)∩M 6= 1 then δ ∈ Inn(Ti,j,k). We therefore need to understand
the outer automorphism groups of triangle groups; we do this in Lemmas 7.2
and 7.3. The proof of Lemma 7.2 follows closely certain proofs in a paper of
Zieschang [Zie76] (but Lemma 7.2 does not follow from Zieschang’s paper).

Lemma 7.2. Suppose that Ti,j,k, with i, j, k ≥ 6, and Tt1,t2,t3 define the same
presentation, up to a permutation of the generators. Write G = 〈a, b; ai, bj, (ab)k〉
and H = 〈x1, x2, x3;xt11 , xt22 , xt33 , x1x2x3〉. If f : G→ H is an isomorphism then
there exists an inner automorphism γ ∈ Inn(H), integers p, q ∈ {1, 2, 3} with
p 6= q, and ε = ±1 such that fγ(a) = xεp and fγ(b) = xεq.

Proof. We may assume f(a) = U1x
ξp
p U

−1
1 and f(b) = U2x

ξq
q U

−1
2 , with p, q ∈

{1, 2, 3} not necessarily distinct, and with |ξp| ≤ 1
2
tp and |ξq| ≤ 1

2
tq [ZVC70,

Satz IV.12] (see also [FR99, Theorem 4.3.2]). Therefore, there exists an inner

automorphism γ ∈ Inn(H) such that fγ(a) = x
ξp
p and fγ(b) = Ux

ξq
q U−1,

where U does not begin with x±1p and does not end with x±1q . We view H
using the C ′(1/4) − T (4) presentation PH = 〈xp, xq;xtp , xtq , (xpxq)tr〉. Let
s = {xtp , xtq , (xpxq)tr}. Assume that the word U is Dehn reduced (that is, U
is s∗-reduced).

Suppose that U is not the empty word. Now, the word x
ξp
p Ux

ξq
q U−1 has finite

order in H, and so there exist some n > 1 such that (x
ξp
p Ux

ξq
q U−1)n contains a
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subword W of some R ∈ s∗ with |W | > 2
3
|R| [LS77, Theorem V.4.4.ii]. Then

W must contain letters from U or U−1 and at least one letter from x
ξp
p or x

ξq
q .

Therefore, R is conjugate to (xpxq)
±tr . Since tq > 2, the word x

−εq
q x

ξp
p x

εq
q is

not contained in W , and hence if W contains a part of x
ξp
p then W contains a

single letter from x
ξp
p , and this is either at the start or the end of W . Similarly,

since tp > 2 the word x
−εp
p x

ξq
q x

εp
p is not contained in W and so the analogous

statement holds for W containing a part of x
ξq
q .

We therefore have two cases: either W contains x±1s1 from x
ξs1
s1 and the other

letters are from one of U or U−1, or W begins with x±1s1 from x
ξs1
s1 , ends with

x±1s2 from x
ξs2
s2 , s1 6= s2, and all other letters are from precisely one of U or U−1.

In the first case, U contains a part W ′ from the defining relation (xpxq)
tr with

|W ′| = |W | − 1 > 2
3
· 2tr − 1 > tr = 1

2
|R| (as tr > 3). Hence, U is not Dehn

reduced, a contradiction. In the second case, W is again part of the relation
(xpxq)

±tr , therefore |U | = |W | − 2 > 2
3
· 2tr − 2 ≥ tr (as tr ≥ 6), and so again

U is not Dehn reduced, a contradiction. Therefore, U is the empty word, and

we have fγ(a) = x
ξp
p and fγ(b) = x

ξq
q .

We now prove that there exists some ε = ±1 such that ξp = ε = ξq, which
proves the result. Suppose otherwise. Then the longest possible subword of a

relator contained in the word (x
ξp
p x

ξq
q )tr is either x

εp
p x

εq
q x

εp
p or x

εq
q x

εp
p x

εq
q , so the

word (x
ξp
p x

ξq
q )tr is Dehn reduced. As this word is non-empty and Dehn reduced

it is non-trivial, a contradiction. �

Write Ψ for the set consisting of the following twelve maps. Note that each
map defines an automorphism of F (a, b).

ψ(1,ε) : a 7→ aε ψ(2,ε) : a 7→ aε ψ(3,ε) : a 7→ (ab)ε

b 7→ bε b 7→ (ab)−ε b 7→ b−ε

ψ(4,ε) : a 7→ bε ψ(5,ε) : a 7→ bε ψ(6,ε) : a 7→ (ab)ε

b 7→ aε b 7→ (ab)−ε b 7→ a−ε

Lemma 7.3. Let i, j, k ≥ 6. Then:

(1) If i, j, k are pairwise non-equal then Ψi,j,k := {ψ(1,1), ψ(1,−1)} is a transver-
sal for Out(Ti,j,k).

(2) If i = j 6= k then Ψi,i,k := {ψ(1,1), ψ(1,−1), ψ(4,1), ψ(4,−1)} is a transversal
for Out(Ti,j,k).

(3) If i = j = k then Ψ is a transversal for Out(Ti,i,i).
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Proof. By Lemma 7.2, if δ ∈ Aut(Ti,j,k) then there exists some γ ∈ Inn(Ti,j,k)
such that δγ ∈ Ψ. The result follows by checking which elements of Ψ define
automorphisms of Ti,j,k for each of the three cases. �

The images of x and y under automorphisms. Let s := {x, y} ⊂ F (a, b),
with x and y words as defined at the start of this section. Our final step before
proving that M is malcharacteristic in Ti,j,k is to prove that for each ψ ∈ Ψ,
every word Wψ(s)(ψ(s)) over ψ(s) which is freely reduced over ψ(s) is cyclically
Dehn reduced in Ti,j,k. This allows us to apply Theorem 6.7 to ψ(s). Lemmas
7.4–7.6 now analyse these words Wψ(s)(ψ(s)).

Lemma 7.4. Let Ti,j,k = 〈a, b; ai, bj, (ab)k〉, with i, j, k ≥ 6. Suppose ψ is
a map contained in the set Ψ, and we shall write A := ψ(a)ψ(b)−1, B :=
ψ(a)2ψ(b)−1. Then for all p, q ≥ 0 the word BpA3Bq is freely reduced over
F (a, b) and does not contain a±4, b±4, ((ab)3a)±1 or (b(ab)3)±1, and so is
Dehn reduced.

Proof. The proof is by inspection of the appropriate words. Indeed the fol-
lowing words are all freely reduced over F (a, b) for p, q ≥ 3 with the longest
subwords of relators occurring being a3 ≤ ai, b ≤ bj and babab ≤ (ab)k. Each
word represents BpA3Bq for the indicated ψ ∈ Ψ.

ψ(1,1) : (a2b−1)p(ab−1)3(a2b−1)q

ψ(2,1) : (a3b)p(a2b)3(a3b)q

ψ(3,1) : (abab2)p(ab2)3(abab2)q

Now, if the result holds for ψ(l,1), l ∈ {1, 2, 3} then it also holds for ψ(l+3,1)

(as ψ(l,1) and ψ(l+3,1) differ just by a switch of a and b, and possibly by an
inner automorphism). Further, if the result holds for ψ(l,1) then it also holds
for ψ(l,−1). Hence, the proof is complete. �

Lemma 7.5. Let Ti,j,k = 〈a, b; ai, bj, (ab)k〉, with i, j, k ≥ 6. Suppose ψ is
a map contained in the set Ψ, and we shall write A := ψ(a)ψ(b)−1, B :=
ψ(a)2ψ(b)−1. Then for all p, q ≥ 3, ε0 = ±1, after free reduction over F (a, b)
the word Bε0pA3B−ε0q has the form Bε0(p−1)CB−ε0(q−1) for some word C ∈
F (a, b). Moreover, the resulting word Bε0(p−1)CB−ε0(q−1) does not contain a±4,
b±4, (ab)±3 or (ba)±3 and so is Dehn reduced.

Proof. As with Lemma 7.4, the proof is by inspection of the appropriate words.
Indeed, after free reduction over F (a, b) the following words are all Dehn re-
duced for p, q ≥ 3, ε0 = ±1, with the longest subwords of relators occurring
being a±3 ≤ a±i, b±2 ≤ b±j and (babab)±1 ≤ (ab)±k. In each line the left-hand
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word represents Bε0pA3B−ε0q for the indicated map ψ ∈ Ψ and the right-hand
word represents the freely reduced form of the word. Each map has two cases:
ε0 = 1 and ε0 = −1.

ψ(1,1) : (a2b−1)p(ab−1)3(a2b−1)−q = (a2b−1)p(ab−1)2a−1(ba−2)q−1

(a2b−1)−p(ab−1)3(a2b−1)q = (ba−2)p−1ba−1b−1(ab−1)2(a2b−1)q

ψ(2,1) : (a3b)p(a2b)3(a3b)−q = (a3b)p(a2b)2a−1(b−1a−3)q−1

(a3b)−p(a2b)3(a3b)q = (b−1a−3)p−1b−1a−1b(a2b)2(a3b)q

ψ(3,1) : (abab2)p(ab2)3(abab2)−q = (abab2)pab2aba−1(b−2a−1b−1a−1)q−1

(abab2)−p(ab2)3(abab2)q = (b−2a−1b−1a−1)p−1b−2a−1b(ab2)2(abab2)q

Now, if the result holds for ψ(l,1), l ∈ {1, 2, 3} then it also holds for ψ(l+3,1)

(as ψ(l,1) and ψ(l+3,1) differ just by a switch of a and b, and possibly by an
inner automorphism). Further, if the result holds for ψ(l,1) then it also holds
for ψ(l,−1). Hence, the proof is complete. �

We now combine Lemmas 7.4 and 7.5 as follows. Note that the word
W{a,b}(ψ(s)) corresponds to the image of the word Ws(s) under the map ψ
after applying free reduction in F (a, b).

Lemma 7.6. Let Ti,j,k = 〈a, b; ai, bj, (ab)k〉, with i, j, k ≥ 6, and let s := {x, y}.
If ψ is a map contained in the set Ψ and Ws(s) is a word over s which is freely
reduced over s then the word W{a,b}(ψ(s)) is Dehn reduced.

Proof. WriteA := ψ(a)ψ(b)−1 andB := ψ(a)2ψ(b)−1. WriteXp0,q0 := Bp0A3Bq0 ,
Yp1,q1 := Bp1A3B−q1 and Zp2,q2 := B−p2A3Bq2 , where p0, q0 ≥ 0 and where
p1, p2, q1, q2 ≥ 3, and write

s0 := {Xp0,q0 | p0, q0 ≥ 0} ∪ {Yp1,q1 , Zp2,q2 | pi, qi ≥ 3}.

Now, Wψ(s)(ψ(s)) is a product of the words (A3B3A3B4 · · ·A3Bρ+2)±1 and
(A3Bρ+3A3 · · ·A3B2ρ+2)±1. Therefore, there exists a word Us0(s0) such that
Us0(s0) ≡ Wψ(s)(ψ(s)), and where every subword of length two of Us0(s0) has
the form either (Xp0,q0Yp1,q1)

±1, (Yp1,q1X
−1
p0,q0

)±1, (X−1p0,q0Zp2,q2)
±1, (Zp2,q2Xp0,q0)

±1,

or (Xp0,q0Xp′0,q
′
0
)±1. Note that U{a,b}(s0) ≡ W{a,b}(ψ(s)).

By Lemma 7.4, the words Xp0,q0 are freely reduced over F (a, b) and are
Dehn reduced. By Lemma 7.5, after free reduction in F (a, b) all words Yp1,q1
and Zp2,q2 are Dehn reduced and of the form respectively Bp1−1C1B

−(q1−1)

and B−(p2−1)C2B
q2−1 for some fixed words C1, C2 ∈ F (a, b). Then, applying

Lemma 7.4 again, the following words are freely reduced over F (a, b) and Dehn
reduced:

(Xp0,q0B
p1−1C1B

−(q1−1))±1, (Bp1−1C1B
−(q1−1)X−1p0,q0)

±1,
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(X−1p0,q0B
−(p2−1)C2B

q2−1)±1, (B−(p2−1)C2B
q2−1Xp0,q0)

±1, (Xp0,q0Xp′0,q
′
0
)±1

These words represent the length-two subwords of Us0(s0) after free reduction
in F (a, b), and hence the word U{a,b}(s0) is Dehn reduced. As U{a,b}(s0) ≡
W{a,b}(ψ(s)), the words W{a,b}(ψ(s)) is Dehn reduced as required. �

Examples of malcharacteristic subgroups. We are finally ready to prove
that the subgroup M of Ti,j,k, i, j, k ≥ 6, is malcharacteristic. The words x
and y in Lemma 7.7 are the same words defined at the end of Section 3 and
at the start of Section 7.

Lemma 7.7. Let M be the subgroup of Ti,j,k = 〈a, b; ai, bj, (ab)k〉, i, j, k ≥ 6,
which is generated by the following elements, with ρ� i, j, k.

x := (ab−1)3(a2b−1)3(ab−1)3(a2b−1)4 . . . (ab−1)3(a2b−1)ρ+2

y := (ab−1)3(a2b−1)ρ+3(ab−1)3(a2b−1)ρ+4 . . . (ab−1)3(a2b−1)2ρ+2

Then M is a malcharacteristic subgroup of Ti,j,k and is free of rank two.

Proof. Write M̃ := 〈x, y〉 for the subgroup of F (a, b) generated by the words

x and y. Then M̃ is in the same Aut(F (a, b))-orbit as the subgroup L defined

in Lemma 5.3. Therefore, by Lemma 5.3, the subgroup M̃ is malcharacteristic
in F (a, b). We use this to prove that M is malcharacteristic in Ti,j,k.

Now, by Lemma 7.1, it is sufficient to prove that if δ ∈ Aut(Ti,j,k) is such
that δ(M) ∩ M 6= 1 then δ ∈ Inn(Ti,j,k). So, suppose that there exists an
automorphism δ ∈ Aut(Ti,j,k) and two words U and V such that U(x, y) =
V (δ(x), δ(y)), and we wish to prove that δ is inner. By Lemma 7.3 there
exist ψ ∈ Ψ and γg ∈ Inn(Ti,j,k), g ∈ Ti,j,k, such that δ = ψγg, so ψγg(M) ∩
M 6= 1. Now, after free reduction over F (a, b) every word in ψ(M) is Dehn
reduced, by Lemma 7.6. It follows that every word in ψ(M) is cyclically Dehn
reduced (as every cyclic shift of a word U ∈ ψ(M) is a subword of U2, and
U2 ∈ ψ(M) is Dehn reduced). Hence, we may apply Theorem 6.7. Therefore,

there exists a word W ∈ F (a, b) such that ψ̃γW

(
M̃
)
∩ M̃ 6=F (a,b) 1, where

ψ̃ is the automorphism of F (a, b) defined using the same words as ψ. Now

ψ̃ 6∈ Inn(F (a, b)) so M̃ is not malcharacteristic in F (a, b), a contradiction. �

If any of i, j or k in Ti,j,k are less than 6 then it is not clear that the
subgroup M is malcharacteristic. The precise issues are found in Lemma 7.2
and in Lemmas 7.4 and 7.5, whose proofs each require i, j, k ≥ 6. Because of
the small cancellation arguments we apply, it is likely that Lemma 7.7, and
hence Theorem A and Theorem 7.9, can be extended to i, j, k > 6 or even to
i, j, k > 4. To develop our results in this direction, first Lemma 7.2 would need
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to be extended appropriately. To extend Lemmas 7.4 and 7.5 it is likely that
new words x, y ∈ F (a, b) would need to be found.

Lemmas 3.4 and 7.7 combine to prove the following result.

Proposition 7.8. A triangle group Ti,j,k, i, j, k ≥ 6, contains malcharacteris-
tic subgroups Mn of arbitrary rank n (possibly countably infinite).

Indeed, the subgroupMn is generated by n finite subwords satisfying C ′(1/6)
of the following infinite word:

xy(xy2)xy(xy2)2xy(xy2)3 · · · .

Proofs of Theorems A, B, C and E. We first prove Theorem A.

Proof of Theorem A. By Lemma 7.7, the group Ti contains a malcharacteristic
subgroup which is free of rank two. As Ti has Serre’s property FA [Ser80,
Example 6.3.5] and as φ : a 7→ b, b 7→ b−1a−1 defines a non-inner automorphism
of Ti which has order three, the result follows from Theorem 4.2. �

We now prove Theorem B.

Proof of Theorem B. Theorem B follows immediately from Theorem 4.3. �

We now prove Theorem C.

Proof of Theorem C. Theorem C follows immediately from Theorem 4.4. �

We now prove Theorem E.

Proof of Theorem E. Theorem E follows immediately from Theorem 4.5. �

The triangle groups Ti,j,k. Theorems 7.9–7.12 prove analogous results to
Theorems A, B, C and E where the base group H is a fixed triangle group
Ti,j,k rather than an equilateral triangle group Ti.

Theorem 7.9. Fix a (non-equilateral) triangle group Ti,j,k with i, j, k ≥ 6.
Every countable group Q can be realised as an index-one or-two subgroup of
the outer automorphism group of an automorphism-induced HNN-extension
T i,j,kP of Ti,j,k. Moreover, Aut(T i,j,kP ) has an index-one or-two subgroup which

splits as T i,j,kP oQ.

Proof. By Lemma 7.7, the group Ti,j,k contains a malcharacteristic subgroup
which is free of rank two. As Ti,j,k has Serre’s property FA [Ser80, Example
6.3.5] and as φ : a 7→ a−1, b 7→ b−1 defines a non-inner automorphism of Ti,j,k,
the result follows from Theorem 4.2. �

The proofs of Theorems 7.10–7.12 are identical to the proofs of Theorems
B, C and E, and hence are omitted.
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Theorem 7.10. The map defined by P 7→ T i,j,kP is a functor from the category
of countable group presentations Pres to the category of groups Grp.

Theorem 7.11. Let Ti,j,kFin be the class of groups T i,j,kP where π1(P) is finite.

If π1(P) is residually finite then T i,j,kP is residually-Ti,j,kFin .

Theorem 7.12. The subgroups Mn, n ∈ N, in the proof of Theorem 7.9 may
be chosen in such a way that for every presentation P with finite generating set
and for every countable group presentation Q there exists a surjection TP �
TP∗Q.

8. Residual finiteness

Bumagin–Wise asked if every countable group Q can be realised as the outer
automorphism group of a finitely generated, residually finite group GQ [BW05,
Problem 1]. We now prove Corollary D (which is a corollary of Theorem C).
Corollary D answers this question of Bumagin–Wise for all finitely generated,
residually finite groups Q by taking GQ := TP for P a presentation of Q with
finite generating set.

Proof of Corollary D. We write h := Ti. By Theorem C it is sufficient to prove
that if P = 〈x; r〉 has finite generating set x and π1(P) is finite then TP is
residually finite. Under these conditions the associated subgroup KP of the
group TP = H∗(KP ,φ) has finite index in the subgroup M|x|. As M|x| is a free
group of finite rank |x|, the subgroup KP is finitely generated.

Now, triangle groups are LERF [Sco78]. Hence, KP is separable in the
triangle group H. Therefore, the automorphism-induced HNN-extension TP
is residually finite [BT78, Lemma 4.4], as required. �

In order to extend Corollary D to all countable residually finite groups it
would be necessary to prove that if P = 〈x; r〉 is a presentation of a finite
group where |x| = ∞ then the group TP is residually finite. (In Corollary D
we explicitly use the fact that x is a finite set.) We therefore have the following
corollary of Theorem C.

Corollary 8.1. Let T∞Fin be the class of groups TP where π1(P) is finite but
where P has infinite generating set. Suppose that every element of T∞Fin is
residually finite. Then for every countable, residually finite group Q there
exists a finitely generated, residually finite group GQ such that Out(GQ) ∼= Q.

Note that Corollary 8.1 represents the best application of Theorem A in
this direction, in the sense that if TP is residually finite then Q := π1(P) is
residually finite. This is because Q embeds in Aut(TP), so if Q is not residually
finite then TP is not residually finite [Bau63].
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9. Questions

We now pose certain questions which arose in the writing of this paper.

Injectivity of the functor. The functor of Theorem B should be injective
on both objects and morphisms. Injectivity of the functor is equivalent to a
positive answer to the following question, where ∼ is the equivalence relation
on presentations defined in Section 4.

Question 1. Is it true that TP ∼= TQ if and only if P ∼ Q?

It is unlikely that the functor of Theorem 4.3 is injective for all choices of
groups H and automorphisms φ ∈ Aut(H).

Question 2. For which base groups H and automorphisms φ ∈ Aut(H) does it
hold that in the construction of Theorem 4.2, HP ∼= HQ if and only if P ∼ Q?

Residual finiteness. Question 3 leads naturally on from Corollary D and
Corollary 8.1.

Question 3. Suppose P = 〈x; r〉 is a presentation of a finite group such that
the set x is infinite. Is the group TP from Theorem A residually finite?

Free groups. In Section 5 we proved that F2, the free group of rank two,
contains a malcharacteristic subgroup L with L ∼= F2; it then follows from
Lemma 3.4 that F2 contains malcharacteristic subgroups of arbitrary rank.

Question 4. Do the free groups Fn, n > 2, each contain a malcharacteristic
subgroup which is free of rank two?

Malnormality is decidable in free groups. In Lemma 5.2 we gave conditions
relating to the malcharacteristic property being decidable in F2.

Question 5. Is it decidable if a subgroup M of a free group Fn, n ≥ 2, is
malcharacteristic?

Malnormality is a generic property of subgroups of free groups: using the
“few relator” model for random groups we see that a random finite set of words
s ⊂ Fn contains no proper powers and satisfies the classical small cancellation
conditions [Oll05, Proposition 2]. It then follows that s is malnormal in Fn
with free basis s [Wis01, Theorems 2.11 & 2.14].

Question 6. Does a generic set of words s ⊂ Fn, n ≥ 2, generate, with
overwhelming probability, a malcharacteristic subgroup of Fn?
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Note that Question 6 admits a positive answer if we assume |s| = 1 [KSS06,
Theorem A].

Other groups. As was mentioned in the introduction, we expect Theorem
A to hold for many other classes of groups and not just equilateral triangle
groups. Now, Thompson’s group V has Serre’s property FA [Far11] and has
outer automorphisms of any given order [BCM+16]. Therefore, a positive
answer to the following question would allow us to apply Theorem 4.2 to V ,
obtaining a result analogous to Theorem A.

Question 7. Does Thompson’s group V contain a malcharacteristic subgroup
which is free of rank two?

Thompson’s group T also has Serre’s property FA [Far11], but Out(T ) is
cyclic of order two [Bri96]. Therefore, a positive answer to the following ques-
tion would allow us to apply Theorem 4.2 to T , obtaining a result analogous
to Theorem 7.9.

Question 8. Does Thompson’s group T contain a malcharacteristic subgroup
which is free of rank two?

Note that we ask about T and V and not Thompson’s group F because it
is well-known that F does not contain a non-abelian free group.
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