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Abstract 
A geometric method to the static balancing of spherical mechanisms constructed using spherical chain 
units is presented. A spherical kinematic chain unit is composed of n moving links, whose masses are 
considered, connected by revolute (R) joints of which the axes intersect at a fixed point. The mass of 
each link can be balanced using one spring without any auxiliary parallelograms. The balancing can 
be achieved readily with almost no calculation. One end of each spring is fixed right above the 
intersection of the joint axes and the other end is attached to the point that is on the line defined by the 
intersection and the equivalent center of mass of the corresponding link (combining the masses of the 
link and the payload). This method is then applied to the mechanisms constructed using spherical 
kinematic chain units, and the ones constructed using spherical kinematic chain units and other types 
of kinematic chain units. By distributing the mass of a link onto its adjacent links, balancing of the 
mechanism is reduced to those of several spherical kinematic chain units, which can be balanced using 
the proposed method. Two examples are given, including a Bennett plano-spherical hybrid linkage and 
a 3-RRS parallel mechanism to illustrate the proposed method for static balancing.  
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1. Introduction 
 
Mechanisms are said to be statically balanced when the potential energy is constant. This 
condition is also referred to as gravity compensation. Static balancing leads to low actuation 
forces required to move the devices, and therefore improve efficiency. The 1-degree-of-freedom 
(DOF) one-link mechanism has already been perfectly balanced, using zero-free-length springs 
(free-length of the spring is equal to zero) [1], counterweights [2], cams [3] and gears [4].  
    The total weight and inertia of the device are lower when using springs, compared with using 
counterweights. One of the best-known statically balanced devices using springs is the Anglepoise 
lamp designed by Carwardine [5, 6]. The balanced devices with springs were also applied to 
laparoscope holders used for minimally invasive surgery [7], exoskeleton [8], and limb/arm assist 
devices [9-11]. 

Gosselin and Wang [12-14] introduced a family of gravity-balanced parallel mechanisms 
(PMs), including 3-DOF, 4-DOF and 6-DOF spatial PMs, of which the balancing conditions were 
derived by solving the potential energy equations.  In [15], 3-DOF 1-link spherical manipulators 
and spherical PMs, in which only the masses of the moving platforms were considered, were 
balanced. Herder et al [16-17] mainly focused on the planar manipulators, as well as the spatial 
ones composed of planar chains. Lin et al [18, 19] demonstrated several statically balanced spatial 
manipulators, whose design parameters were obtained by diagonalizing the stiffness matrix. 
Agrawal and Fattah [20] investigated the gravity-balancing of the 2-DOF and 3-DOF spatial 
manipulators, by identifying the center of mass (CM) through auxiliary parallelograms. Chung et 
al [21] described a gravity compensation mechanism for the robot arm with roll-pitch coupling 
rotation by using a Scotch Yoke mechanism. Walsh et al [22] put forward a general methodology 
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to design n-spring balancers for the 2-DOF manipulator with yaw-pitch rotation. Cho et al [23] 
designed a gravity compensator for the arm with roll-pitch rotation. The system is comprised of 
two 1-DOF gravity compensators and a bevel differential. Based on the work of [23], a 4-DOF 
manipulator was developed in [24]. For the manipulators with variable payloads, different 
balancing approaches were also discussed in [25-32]. 
    The balancing methods for spatial manipulators in the literature require either derivation using 
the algebraic method or auxiliary links. Lin et al [33] derived the balancing conditions for an n-
link manipulator using n springs. However, the balancing of each link in [33] should not be 
regarded as independent, and the systems are not statically balanced unless considering only the 
mass of the payload and neglecting the mass of each link. 
    This paper proposes a general method to design statically balanced n-DOF spherical multi-link 
manipulators readily and quickly, using a geometric method. Only springs are used to balance all 
the links, whose masses are considered. No auxiliary parallelogram is required. The method is 
then extended to mechanisms composed of spherical kinematic chain units, and those composed of 
spherical kinematic chain units and other types of kinematic chain units. A spherical kinematic 
chain unit is composed of n moving links, whose masses are considered, connected by revolute 
(R) joints of which the axes intersect at a fixed point. 
    This paper is organized as follows: the method in [15] is extended to the static balancing of 2-
DOF/3-DOF 2-link spherical manipulators in Section 2. In Section 3, the general method of static 
balancing of spherical manipulators is provided. The mechanisms constructed of spherical chain 
units are balanced in Section 4. The mass moment substitution approaches and the statically 
balanced mechanisms constructed using spherical chain units and other types of chain units are 
presented in Section 5.  Finally, conclusions are drawn. 
 
2. Extension of the Gosselin method for static balancing of a rotating link 
 
2.1 The Gosselin method for static balancing of a rotating link 
 
According to [15], a link manipulator mounted to the base using a spherical (S) joint can be 
statically balanced using only one zero-free-length spring. A zero-free-length spring can be 
realized using guiding systems or pulleys and wires [34]. The spring connecting point H on the 
base is right above the S joint and the height is assumed to be h. b is the position vector of the 
spring connecting point on the manipulator and r is the position vector of the CM of the 
manipulator. Vectors b and r must be proportional [15], i.e., 

𝒓𝒓 = (𝑘𝑘ℎ/𝑚𝑚𝑚𝑚)𝒃𝒃                                                                   (1) 
where m, g and k represent the mass of the manipulator, the gravitational acceleration, and the 
stiffness of spring respectively. The spring connecting point on the manipulator should be on the 
line defined by the CM of the manipulator and the center of the S joint [Fig. 1(a)]. ℎ = 𝑚𝑚𝑚𝑚/𝑘𝑘 
when attaching the spring to the CM of the manipulator directly, for the sake of convenience of 
calculation and description [Fig. 1(b)]. This condition can also apply to one-link manipulators 
with a revolute (R) [16] and universal (U) joint. 
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(a)                                           (b) 

Fig. 1 Statically balanced 3-DOF 1-link manipulator: (a) the condition in [15]; (b) attaching the 
spring to the CM of the link  

 
2.2  The extension of the Gosselin method  
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In this section, the condition in which there is no need to balance the links of the manipulator will 
be derived and the statically balanced 2-link and 3-link manipulators with intersecting joint axes 
will be constructed by using the balancing condition for a single link rotating about a fixed point 
[15]. For the 1-link mechanism mounted on the base using an R joint, the spring can be attached to 
an arbitrary point right above the axis of the R joint. As shown in Fig. 2(a), the angle between the 
axis of the R joint and the vertical axis is denoted by α (with constant value), and the position of 
the equivalent CM (combining the masses of the link and the payload) of the manipulator in the 
local coordinate frame is {a b c}T. T is a point on the axis of the R joint, and OT = t (a, b, c and t 
are with arbitrary values). H is right above T, with a distance of h. Now the special cases that no 
spring is required to balance the manipulator will be discussed. 
    A coordinate system is fixed to the base with its z-axis pointing vertically upward and with its 
origin located at O. Suppose the position vector of the equivalent CM of the ith link in the local 
frame i is represented by 

𝑷𝑷𝒊𝒊𝒊𝒊 = {𝑎𝑎 𝑏𝑏 𝑐𝑐}𝑇𝑇                                                            (2) 
    The position vectors of the CMs of the links in the fixed frame can be obtained using the 
approach proposed by Denavit and Hartenberg [35]. The transfer matrix 𝑇𝑇𝑖𝑖𝑖𝑖−1  from the i-1th local 
frame to ith local frame is described as  

𝑇𝑇 = �

𝐶𝐶𝜃𝜃𝑖𝑖
𝐶𝐶𝛼𝛼𝑖𝑖−1𝑆𝑆𝜃𝜃𝑖𝑖
𝑆𝑆𝛼𝛼𝑖𝑖−1𝑆𝑆𝜃𝜃𝑖𝑖

0

−𝑆𝑆𝜃𝜃𝑖𝑖
𝐶𝐶𝛼𝛼𝑖𝑖−1𝐶𝐶𝜃𝜃𝑖𝑖
𝑆𝑆𝛼𝛼𝑖𝑖−1𝐶𝐶𝜃𝜃𝑖𝑖

0

0
−𝑆𝑆𝛼𝛼𝑖𝑖−1
𝐶𝐶𝛼𝛼𝑖𝑖−1

0

𝑙𝑙𝑖𝑖−1
−𝑑𝑑𝑖𝑖𝑆𝑆𝛼𝛼𝑖𝑖−1
𝑑𝑑𝑖𝑖𝐶𝐶𝛼𝛼𝑖𝑖−1

1

�𝑖𝑖
𝑖𝑖−1                               (3) 

The position vectors of T, H and the equivalent CM of the manipulator P are computed as 
𝑻𝑻 = {0 −𝑡𝑡𝑆𝑆𝛼𝛼 𝑡𝑡𝐶𝐶𝛼𝛼}𝑇𝑇                                                    (4) 

𝑯𝑯 = {0 −𝑡𝑡𝑆𝑆𝛼𝛼 𝑡𝑡𝐶𝐶𝛼𝛼 + ℎ}𝑇𝑇                                                 (5) 

�𝑷𝑷1� = 𝑇𝑇 � 𝑷𝑷𝟏𝟏𝟏𝟏

1
�1

0 = {𝑎𝑎𝐶𝐶𝜃𝜃 − 𝑏𝑏𝑆𝑆𝜃𝜃 𝑏𝑏𝐶𝐶𝜃𝜃𝐶𝐶𝛼𝛼 − 𝑐𝑐𝑆𝑆𝛼𝛼 + 𝑎𝑎𝐶𝐶𝛼𝛼𝑆𝑆𝜃𝜃 𝑐𝑐𝐶𝐶𝛼𝛼 + 𝑏𝑏𝐶𝐶𝜃𝜃𝑆𝑆𝛼𝛼 + 𝑎𝑎𝑆𝑆𝜃𝜃𝑆𝑆𝛼𝛼 1}𝑇𝑇  (6) 

where C and S stand, respectively, for the cosine and the sine of the angles. 
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                                                   (a)                              (b)                           (c) 
Fig. 2 Statically balanced 1-DOF 1-link manipulator: (a) the 3D model of the manipulator; (b) the 
CM of the link is on the joint axis; (c) the axis of the R joint is vertical  
 
    One spring is adopted, with one end attached to H, and the other end to the equivalent CM of 
the manipulator. The potential energy of the link consists of two parts, including the potential 
energy associated with gravity (Vmi) and the elastic potential energy stored in the springs (Vsi). The 
total potential energy of the manipulator is yielded as  

𝑉𝑉 = 1
2
𝑘𝑘|𝑷𝑷−𝑯𝑯|2 + 𝑚𝑚𝑚𝑚𝑃𝑃𝑧𝑧 = 1

2
𝑘𝑘[𝑎𝑎2 + 𝑏𝑏2 + ℎ2 + (𝑐𝑐 − 𝑡𝑡)2] + (−𝑐𝑐ℎ𝑘𝑘 + 𝑚𝑚𝑚𝑚𝑐𝑐 + ℎ𝑘𝑘𝑡𝑡)𝐶𝐶𝛼𝛼

−(ℎ𝑘𝑘 −𝑚𝑚𝑚𝑚)𝑆𝑆𝛼𝛼(𝑏𝑏𝐶𝐶𝜃𝜃 + 𝑎𝑎𝑆𝑆𝜃𝜃)
      (7) 

    When the manipulator is statically balanced, the total potential energy should be constant. One 
can obtain that  

ℎ = 𝑚𝑚𝑚𝑚/𝑘𝑘   or                                                             (8) 
𝑎𝑎 = 0 and 𝑏𝑏 = 0     or                                                     (9) 
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𝛼𝛼 = 0°                                                                   (10) 
    Equations (9) and (10) indicate that the system is balanced without spring if the CM of the link 
is on the joint axis [Fig. 2(b)], or the axis of the first R joint is vertical [Fig. 2(c)]. 
    Based on the above results, the manipulators with yaw-roll rotation and yaw-pitch-roll rotation, 
constructed using the 1-DOF 1-link manipulator, can be easily balanced. The manipulator with 
yaw-roll rotation is comprised of two links and two orthogonal R joints, whose axes are vertical 
and horizontal respectively [Fig. 3(a)]. The manipulator with yaw-pitch-roll rotation, which is 
composed of one R joint and one U joint, is shown in Fig. 3(b). No spring is needed to balance the 
first link. The second link of each manipulator is balanced using one spring. The detailed analysis 
is given in Appendix A. 
 

                    
(a)                                     (b) 

Fig. 3 Statically balanced 2-link manipulator: (a) yaw-roll rotation; (b) yaw-pitch-roll rotation 
 
    Now the balancing method for the 2-link manipulators in which the axis of the first R joint is 
horizontal will be investigated. The manipulator with pitch-roll rotation is shown in Fig. 4(a). It 
consists of two moving links connected by two R joints with intersecting and orthogonal axes. 
Two springs are used to balance the two links of the manipulator respectively. The spring 
connecting point on the base H1 for the balancing of the first link can be any point right above the 
axis of the first R joint. The other end is attached to the CM of the first link. One end of the second 
spring H2 is located on the vertical axis passing through the intersection of the two R joints, the 
other end is fixed on the CM of the second link. 
    The manipulator with pitch-yaw-roll rotation is shown in Fig. 4(b). The manipulator is a special 
case of the arm in [36]. Similarly, two springs are used to balance the two links of the manipulator 
respectively. One end of each spring is attached right above the joint, while the other end is fixed 
on the CM of the link. The detailed analysis is presented in Appendix A. 
 

      
(a)                                                                         (b) 

Fig. 4 Statically balanced 2-link manipulator: (a) pitch-roll rotation; (b) pitch-yaw-roll rotation 
 
    It is noteworthy that in theory, the spring connecting point on the link can be any point on the 
line defined by a point on the axis of the joint and the CM of the link when designing the system, 
and that on the base can be any points right above the joint axis with a certain height, as shown in 
Fig. 5(a). This condition is verified in Appendix B. For the sake of convenience of calculation and 
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description, the springs are attached to the equivalent CMs of the links in this paper. If an 
additional payload is added, as shown in Fig. 5(b), the method still works by identifying the 
combined CM of the second link. 
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H2

H1

P2
P1

 
(a)                                                                        (b) 

Fig. 5 Extensions of the statically balanced 2-link manipulator with pitch-roll rotation: (a) 
attaching the spring to the point on the line defined by the centre of the joint and the CM of the 
link (two solutions); (b) with additional payload 

 
3. Static balancing method of spherical manipulators 

 
3.1 The static balancing approach of a general spherical manipulator 
 
In Section 2, we have shown that the 2-link manipulators with intersecting joint axes can be 
balanced using one or two springs. The 2-link manipulators are special cases of spherical 
manipulators. In this section, the conditions of static balancing for a general spherical manipulator 
will be derived. In a general spherical manipulator, all the axes of R joints intersect at a point [Fig. 
6(a)]. It has a remote center-of-motion (RCM). All the links move around the point of intersection, 
which is equivalent to a virtual S joint (the statically balanced mechanisms with S joints have been 
studied in [15]). It is hypothesized that all the spherical manipulators composed of n moving links 
can be balanced using n [or (n-1)] springs.   

The general balancing method is: using one spring to balance each moving link of the 
manipulators. One end of the spring is attached to a point right above the intersection of the joint 
axes, the other end is fixed on the line defined by the intersection and the CM of the link. It is 
noted that the connecting point on the base for the first link can be any point on the line right 
above the axis of the first R joint, as shown in Fig. 6(a). If the manipulator has the same 
parameters as the 2-DOF/3-DOF spherical manipulators in Section 2, n-1 springs will be required 
for the static balancing. 
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(a)                                                                  (b) 

Fig. 6 Statically balanced spherical manipulator: (a) the sketch of the manipulator; (b) the 3D 
model of the manipulator (case with three links) 

 
    To verify the system using the proposed method is valid, the total potential energy of the system 
will be proved to be constant. The link masses and joint twist angles of the manipulator are 
respectively noted as mi and αi, with arbitrary values (i = 1, 2, 3…).  
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    A global coordinate system is fixed to the base with its z-axis pointing vertically upward and 
with its origin located at the intersection of the axes of the R joints. Suppose the position vector of 
the CM (or equivalent CM) of the ith link in the local frame i is represented by 

𝑷𝑷𝒊𝒊𝒊𝒊 = {𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑐𝑐𝑖𝑖}𝑇𝑇                                                            (11) 
    The springs connecting points Hi on the base are all set to be  

𝑯𝑯𝒊𝒊 = {0 0 𝑚𝑚𝑖𝑖𝑚𝑚/𝑘𝑘}𝑇𝑇         (𝑖𝑖 =  1,2,3)                                    (12) 
    Take the first three links as examples to verify the balancing approach. Manipulator with three 
moving links and three R joints is illustrated in Fig. 6(b). The position vectors of the CMs of the 
three links in the global coordinate system are yielded as 

 �𝑷𝑷𝟏𝟏1 � = 𝑇𝑇 � 𝑷𝑷𝟏𝟏𝟏𝟏

1
�1

0 = {−𝑏𝑏1𝑆𝑆𝜃𝜃1 + 𝑎𝑎1𝐶𝐶𝜃𝜃1 𝑐𝑐1 −𝑎𝑎1𝑆𝑆𝜃𝜃1 − 𝑏𝑏1𝐶𝐶𝜃𝜃1 1}𝑇𝑇               (13) 

�𝑷𝑷𝟐𝟐1 � = 𝑇𝑇10 𝑇𝑇 � 𝑷𝑷𝟐𝟐𝟐𝟐

1
�2

1 = {𝑃𝑃2𝑥𝑥 (𝑐𝑐2𝐶𝐶𝛼𝛼1 − 𝑏𝑏2𝑆𝑆𝛼𝛼1𝐶𝐶𝜃𝜃2 − 𝑎𝑎2𝑆𝑆𝛼𝛼1𝑆𝑆𝜃𝜃2)/2 𝑃𝑃2𝑧𝑧 1}𝑇𝑇       (14) 
where  

𝑃𝑃2𝑥𝑥 = [−𝑆𝑆𝜃𝜃1(𝑐𝑐2𝑆𝑆𝛼𝛼1 + 𝑏𝑏2𝐶𝐶𝛼𝛼1𝐶𝐶𝜃𝜃2 + 𝑎𝑎2𝐶𝐶𝛼𝛼1𝑆𝑆𝜃𝜃2) + 𝐶𝐶𝜃𝜃1(𝑎𝑎2𝐶𝐶𝜃𝜃2 − 𝑏𝑏2𝑆𝑆𝜃𝜃2)]/2 
𝑃𝑃2𝑧𝑧 = [𝐶𝐶𝜃𝜃1(−𝑐𝑐2𝑆𝑆𝛼𝛼1 + 𝑏𝑏2𝐶𝐶𝛼𝛼1𝐶𝐶𝜃𝜃2 + 𝑎𝑎2𝐶𝐶𝛼𝛼1𝑆𝑆𝜃𝜃2) + 𝑆𝑆𝜃𝜃1(−𝑎𝑎2𝐶𝐶𝜃𝜃2 + 𝑏𝑏2𝑆𝑆𝜃𝜃2)]/2 

�𝑷𝑷𝟑𝟑1 � = 𝑇𝑇10 𝑇𝑇21 𝑇𝑇32 � 𝑷𝑷𝟑𝟑𝟑𝟑

1
�  = {𝑃𝑃3𝑥𝑥 𝑃𝑃3𝑦𝑦 𝑃𝑃3𝑧𝑧 1}𝑇𝑇                                (15) 

where 𝑃𝑃3𝑥𝑥, 𝑃𝑃3𝑦𝑦 and 𝑃𝑃3𝑧𝑧 are given in Appendix B. 
    The potential energy of each link can be obtained as 

𝑉𝑉1 = 1
2
𝑘𝑘|𝑷𝑷𝟏𝟏 − 𝑯𝑯𝟏𝟏|2 + 𝑚𝑚1𝑚𝑚𝑃𝑃1𝑧𝑧 = (𝑎𝑎12𝑘𝑘2 + 𝑏𝑏12𝑘𝑘2 + 𝑐𝑐12𝑘𝑘2 + 𝑚𝑚1

2𝑚𝑚2)/2𝑘𝑘                (16) 

𝑉𝑉2 = 1
2
𝑘𝑘|𝑷𝑷𝟐𝟐 − 𝑯𝑯𝟐𝟐|2 + 𝑚𝑚2𝑚𝑚𝑃𝑃2𝑧𝑧 = (𝑎𝑎22𝑘𝑘2 + 𝑏𝑏22𝑘𝑘2 + 𝑐𝑐22𝑘𝑘2 + 𝑚𝑚2

2𝑚𝑚2)/2𝑘𝑘                (17) 

𝑉𝑉3 = 1
2
𝑘𝑘|𝑷𝑷𝟑𝟑 − 𝑯𝑯𝟑𝟑|2 + 𝑚𝑚3𝑚𝑚𝑃𝑃3𝑧𝑧 = (𝑎𝑎32𝑘𝑘2 + 𝑏𝑏32𝑘𝑘2 + 𝑐𝑐32𝑘𝑘2 + 𝑚𝑚3

2𝑚𝑚2)/2𝑘𝑘                (18) 
Similarly, we can verify that the potential energy of each link is a constant, and is equal to 

(𝑎𝑎𝑖𝑖2𝑘𝑘2 + 𝑏𝑏𝑖𝑖2𝑘𝑘2 + 𝑐𝑐𝑖𝑖2𝑘𝑘2 + 𝑚𝑚𝑖𝑖
2𝑚𝑚2)/2𝑘𝑘 . Therefore, the total potential energy of the spherical 

manipulator is a constant and the system designed is statically balanced. 
Taking a serial spherical manipulator as a spherical kinematic chain unit, the above result on the 

static balancing of serial spherical manipulator can be used in the static balancing of single-loop 
mechanisms that can be decomposed into one or two spherical kinematic chain units by 
disconnecting one joint in Sections 3.2 and 3.3 and static balancing of single-loop mechanisms 
and parallel mechanisms that can be decomposed into two or more spherical kinematic chain units 
through mass moment substitution of a link [40-43] in Section 4.     

 
3.2 Example 1: static balancing of single-loop spherical mechanisms 

 
For the purpose of static balancing, a single-loop spherical mechanism can be turned into one or 
two spherical kinematic chain units by disconnecting an R joint. Using the results from Section 3, 
one can readily obtain that each link of a spherical kinematic chain unit can be statically balanced 
using one spring. Taking the spherical 5R mechanism as an example, we can remove anyone R 
joint of the mechanism for static balancing. When removing R5 [in Fig. 7(a)], the mechanism turns 
into a serial spherical 4R manipulator, and each moving link of the mechanism is balanced using 
one spring. The spring connecting points on the base for balancing link 1 can be any point right 
above the joint axis of R1, as shown in Fig. 7 [Eqs. (16-18)]. One can also divide the spherical 5R 
linkage into two spherical chain units composed of R1 and R2, and R5 and R4 respectively by 
removing R3. The conditions for the static balancing of these two spherical kinematic chain units 
can be obtained using the results in Section 3.1.  
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(a)                                                                   (b) 

Fig. 7 Statically balanced spherical 5R mechanism: (a) the sketch of the mechanism; (b) the 3D 
model of the mechanism 

 
3.3 Example 2: static balancing of double-spherical mechanism 
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(a)                                                              (b) 

 
(c) 

Fig. 8 Statically balanced Bennett 6R double-spherical mechanism: (a) the sketch of the 
mechanism; (b) the 3D model of the mechanism (the special case when the spring attachment 
points on the base for balancing links 1 and 5 are right above O1 and O2 respectively); (c) the 
practical design of the system 
 
The above static balancing approach is not limited to single-loop spherical mechanisms. This 
section will deal with the static balancing of a 1-DOF Bennett 6R double-spherical mechanism 
[37-39] (Fig. 8). In this mechanism, the joint axes of R1, R2 and R3 intersect at O1, and the joint 
axes of R4, R5 and R6 intersect at O2 (also double-RCM mechanism). Unlike a single-loop 
spherical linkage, one can only remove a specific R joint to turn the Bennett 6R double-spherical 
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mechanism into two spherical kinematic chain units. The mechanism can be divided into two 
spherical kinematic chain units composed of R1, R2 and R3, and R6 and R5 respectively by 
removing R4 (or two spherical chain units composed of R1 and R2, and R6, R5 and R4 respectively 
by removing R3). H1 is a point right above the axis of R1, and H2 and H’2 are two points right 
above O1. The masses of the links in the first spherical kinematic chain unit are balanced by 
connecting H1 and the CM of link 1, H2 and the CM of link 2, and H’2 and the CM of link 3 using 
three springs respectively. Similarly, the second spherical kinematic chain unit can also be 
balanced as shown in Fig. 8. Suppose the masses of links 1, 2, 4 and 5 are m and that of link 3 is 
m’, and the CM of each link is at the centre of the link, a prototype is designed, as shown in Fig. 
8(c). Rollers and cables are used to achieve zero-free-length springs [34]. The heights of H1, H2, 
H3 and H4 are mg/k and that of H’2 is m’g/k.  

If the two spherical kinematic chain units of the Bennett 6R double-spherical mechanism have 
the same parameters as the 2-DOF/3-DOF spherical manipulators in Section 2, fewer springs will 
be required for the static balancing. 

 
4 Static balancing method of the mechanisms constructed using spherical chain 

units and other types of chain units 
 
Not all the mechanisms can be turned into spherical kinematic chain units by removing R joints 
only. This section will focus on the static balancing of mechanisms that can be decomposed into 
spherical kinematic chain units and other types of chain units through mass moment substitution 
of a link [40-43]. First, the mass moment substitution approach [40-43] will be recalled in order to 
turn the static balancing of several mechanisms into those of several serial or tree-like kinematic 
chains. Then, the conditions for the static balancing of these mechanisms can be readily obtained 
using the results from Sections 2 and 3. Two examples will be given to illustrate the method. 
 
4.1 Mass moment substitution approach 

 
The mass moment substitution results for the RR links with two parallel joint axes, intersecting 
axes or skew axes [40-43] will be presented below. 
 
4.1.1 Mass moment substitution of an RR link with parallel joint axes 

 
The mass moment substitution of an RR link with parallel joint axes is shown in Fig. 9. The joint 
axes of Ri and Ri+1 are parallel. The ith local coordinate frame is set at O, which is a point on the 
axis of Ri. zi is along the joint axis of Ri and xi is perpendicular to the plane defined by Ri and Ri+1. 
Suppose that the distance between Ri and Ri+1 is t0, the position vectors of the two point-masses 
expressed in the ith local frame are [40] 

 �
𝑷𝑷𝒊𝒊 𝒊𝒊𝟏𝟏 = {0 0 𝑡𝑡1}𝑇𝑇

𝑷𝑷𝒊𝒊 𝒊𝒊𝟐𝟐 = {0 𝑡𝑡0 𝑡𝑡2}𝑇𝑇
                                                          (19)  

 

Pi
zi

xi

yi

t1 t2Pi-1 Pi+1

t0

Pi2

Ri Ri+1

O
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P’i-1

P’i+1

 
Fig. 9 Mass moment substitution of the RR link with parallel joint axes 
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    The mass and mass moment (about O) of link i should be equal to those of the two point-
masses. Therefore 

�
𝑚𝑚𝑖𝑖 = 𝑚𝑚𝑖𝑖1 + 𝑚𝑚𝑖𝑖2

𝑚𝑚𝑖𝑖𝑚𝑚 𝑷𝑷𝒊𝒊 𝒊𝒊 = 𝑚𝑚𝑖𝑖1𝑚𝑚 𝑷𝑷𝒊𝒊 𝒊𝒊𝟏𝟏 + 𝑚𝑚𝑖𝑖2𝑚𝑚 𝑷𝑷𝒊𝒊 𝒊𝒊𝟐𝟐
                                           (20) 

    The following conditions can be obtained by solving Eq. (20). 

�

𝑎𝑎𝑖𝑖 = 0
𝑡𝑡1 = (𝑐𝑐𝑖𝑖𝑡𝑡0 − 𝑏𝑏𝑖𝑖𝑡𝑡2)/(𝑡𝑡0 − 𝑏𝑏𝑖𝑖)

𝑚𝑚𝑖𝑖2 = 𝑚𝑚𝑖𝑖𝑏𝑏𝑖𝑖/𝑡𝑡0
𝑚𝑚𝑖𝑖1 = (𝑚𝑚𝑖𝑖𝑐𝑐𝑖𝑖 − 𝑚𝑚𝑖𝑖2𝑡𝑡2)/𝑡𝑡1 

                                                (21) 

where {𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑐𝑐𝑖𝑖}𝑇𝑇  represents the position of CM of the ith link with respect to the ith local 
coordinate frame. 
    The mass of the RR link with parallel joint axes can be replaced by two equivalent masses on 
the two R joints when the CM of the link is on the plane defined by the two axes of the R joints 
(𝑎𝑎𝑖𝑖 = 0). Besides, the CM of the link and the two equivalent masses should be collinear (𝑡𝑡1 =
(𝑐𝑐𝑖𝑖𝑡𝑡0 − 𝑏𝑏𝑖𝑖𝑡𝑡2)/(𝑡𝑡0 − 𝑏𝑏𝑖𝑖)). The position of CM of the augmented (i-1)th link in the (i-1)th local frame 
can be obtained by combining the mass moment of the (i-1)th link and the first mass-point.  

𝑷𝑷′𝒊𝒊−𝟏𝟏
𝒊𝒊−𝟏𝟏 = (𝑚𝑚𝑖𝑖−1𝑚𝑚 𝑷𝑷𝒊𝒊−𝟏𝟏

𝒊𝒊−𝟏𝟏 + 𝑚𝑚𝑖𝑖1𝑚𝑚 𝑷𝑷𝒊𝒊−𝟏𝟏
𝒊𝒊𝟏𝟏)/(𝑚𝑚𝑖𝑖−1 +𝑚𝑚𝑖𝑖1)𝑚𝑚                     (22) 

    Similarly, the CM of the augmented (i+1)th link in the (i+1)th local frame can be calculated by  
𝑷𝑷′𝒊𝒊+𝟏𝟏

𝒊𝒊+𝟏𝟏 = (𝑚𝑚𝑖𝑖+1𝑚𝑚 𝑷𝑷𝒊𝒊+𝟏𝟏
𝒊𝒊+𝟏𝟏 + 𝑚𝑚𝑖𝑖2𝑚𝑚 𝑷𝑷𝒊𝒊+𝟏𝟏

𝒊𝒊𝟐𝟐)/(𝑚𝑚𝑖𝑖+1 +𝑚𝑚𝑖𝑖2)𝑚𝑚                    (23) 
The positions of the CMs of the augmented links in the local frames are then obtained. 
 

4.1.2 Mass moment substitution of an RR link with intersecting joint axes 
 

An RR link with intersecting joint axes is shown in Fig. 10. The joint axes of Ri and Ri+1 intersect 
at O. The angles between Ri and Ri+1 are noted as α, the position vectors of the two mass-points in 
the ith local frame can be yielded as [41] 

� 𝑷𝑷𝒊𝒊 𝒊𝒊𝟏𝟏 = {0 0 𝑡𝑡1}𝑇𝑇

𝑷𝑷𝒊𝒊 𝒊𝒊𝟐𝟐 = {0 𝑡𝑡2𝑆𝑆𝛼𝛼 𝑡𝑡2𝐶𝐶𝛼𝛼}𝑇𝑇
                                               (24) 
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t2α
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Fig. 10 Mass moment substitution of the RR link with two intersecting joint axes   

 
    The following conditions are obtained by substituting Eq. (24) into Eq. (20). 

�

𝑎𝑎𝑖𝑖 = 0
𝑡𝑡1 = 𝑡𝑡2𝐶𝐶𝛼𝛼(𝑐𝑐𝑖𝑖𝑡𝑡𝑎𝑎𝑡𝑡𝛼𝛼 − 𝑏𝑏𝑖𝑖)/(𝑡𝑡2𝑆𝑆𝛼𝛼 − 𝑏𝑏𝑖𝑖)

𝑚𝑚𝑖𝑖2 = 𝑚𝑚𝑖𝑖𝑏𝑏𝑖𝑖/𝑡𝑡2𝑆𝑆𝛼𝛼
𝑚𝑚𝑖𝑖1 = (𝑚𝑚𝑖𝑖𝑐𝑐𝑖𝑖 −𝑚𝑚𝑖𝑖2𝑡𝑡2𝐶𝐶𝛼𝛼)/𝑡𝑡1

                                     (25) 

It is observed that the mass moment substitution conditions are: the CM of the link and the two 
R joints are coplanar, and the CM of the link is on the line defined by the two mass-points. 

 
4.1.3 Mass moment substitution of an RR link with skew joint axes 
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An RR link with skew joint axes is shown in Fig. 11. The angle and distance between Ri and Ri+1 
are denoted as α and t0 respectively. O2P, Pi2P and Rip are the projections of O2, Pi2 and Ri on the 
ziyi plane.  
 

Ri

Pi

zi

xi

yi

Ri+1

t1

t2

t0

α
Pi-1

Pi+1

Pi1

Pi2

O

Pi2P

RiP
P’i-1

P’i+1

 
Fig. 11 Mass moment substitution of the RR link with skew joint axes  

 
    The position vectors of the two mass-points relative to the ith local coordinate frame are 
represented by [42, 43] 

�
𝑷𝑷𝒊𝒊 𝒊𝒊𝟏𝟏 = {0 0 𝑡𝑡1}𝑇𝑇

𝑷𝑷𝒊𝒊 𝒊𝒊𝟐𝟐 = { 𝑡𝑡0 𝑡𝑡2𝑆𝑆𝛼𝛼 𝑡𝑡2𝐶𝐶𝛼𝛼}𝑇𝑇
                                              (26) 

    The masses and the positions of the two point-masses are obtained as 

�

𝑚𝑚𝑖𝑖2 = 𝑚𝑚𝑖𝑖𝑎𝑎𝑖𝑖/𝑡𝑡0
𝑚𝑚𝑖𝑖1 = (𝑚𝑚𝑖𝑖𝑐𝑐𝑖𝑖 −𝑚𝑚𝑖𝑖2𝑡𝑡2𝐶𝐶𝛼𝛼)/𝑡𝑡1

𝑡𝑡2 = 𝑏𝑏𝑖𝑖𝑡𝑡0/𝑎𝑎𝑖𝑖𝑆𝑆𝛼𝛼
𝑡𝑡1 = 𝑡𝑡0(𝑐𝑐𝑖𝑖𝑡𝑡𝑎𝑎𝑡𝑡𝛼𝛼 − 𝑏𝑏𝑖𝑖)/𝑡𝑡𝑎𝑎𝑡𝑡𝛼𝛼(𝑡𝑡0 − 𝑎𝑎𝑖𝑖)

                                   (27) 

The CM of the link and the two masses point should be collinear. 
 

4.2 Example 3: static balancing of Bennett plano-spherical hybrid linkage 
 

Based on the mass moment substitution method, the 1-DOF single-loop reconfigurable Bennett 
plano-spherical hybrid linkage [38, 44] (Fig. 12) can be balanced. The axes of joints R1, R2 and R3 
are parallel, and those of R4, R5 and R6 intersect at point O. Links 1, 3, 4 and 5 can be easily 
balanced based on the proposed methods. The mass of link 2 can be replaced by two point-masses 
on the joint axes of R2 and R3, then the mechanism is equivalent to two manipulators with 
payloads, including one 1-link manipulator mounted on R1, and one spherical chain unit composed 
of R4, R5 and R6. 
    H1 is a point right above the axis of R1, and H2 and H’2 are two points right above the 
intersection of the axes of R4, R5 and R6. Four springs are used, one is attached to H1 and to the 
CM of the augmented link 1 (combining the mass of link 1 and the first point-mass of link 2); the 
other three are attached to H2 and the CMs of links 4 and 5, and H’2 and the CM of the augmented 
link 3 respectively. It is noted that the spring attachment point on the base for balancing link 5 can 
be any points on the line right above R6, as shown in Fig. 12(a). Suppose the masses of links 1, 2, 
4 and 5 are m and that of link 3 is m/2, and the CM of each link is at the centre of the link. A 
prototype is designed, as shown in Fig. 12(c). When distributing the mass of link 2 to links 1 and 
3, the spring attachment points on links 1 and 3 are at the top third of link 1 and top quarter of link 
3 respectively. The masses of augmented links 1 and 3 are 3m/2 and m respectively. The height of 
H1 is 3mg/2k and those of H2, H’2 and H3 are mg/k. 
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(a)                                                                 (b) 

 
(c) 

Fig. 12 Statically balanced Bennett plano-spherical hybrid linkage: (a) the sketch of the 
mechanism; (b) the 3D model of the mechanism (the special case when the spring attachment 
point for balancing link 5 is right above O); (c) the practical design of the system 
 
4.3 Example 4: static balancing of 3-RRS parallel mechanism 
 
A 3-DOF 3-RRS spherical PM, composed of two platforms and three RRS chains [45-46], is 
shown in Fig. 13. The axes of two R joints in each chain intersect at a point. Different from the 
spherical mechanism in [15], the axes of the R joints have no common point and the mechanism 
has no fixed centre of rotation. The two links in each chain are easily balanced by attaching the 
springs to the point right above the point of intersection and to the CMs of the links. To balance 
the upper platform, the mass of the upper platform is replaced by three point-masses located at the 
three S joints on the platform. The mass and mass moment (about O) of the upper platform should 
be equal to those of the three point-masses [Fig. 14(a)]. 

�
𝑚𝑚𝑢𝑢 = 𝑚𝑚𝑢𝑢1 +𝑚𝑚𝑢𝑢2 +𝑚𝑚𝑢𝑢3

𝑚𝑚𝑢𝑢1𝑚𝑚(0, 𝑟𝑟1𝐶𝐶𝜑𝜑1, 𝑟𝑟1𝑆𝑆𝜑𝜑1) + 𝑚𝑚𝑢𝑢2𝑚𝑚(0, 𝑟𝑟2𝐶𝐶𝜑𝜑2, 𝑟𝑟2𝑆𝑆𝜑𝜑2) + 𝑚𝑚𝑢𝑢3𝑚𝑚(0,0,−𝑟𝑟3) = 0               (28) 
which leads to 

� 𝑚𝑚𝑢𝑢1𝑟𝑟1𝐶𝐶𝜑𝜑1 + 𝑚𝑚𝑢𝑢2𝑟𝑟2𝐶𝐶𝜑𝜑2 = 0
𝑚𝑚𝑢𝑢1𝑟𝑟1𝑆𝑆𝜑𝜑1 + 𝑚𝑚𝑢𝑢2𝑟𝑟2𝑆𝑆𝜑𝜑2 −𝑚𝑚𝑢𝑢3𝑟𝑟3 = 0                                          (29) 

    Since the mechanism is symmetrically distributed, 
� 
𝑟𝑟1 = 𝑟𝑟2 = 𝑟𝑟3
𝜑𝜑1 + 𝜑𝜑2 = 𝜋𝜋                                                               (30) 

    Substituting Eq. (30) into Eq. (29), it is obtained that 𝑚𝑚𝑢𝑢1 = 𝑚𝑚𝑢𝑢2 = 𝑚𝑚𝑢𝑢3 = 𝑚𝑚𝑢𝑢/3 . By 
replacing the mass of the upper platform with the three point-masses, the parallel mechanism is 
equal to three 2R spherical chain units with payloads. The mass of the first spherical kinematic 
chain unit is balanced by connecting H11 (the point right above the axes of R11) and P11, the CM of 
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link 11, and H12 (the point right above the intersection of the axes of the two R joints) and P’12, the 
CM of the augmented link 12  (combining the point masses of the upper platform and link 12) 
using two springs respectively (Fig. 14(b)). Similarly, the other two spherical kinematic chain 
units can also be balanced. 
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(a)                                                  (b) 

Fig. 14 Statically balanced 3-RRS parallel mechanism: (a) mass moment substitution of the upper 
platform; (b) the sketch of the mechanism 

 
5 Discussion  
 
The mechanisms in this paper can be balanced using fewer springs through the mass moment 
substitution. However, it is out of the scope of this paper for optimal static balancing of these 
mechanisms. In the future, the optimal static balancing of spatial manipulators using springs and 
counterweights will be investigated, and prototypes will be fabricated for applications of 
minimally invasive surgery. Since the mechanisms are constructed using spherical chain units, the 
mechanisms have remote center-of-motion (RCM) kinematics, which means the link always 
rotates around a fixed point. This characteristic can guarantee the safety of minimally invasive 
surgery. During the surgery, which often takes several hours, the static balancing can save the 
labor to hold and bring more stable operation. The double-spherical mechanism, which has two 
RCM center, can be applied to eye surgery. One is to track the eye movement while the other 
holds the surgical tool [47].  
 
6 Conclusion 
 
This paper has presented a geometric method for static balancing of spherical manipulators and 
mechanisms constructed using spherical kinematic chain units. The spherical chain units are 
composed of n moving links connected by R joints whose axes intersect at a point. Each moving 
link of the manipulator is balanced by connecting the point right above the point of intersection 
and the equivalent CM of the link using one spring. It is noted that the connecting point on the 
base for the first link can be any point right above the first joint axis. Using the proposed method, 
all the mechanisms constructed using spherical chain units can be readily balanced using only 
springs, with almost no calculation. The spherical 5R linkage and the double-centered Bennett 
hybrid 6R mechanism have been balanced as examples to illustrate the proposed balancing 
method.  

In the cases that the mechanism is constructed using spherical chain units and other chain units, 
the method still works by distributing the mass of a link onto its adjacent links. Two examples 
have been provided, including a Bennett plano-spherical hybrid linkage and a 3-RRS parallel 
mechanism. By replacing the mass of one link with two point-masses, the mechanisms can be 
readily balanced by first turning the mechanism into several spherical kinematic chain units. 
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The static balancing of mechanisms that cannot be decomposed into spherical kinematic chain 
units by removing R joints or mass moment substitution of links deserves further investigation.   
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Appendix A Static balancing of 2-link manipulators 
 
The total potential energy of the 2-link manipulators will be calculated in Appendix A. A fixed 
coordinate frame is attached to the base, with its origin at the intersection of the axes of the R 
joints, and z-axis is pointing vertically upward. 
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(c)                                                                         (d) 

Fig. A1 Statically balanced 2-link manipulator: (a) yaw-roll rotation; (b) yaw-pitch-roll rotation; 
(c) pitch-roll rotation; (d) pitch-yaw-roll rotation 
 
A1 Manipulators with yaw-roll rotation 
 
The 2-DOF manipulator with yaw-roll rotation is shown in Fig. A1(a). Suppose that {𝑎𝑎𝑖𝑖  𝑏𝑏𝑖𝑖  𝑐𝑐𝑖𝑖}𝑇𝑇 is 
the position of CM of the ith link in the local coordinate frame. The position vectors of the CMs of 
the two links in the global coordinate frame are calculated as 

 �𝑷𝑷𝟏𝟏1 � = {𝑎𝑎1𝐶𝐶𝜃𝜃1 − 𝑏𝑏1𝑆𝑆𝜃𝜃1 𝑏𝑏1𝐶𝐶𝜃𝜃1+𝑎𝑎1𝑆𝑆𝜃𝜃1 𝑐𝑐1 1}𝑇𝑇                         (A1) 

�𝑷𝑷𝟐𝟐1 � = {𝑃𝑃2𝑥𝑥 𝑃𝑃2𝑦𝑦 −𝑏𝑏2𝐶𝐶𝜃𝜃2 − 𝑎𝑎2𝑆𝑆𝜃𝜃2 1}𝑇𝑇                               (A2) 
where 

𝑃𝑃2𝑥𝑥 = 𝑎𝑎2𝐶𝐶𝜃𝜃1𝐶𝐶𝜃𝜃2 − 𝑐𝑐2𝑆𝑆𝜃𝜃1 −  𝑏𝑏2𝐶𝐶𝜃𝜃1𝑆𝑆𝜃𝜃2 
𝑃𝑃2𝑦𝑦 = −𝑏𝑏2𝑆𝑆𝜃𝜃1𝑆𝑆𝜃𝜃2 + 𝑐𝑐2𝐶𝐶𝜃𝜃1 + 𝑎𝑎2𝐶𝐶𝜃𝜃2𝑆𝑆𝜃𝜃1 

    Only one spring is needed to balance the manipulator. The spring connecting point H on the 
base is given by 

𝑯𝑯 = {0 0 𝑚𝑚2𝑚𝑚/𝑘𝑘}𝑇𝑇                                             (A3) 
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    The total potential energy of the manipulator is obtained as  
𝑉𝑉 = 𝑉𝑉𝑠𝑠 + 𝑉𝑉𝑚𝑚 = 1

2
𝑘𝑘|𝑷𝑷𝟐𝟐 − 𝑯𝑯|2 + 𝑚𝑚2𝑚𝑚𝑃𝑃2𝑧𝑧 +𝑚𝑚1𝑚𝑚𝑃𝑃1𝑧𝑧

= (𝑎𝑎22𝑘𝑘2 + 𝑏𝑏22𝑘𝑘2 + 𝑐𝑐22𝑘𝑘2 + 𝑚𝑚2𝑚𝑚2
2)/2𝑘𝑘 + 𝑚𝑚1𝑚𝑚𝑐𝑐1

                              (A4) 

which is constant. The system is thus statically balanced in any configurations. 
 
A2 Manipulators with yaw-pitch-roll rotation 
 
A 3-DOF manipulator with yaw-pitch-roll rotation is shown in Fig. A1(b). The position vectors of 
the CMs of the links in the global coordinate frame are 

�𝑷𝑷𝟏𝟏1 � = {𝑎𝑎1𝐶𝐶𝜃𝜃1 − 𝑏𝑏1𝑆𝑆𝜃𝜃1 𝑏𝑏1𝐶𝐶𝜃𝜃1 + 𝑎𝑎1𝑆𝑆𝜃𝜃1 𝑐𝑐1 1}𝑇𝑇                           (A5) 

�𝑷𝑷𝟐𝟐1 � = {𝑃𝑃2𝑥𝑥 𝑃𝑃2𝑦𝑦 𝑏𝑏2𝐶𝐶𝜃𝜃2𝑆𝑆𝜃𝜃3 −  𝑎𝑎2𝐶𝐶𝜃𝜃2𝐶𝐶𝜃𝜃3 −  𝑐𝑐2𝑆𝑆𝜃𝜃2 1}𝑇𝑇                    (A6) 
where 

𝑃𝑃2𝑥𝑥 = 𝑆𝑆𝜃𝜃1(𝑏𝑏2𝐶𝐶𝜃𝜃3 + 𝑎𝑎2𝑆𝑆𝜃𝜃3) + 𝐶𝐶𝜃𝜃1[−𝑐𝑐2𝐶𝐶𝜃𝜃2 + 𝑆𝑆𝜃𝜃2(𝑎𝑎2𝐶𝐶𝜃𝜃3 − 𝑏𝑏2𝑆𝑆𝜃𝜃3)] 
𝑃𝑃2𝑦𝑦 = −𝐶𝐶𝜃𝜃1(𝑏𝑏2𝐶𝐶𝜃𝜃3 + 𝑎𝑎2𝑆𝑆𝜃𝜃3) + 𝑆𝑆𝜃𝜃1[−𝑐𝑐2𝐶𝐶𝜃𝜃2 + 𝑆𝑆𝜃𝜃2(−𝑎𝑎2𝐶𝐶𝜃𝜃3 + 𝑏𝑏2𝑆𝑆𝜃𝜃3)] 

    The springs connecting point H on the base is  
 𝑯𝑯 = {0 0 𝑚𝑚2𝑚𝑚/𝑘𝑘}𝑇𝑇                                                           (A7) 

    The total potential energy of the system is a constant as  
𝑉𝑉 = 𝑉𝑉𝑠𝑠 + 𝑉𝑉𝑚𝑚 = 1

2
𝑘𝑘|𝑷𝑷𝟐𝟐 − 𝑯𝑯|2 + 𝑚𝑚2𝑚𝑚𝑃𝑃2𝑧𝑧 +𝑚𝑚1𝑚𝑚𝑃𝑃1𝑧𝑧

= (𝑎𝑎22𝑘𝑘2 + 𝑏𝑏22𝑘𝑘2 + 𝑐𝑐22𝑘𝑘2 + 𝑚𝑚2𝑚𝑚2
2)/2𝑘𝑘 + 𝑚𝑚1𝑚𝑚𝑐𝑐1

                               (A8) 

 
A3 Manipulators with pitch-roll rotation 
 
A manipulator with pitch-roll rotation is shown in Fig. A1(c). The position vectors of the CMs of 
the two links in the global coordinate frame are obtained as 

�𝑷𝑷𝟏𝟏1 � = {−𝑏𝑏1𝑆𝑆𝜃𝜃1 + 𝑎𝑎1𝐶𝐶𝜃𝜃1 𝑐𝑐1 −𝑎𝑎1𝑆𝑆𝜃𝜃1 − 𝑏𝑏1𝐶𝐶𝜃𝜃1 1}𝑇𝑇                        (A8) 

�𝑷𝑷𝟐𝟐1 � = {𝑃𝑃2𝑥𝑥 −𝑏𝑏2𝐶𝐶𝜃𝜃2 − 𝑎𝑎2𝑆𝑆𝜃𝜃2 𝑃𝑃2𝑧𝑧 1}𝑇𝑇                                (A10) 
where  

𝑃𝑃2𝑥𝑥 = 𝑎𝑎2𝐶𝐶𝜃𝜃2𝐶𝐶𝜃𝜃1 − 𝑏𝑏2𝐶𝐶𝜃𝜃1𝑆𝑆𝜃𝜃2 − 𝑐𝑐2𝑆𝑆𝜃𝜃1 
𝑃𝑃2𝑧𝑧 = −𝑎𝑎2𝑆𝑆𝜃𝜃1𝐶𝐶𝜃𝜃2 − 𝑐𝑐2𝐶𝐶𝜃𝜃1 + 𝑏𝑏2𝑆𝑆𝜃𝜃1𝑆𝑆𝜃𝜃2 

    The springs connecting points H1 and H2 on the base are given by 
𝑯𝑯𝟏𝟏 = {0 −𝑠𝑠 𝑚𝑚1𝑚𝑚/𝑘𝑘}𝑇𝑇                                                       (A11) 
𝑯𝑯𝟐𝟐 = {0 0 𝑚𝑚2𝑚𝑚/𝑘𝑘}𝑇𝑇                                                        (A12) 

where s is the distance between H1 and z-axis. The total potential energy of the two links is  
𝑉𝑉1 = 𝑉𝑉𝑠𝑠1 + 𝑉𝑉𝑚𝑚1 = 1

2
𝑘𝑘|𝑷𝑷𝟏𝟏 −  𝑯𝑯𝟏𝟏|2 + 𝑚𝑚𝑚𝑚𝑃𝑃1𝑧𝑧

= (𝑎𝑎12𝑘𝑘2 + 𝑏𝑏12𝑘𝑘2 + 𝑐𝑐12𝑘𝑘2 + 𝑚𝑚2𝑚𝑚1
2 + 2𝑐𝑐1𝑠𝑠𝑘𝑘2 + 𝑠𝑠2𝑘𝑘2)/2𝑘𝑘

                            (A13) 

𝑉𝑉2 = 𝑉𝑉𝑠𝑠2 + 𝑉𝑉𝑚𝑚2 = 1
2
𝑘𝑘|𝑷𝑷𝟐𝟐 − 𝑯𝑯𝟐𝟐|2 + 𝑚𝑚𝑚𝑚𝑃𝑃2𝑧𝑧 = (𝑎𝑎22𝑘𝑘2 + 𝑏𝑏22𝑘𝑘2 + 𝑐𝑐22𝑘𝑘2 + 𝑚𝑚2𝑚𝑚2

2)/2𝑘𝑘     (A14) 
    The results imply that the balancing method for the 2-link manipulators with pitch-roll rotation 
is valid.  

 
A4 Manipulators with pitch-yaw-roll rotation 
 
A manipulator with pitch-yaw-roll rotation is shown in Fig. A1(d). The position vectors of the 
CMs of the two links in the global coordinate frame are  

�𝑷𝑷𝟏𝟏1 � = {𝑎𝑎1𝐶𝐶𝜃𝜃1 − 𝑏𝑏1𝑆𝑆𝜃𝜃1 𝑐𝑐1 −𝑎𝑎1𝑆𝑆𝜃𝜃1 − 𝑏𝑏1𝐶𝐶𝜃𝜃1 1}𝑇𝑇                     (A15) 

�𝑷𝑷𝟐𝟐1 � = {𝑃𝑃2𝑥𝑥    𝑏𝑏2𝐶𝐶𝜃𝜃2𝑆𝑆𝜃𝜃3 − 𝑎𝑎2𝐶𝐶𝜃𝜃2𝐶𝐶𝜃𝜃3 − 𝑐𝑐2𝑆𝑆𝜃𝜃2 𝑃𝑃2𝑧𝑧 1}𝑇𝑇                (A16) 
where 

𝑃𝑃2𝑥𝑥 = 𝑆𝑆𝜃𝜃1(𝑏𝑏2𝐶𝐶𝜃𝜃3 + 𝑎𝑎2𝑆𝑆𝜃𝜃3) + 𝐶𝐶𝜃𝜃1[−𝑐𝑐2𝐶𝐶𝜃𝜃2 + 𝑆𝑆𝜃𝜃2(𝑎𝑎2𝐶𝐶𝜃𝜃3 − 𝑏𝑏2𝑆𝑆𝜃𝜃3)] 
𝑃𝑃2𝑧𝑧 = 𝐶𝐶𝜃𝜃1(𝑏𝑏2𝐶𝐶𝜃𝜃3 + 𝑎𝑎2𝑆𝑆𝜃𝜃3) + 𝑆𝑆𝜃𝜃1[𝑐𝑐2𝐶𝐶𝜃𝜃2 + 𝑆𝑆𝜃𝜃2(−𝑎𝑎2𝐶𝐶𝜃𝜃3 + 𝑏𝑏2𝑆𝑆𝜃𝜃3)] 

    The spring connecting points H1 and H2 on the base are 
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 𝑯𝑯𝟏𝟏 = {0 −𝑠𝑠 𝑚𝑚1𝑚𝑚/𝑘𝑘}𝑇𝑇                                                     (A17) 
𝑯𝑯𝟐𝟐 = {0 0 𝑚𝑚2𝑚𝑚/𝑘𝑘}𝑇𝑇                                                       (A18) 

    The potential energy of the two links is 
𝑉𝑉1 = 𝑉𝑉𝑠𝑠1 + 𝑉𝑉𝑚𝑚1 = 1

2
𝑘𝑘|𝑷𝑷𝟏𝟏 − 𝑯𝑯𝟏𝟏|2 + 𝑚𝑚𝑚𝑚𝑃𝑃1𝑧𝑧

= (𝑎𝑎12𝑘𝑘2 + 𝑏𝑏12𝑘𝑘2 + 𝑐𝑐12𝑘𝑘2 + 𝑚𝑚2𝑚𝑚1
2 + 2𝑐𝑐1𝑠𝑠𝑘𝑘2 + 𝑠𝑠2𝑘𝑘2)/2𝑘𝑘

                          (A19) 

𝑉𝑉2 = 𝑉𝑉𝑠𝑠2 + 𝑉𝑉𝑚𝑚2 = 1
2
𝑘𝑘|𝑷𝑷𝟐𝟐 − 𝑯𝑯𝟐𝟐|2 + 𝑚𝑚𝑚𝑚𝑃𝑃2𝑧𝑧 = (𝑎𝑎22𝑘𝑘2 + 𝑏𝑏22𝑘𝑘2 + 𝑐𝑐22𝑘𝑘2 + 𝑚𝑚2𝑚𝑚2

2)/2𝑘𝑘     (A20) 
The results indicate that the manipulator with pitch-yaw-roll rotation is statically balanced 

through its range of motion. 
 
Appendix B Static balancing of the 1-link manipulator 
 
This appendix is to verify the spring connecting point on the link can be any point on the line 
defined by a point on the axis of the joint and the CM of the link, and that on the base can be any 
points right above the joint axis with a certain height. As shown in Fig. B1, T and Q are arbitrary 
points on the axis of the R joint, H is right above Q, and B is a point on the line defined by T and 
P. OT = t, OQ = q, OP = r, and HQ = h. The positions of T, H and P are calculated as 

𝑻𝑻 = {0 0 𝑡𝑡}𝑇𝑇                                                        (B1) 
𝑯𝑯 = {0 ℎ 𝑞𝑞}𝑇𝑇                                                       (B2) 

𝑷𝑷 = {𝑟𝑟𝐶𝐶𝜃𝜃 𝑟𝑟𝑆𝑆𝜃𝜃 0}𝑇𝑇                                                   (B3) 
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Fig. B1 Statically balanced 1-link manipulator 

 
Suppose that 𝑟𝑟(𝑩𝑩− 𝑻𝑻) = 𝑏𝑏(𝑷𝑷− 𝑻𝑻) (the introduce of r is to simplify the equation, b/r is still an 

arbitrary value). We have 
𝑩𝑩 = {𝑏𝑏𝐶𝐶𝜃𝜃 𝑏𝑏𝑆𝑆𝜃𝜃 (1 − 𝑏𝑏/𝑟𝑟)𝑡𝑡}𝑇𝑇                                        (B4) 

The total potential energy of the manipulator is yielded as  
𝑉𝑉 = 1

2
𝑘𝑘|𝑩𝑩−𝑯𝑯|2 + 𝑚𝑚𝑚𝑚𝑃𝑃𝑦𝑦 = 1

2
𝑘𝑘[𝑏𝑏2 + ℎ2 + (𝑡𝑡 − 𝑏𝑏𝑡𝑡/𝑟𝑟 − 𝑞𝑞)2]− (𝑘𝑘𝑏𝑏ℎ −𝑚𝑚𝑚𝑚𝑟𝑟)𝑆𝑆𝜃𝜃      (B5) 

The link is statically balanced when h = mgr/kb. The spring connecting point on the link can be 
any points on the line defined by T and P, and that on the base can be any points right above the 
joint axis with a height of mgr/kb. 
 
Appendix C Static balancing of spherical manipulators 
 
The components of the position vector of P3 in the spherical manipulator (Fig. 6) are  

𝑃𝑃3𝑥𝑥 = −𝐶𝐶𝜃𝜃1[𝐶𝐶𝜃𝜃2(−𝑎𝑎3𝐶𝐶𝜃𝜃3 + 𝑏𝑏3𝑆𝑆𝜃𝜃3) + 𝑆𝑆𝜃𝜃2(𝑏𝑏3𝐶𝐶𝛼𝛼2𝐶𝐶𝜃𝜃3 + 𝑐𝑐3𝑆𝑆𝛼𝛼2 + 𝑎𝑎3𝐶𝐶𝛼𝛼2𝑆𝑆𝜃𝜃3)]−
𝑆𝑆𝜃𝜃1{𝐶𝐶𝛼𝛼1[𝑐𝑐3𝐶𝐶𝜃𝜃2𝑆𝑆𝛼𝛼2 + 𝑎𝑎3𝐶𝐶𝜃𝜃3𝑆𝑆𝜃𝜃2 − 𝑏𝑏3𝑆𝑆𝜃𝜃2𝑆𝑆𝜃𝜃3 + 𝐶𝐶𝛼𝛼2𝐶𝐶𝜃𝜃2(𝑏𝑏3𝐶𝐶𝜃𝜃3 + 𝑎𝑎3𝑆𝑆𝜃𝜃3)] + 𝑆𝑆𝛼𝛼1[𝑐𝑐3𝐶𝐶𝛼𝛼2 −

𝑆𝑆𝛼𝛼2(𝑏𝑏3𝐶𝐶𝜃𝜃3 + 𝑎𝑎3𝑆𝑆𝜃𝜃3)]}  
(C1) 

𝑃𝑃3𝑦𝑦 = −𝑆𝑆𝛼𝛼1[𝑐𝑐3𝐶𝐶𝜃𝜃2𝑆𝑆𝛼𝛼2 + 𝑎𝑎3𝐶𝐶𝜃𝜃3𝑆𝑆𝜃𝜃2 − 𝑏𝑏3𝑆𝑆𝜃𝜃2𝑆𝑆𝜃𝜃3 + 𝐶𝐶𝛼𝛼2𝐶𝐶𝜃𝜃2(𝑏𝑏3𝐶𝐶𝜃𝜃3 + 𝑎𝑎3𝑆𝑆𝜃𝜃3)] + 𝐶𝐶𝛼𝛼1[𝑐𝑐3𝐶𝐶𝛼𝛼2 −
𝑆𝑆𝛼𝛼2(𝑏𝑏3𝐶𝐶𝜃𝜃3 + 𝑎𝑎3𝑆𝑆𝜃𝜃3)]  

(C2) 
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𝑃𝑃3𝑧𝑧 = 𝑐𝑐3𝑆𝑆𝛼𝛼2𝑆𝑆𝜃𝜃1𝑆𝑆𝜃𝜃2 + 𝐶𝐶𝜃𝜃1𝑆𝑆𝛼𝛼1𝑆𝑆𝛼𝛼2(𝑏𝑏3𝐶𝐶𝜃𝜃3 + 𝑎𝑎3𝑆𝑆𝜃𝜃3) + 𝐶𝐶𝜃𝜃2𝑆𝑆𝜃𝜃1(−𝑎𝑎3𝐶𝐶𝜃𝜃3 + 𝑏𝑏3𝑆𝑆𝜃𝜃3)−
𝐶𝐶𝛼𝛼1𝐶𝐶𝜃𝜃1[𝑐𝑐3𝐶𝐶𝜃𝜃2𝑆𝑆𝛼𝛼2 + 𝑎𝑎3𝐶𝐶𝜃𝜃3𝑆𝑆𝜃𝜃2 − 𝑏𝑏3𝑆𝑆𝜃𝜃2𝑆𝑆𝜃𝜃3 + 𝐶𝐶𝛼𝛼2𝐶𝐶𝜃𝜃2(𝑏𝑏3𝐶𝐶𝜃𝜃3 + 𝑎𝑎3𝑆𝑆𝜃𝜃3)] +

𝐶𝐶𝛼𝛼2[−𝑐𝑐3𝐶𝐶𝜃𝜃1𝑆𝑆𝛼𝛼1 + 𝑆𝑆𝜃𝜃1𝑆𝑆𝜃𝜃2(𝑏𝑏3𝐶𝐶𝜃𝜃3 + 𝑎𝑎3𝑆𝑆𝜃𝜃3)]  
(C3) 

 
References 
 
[1] R. H. Nathan, A constant force generation mechanism, ASME J. Mech., Transm., Autom. 

Des. 107(4) (1985) 508-512. 
[2] A. T. Steinthorsson, M. E. Aguirre, G. Dunning, J. L. Herder, Review, categorization and 

comparison of 1 DOF static balancers, in: ASME 2015 International Design Engineering 
Technical Conferences and Computers and Information in Engineering Conference, Boston, 
2015, pp. V05AT08A018-V05AT08A018.  

[3] K. Koser, A cam mechanism for gravity-balancing, Mechanics Research Communications. 
36(4) (2009) 523-530. 

[4] B. G. Bijlsma, G. Radaelli, J. L. Herder, Design of a compact gravity equilibrator with an 
unlimited range of motion, Journal of Mechanisms and Robotics. 9(6) (2017) 061003. 

[5]  G. Carwardine, Equipoising mechanism, U.S. Patent No. 2,090,439. Washington, DC, 1937.  
[6] M. J. French, M. B. Widden, The spring-and-lever balancing mechanism, George Carwardine 

and the Anglepoise lamp, Proceedings of the Institution of Mechanical Engineers, Part C: 
Journal of Mechanical Engineering Science. 214(3) (2000) 501-508. 

[7] C. H. Kuo, S. J. Lai, Design of a novel statically balanced mechanism for laparoscope 
holders with decoupled positioning and orientating manipulation, Journal of Mechanisms and 
Robotics. 8(1) (2016) 015001. 

[8] R. L. Smith, J. Lobo-Prat, H. van der Kooij, A. H. Stienen, Design of a perfect balance 
system for active upper-extremity exoskeletons, in: Rehabilitation Robotics (ICORR), 2013 
IEEE International Conference, Seattle, 2013, pp. 1-6. 

[9] A. Fattah, S. K. Agrawal, G. Catlin, J. Hamnett, Design of a passive gravity-balanced 
assistive device for sit-to-stand tasks, Journal of Mechanical Design. 128(5) (2006) 1122-
1129. 

[10] R. Rizk, S. Krut, E. Dombre, Design of a 3D gravity balanced orthosis for upper limb, in: 
Robotics and Automation, ICRA 2008. IEEE International Conference, Pasadena, 2008, pp. 
2447-2452. IEEE. 

[11] A. G. Dunning, J. L. Herder, A close-to-body 3-spring configuration for gravity balancing of 
the arm, in: Rehabilitation Robotics (ICORR), 2015 IEEE International Conference, 
Singapore, 2015, pp. 464-469. 

[12] C. M. Gosselin, J. Wang, On the design of gravity-compensated six-degree-of-freedom 
parallel mechanisms, in: Robotics and Automation, 1998 IEEE International Conference, 
Leuven, 1998, pp. 2287-2294. 

[13] J. Wang, C. M. Gosselin, Static balancing of spatial three-degree-of-freedom parallel 
mechanisms, Mechanism and Machine Theory. 34(3) (1999) 437-452. 

[14] J. Wang, C. M. Gosselin, Static balancing of spatial four-degree-of-freedom parallel 
mechanisms, Mechanism and machine theory. 35(4) (2000) 563-592. 

[15] C. M. Gosselin, Static balancing of spherical 3-DOF parallel mechanisms and manipulators, 
The International Journal of Robotics Research. 18(8) (1999) 819-829. 

[16] J. L. Herder, Energy-free systems, Theory, conception and design of statically balanced 
mechanisms, Ph.D. thesis, Delft University of Technology, 2001. 

[17] T. Van Dam, P. Lambert, J. L. Herder, Static balancing of translational parallel mechanisms, 
in: ASME 2011 International Design Engineering Technical Conferences and Computers and 
Information in Engineering Conference, Washington, 2011, pp. 883-889. 

[18] P. Y. Lin, W. B. Shieh, D. Z. Chen, A stiffness matrix approach for the design of statically 
balanced planar articulated manipulators, Mechanism and Machine Theory. 45(12) (2010) 
1877-1891. 

[19] P. Y. Lin, Design of statically balanced spatial mechanisms with spring suspensions, Journal 
of Mechanisms and Robotics. 4(2) (2012) 021015. 

[20] S. K. Agrawal, A. Fattah, Gravity-balancing of spatial robotic manipulators, Mechanism and 
machine theory. 39(12) (2004) 1331-1344. 

https://doi.org/10.1016/j.mechmachtheory.2019.06.003


Mechanism and Machine Theory, 2019 
https://doi.org/10.1016/j.mechmachtheory.2019.06.003 
 

17 
 

[21] D. G. Chung, M. Hwang, J. Won, D. S. Kwon, Gravity compensation mechanism for roll-
pitch rotation of a robotic arm, in: Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ 
International Conference, Daejeon, 2016, pp. 338-343. 

[22] G. J. Walsh, D. A. Streit, B. J. Gilmore, Spatial spring equilibrator theory, Mechanism and 
Machine Theory. 26(2) (1991) 155-170. 

[23] C. Cho, W. Lee, J. Lee, S. Kang, A 2-dof gravity compensator with bevel gears, Journal of 
mechanical science and technology. 26(9) (2012) 2913-2919. 

[24] S. H. Kim, C. H. Cho, Incomplete gravity compensator for a 4-DOF manipulator, Journal of 
Mechanical Science and Technology. 29(10) (2015) 4417-4426. 

[25] Z. W. Yang, C. C. Lan, An adjustable gravity-balancing mechanism using planar extension 
and compression springs, Mechanism and Machine Theory. 92 (2015) 314-329. 

[26] W. H. Chiang, D. Z. Chen, Design of planar variable-payload balanced articulated 
manipulators with actuated linear ground-adjacent adjustment, Mechanism and Machine 
Theory. 109 (2017) 296-312.  

[27] S. Briot, V. Arakelian, A new energy-free gravity-compensation adaptive system for 
balancing of 4-DOF robot manipulators with variable payloads, in: Proceedings of the 
Fourteenth International Federation for the Promotion of Mechanism and Machine Science 
World Congress, Taipei, 2015. 

[28] W. D. Van Dorsser, R. Barents, B. M. Wisse, J. L. Herder, Gravity-balanced arm support 
with energy-free adjustment, Journal of medical devices. 1(2) (2007) 151-158. 

[29] W. D. Van Dorsser, R. Barents, B. M. Wisse, M. Schenk, J. L. Herder, Energy-free 
adjustment of gravity equilibrators by adjusting the spring stiffness, Proceedings of the 
Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 
222(9) (2008) 1839-1846.  

[30] B. M. Wisse, W. D. Van Dorsser, R. Barents, J. L. Herder, Energy-free adjustment of gravity 
equilibrators using the virtual spring concept, in: Rehabilitation Robotics, ICORR 2007. 
IEEE 10th International Conference, Noordwijk, 2007, pp. 742-750.  

[31] R. Barents, M. Schenk, W. D. van Dorsser, B. M. Wisse, J. L. Herder, Spring-to-spring 
balancing as energy-free adjustment method in gravity equilibrators, Journal of Mechanical 
Design. 133(6) (2011) 061010.  

[32] Y. L. Chu, C. H. Kuo, A single-degree-of-freedom self-regulated gravity balancer for 
adjustable payload, Journal of Mechanisms and Robotics. 9(2) (2017) 021006. 

[33] P. Y. Lin, W. B. Shieh, D. Z. Chen, Design of a gravity-balanced general spatial serial-type 
manipulator, Journal of Mechanisms and Robotics. 2(3) (2010) 031003.  

[34] D. A. Streit, B. J. Gilmore, ‘Perfect’ spring equilibrators for rotatable bodies, Journal of 
mechanisms, transmissions, and automation in design. 111(4) (1989) 451-458. 

[35] J. Denavit, R.S. Hartenberg, A kinematic notation for lower-pair mechanisms based on 
matrices, Transactions of the ASME, Journal of Applied Mechanics. 22 (2) (1955) 215-221. 

[36] G. J. M. Tuijthof, J. L. Herder, Design, actuation and control of an anthropomorphic robot 
arm, Mechanism and Machine Theory. 35(7) (2000) 945-962. 

[37] L. Cui, J. S.  Dai, Axis constraint analysis and its resultant 6R double-centered 
overconstrained mechanisms, Journal of Mechanisms and Robotics. 3(3) (2011) 031004. 

[38] Y. Chen, Design of structural mechanisms, Ph.D. thesis, University of Oxford, 2003. 
[39] G. T. Bennett, The parallel motion of Sarrus and some allied mechanisms, Philosophy 

Magazine. 6th series, 9 (1905) 803-810. 
[40] T. Yang, Basic theory of mechanical system: structure, kinematic, and dynamic analysis, 

China Machine Press, 1996.  
[41] X. Kong, Complete shaking force balancing of spherical mechanisms using mass moment 

substitution, Machine design (in Chinese). 14(8) (1997) 5-7. 
[42] X. Kong, and T. -L. Yang,  A mass moment substitution method for complete shaking force 

balancing of spatial linkages involving R and P pairs (I), Mechanical Science and 
Technology (in Chinese). 16(4) (1997) 575-580. 

[43] X. Kong, and T.-L.Yang, Extensions to the mass moment substitution method for complete 
shaking force balancing of spatial linkages, in: Proceedings of 1998 ASME Design 
Engineering Technical Conferences, USA, 1998, DETC98/MECH-5846.  

https://doi.org/10.1016/j.mechmachtheory.2019.06.003
http://en.cnki.com.cn/Article_en/CJFDTOTAL-JXKX704.002.htm
http://en.cnki.com.cn/Article_en/CJFDTOTAL-JXKX704.002.htm


Mechanism and Machine Theory, 2019 
https://doi.org/10.1016/j.mechmachtheory.2019.06.003 
 

18 
 

[44] K. Zhang, J. S. Dai, Screw-system-variation enabled reconfiguration of the Bennett plano-
spherical hybrid linkage and its evolved parallel mechanism, Journal of Mechanical Design. 
137(6) (2015) 062303. 

[45] R. Di Gregorio, The 3-RRS wrist: a new, simple and non-overconstrained spherical parallel 
manipulator, Journal of Mechanical Design. 126(5) (2004) 850-855. 

[46] X. Kong, C. M. Gosselin, Type synthesis of 3-DOF spherical parallel manipulators based on 
screw theory, Journal of Mechanical Design. 126(1) (2004) 101-108. 

[47] G. Bai, P. Qi, K. Althoefer, D. Li, X. Kong, J. S. Dai, Kinematic analysis of a mechanism 
with dual remote centre of motion and its potential application. In: ASME 2015 International 
Design Engineering Technical Conferences and Computers and Information in Engineering 
Conference, 2015, pp. V05BT08A011-V05BT08A011. 

https://doi.org/10.1016/j.mechmachtheory.2019.06.003

