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Abstract—The challenges of real world applications of the laser
detection and ranging (Lidar) three-dimensional (3D) imaging
require specialized algorithms. In this paper a new reconstruction
algorithm for single-photon 3D Lidar images is presented that
can deal with multiple tasks. For example when the return
signal contains multiple peaks due to imaging semi-transparent
surfaces, or when imaging through obscurants such as scattering
media. A generalization to the multidimensional case, including
multispectral and multitemporal 3D images, is also provided.
The approach is based on the minimization of a cost function
accounting for Poissonian observations of the single-photon data,
the non-local spatial correlations between pixels and the small
number of depth layers inside the observed range window. An
alternating direction method of multipliers (ADMM) that offers
good convergence properties is used to solve this minimization
problem. The resulting algorithm is validated on synthetic and
real data and in challenging realistic scenarios including sparse
photon regimes for fast imaging, the presence of high background
due to obscurants, and the joint processing of multispectral
and/or multitemporal data.

Index Terms—3D imaging, Lidar, multispectral imaging, mul-
titemporal imaging, obscurants, image restoration, ADMM, non-
local total variation, collaborative sparsity.

I. INTRODUCTION

3D-imaging using Lidar systems has generated significant
interest from the scientific community in recent years. This
is due to its ability to provide rich and high-resolution infor-
mation regarding the depth profile and reflectivity of observed
targets, which can be combined with other imaging modalities
such as Radar or Sonar to improve the navigation performance
of autonomous vehicles, etc. Lidar systems work by emitting
laser pulses and recording the arrival times of the reflected
photons using for example a time-correlated single-photon
counting (TCSPC) module. A histogram of photon counts
with respect to (w.r.t.) time-of-flight is constructed for each
beam location corresponding to a pixel (see Fig. 1). This
operation is repeated for different beam locations to build a
cube of data containing the 3D information about the target.
As shown in Fig. 1, the reflected photons from a given target
are gathered into a peak whose location and amplitude are
related to the depth and reflectivity of the observed target.
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Fig. 1. Schematic description of 3D Lidar imaging in presence of obscurants
or camouflages.

Extracting this information from the histograms provides depth
and reflectivity images of the target, i.e., its 3D image. Note
that it is also possible to expand dimensions in the Lidar
system by for example (i) varying the wavelength of the
laser pulses, which allows the acquisition of multispectral 3D
images [1], [2], (ii) acquiring successive frames, leading to 3D
videos or multitemporal 3D images.

In this paper, we are interested in challenging imaging
scenarios encountered in real world applications including the
photon starved regime when reducing the acquisition times
or for long-range imaging [3], [4]; the presence of multiple
peaks due to imaging through semi-transparent surfaces or
when the laser beam covers many depth surfaces [5], [6];
a high background level due to imaging through obscurants
[7]–[9], and the multidimensional case due to multispectral or
multitemporal 3D imaging (see Fig. 1 for some illustrations).
Some of these challenges have been addressed in the literature.
The authors of [10] and [11] proposed Markov chain Monte-
Carlo (MCMC) algorithms leading to promising results for
the restoration of sparse Lidar data and multilayered data,
respectively. However, these algorithms are computationally
complex which might limit their use in practical situations (see
for example [12] for a computational comparison between an
optimization algorithm and the MCMC algorithm proposed in
[10]). An alternative algorithm was recently proposed in [5]
which considers a convex formulation coupled with an `1 spar-
sity promoting regularizer. This approach takes into account
the Poisson statistics of the data and assumes the sparsity of
the received photons. However, it does not account for the
target continuity of surfaces and may lead to false detections
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when imaging through obscurants. The latter problem has also
been studied in several papers as in [8], [13], which considered
spatial correlation between pixels to remove false detections.

This paper proposes a solution which addresses all of
these challenges by considering an optimization algorithm
that reconstructs 3D scenes while taking into account prior
knowledge about the observed targets. Target reconstruction
is obtained by minimizing a convex function composed of
a data fidelity and regularization terms. The former is based
on the Poisson statistics of the observed photon counts and
models the presence of multiple peaks and background noise
in each histogram. With regards to the regularization terms,
we first assume the presence of spatial correlation across
pixels due to the spatial extent of the observed object, which
is introduced using a convex non-local total variation (TV)
regularizer [14]. Thanks to the fine depth resolution and the
large observed range window, we also assume that the number
of depth layers is lower than the number of available time bins,
which is introduced using a collaborative sparse prior (group-
sparsity) [15]–[17]. This leads to a convex cost function that is
easily generalized to multidimensional cases as multispectral
or multitemporal imaging. To provide a fast solution, the cost
function is minimized using a new variant of an alternating di-
rection method of multipliers (ADMM) algorithm [18] which
has shown good results in several applications [12], [19], [20].
The new algorithm is tested on synthetic and real data showing
promising results, when compared to state-of-art algorithms,
to solve the previously described real world challenges.

The paper is organized as follows. The observation model
and motivation of the proposed approach are described in Sec-
tion II. The proposed formulation for the regularized problem
and the estimation algorithm are presented in Sections III and
IV. Section V analyses the proposed algorithm’s performance
when considering synthetic data with known ground-truth.
Results on real data are presented in Section VI. Conclusions
and future work are finally reported in Section VII.

II. PROBLEM FORMULATION

A. Observation model for 3D Lidar imaging
A Lidar system operates by sending light pulses and de-

tecting the reflected photons and their time of flight from
the target, where each illumination can cause up to one
photon detection. This operation can be repeated for each
pixel location when using a scanning system (e.g., raster
scan systems [21], [22]) or by directly acquiring an array of
pixels (e.g., array based systems [23]). For both approaches, a
histogram can be constructed for each pixel by representing the
number of received counts with respect to their time of arrival.
More precisely, the Lidar observation can be gathered in the
matrix yn,t which represents the number of photon counts
within the tth bin of the nth pixel, where n ∈ {1, · · · , N},
t ∈ {1, · · · ,K}, T is the timing resolution of the system and
N,K are the number of pixels and time bins, respectively. If
the laser beam is reflected by a single surface, the histogram
will contain a single peak whose amplitude and position
are related to the target’s reflectivity and depth, respectively.
However, when the observed scene contains obscurants, semi-
transparent or scattering surfaces, or the laser beam covers

many depth surfaces, the returned signal may contain multiple
peaks, located at distances related to the observed depths (see
Fig. 1).

This paper deals with the latter case, i.e., restoration of Lidar
data in presence of multi-peaks, and a high level of noise due
to imaging through obscurants or a scattering environment.
For these data, the observed photon counts yn,t are distributed
according to a Poisson distribution P (.) as follows [10], [24]

yn,t ∼ P (sn,t) (1)
where

sn,t =

Mn∑
m=1

[rn,mg0 (t− kn,mT )] + bn (2)

and Mn is the number of layers in the nth pixel, kn,m ≥ 0
is the range of the mth object from the sensor (related to its
depth), rn,m ≥ 0 is the reflectivity of the mth target, bn ≥ 0
denotes the background and dark counts of the detector, and
g0 represents the system impulse response (SIR) assumed to
be known from a calibration step. The discrete time version
of (2), when considering K time bins, can be expressed as a
linear system as follows [5]

sn = Gxn (3)

where G = [g1, · · · , gK ,1K×1] is a K × (K + 1) matrix
gathering shifted impulse responses, 1i×j denotes the (i× j)
matrix of 1, gi = [g0(T − iT ), g0(2T − iT ), · · · , g0(KT −
iT )]> is a (K × 1) vector representing the discrete impulse
response centered at iT and xn is a (K + 1) × 1 vector
whose value are zero except for xn(kn,m) = rn,m,∀m, and
xn(K + 1) = bn. Using (3), straightforward computations
show that the negative-log-likelihood associated with the dis-
crete observations yn,k ∼ P [(Gxn)k] is given by

Ln (xn) = Hn (Gxn) (4)

where Hn : RK → R ∪ {−∞,+∞} is given by

Hn (z) =

K∑
k=1

{
zk − yn,k log

[
z
(+)
k

]
+ iR+

(zk)
}

(5)

where z
(+)
k = max {0, zk} and iR+

(x) is the indicator
function that imposes non-negativity (iR+

(x) = 0 if x ≥ 0
and +∞ otherwise).

Finally, denoting Y (resp. X) is a K×N (resp. (K+1)×N )
matrix gathering the vectors yn (resp. xn), and assuming that
yn,t,∀n, t are conditionally independent given X , leads to the
following negative-log of the joint likelihood

L (X) = − log [P (Y |X)] =
∑
n

Ln (xn). (6)

The goal is then to estimate the sparse matrix X , where the
positions and values of the non-zero elements correspond to
the target depths and intensities, respectively.

B. Generalization to multidimensional data

In addition to the rich 3D spatial information, Lidar systems
can be generalized to acquire other dimensions leading to
high dimensional data. For example, this might include the
following: the acquisition of multispectral or polarimetric 3D
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images, which allow target identification using reflectivity
or texture information; and the acquisition of multitemporal
3D images to capture time varying phenomena. While it
is common to assume a fixed scene while acquiring a 3D
images, the model associated with more dimensions (i.e.,
multispectral, temporal or polarized images) should take into
account fluctuations between successive measures as the other
dimensions might be acquired at different time instants or
under a different configuration. Under this assumption, the
general model will be given by

yn,t,d ∼ P (sn,t,d) (7)

where

sn,t,d =

Mn∑
m=1

[
rn,m,dg

d
0 (t− kn,m,dT )

]
+ bn,d (8)

where it should be noted that the target parameters (reflectivi-
ties and depths) depend on the dth dimension to account for the
target, system and environment variations between successive
images. Similarly, we allow the system impulse response to
vary with respect to d as for the case of multi-wavelength
imaging. The matrix expression associated with the nth pixel
and dth image is given by

sn,d = Gdxn,d. (9)

The goal is then to estimate the sparse matrices Xd, while
considering that the targets are observed by different dimen-
sions d ∈ {1, · · · , D}.

C. Challenges/motivations for the proposed algorithm

This paper considers three major challenges whose solution
will help to expand the use of Lidar systems to environmental,
medical, or industrial applications. The first is related to the
sparse photon regime that is encountered when reducing the
acquisition times (i.e., fast imaging [10], [12], [13]) or for
long range imaging (i.e., imaging at several kilometres [3]). In
such cases, the constructed histograms will contain a reduced
number of photons or, in the extreme case, no photons at all
which corresponds to empty pixels (i.e., pixels with no photon
counts). The second challenge appears when imaging through
obscurants (e.g. camouflage or semi-transparent surfaces [5],
[11], [25]) or a scattering media (e.g. water, fog [7], [26]). This
leads to the presence of multiple peaks or a high level of back-
ground noise in the pixel’s histograms, which might affect the
detection of the target’s peak especially when using classical
single-peak based algorithms (such as cross-correlation with
the system impulse response). The third challenge is related to
the need to extend the 3D Lidar data to higher dimensions by
acquiring several wavelengths for 3D multispectral imaging,
or different time instants for 3D videos to capture time varying
phenomena or moving objects. These challenges limit the
use of classical single-peak based approaches and require
the development of specialized algorithms to estimate X
(resp. Xd) while taking into account these extreme imaging
scenarios.

III. REGULARIZED PROBLEM

This section presents the proposed regularized problem to
estimate the restored point cloud matrix X . To this end, we
adopt an optimization approach that minimizes a regularized
data fidelity cost function. More precisely, considering that the
observed data is Poissonian distributed, then the data fidelity
term L (X) is given by (6). Estimating the matrix X is an ill-
posed inverse problem that requires the introduction of prior
knowledge (or regularization terms) related to the target depths
and reflectivities. The latter should be carefully chosen as they
introduce some estimation biases regarding the observed data.
With these considerations in mind, we propose to solve the
following optimization problem

C (X) = L (X) + iR+
(X) + τ1φ1 (X) + τ2φ2 (X)︸ ︷︷ ︸

regularization terms

(10)

where τ1 > 0, τ2 > 0 are two regularization parameters,
iR+

(X) =
∑
n,k iR+

(xn,k) and φ1, φ2 are two regularization
functions associated with the depth and reflectivity, respec-
tively. These terms will account for two properties of Lidar
data: (i) the detected photons associated with a target are
generally clustered inside the cube of histograms in contrast
to the background counts that spread over the full cube,
(ii) the number of detected photons associated with a target
presents spatial correlations, i.e., 3D points of a target often
show similar count values whether it is locally (i.e., neighbour
pixels) or non-locally (i.e., non neighbour pixels with similar
target reflectivities). Based on these properties, we define the
regularization functions φ1, φ2 as detailed in the next sub-
sections.

A. Priors on the support: depth regularization

This section presents the regularization term associated with
the data support. As highlighted in [5], [27], 3D Lidar data is
sparse especially in the low acquisition time regime. However,
considering sparsity alone does not help separate the target’s
returns from those due to the background noise. In [25], an `2,1
mixed norm was considered to promote the presence of sparse
depth clusters in the full image. This regularization showed
good results for scenes presenting objects well separated in
depth, however, it might be inappropriate for targets with
distributed depths which will occupy the full depth histogram
when considering all the pixels. A possible strategy to deal
with this is to impose this depth localization locally, i.e., for
each small patch of pixels. In this paper, we choose to combine
the priors in [5], [27] and [25] to benefit from their advantages
and provide a solution to their limitations mentioned above. To
separate the noise from the signal return, we assume sparsity
on a down-sampled image. This will detect clusters of returns
in the cube that are probably due to the target, while it will
eliminate the isolated counts due to noise (see Fig. 2). To
achieve this, we consider an `2,1 mixed norm that impose
collaborative sparsity [15], [17], i.e., sparsity on small cubes
obtained by grouping local pixels and depth bins. The `2 is
first applied to sum the quadratic returns of each small cube,
then, an `1 norm is applied to the resulting small cubes to
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Fig. 2. Illustrative examples of the effect of different support regularizations,
i.e., (left) effect of the `1-based regularization in [5], [27], (middle) the
`2,1-based regularization in [25], and (right) the `2,1-based regularization
proposed in this paper. The black cubes represent the obtained histograms,
the dots represent the detected photons (red for the target and yellow for
the background returns) and the green cubes represent the detected supports
promoted by the regularizations.

promote their sparsity. Formally, the obtained regularization
term is given by

φ1 (X) = ||diag(v)KFX(:)||2,1 (11)

where X(:) ∈ R(K+1)N×1 denotes the vectorization of the
matrix X , F ∈ RKN×(K+1)N is a matrix that selects the first
K rows of X and discard the background row, diag(v)K
can be gathered in Kv : RKN×1 → RSb×NB which is a
linear operator that provides an Sb ×NB matrix as an output
where its column gathers the Sb elements of a bloc of size
Sb = (rb × cb × tb) and NB denotes the number of these
blocs in the data cube and v ∈ RNB×1 contains weights for
each bloc. This can be formulated as follows

KvFX(:) =

 v1K1FX(:) · · · 0
...

...
...

0 · · · vNBKNBFX(:)


(12)

with Ki ∈ RSB×KN ,∀i ∈ {1, · · · , NB} is a matrix that
selects the ith bloc and vi > 0 is a predefined weight
associated with the ith bloc. Using (12), one can express
φ1 (X) as follows

φ1 (X) =

NB∑
i=1

vi

√√√√√
 ∑

(t,n)∈ψi

x2n,t

 (13)

where ψi contains the pixel and time bin indices of the ith
bloc.

B. Priors on the counts: regularized intensity

This section presents the regularization associated with the
count values, i.e., target reflectivities. To restore the observed
count values, the proposed term will mainly exploit the spa-
tial correlation between count values of the images. Several
denoising strategies have previously been proposed to account
for spatial correlation and we distinguish between local [14],
[20] and non-local [28]–[30] approaches. The latter have
shown promising results to restore natural images (especially
textured images) and represent a key ingredient in most state-
of-the-art algorithms [28]–[30]. While local algorithms only
use neighbourhood pixels to restore a given pixel, non-local

Fig. 3. Illustrative example of the range down-sampling benefits to impose
spatial correlations.

Fig. 4. Illustrative example of the connection of a given pixel i with nd

other pixels. For this image, the weights can be ordered as follows wi,1 =
wi,2 < wi,j < wi,nd where the more similar is the connection, the higher
is its weight.

approaches also exploit the information contained in distant
pixels that have similar characteristics, which lead to a better
denoising thanks to a wider averaging. In this paper, we
consider an NL approach to restore the intensity of the Lidar
data obtained in a photon-staved regime. In this case, the
histograms are sparse and prevent the direct application of
spatial correlation regularizations. To solve this problem, the
spatial regularization is performed on a range down-sampled
image that benefits from the clustered target’s photon, thus,
improving the separation between the target features and
the background noise (see Fig. 3 for an illustrative example
of the benefit of the range down-sampling). This idea of
using down-sampled images (spatially or in depth) in photon-
starved regime has shown good results in the restoration of
sparse data as highlighted in [13], [25]. Note that the down-
sampling is only performed in the depth dimension which
has a very high resolution (i.e., millimetre resolution even
at long ranges), while the non-local regularization term will
restore the spatially corrupted data due to the noise or the
absence of detected photons. To achieve this, each pixel is
connected to the other similar pixels in the image (through
the consideration of similarity weights W ) and will benefit
from their information to improve its estimate, as illustrated in
Fig. 4. Under these considerations, the proposed regularization
term can be mathematically expressed as

φ2 (X) = ||diag(w)HDhFX(:)||2F (14)

where Dh ∈ RKhN×KN is a matrix summing the pho-
ton counts of each #h successive time bins as illustrated
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in Fig. 3, Kh is the integer part of the division K/h,
and H ∈ RndKhN×KhN is a block-circulant-circulant-block
matrix which computes weighted differences between each
pixel and other nd pixels located in a predefined field. More
precisely, the operator diag(w)H = Hw : RKhN → RndKhN

performs the following operation

||Hwz||2F =

nd∑
i=1

N∑
n=1

Kh∑
`=1

w2
i,n

(
HDiff
i z`

)2∣∣∣
n

(15)

where z` ∈ RN denotes the `th column of a matrix Z ∈
RN×Kh built from z ∈ RKhN as follows Z = [z1, ...,zKh ],
HDiff
i ∈ RN×N computes the difference between each pixel

and that located at the ith direction (the algorithms consider
nd predefined directions or shifts), and w2

i,n are the weights
associated with the nth pixel and ith direction. For simplicity,
we treat the matrices HDiff

i with periodic boundary conditions
as cyclic convolutions. This non-local total variation can also
be expressed in matrix form as follows

||Hwz||2F =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
{
IKh ⊗

[
diag(w1,:)H

Diff
1

]}
z

...{
IKh ⊗

[
diag(wnd,:)H

Diff
nd

]}
z

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

F

(16)

where ⊗ denotes the Kronecker product and IKh is the identity
matrix, wi: ∈ RN are the weights associated with the ith
direction, and diag is the diagonalization operator.

C. Choice of the weights

The regularization terms introduce two weighting vectors
w,v that should reflect our prior knowledge regarding possi-
ble correlations between spatial regions of the image and/or
the expected depth of the target. Such information can be
extracted from complementary imaging modalities of the same
scene such as a 2D panchromatic image to determine pixel’s
correlations, or radar image to approximate the depth. In the
presence of such complementary information, it is possible for
the proposed algorithm to combine the information obtained
by these modalities, i.e., it will perform a fusion task. Note
also that setting equal weights for a local neighbourhood
(e.g., 4 neighbourhood structure) will lead to the common
local total-variation approach. In this paper, we do not use
other imaging modalities, and only use the Lidar data to fix
these weights. Akin to [31], [32], the weights w are chosen
to reduce the spatial smoothing across discontinuities. The
weights v are chosen to enforce removing isolated photons
and promote the presence of a target in regions presenting
clustered photons. However, setting accurate weights require
the use of a relatively clean image to improve the restoration
results of the overall algorithm. Such an image is not available
as we observe a noisy, sparse and temporally convolved Lidar
image, however, it can be approximated as follows. A spatial
low pass filter is applied to the histogram data (by using
a square window of size

√
nd ×

√
nd pixels) to fill empty

pixels/histograms and reduce the noise as already used in
[13], [33], [34]. A simple method will then be used to extract
kp depth and reflectivity estimates from each pixel. More
precisely, a classical cross-correlation method (see Section V-B

for a detailed description of this method) is used on each
pixel to extract the depth and reflectivity parameters of a first
peak. The counts associated with this peak are then removed
from the histogram and the classical algorithm is used again
to estimate a new peak. This procedure is repeated kp times
or until no-peak is detected (in which case reflectivity is put
to zero). Intensity images are then obtained by multiplying
the reflectivity images by the sum of the impulse response’s
counts. The weights w being related to intensity, they can be
fixed as follows (see [31])

wij = max

[
0.5, exp

(
−|Ii − Ij |

σw

)]
(17)

where I denotes the sum of the kp intensity images, σw = 0.1
is a fixed coefficient and max(.) denotes the maximum operator
that truncates the coefficients to 0.5 (this empirically improves
the results as shown in [31]). Similarly, the weights v are
fixed by considering the kp depth and intensity images. For
this, we first reconstruct a data cube ỹ by associating to each
depth location obtained from downsampled histograms the cor-
responding intensity value. Second, the resulting reconstructed
blocs with higher intensities are assigned lower coefficient
values v, as follows

vi = max

[
0.5, exp

(
−
∑

(t,n)∈ψi ỹn,t

σw

)]
. (18)

Under these considerations, the weights v enforce more spar-
sity regularization on isolated photons due to background, than
on clustered ones related to signal. Note finally that kp has a
limited effect on the final result of the algorithm as it is only
used to set the weights (it is not related to the final estimated
number of peaks) and most counts are generally contained in
the first two peaks. We choose in the following to fix kp = 2
since this provides a reduced computational complexity.

D. Generalization to multidimensional data

The proposed approach is general and can be easily ex-
tended to account for the presence of multidimensional data
(e.g. multitemporal, multispectral, polarimetric data either sep-
arately or jointly). Note first that each dimension of this data
can be processed independently. However, this is not optimal
as these dimensions might have complementary information,
thus, the need for a joint processing algorithm, that will help
downstream applications (such as object tracking) operating in
one dimension by bringing information from other dimensions.
Joint processing requires, however, the adoption of some addi-
tional assumptions for optimal exploitation of these data. We
therefore assume that the multidimensional data corresponds
to the same scene with a slight movement of the observed
object or the camera as considered in many studies [35]–[38].
Under this assumption, we might assume that the support of
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the downsampled images is almost the same leading to

Φ1

(
X̃
)

=

NB∑
i=1

vi

√√√√√
 D∑
d=1

∑
(t,n)∈ψi

x2n,d,t

 (19)

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

diag(v)KFX1(:)
...

diag(v)KFXD(:)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2,1

. (20)

where (̃.) denotes the matrix that gathers the data or operations
for all D dimensions. Similarly, the intensity regularization can
be assumed as

Φ2

(
X̃
)

=

D∑
d=1

||HwDhFXd(:)||2F . (21)

Note first that spatial correlation is promoted between the
pixels belonging to the same dimension, as different dimen-
sions might have different intensity responses (e.g. multispec-
tral imaging). Note also that this term introduces correlation
between dimensions as we assume the same weights w (that
can obtained using all dimensions) for all of them. However,
the independent case can be easily obtained by associating a
different vector wd to each dimension. Note finally that the
weights can be fixed using the procedure described in the pre-
vious section. This can be done by considering all dimensions
or by only considering the more informative dimensions, if
available, as will be seen in the results.

For simplicity of notation, we rewrite the obtained regular-
ization terms Φ1, Φ2 using new operators as follows

Φ1 (X) = ||diag(v)K̃F̃ X̃(:)||2,1 (22)

Φ2 (X) = ||H̃wD̃hF̃ X̃(:)||2F . (23)

IV. THE ESTIMATION ALGORITHM

A. The ADMM algorithm

Consider the optimization problem

argmin
X,C

g (C) , subject to AX + BC = 0 (24)

where X ∈ R(K+1)×N , g(.) is a closed, proper, convex
function, and A, B are arbitrary matrices. The ADMM al-
gorithm consists first in computing the augmented Lagrangian
for problem (24), as follows

AL (X,C,J) = g (C) +
µ

2
||AX + BC − J ||2F (25)

where µ is a positive constant, and J/µ denotes the Lagrange
multipliers associated with the constraint AX +BC = 0. As
a second step, the algorithm optimizes AL sequentially with
respect to X and C, and then updates the Lagrange multipliers
as shown in Algo. 1.

Algo. 1 converges when the function g is closed, proper,
and convex and A is full column rank [39, Theorem 1]. The
latter theorem also states that the sequence X(i) converges to
a solution of (24), for any µ > 0, if it has a non-empty set of
solutions. If (24) does not have a solution, then at least one
of the sequences X(i) or J (i) diverges. Note that the details

Algorithm 1 ADMM for (24)
1: Initialization
2: Initialize X(0),C

(0)
j ,J

(0)
j ,∀j, µ > 0.

3: Set i← 0, conv← 0
4: while conv= 0 do
5: X(i+1) ← argmin

X
AL

(
X,C(i),J (i)

)
6: C(i+1) ← argmin

C
AL

(
X(i+1),C,J (i)

)
7: J (i+1) ← J (i) −AX(i+1) −BC(i+1)

8: conv← 1, if the stopping criterion is satisfied.
9: end while

of the steps of Algo. 1 are not provided for brevity, however,
they reduce to the solution of a linear system of equations
(line 5), the computation of Moreau proximity operators [40]
(line 6), and the updating of the Lagrange multipliers (line
7). The convergence speed of the algorithm is affected by
the parameter µ, that has been updated using the adaptive
procedure described in [17], [18]. This procedure keeps the
ratio between the ADMM primal and dual residual norms
within a given positive interval, as they both converge to zero.
The algorithm is stopped when these residual norms are lower
than a given threshold [18]. The interested reader is invited
to read [18] for more details regarding the ADMM algorithm
and [19], [41], [42] for its application to solve inverse imaging
problems.

B. Proposed algorithm

This section presents the optimization problem considered
for estimating the matrix of interest X̃ . Using the same
notation as in (24), problem (10) can be expressed as follows

g (C) = H (C1) + iR+ (C2)

+ τ1||diag(v)C3||2,1 + τ2||diag(w)C5||2F (26)

with C1 = G̃X̃ , C2 = X̃ , C3 = K̃F̃ X̃(:), C4 = D̃hF̃ X̃(:
), C5 = H̃C4 leading to A = [G̃, I, K̃F̃ , D̃hF̃ ,0]> and

B =


−I 0 0 0 0
0 −I 0 0 0
0 0 −I 0 0
0 0 0 −I 0

0 0 0 H̃ −I

 (27)

where I (resp. 0) denotes the identity matrix (resp. a vector
of zeros) of adequate size. Note that the use of two variables
C4 and C5 allows decoupling of the optimization in the spatial
domain from the optimization in the time (or range) domain
(since D̃hF̃ operates on the range dimension and H̃ on the
spatial one). This operation reduces the computational cost
associated with the resulting optimization problems (see (29))
and has been previously used for processing hyperspectral
imagery in [20]. For this problem, the matrix A is full
column rank. This matrix and the properties of g(.) ensure the
algorithm convergence. Moreover, to accelerate convergence,
the algorithm is initialized using a relatively clean image
X(0) = Ỹ , where Ỹ has been defined in Section III-C and
used to set the weights. Finally, the optimization problems
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shown in line 5 and 6 of algo. 1, and resulting from the
minimization of the AL given by

AL
(
X̃,C,J

)
= H (C1) + iR+ (C2) + τ1||diag(v)C3||2,1

+ τ2||diag(w)C5||2F +
µ

2

(
||G̃X̃ −C1 − J1||2F

+ ||X̃ −C2 − J2||2F + ||K̃F̃ X̃ −C3 − J3||2F
+ ||D̃hF̃ X̃ −C4 − J4||2F
+ ||H̃C4 −C5 − J5||2F

)
. (28)

admit analytical solutions as follows (see also [12], [20],
[43] for more details regarding similar optimization problems)

X̃
(i+1) ←

{
G̃
>
G̃+ I+ F̃

>
K̃
>
K̃F̃ + F̃

>
D̃
>
h D̃hF̃

}−1

×
{
G̃
>
ξ
(i)
1 + ξ

(i)
2 + F̃

>
K̃
>
ξ
(i)
3 + F̃

>
D̃
>
h ξ

(i)
4

}
c
(i+1)
1,k,n,d ← 1

2

zk,n,d −
1

µ
+

√[
zk,n,d −

1

µ

]2
+ 4

yk,n,d

µ


C

(i+1)
2 ← max

{
X̃

(i) − J̃
(i)
2 , 0

}
c
(i+1)
3,n,t ← vect-soft

(
J

(i)
3,n,t − K̃F̃ x̃

(i)
n,t,

τ1vj
µ

)
, ∀n, t ∈ ψj

C
(i+1)
4 ←

(
H̃
>
H̃ + I

)−1 [
D̃hF̃X(i) − J

(i)
4 + H̃

>
ξ5
]

C
(i+1)
5 ← diag

[
µ

2τ2(w �w) + µ

] [
H̃C

(i)
4 − J

(i)
5

]
(29)

where ξj = C
(i)
j + J

(i)
j for j ∈ {1, 2, 3, 5},

zk,n,d =
(
Gdx

(i)
n,d

)
k
− J

(i)
1,k,n,d, � denotes the term-

wise product, soft
(
X, τµ

)
= sign(X) � max

{
|X| − τ

µ , 0
}

denotes the soft threshold operator, vect-soft
(
x, τµ

)
=

x

(
max{||x||2− τµ ,0}

max{||x||2− τµ ,0}+ τ
µ

)
is the vect-soft-threshold operator,

and |.|, sign(.), max(.) are the element-wise operators cor-
responding to the absolute value, the sign function and the
maximum operator, respectively. Note that the required matrix
inversion to update X̃ is done once outside the iterative
loop. The two other matrix inversions involve a diagonal
and Fourier diagonalizable matrices whose inverses can be
efficiently computed.

V. RESULTS ON SYNTHETIC DATA

A. Evaluation metrics

The performance of the proposed algorithm is evaluated
qualitatively by visual inspection of the estimates and quantita-
tively using different metrics. For histograms showing a single
peak, the depth results are quantitatively evaluated using the

root mean square error defined by RMSE =
√

1
N ||d

ref − d̂||2
(as used in [13]), and the reflectivity using the signal to
reconstruction error SRE = 10 log10

(
||rref||2
||rref−r̂||2

)
criterion (as

used in [12] and similarly to NMSE measure adopted in [33]),
where xref (resp. x̂) is the reference (resp. estimated) depth or
reflectivity image, and the higher SRE (in dB) the better. For

those algorithms not using spatial correlation, the reflectivity
and depth of empty pixels are replaced by the average of
available pixels before evaluating RMSE and SRE. Note that
the reference depth and reflectivity images are available for
synthetic data. For real data, we consider images obtained
with the highest acquisition times and under clear environment
conditions as references. In presence of multiple peaks, we
consider the point detection criteria introduced in [33]. This
includes the percentage of true detections as a function of the
distance τ , where a true detection occurs if an estimated point
of a given nth pixel has a reference point in its surrounding
such that |d̂n−dref

n | ≤ τ . The estimated points that can not be
assigned to any true point at a distance of τ are considered as
false detections.

B. Comparison algorithms

The performance of the proposed algorithm is compared to
several state-of-the-art algorithms depending on the considered
scenario. For scenes having only one peak per pixel, the
algorithm is compared with:
• the classical algorithm (denoted Class.) which es-

timates depth using the maximum of matched fil-
tered histograms by the impulse response, i.e., k̂n =
argmaxkn

∑T
t=1 g0(knT − t)yn,t, ∀n. Reflectivity is ob-

tained by summing the recorded photons around the
peak normalized by the number of counts in the impulse

response as follows r̂n =
∑th
t=tl

ynt∑K
t=1 g0(t−k̂nT )

, ∀n, where

tl = max(1, k̂n− tle), th = min(K, k̂n+ tte), and tle, tte
represent the length of the leading and trailing edge of the
impulse response, respectively. This algorithm is denoted
by Class. when applied to noisy data and by BF-classical
or BFC when applied to background-free data.

• RDI-TV algorithm [12] which computes the maximum-
a-posteriori estimates of the depth and reflectivity images
while considering a total-variation regularization term.
This algorithm assumes the presence of one peak and
known corrupted pixel positions. The algorithm in [44]
assumes similar regularizations and we expect its per-
formance to be of the same order of magnitude as for
RDI-TV.

• TV-`21 algorithm [25] which generalizes RDI-TV by
accounting for the presence of multiple peaks and is
designed to reconstruct scenes presenting objects well
separated in the depth dimension, as for the studied
mannequin face real target.

• Unmixing algorithm (denoted UA) [13] which is the state-
of-the-art algorithm in presence of one surface per pixel
and high background levels. The algorithm also assumes
that the target lies inside the observation window and
some known parameters from a calibration step.

In presence of multiple surfaces per pixel, we compare with
• TN-Class.: which is the classical algorithm with known

true number of peaks per pixel. In this case, the classical
algorithm is iteratively applied to each pixel to estimate
the parameters of all peaks. At each iteration, a peak is
estimated using Class. and then removed from histogram
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Fig. 5. Synthetic image (123 × 139 pixels) of a bowling scene. (Top-left)
Depth map, (top-right) reflectivity and (bottom) point cloud combining depth
and reflectivity.

by enforcing ynt = 0 for t ∈ [tl, th]. The Class. algorithm
is then applied on the resulting histogram to estimate the
next peak.

• SPISTA [5]: This algorithm minimizes a cost function
that accounts for the data Poisson statistics and enforces
an `1-regularization term to recover the peaks. In this
paper, the minimization is performed using an ADMM
algorithm as for the proposed algorithm. Comparing with
this algorithm highlights the benefit of considering spatial
correlation between peaks which is not considered by
SPISTA.

• MANIPOP [33]: This algorithm considers a Bayesian
strategy coupled with a reversible jump MCMC algorithm
to obtain clean point cloud estimates. It assumes the
presence of multiple peaks and considers local spatial
correlations for restoration. Comparisons with this algo-
rithm highlight the robustness of our algorithm to noise
as a result of the non-local spatial correlations.

C. Robustness to background and sparse photon regime

This section evaluates the performance of the proposed
algorithm using synthetic bowling data generated from a real
physical scene and provided in the Middlebury dataset1 [13],
[45]. The depth and reflectivity images in Fig. 5 have been
used to generate a 123×139×300 data cube following model
(1) while considering a real impulse response g(.) measured
from our imaging system which has a leading-edge of 10 bins
and trailing-edge of 70 bins (the same impulse response will be
considered for all simulated synthetic data). Different signal
levels have been considered to obtain an average of signal
photons-per-pixel (PPP) ranging from 0.2 ppp to 25 ppp. To
simulate variations in the signal-to-background ratio (SBR) the
background level was varied from bn = 1, ∀n to bn = 8, ∀n
leading to SBR values in the interval [0.025, 25] (we emphasise
here that the PPP levels are related to signal or target counts
and that the count levels of the observed histograms Y is

1Available in: http://vision.middlebury.edu/stereo/data/

Fig. 6. Quantitative evaluation of different algorithms for reflectivity and
depth estimation on simulated data sets with different signal photon per pixel
on average and two background levels (i.e., different SBR values).

Fig. 7. Simulated depth results (123× 139 pixels) for Bowling scene [16]
at 0.4 signal photon-per-pixel (ppp) and background fixed to (top row) 1 and
(bottom row) 8.

denoted by YPPP and can be obtained by summing PPP with
the background level bn of the data, i.e., YPPP = PPP+bn).
The proposed algorithm, denoted multidimensional-Nonlocal
Restoration of 3D (M-NR3D) images or just NR3D when
applied to a single data cube, is run using (rb, cb, tb, h, nd) =
(4, 4, 50, 5, 9) (which are empirically chosen depending on the
data size) and is compared to several algorithms. The NR3D
regularization parameters are manually selected to provide best
performance when testing nine log-spaced values inside the
following intervals τ1 ∈ [0.001, 1000] and τ2 = [0.0005, 10].
Fig. 6 shows the obtained depth RMSE and reflectivity SRE
for six algorithms on data generated with different PPP and
SBR levels, where we considered the main peak for NR3D and
MANIPOP. Regarding depth, NR3D and UA provides best
performance with a slight advantage to UA as it estimates less
parameters (UA only assumes one peak). RDI-TV and MA-
NIPOP algorithms are sensitive to background noise as they
only consider local correlations and this leads to intermediate
depth restoration performance. As expected, BFC provides
better performance than Class. where these two algorithms
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Fig. 8. Simulated intensity results (123 × 139 pixels) for Bowling scene
[16] at 2 signal photon-per-pixel (ppp) and background fixed to (top row) 1
and (bottom row) 8.

do not consider spatial correlation which explain their limited
performance. Regarding reflectivity, NR3D showed more ro-
bustness to photon sparsity and to the presence of background
as highlighted in the right column of Fig. 6. Note that negative
reflectivity SREs are due to the presence of corrupted pixels
for reduced PPP. Fig. 7 shows example of estimated depth
maps by Class., UA and NR3D algorithms for two background
levels. These figures show that the classical algorithm performs
poorly and is sensitive to low PPP levels and presence of
background noise. Although UA shows better RMSE values, it
can be seen that the obtained images are blurry and that NR3D
shows a better separation between the scene components. Fig.
8 shows estimated reflectivity maps for different SBR levels.
Since Class. algorithm does not consider spatial correlation, it
provides noisy estimates. UA algorithm estimates better maps
but NR3D provides best maps where the scene objects are
recognizable under these extreme conditions. Note finally that
the average computational times to process a data cube was
44s for RDI-TV, 18s for UA, 132s for MANIPOP and 119s
for NR3D, however, better results could be obtained for the
proposed strategy by adopting parallel computations as for UA.
These results confirm the robustness of the proposed strategy
in presence of empty pixels (due to low acquisition times or
long-range measurements) or a high background level (due to
obscurants).

D. Restoration of multidepth-multispectral targets

This section highlights M-NR3D’s ability to deal with
multidimensional data obtained using several wavelengths in
presence of multiple peaks (note that a multitemporal case
for a static scene in presence of obscurants will be presented
when considering real data). The synthetic data (of size
(x, y, t) = 100 × 100 × 300) contains three geometrical
objects of different colours (see Fig. 9 (top-row)) which are
located at different depths. To assess the proposed strategy
and weights setting, the objects have been selected to have
different geometrical properties including different angles (as
for the ball) and sharp-narrow edges (as for the star). This is a

Fig. 9. Reflectivities for synthetic data. From top to bottom: Reference
images used to create synthetic data, TN-Class., SPISTA, MANIPOP, and
M-NR3D. The reflectivity SRE in dB are provided bellow images.

simulated scene where the objects are considered to be semi-
transparent as for stained glasses, allowing the laser pulses to
see behind them, leading to the presence of multiple peaks
in some pixels as indicated in Fig. 10 (left). We assume that
this scene is observed using three wavelengths corresponding
to red, green and blue leading to three data cubes as shown
in Fig. 11 (top-row). Note that, for each wavelength, higher
reflectivity values (i.e., photon counts) are obtained from the
geometrical object that has the same colour. As previously,
the histogram data was generated using model (1), a real
impulse response g(.), a background level bn = 1,∀n and
a signal PPP equal to 10 corresponding to an SBR= 10.
The three data cubes have been independently processed using
the TN-classical, the SPISTA and MANIPOP algorithms. The
proposed M-NR3D algorithm has also been used to jointly
process the three cubes to improve performance with the
following parameters (rb, cb, tb, h, nd) = (2, 2, 10, 20, 9). Fig.
10 shows the estimated number of peaks per pixel for SPISTA,
MANIPOP and M-NR3D after averaging through the RGB
dimensions. This figure shows best estimates for MANIPOP
and M-NR3D which is confirmed by computing the average of
absolute differences between the true and estimated numbers
leading to 0.2 for SPISTA and 0.03 for MANIPOP and 0.05
for M-NR3D. Fig. 9 presents the obtained reflectivity results
for the three objects. The classical and SPISTA algorithms
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Fig. 10. Number of peaks per pixel averaged through the RGB dimensions.
(top-left) true number, (top-right) estimated using SPISTA, (bottom-left)
estimated using MANIPOP, and (bottom-right) estimated using M-NR3D.
The average of absolute differences (AAD) between the true and estimated
numbers are provided bellow images.

Fig. 11. 3D-point cloud corresponding to three colours (i.e., wavelengths)
for synthetic data. (First row) reference depth and reflectivity cubes, (Second
row) classical algorithm with true number of peaks, (Third row) SPISTA,
(Fourth row) joint estimation using M-NR3D.

provide noisy images while both MANIPOP and M-NR3D
results are cleaner thanks to imposing spatial correlations.
The four algorithms also provide depth estimates for each
wavelength as represented in Fig. 11. As expected, the TN-
classical and SPISTA algorithms show noisy results since
they do not account for spatial correlations, nor correlations
between wavelengths. In contrast, M-NR3D and MANIPOP
present cleaner point clouds with best performance for the
latter. These results are quantitatively confirmed in Fig. 12
which provides the probabilities of true and false detections
for the algorithms (the results of Class. algorithm are obtained

Fig. 12. Top: Percentage of true detections for different algorithms as a
function of maximum distance (in bins). Bottom: Number of false detections.
(Left) red dimension, (middle) green dimension, (right) blue dimension.

by applying it to three depth gated parts including at most one
peak each). This figure highlights the superiority of MANIPOP
(that is optimized to deal with multiple-peaks) followed by the
proposed algorithm. Finally, these results confirm the ability
of M-NR3D to use spatial and spectral correlations to restore
multispectral data in presence of multilayered objects.

VI. RESULTS ON REAL DATA: MULTITEMPORAL IMAGING
THROUGH OBSCURANTS

The proposed algorithm is validated on real data under
challenging scenarios including photon starved regime and
high background levels due to the presence of obscurants.
The scene considered, consists of a life-sized polystyrene head
as shown in Fig. 13 (left), and was set in a fog chamber
(of dimensions 26 × 2.5 × 2.3 meters) located in an indoor
facility at the French-German Research Institute of Saint-
Louis (ISL). The target was located at a distance of 21.5
m from the sensor, and 5 m inside the fog chamber and
was acquired in March 2017. The scanning imaging system
operates at a wavelength of 1550 nm, and uses a Peltier cooled
InGaAs/InP single-photon avalanche diode (SPAD) detector.
This imaging system uses a pulsed laser with a 15.6 MHz
repetition rate. Only a maximum of one photon event can be
recorded for each laser pulse. The time between the emission
of the outgoing laser pulse and the recorded photon event
is recorded and a histogram of photon counts is formed by
repeating this operation at each pixel location for a given
acquisition time. The reader is invited to see [9], [46] for
more details regarding the imaging system and the effect
of obscurants on the background level. To study the effect
of different fog levels, the chamber was filled with water
fog with a high density, then a succession of 3D images
were taken as the fog density decreased. In this paper, we
study three successive images showing a decreasing level of
fog (i.e., decreasing background level) as represented in Fig.
13 (right)). These data present decreasing attenuation lengths
(AL) levels with respect to time given by AL= 3.8, AL= 3.1
and AL= 2.8 as indicated in [9], where one attenuation length
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Fig. 13. Picture of the mannequin target: (left) in air, (right) three successive images in presence of a decreasing fog density (acquired with a gated camera
as indicated in [46]).

is defined as the distance after which the transmitted light
power is reduced to 1/e of its initial value. The data cube were
acquired every 60 s, where each image contains 92×67 pixels,
and was acquired during 18.5 seconds (i.e., 3 ms acquisition
time per pixel). However, since the TCSPC system [21],
[22] delivers time-tagged data, this allows the construction of
histograms with lower acquisition times to study the photon
starved case. Therefore, we build new data by considering 0.75
ms acquisition times per pixel (4.6 s full image acquisition
time) and 0.1875 ms acquisition times per pixel (1.15 s full
image acquisition time). The data is processed using seven
algorithms, namely: Class., RDI-TV, UA, MANIPOP, TV-`21,
NR3D and M-NR3D algorithms. All algorithms have been
run with different hyperparameters and we only show those
providing best performance. For NR3D and M-NR3D, we con-
sidered (rb, cb, tb, h, nd) = (3, 3, 5, 20, 64) and tested nine log-
spaced values inside the following intervals τ1 ∈ [0.001, 1000]
and τ2 = [0.0005, 10]. We first focus on the images obtained
at the lowest acquisition times (i.e., 0.1875 ms acquisition
times per pixel) which represent extreme conditions in terms
of SBR and YPPP. Figs. 14 and 15 show the depth images and
point clouds obtained for this lowest acquisition time (0.1875
ms acquisition times per pixel) using different algorithms for
three time instants, where the fog density decreases from
top to bottom rows. Except Class. and RDI-TV that are
sensitive to background, all the other algorithms provided
good results in presence of a low fog density. However,
the advantage of both NR3D and M-NR3D with respect to
Class. RDI-TV, TV-`21, MANIPOP and UA becomes clear in
presence of a dense fog (see top images) since they better
exploit the non-local spatial correlation of the histograms.
The multidimensional NR3D performs the best under extreme
conditions (see top row of Figs. 14 and 15) as it accounts
for the temporal evolution of the scene and processes the
three datasets jointly. Fig. 16 shows the probabilities of true
and false detections of the different algorithms as a function
of distance. This figure confirms previous results, where it
shows similar performance of the proposed algorithm and
UA for low SBR (i.e., background) and better results by M-
NR3D for very low SBR. A quantitative evaluation was also
performed when considering the higher acquisition times 0.75
ms and 3 ms per pixel. Fig. 17 represents the probabilities
of true and false detections at fixed distance (τ = 2.4cm)
when considering different fog levels (columns) and different
acquisitions times (x-axis of each sub-figure). Again, MNR3D

and NR3D show best performance for extreme scenarios while
they perform similarly to UA for higher SBRs or YPPP. These
results highlight the interest of M-NR3D and the importance
of the joint processing of the multidimensional data. Table I
finally shows the averaged computational times of the different
algorithms. It can be observed that both RDI-TV and M-
NR3D time increases with the data sparsity while MANIPOP
and NR3D present opposite behaviour. TV-`21 presents the
highest processing times while UA is the fastest algorithm as
it uses parallel processing. Finally, table II summarises the
main properties and performance of the studied algorithms.

TABLE I
AVERAGE COMPUTATIONAL TIMES IN SECONDS OF RDI-TV, UA,

MANIPOP, TV-`21 , NR3D AND M-NR3D FOR THE MANNEQUIN FACE
SCENES IN FOG FOR DIFFERENT ACQUISITION (ACQ.) TIMES.

Acq. time
RDI-TV UA MANIPOP TV-`21 NR3D M-NR3D

per pixel
3ms 87 8 49 377 63 56

0.75ms 100 6 45 376 50 69
0.187ms 145 5 42 368 30 160

VII. CONCLUSIONS

This paper presented a new algorithm to restore multidimen-
sional 3D Lidar images obtained with several wavelengths or
at different time instants under challenging cases. The latter
are related to the starved photon regime, multilayered objects
or a high background level due to obscurants. In addition to the
Poisson statistics of the data, the proposed method accounts
for available prior knowledge related to the presence of non-
local spatial correlation between pixels and the small number
of depth layers inside the observed range window. A convex
cost function was defined and minimized using an ADMM
algorithm that has good convergence properties. The proposed
formulation and algorithm showed good restoration results
when processing simulated and real images representing differ-
ent scenarios, i.e., sparse regime, multilayered, multispectral
and multitemporal data, and imaging through fog. Despite the
good performance of the algorithm, there are still points to
improve in future work. For example, the algorithm complexity
is related to the size of the data cube and it would be
interesting to study other approaches that scale well for very
high dimensional data. Considering distributed algorithms and
sophisticated strategies to learn non-local correlations [47] are
also interesting to perform real time processing. The study of
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Fig. 14. Depth maps (92× 67 pixels) of a life-sized polystyrene head acquired under different level of water fog. From left to right: classical, RDI-TV, UA,
MANIPOP, TV-`21, proposed NR3D and M-NR3D algorithms. The acquisition time per pixel is 187µs.

Fig. 15. Cloud points (92 × 67 pixels) of a life-sized polystyrene head acquired under different level of water fog. From left to right: classical, RDI-TV,
UA, MANIPOP, TV-`21, proposed NR3D and M-NR3D algorithms. Normalized reflectivity is colour coded between 0 and 1. The acquisition time per pixel
is 187µs.

TABLE II
SCOPE OF THE STUDIED ALGORITHMS.

Class. RDI-TV UA TN-Class SPISTA TV-`21 MANIPOP NR3D M-NR3D
Single surface

X X X X X X X X X
per pixel

Multiple surfaces
X X X X X X

per pixel
Background noise X X X X X X

High Background noise X X X X

Sparse case (< 1 ppp) X X X X X X

Multispectral X

Multitemporal (3D videos) X
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Fig. 16. Percentage of (top) true and (bottom) false detections of different
algorithms on a life-sized polystyrene head acquired under different level of
water fog. The acquisition time per pixel is 187µs.

Fig. 17. Percentage of (top) true and (bottom) false detections of different
algorithms on a life-sized polystyrene head acquired under different level of
water fog (i.e. SBR) and YPPP (i.e., acquisition times).

other imaging scenarios such as moving objects in presence
of obscurants, and/or the use of complementary information
from other sensors (e.g., radar) to learn the weights are of
significant interest and will be considered in future studies.
Finally, including measures of uncertainty about the inferred
parameters using the strategy in [48] will also be investigated
in the future.
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