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A Dual Construction of the Isotropic Landau-Lifshitz Model

Tain Findlay®

@School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom

Abstract

By interchanging the roles of the space and time coordinates, we descril 2 a dual onstruction of the isotropic
Landau-Lifshitz model, providing equal-space Poisson brackets and dual » ~milt- nians conserved with respect
to space-evolution. This construction is built in the Lax/zero-curvat .re formalism, where the duality between
the space and time dependencies is evident.

Keywords: isotropic Landau-Lifshitz model, Lax pair, r-matrix, . "ro-cu. vature condition, dual integrable
model, integrable boundary conditions

1. Introduction

The idea of considering 141 dimensional integrable modew. in terms of their “space-evolution”, as gov-
erned by some equal-space Poisson brackets found by in =rcr auging the roles of the space and time coordinates
was systematically introduced in [1], following the sugge:" .on in [2] for the purposes of identifying integrable
defects (that lie in the spatial axis) with Darbou.-C%cki.nd transformations. This concept was applied
rigorously to the Lax/zero-curvature construction [3, 4] of the non-linear Schrédinger (NLS) model in [1],
and then later proven for the general NLS hiere ~ny i.. 3].

In this paper, we apply this equal-space construc. ~n to the isotropic Landau-Lifshitz model [6, 7], which
is also known as the continuous classical Hei~enberg magnet (HM) model:

L3« (029), (1.1)

which depends on the vector § = /S, Sy, 2)T. These fields will also be written in the combinations

St = S, £1iSy, which satisfy the <. exc.. v se relations:

{5+(2), S=(y)} = £S5+« * — ), {5+ (2),5-(y)} = =25.6(z —y). (1.2)

These Poisson brackets are tour | through the r-matrix construction [8]. The HM model has the same
underlying r-matrix as the IN. © model, namely the Yangian r-matrix (2.2), so hence it arises as a natural
next step in the developr .ent of tu.s dual approach.

Because this equal-s ace pictr re follows in parallel to the usual method for building conserved quantities
and higher systems (see [}, we also introduce reflective time-like boundary conditions [10] to the HM model
by following an equi- alent procedure to the development of reflective space-like boundary conditions, [12, 13],
which have been ag slied to he isotropic Landau-Lifshitz equation in [14].

The HM model is . 'sn " recent practical interest as a simple model of 1 dimensional ferromagnetism (due
to being the cc tinuum limit of the classical analogue of the quantum XXX spin chain, see [9, 15, 16] for
details), [17, 1¢ 19]. T is paper therefore sheds new light on this model by approaching it from a time-like
perspective, anai. >~ to the standard description in terms of time-evolution.

The pape. i, laid out as follows: The remainder of Section 1 defines the basic terms that we will be
using througho. . Then, in Section 2 we describe the standard (equal-time) construction of the hierarchy
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of conserved quantities and their associated Lax pairs and integrable systems, applyir z these to the HM
model for later comparison. This section starts by constructing the Poisson bracke ' between the fields
in Subsection 2.1, before building the hierarchy of conserved quantities that guaran ee tu. integrability of
the HM model. This is done for both closed (periodic) boundary conditions in € " ~ection 2.2 and open
(reflective) boundary conditions in Subsection 2.3. Subsection 2.3 recalls the re  alts Hf [14], except using
notation that will be consistent with the sections that follow. Finally, we repeat . se same steps for the
dual (equal-space) construction of the HM model in Section 3, with the dual Poiss. ~ strucsure constructed in
Subsection 3.1, and the hierarchies of dual Hamiltonians (and the corresponc’.. - Lax | airs) for both closed

and open boundary conditions are constructed in Subsections 3.2 and 3.4, » :spe oy 'y

1.1. Preliminaries
In terms of the fields Sy and S, the equations of motion (1.1) becc ne:

1 1
0uS = 4 (S:(025.) — (0254)S.), BiS. = =, 5)S. — SL(@25)).  (13)

When referencing the three fields S1 and S, we will use the sub. ~int v € {+, —, z} to collectively refer to
them as S,. We will also use S’U = 04, S to denote the derivative of 5, with respect to the appropriate time
flow! t, and S/ = 0, S, for the derivative with respect to the ~ntes .ually appropriate space flow. Where
there is likely ambiguity however, we will explicitly use eithe. ., or O, .

It was shown in [7] that the system of equations (1 ?) ~=~- r as the compatibility condition of the
auxiliary linear problem:

vV =0,¥=UY, v =00 =VVU, (1.4)
where ¥ is an arbitrary vector field, and the 2x2 mati ~¢, U and V, depending on the fields S, as well as
some free complex parameter A, comprise the Lax ~ir [5, 4] of the system, given by:

1 1 1

_ v~ qQ_ !
U=5:8 532~ 5SS (1.5)

S S, S-
Sy =S.)°
Cross-differentiating the auxiliary linear p. hler gives rise to the following compatibility condition (called

the zero-curvature condition) betweer the mati.ces of the Lax pair:

C=U-V'+[U,V], (1.6)

where:

such that when the matrices U o. 1 V are inserted into this, and the resulting equations are split about
powers of A\, the equations of motion, (= 3), are returned.

2. The Standard Pict’ re

2.1. Poisson Brackets

Before we introdu~~ the « <. picture for (1.3) we first recap the method for constructing the hierarchy of
integrable equations and th ir Hamiltonians. The core objects in this construction are the spatial component
of the Lax pair, U, . nd an ¢ ssociated r-matrix that satisfies the classical Yang-Baxter equation [20]:

0= [rap(A = 1), Tac(N)] + [rab(X = 1), Toe ()] + [Tac(N), Toe ()], (2.1)

IThese dic * ~* time flows will arise from considering the tower of conserved quantities that define the system as integrable,
and treating ¢ <h . vue quantities as the Hamiltonian for a distinct integrable system, describing the evolution of the fields
along the associc ' :d time flow ¢;. When we consider the dual picture, we will likewise have a hierarchy of dual Hamiltonians
that govern the sp. ~e-evolution of the fields along a tower of space flows xy.



where A, u € C are some free parameters and the subscripts denote which vector spaces She matrices act on
(e.g. rap=r®@Land rpe =I@7r, withr: V@V — V&V, so that the whole equation <ts on V, ® V}, ® V,
where the subscripts attached to the vector spaces are merely used to denote whicl inde. corresponds to
them, e.g. rq4, would act only on the first two). For the HM model, the relevant sol- "~ is:

1

1
) = o X (2.2)
0

SO = OO
SO = O
— O O O

This r-matrix is connected to the U-matrix and the equations of motie for . = system (1.3) through the
linear algebraic relation? [8]:

{WUa(z, A), Up(y, 1)} s = [Tap(A — ), U, A) + 1T (y,, M 52 — ), (2.3)

which provides an ultra-local Poisson bracket between the fields. 1 se” ung he U-matrix (1.5) and r-matrix
(2.2) into this relation returns the sly exchange relations, (1.2). Zom thec_ Poisson brackets we can read off
a Casimir element that restricts the vector S to the surface of the spi. e of radius ¢, where we have labelled

the Casimir ¢?:

A=82+8.8 =82 G4, 7. (2.4)

2.2. Periodic Boundary Conditions

In order to find conserved quantities that commute \ it 1 respect to this Poisson bracket, we start by con-
sidering the (spatial) transport matrix, which isap .“-ora red exponential solution to the spatial component
of the auxiliary linear problem (1.4) in place of U:

Ty A) = oo [ U, (2.5)

Y

For a periodic system on the interval [- o, L], i... where S,(L) = S,(—L), the full monodromy matrix is
Ts(\) =Ts(L,—L; ). Due to the U-mat1. ~s sa’.sfying the linear algebraic relation, (2.3), the monodromy
matrix can be seen to satisfy a quadr .tic ~lgen.aic relation [21, 22]:

{Ts,0'A), =0 1ts = [Tav(XN = 1), Ts,a(N)Tsp (1)) (2.6)

Consequently, if we define a ne v o ~ct, called the transfer matrix ts()), as the trace of the monodromy
matrix:

ts(A) = tr{Ts(N)}, (2.7)

then this can be shown to Po. ~on commute with itself for different values of the spectral parameter .

Because of this, if we € parl tg as a formal power series in A, tg = >, )\ktgk), then these coefficients

commute: ® )
{tS 7tS] }S =0. (28)
As such, the terms i this ex ransion tgk) can be seen as “Hamiltonians” governing the evolution of the system

along distinct time fic == # . Further to this, the evolution along each time flow ¢ will be integrable a la

Liouville, as th . tg) w *h j # k will provide the infinite tower of conserved quantities.

2The subs t1.. _ "~ nsed here and in what follows to denote that we are building this system out of the Spatial component
of the Lax pair /> This will be important later when we construct the dual model out of the Temporal component of the Lax
pair (V), where v ~ will use a 7 subscript.



Unfortunately, the “Hamiltonians” generated in this manner will be non-local. To ircumvent this, we
will consider the coefficients in the expansion of the logarithm of this, Gs(A) = In (ts(* ). The logarithm is
chosen as it acts to remove the non-locality introduced by the exponential in (2.5) anc in tu. diagonalisation
below, (2.9).

The task is therefore to find the expansion of tg(A) in some limit of A\. Fo. “ e Lax pair (1.5) the
appropriate limit is A — 07. In order to avoid evaluating the path-ordered «. ~one...ial, we consider a
diagonalisation of the transport matrix [9]:

Ts(z,y; A) = (I+ Ws(a; \))e?s @V (T We(y; 0 (2.9)

where Wg and Zg are wholly anti-diagonal and diagonal matrices, res' ectivel - If we insert this diagonali-
sation into the spatial half of the auxiliary linear problem, the diagon:' and as :i-diagonal components can
be separated into two relations:

0= Wé + [Ws, UD} + WsUsa W, — Ja,

/ (2.10)
Zs =Up +UaWsg,

where Up and U, are the diagonal and anti-diagonal componec “ts of the U-matrix, respectively. If we expand
Ws and Zg in powers of \, with coefficients Wék) and Zék) 4R

A= AW, Zs(\) = Y Az,
k=0

k=—1

we can split (2.10) into a series of recurrence relations (.- aking use of how U only depends on A™1):

k+1
0= W, Up] + WL UAWE = U, 0= WY + WD Up] + Y Wit P u,w,
=0
(z§Vy =Up + UW, (ZPy = Uawd,

which we can recursively solve to find e er highe coefficients in the series expansions of Wg and Zg. The
first few terms in the Zg-series are:

—1) 1 0
Z_g 1) c <f _1> ,
5.8 — 8,5 0
7/ c+5 <0 1) dz, (2.11)

= 403/ (578" +(5.)%) <(1) _01> da.

The reason for doin; thic is t} at if we insert the decomposition into the definition of the transfer matrix,
(2.7), the explicit W depew '=ur 2 cancels out, leaving:

ts(A) = tr {ezs()‘)} = %115 4 gZ22.5(N)
We are actually stead interested in the expansion of Gg = In (tg), which is then:

(=1) 0) 1) 1) (0 (1
e/ \)\) = III( AT 1Z11 s+Z( S+/\Zil st _~_e)‘ 1Z;zs‘FZ 2)5+)‘222)s+ )

As the leadin, rrder terms in each of the exponents are cLA~! and —cLA™!, and we are considering the limit
. . “1 . . .
as A — 01, the Srst exponential will be of the form e®“* ", so will dominate over the second exponential,



which will be of the form e—¢IA™"

is therefore simply:

, which decays exponentially in the limit A — 0%. The sxpansion of Gg(\)

_ -1 0 1
Gs(\) =212 + 20+ Az +

The first three conserved quantities appearing in this expansion can then be read “.on the Z-series:

g5V =L,
L / !
o 1 b 8.8 —S.s
9 =), ers W (2.12)
g(l) — -1 L S/ S/ S/ 2 d
S = E ( +~— +( z) ) xz,
L

the second and third of which can be recognised as the total momentum and Ha iiltonian for the HM model,
respectively (up to a factor of —2¢) [9]:

Ps = —2cGY, Hg=—2 J" (2.13)

Each of the conserved quantities ng) generated through the exp. nsion of Gg can be seen to describe
the evolution of the system along a distinct time flow tj, so tu. * the :quations of motion for each of these
systems would be given by:

95,8, = {GS) <1 (2.14)

Consequently, each of these systems should have some ass. ~iated Lax pair. As we use the U-matrix to
generate the conserved quantities we will be looking .  ~enerator V that produces the V-matrices V(*)
associated to each time flow tx. We do so by first eque i g Hamilton’s equation (as applied to U) and the
zero-curvature condition:

V(A 1) — [Up(N), V(X )] = 05U (X)) = {In (tr, {Ts,a(1)}) , Up(N)}s
Vo {{Ts,a(M% Upy(N)}s}h

where the t is used to denote some master time flow and the vector space subscripts are introduced to
distinguish the space being traced over (*.ae a . ~ctor space). Using the algebraic relations (2.3) and (2.6),
we can extract from this the generator ¢ the V-1 atrices associated to each time flow ¢, [20]:

Vb(x§ A /~L) = t,‘_ (N’) tre 4~ S,a(L> T3 M)Tab(ﬂ - A)TS,a(x7 —L; M)} ) (2'15)

such that the V-matrix associated to  t, t'me flow appears as the coefficient of ;¥ in the series expansion

of this about p. Using the diagon .isation . the monodromy matrix, the limit 1 — 0T of the exponential of
Zs(p), and the cyclic properties o1 “e trace, this can be simplified to:

Vo(z; A, 1) =, {rab(u = NI+ Wsa(z; 1)) ern,a(I+ Wa,a(z; u))fl} ,

where e;; is the 2x2 matrix v. t obeys (e;;)r = d;xd;;. Finally, as the chosen r-matrix satisfies rqp M, =
Myrap for any 2x2 matr'x M, this can be simplified further to lie solely in the b vector space (so that we
may drop the subscript

1 _
A ) = s (T W) enn (T+ W)~ (2.16)
If we expand this abc *+ n~ wvers of y in the limit as y — 07, the first three terms are:
-1 1
o _ g -
M ANT de) 5,
-1 1 1
M- _~7_ / 2.17
v 4)\2}I 4cA? S+ 403)\5 5, (2.17)
-1 1 1 1 3
VQ):—H— rQ " _ N2 :
473 40)\33 + 4¢3 )\2 58 403)\5 805)\(5 )°s



After removing the overall commuting constant factors and scaling by —2c¢, the seccid of these can be
identified as the V-matrix in the Lax pair (1.5):

1
1

It is the identification of U with V(©) up to some constant factors, that sug, ~sts v. > introduction of a
dual picture for this model, with the roles of time and space switched. Befc  we 1. =stigate this though,
we briefly discuss how to adapt this construction to account for non-period’ : bo ...~y conditions.

2.3. Open Boundary Conditions

In order to study systems with open boundary conditions, we need . » intro .uce some Ki-matrices that
are associated to the =L boundaries, and have a dependence on thr spectrai parameter and some additonal
constants. In order for them to be used in generating conserved q ant’.ies. we require that they satisfy the
classical analogue of the (non-dynamical) quantum reflection egnation [13".

0= [rav(A = 1), K oA K1 p ()] + Kxa(MN7ap(A + ) K p(p) = T2 p(p)ran(A + ) Kx (). (2.18)
For the r-matrix (2.2), the most general choice of Ki-matr.. (up . some rescaling and gauge transforma-
tions) is [23]:

Ki()) = sl + A (H 561) : (2.19)

where ot, B+, v+, and 6+ are some constants that de: "rise the boundary conditions being considered3. If
these are given a time dependence, then these w 'd be dynamical boundary conditions. For this paper,
however, we consider only the non-dynamical case w ei. they have no time dependence (and when we move
on to discuss time-like boundary conditions, v ~ <hall ~ssume that the equivalent constants have no space
dependence). These Ky-matrices are introduced . +o the transfer matrix tg as [12, 13]:

ts(\) = tr {K4 ()7 (L, —L; K- (\Tg (L, —L; =A) } (2.20)

and from this definition it follows that:
) ts(u)s = 0.

Much as in the periodic case, ve w.' crasider the generator Gg(\) = In (ts(A)), as this will supply us
with the known Hamiltonian. Tr ‘iagonalise the Tg 1 we use:

Tg'(w,r, N) = (T+ Ws(y; —\)e @8 (14 We(a; )~

in place of (2.9). Consequen.’~ as the highest order term in Zg is A~!, the effect of the — sign outside of
the Zg and the change ir sign ot " ¢ A will cancel out, so that the expansion of the exponential term in the
limit A — 07 is:

¢ Zs(zy—=A) - e*Zu.S(ﬂny;*)\)eH + O(e*)‘il). (2.21)

Consequently, the e .pansic - of the generator Gg is:
-1
Gs()) = i A) — Zi1s(—A) +1n ({(11 +Ws(Li=\) T K () (T+ W (L; )\))} 11)

“In ([(11 +We(=LiN) K- () T+ We(—L; —A))} H) ,

3The reflectic = equation satisfied by the K;- and K_-matrices actually differ by a minus sign in the spectral parameter,
but we absorb this “actor into the S+, v+, and d+ to keep the forms of the matrices the same.



where the [...];; indicates that we are only considering the ijth component of the matrix ‘nside the brackets.
If we expand this expression, the order A\° coefficient is constant while the order A! co ficient is:

L

_ -1 1

S _203 _ z: +L

(2.22)

1
+—[20_5.+B-S4 +7-5-]

20_c¢ a=—L"

This can be recognised as gg) from (2.12), up to boundary contributions ar d ar ov. “ull factor. As Qéo) was

associated to the total momentum of the system, and Gé.o) is trivial, we can 1.. >r that the momentum is no
longer conserved when boundary conditions are introduced.

By following an analogous derivation to that of (2.15), we can deri ~ the generator of the V-matrices
corresponding to the conserved quantities generated by Gg. There .re three cases to consider in this setting
[24], corresponding to the V-matrices in the bulk (labelled V), ar. 1 t* & V- natrices lying at each of the two
boundaries (labelled V4 for the = 4L boundaries, respectivel; ) The o« ierator of the bulk V-matrices is:

vB,b(I§ A, ,U') = {gl(u)tra {KJr,a(M)TS,a(L: €3 N)Tab(u - )‘/ Ts a(ﬂ?, y B N)Kf,a(M)TKST,i<7/J’> (2 23)
+ Kp (i) Ts,a() K ()T o (2, - T —p)rap(pe + N T o (L, a3 fu)} :

while the generator of the V-matrices at the positive bouna. v is:

VoA ) = 5" (u)tra {Kf,a(N)T;i(*l‘) (K+,a(u; b= A) F rap(p+ /\)K+,a(u))Ts,a(u)} . (2.24)

and the generator of the V-matrices at the negative ho ndary is:

Vo) = G000 { Kt () Ts.(0) (rans = A1 ai) + K a(@ran(n+ V) Tga(-m)} . (2.25)

If we expand these three generators ab u. * as u — 0T, the order u° contributions from each generator
are trivial, corresponding to g‘g‘” being ¢ mstant. At order u!, they are:

_ -1 { .
VP (20) = 5T — - € '
B (%) 2027 X2 + “03)\5 5, (2.26)
V(l) ()\) _ ;1]1 y L e 4 1 ﬁ:l:S+ - fY:I:S* 2(5:ES7 - ﬁ:I:Sz) '
+ 2227 2eA27 T daged \2(7+S. —04S4)  yaS- —pB+Sy )

In order to extract the bov .u. "y conditions from the open Hamiltonian, we simply calculate the equations
of motion as usual (throug’. the Poisson brackets and Hamilton’s equation), except gathering all of the
boundary terms that arise (ew. = from the integration of total derivatives in the bulk Hamiltonian, or from
the Poisson bracket of t} ¢ fie'ds w.th the boundary Hamiltonians). We then impose the sewing conditions
that the equations of r ~tica av .y from the boundary smoothly transition to those at the boundary, i.e.
that lim,_, 41, Sg(x) = .QU(;T\

Similarly, in orcer to xtract the boundary conditions from the V-matrices, the condition that the
equations of motion gree at she boundary manifests as the condition that lim, 4y, VB,b = Vi,b- Performing
either of these limits y_ ' che same constraint on the boundary constants and the S, at the boundary [14]:

ot [S+SL - S;S*]z:ﬂ:L = +c? [ﬂis+ - rYiS*]a::iL’
a4 [S.;.S; — Sf‘rSZ]ac:iL = +¢? [5:&54_ — WiSZ]xziL, (2.27)

Qt [5752 - SLSZ]I::!:L = & [5iS* B BiSZ]x:iL'



3. The Dual Model

By considering the equal prominence of the space and time coordinates in the Lagrs igi. ~ victure of a 1+1
dimensional system, a dual Hamiltonian formulation of the non-linear Schrédinger mndel was constructed in
[2], which had equal-space Poisson brackets (in place of the equal-time Poisson br- cket ) and dual integrals
of motion that are conserved with respect to space-evolution rather than time-ev "1t on. In this paper we
focus on the Lax pair construction rather than the Lagrangian picture emphasi. *1 in | “2vious work.

In this Section, we build the dual construction of the isotropic Landau-Lifehitz 1.. el in the language of
Lax pairs. It follows mostly in parallel with Section 2, with the only divergr aces ' ~ing where we emphasise
important differences between the two pictures, such as in the limiting prc ~d» ce of the exponential in the
case of open boundary conditions, and where we digress to give an examn'= ot .. w this dual picture can be
used to find integrable systems depending non-trivially on additional fi ‘Ids.

The final subsection 3.4 considers the introduction of time-like b undary conditions. This idea was
introduced in [10], where it was applied to the non-linear Schréding~~ mow.

8.1. Poisson Brackets

The first step in this dual construction is defining the equal-space 1 »isson brackets (3.5) through the use
of the r-matrix and an analogue of the linear algebraic relatio. (2.3) However, as the hierarchy will now
describe a series of commuting space flows, the S/ in the V-n. trix (1.5) will all be derivatives with respect
to a specific space-flow, namely the Oth order flow xo (as =#" -~ - en later). Consequently, to prevent later
confusion, we define these as some new fields, ¥,. When w look at the Oth order Hamiltonian or V-matrix
(that is, those that provide the original equations of ~*inn (1.5,), we will find as part of the space-evolution
equations the identification ¥, = 0,,5,. Otherwise, ti ~se 2, will be treated as entirely independent fields,
as can be seen in Subsection 3.3.

With these new fields, the V-matrix that we cor e+ is.

i 1

= = = —72 '1
v 2/\-b 2¢2 )\ S (3.1)
with: ,
s lB %Y
N

While the Poisson brackets were .our « from the U- and r-matrices via (2.3), we assume that a similar
equation exists for the V-matrices. ne - :ly [7,

{Va(t, A), Vieer w)tr = [ras(A = p), Va(ts, A) + Vo (ta, p)] 6(t1 — t2). (3.2)

Inserting both the V-matrix - ... the r-matrix into this expression, we find a collection of Poisson brackets
between the various fields:

Sx(tr, (t2)bp = {S4(t1), S—(t2)}r =0,
{5 (t1) Bz (t2) = {S:(t1), B (t2) }p = S£5. 6(t1 — t2),
T (1), B (t2) by = =S4 S-0(t1 — t2),
{b (11), Za(t2)} = ST (11 — t2), (3.3)
{€0(t), D5 (t2) by = (252 + S4.52) 8(t1 — ta),
{2+ (t), 2 2(to)}y = (S+3. — B18.) 6(t — t2),
{E4(t1), 2 (t2)}p = (545 = E4.5-) 6(t1 — t2).

As well as ua.. - *he Casimir element ¢? = S2 + S, S_ with the original model, these brackets have an

additional co. »» miting quantity:
c=28,2,+S5,X_+S5.%,, (3.4)



where, in reference to when ¥, = 0,,5, in the HM model, we choose to set ¢ = 0. onsequently, when
the HM model is considered and we can write the 3, directly as the derivatives of t' = S,, (3.4) becomes
redundant as it is merely the derivative of the original Casimir, (2.4). At any othe: leve. ~f the hierarchy
however, we cannot directly relate the 3, and the S,, so the two Casimirs are dist? = *

Introducing the fields £, ¥,, and X, in analogy to S, Sy, and S, these Poiss a br ckets can be written
more compactly by using the indices i, j € {z,y, z}:

{Si(t1), S;(t2)}r =0,
{Si(t1), ;(t2)}p = (Si8; — ¢*6i) O(t1 — t2) (3.5)
{Zi(t1>, Zj(tg)}T = (SZEJ — S]Ez) (S(tl — t')L

where the two Casimir elements are now:

022534—554-53,

(3.6)
0=5:2,+5,2,+ 5.2,
By defining the quantities:
1 /3 b 1 /X b))
— g2 R A —. amn— N R et A—
w=5  o=5a (- 5) o=y =g (55 6D

the above Poisson brackets can be written as a canonic.” nair (where we use the 2 Casimir elements to
discount two of the fields):

{W1(t1), a(te) }r = {@1(t1), P2(t2)} 1 = O, {Wi(t1), ¢j(t2)}r = dij6(t1 — t2). (3.8)

3.2. Periodic Boundary Conditions

In both this section and the next (where ~nen boundary conditions are considered), we consider a system
that lies on the interval [—7, 7], for some r > 0. The periodic boundary conditions in this setting are then

Sy (1) = Se(—7) and Xy (1) = Xy (—7).

The construction of the dual mo .el f dows in parallel with Section 2.2. The first object constructed is
therefore the equal-space monodremy - atri-, T, which is a solution to the temporal half of the auxiliary
linear problem, (1.4), in place of ¥. This .s diagonalised (by analogy to the standard picture discussed in
Section 2) through the use of a iag. ~al matrix Z7 and an anti-diagonal matrix Wr:

ty
Tr( 1ty \) =P V(€)d
1ty A) e"p/tz (6)de o)
1

= (I+ Wr(tr; \)eZm 2N (T4 Wa(ty; N)) .

Because we have chosen ti. * tie V-matrices satisfy a linear algebraic relation of the form (3.2), the full

equal-space monodr .my m- trix Tr(A) = Tr(7, —7; A) will satisfy a quadratic algebraic relation analogous to
(2.6):

{Tr,a(A), Trp(p)}r = [rav(A = 1), Tr.a (M) T (1) (3.10)

Taking the v ace of .he equal-space monodromy matrix we get the equal-space transfer matrix, tr:

fT(A) =tr {TT()\)}

— )y oZear(N) (3.11)



which, by virtue of the equal-space monodromy matrix satisfying the quadratic relat’on (3.10), Poisson
commute for different spectral parameters:

{tr(A), tr(p)}r = 0.
Finally, as these two series Poisson commute, so will each pair of the coefficients \ik), T'herefore, if we take
the logarithm of these, Gr(\) = In (tr())), we have that the coefficients in tl. serie. expansion of Gr(A)
Poisson commute with one another:

G0,69 = (3.12)

As in Section 2.2, in order to expand Gr, we need to consider the lr .uung oru r contribution in each of
Zi1,7 and Zay 7. Consequently, if we insert the diagonalisation of T i1 to the t. mporal half of the auxiliary
linear problem, (1.4), then we find relations for the Wp and Z:

0= WT -+ [WT,VD} + WpVaW-—7 4,

. (3.13)
Zr = Vp + VaWr,

where now Vp and Vy are the diagonal and anti-diagonal c~mponen: ; of the V-matrix, respectively. Ex-
panding Wr and Zr in powers of \ as®:

WT()‘) _ Z)‘kwj("k)v AT(/\) — Z )\k:Z’g_'k)7
k=0 k=-2

then we can recursively solve (3.13). Solving the first fe 7 r rders of these, we find the first three Zp-matrices

to be:
—2 1 0 1
Z(T )—CT<O _1), Zy =9,
- S_ (3.14)
©o_ 1 - _ (s o)y 1 s (1 0
79 = [ Sire-s) [ g |- ga@erm (g f)| e
\ +

Then, due to the form of the highest . er t rm, the e1*.7 dominate over the e%227 in (3.11), so that
Gr = Zi1,7 + .... Le. the first three ¢ .nseved yuantities generated this way will be:
G = gyt =

) _ / BN 9 (3.15)
Ggr = 5 /7 S, +(c— S, )S, 202(Z+Z—+2z)> dt.

Focussing on the third of ti.. ~e. .f we use the periodic boundary conditions to remove any total derivatives
and multiply by a factor f —2c, ;EO) reduces to:

1t [(8s -85 1 )
N - —+ s+ X dt. 1
" 2/L< o (B 4T (3.16)

This is the equal-spw e Har iltonian for the HM model, i.e. the generator of the space-evolution along the
space flow z¢, 2. can be seen by using Hr in Hamilton’s equation to find the space-evolution equations:

S; = {Hr, %}, 2, ={Hr, %o }r

4Note that du * to the underlying V-matrix having a dependence on A~2 (as compared to the earlier construction where the
underlying U-mat: - depended only on A\~1), the Zr series needs to start at k = —2 instead of k = —1.
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Doing so, the space-evolution equations for S, simply give the identification S! = ¥,. which is similar to
the sine-Gordon model (which has been studied in this description in [11]) and the du‘ - construction of the
NLS model [1], while the space-evolution equations for %, give:

. . 1
¥, =+(545, — S+5.) — C—Qsi(z@_ +¥2),

1. . 1 ) (3.17)
¥, = §(S+S_ - 5.5.)— gSZ(Z+E_ +X2),
which, after substituting in S/ = X, can be compactly written as:
. A 1 = =
§" =18 x § — SIS, (3.18)
c

and are equivalent to the original equations of motion, (1.3), after reple "ing S, S, with S4 =5, 15,

Using the equal space Poisson brackets and the tower of equal sy ace - uns rved quantities, we can generate
a whole hierarchy of space-evolution equations associated to distinc. syste 1s. Consequently, we will also be
interested in generating Lax pairs for each of these systems. By fou. -ving the derivation of (2.15) and (2.16),
we can derive a generator U for the tower of U-matrices that partner with the underlying V-matrix, (3.1),
which can be generally written as:

Up(t; A, 1) = 65" ()tra {Tr,0 (1, 65 )70 (11 - N Tro(t, =75 1)} (3.19)

or by using the known results and properties for the r-matr.. as well as the diagonalisation of T, this can
be reduced to an expression that lies only in one vecl . ., ~~o

1

1 -1
Ult; \p) = ——(L-, V(e - I+ Wr(t; . 3.20
( ) 7/’[’) 2(/,[,—A)( T( ' ))611( + T( ,L[,)) ( )
When we expand this generator about p — 07 ... f+< three terms are:
—1 1
(N -
U 4\ 4c® 2
-1 1 1
W= __T- =5+ =% 3.21
v 4027 4002 S+ 4c3 )\ 5, (3:21)
-1 1 1 1 . 1
U@ =1 3§ PN - »28.
e T i S T i T

If we remove the constant factor f ym the 7.t of these and multiply by a factor of —2¢, U®) can be identified
with the spatial component of t' e « “iginal Lax pair (1.5):

1
— _oU©® 4 L
U = -2¢(U + 5.

This guarantees that the - quati. ~s of motion for this model agree with the original equations, (1.3).

3.3. Higher Order Sv~*~ms

The identificatic a of th. 3, with the derivatives of the S, appears as part of the equations of motion
for the system at o1 ler 0 ir the hierarchy (the isotropic Landau-Lifshitz model). If we instead consider a
different system l.ese w.. not necessarily be the same. To see this, we consider the system at order p? in
the hierarchy, - shich he + Lax pair (Us, V'), where we define:

1
_ 2
Uy = —2¢(U? + o

:is ! nS — 155 L

2
9237 T 9a2n2 a0 T e S (3.22)
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Inserting this Lax pair into the zero-curvature condition, we find the space-evolution eq ations for this new
system. The space-evolution of the three original fields, Sy and S,, are:

1
+ 57 (2224 20)%,

S = 2(5+ - S5.3) 5

S = 12 (S.5_ —S_3,) + 14(22+E+E )o-, (3.23)

2¢
1 . 9
S = 5 5 (S- Sy - S+E,)+2—C4(ZZ+E+E,)S,7
while the space-evolution of the three fields ¥+ and X, are:
1 . . .. 1, . . 1 S N\2
Ty = (045 - 54 T) + 8h + s+(§((sz)2 +8:80) = 55 (T 4+ T ) )

1 ) ) ) ) ) )

+ @(23(5+52 —5.:8,)+%2 T(8_8,—85_8,)+2,% (Syn_ S+S_)),

E’_:%(E,EZ—E,E)—FS +5- ( ((8:)2+845-) — 5 5 22+ 243 ))

o . (3.24)
+ @(23(5,52 —S5_8.) + 22 (545, — 84+5.) + -, 1S- — S45)),
’ 1 . . . 1 . 9 . N 1 9 2
> = ﬁ(zp:, SN+ 8+ sz(g((sz) + 515 = 55 (BT )
. . 1 . .
+ 5 (2 ¥.(8:5. — S84 8.) +2,%.(S_S. - €.S.) + 5(23 — 248 )(S+S8- — 8180)).
These can be written more compactly in terms of the ~ct s 5 = (S,, Sy, S:)T and Y= (%, 2y, 27T
g - i(§ %)+ i@\?i,

(3.25)

- 1 = 12,2 = 4
Y = (2x2)—7|2\ (Sx5)+ +o\—|5\2——|2|4)+C—42(2-(S><S)).

When deriving the above Lax pair an . resultii 2 equations of motion we started from a V-matrix at order
p' and found the corresponding U-metrix . * or .er u2. We could instead, however, start by considering a
U-matrix at order u? and use that tc find the corresponding V-matrix at order p!.

To find this order y? U-matrix, + ~ st ot f om the base system (i.e. the Lax pair consisting of the U- and
V-matrices appearing at order p° see (».'7 and (3.21)):

1
U=V =38 (3.26)

The equations of motion for this system are simply S, = S!/.. Then, the first three terms in the hierarchy of
U-matrices constructed frrm t.. V-matrix are:

-1 1
U® — 71— —
4N deh’
-1 1 1 .
1) — _“y1_ 3.27
U el oSt 1SS (3.27)
-1 1 1 . 1 . 1 .
T/ ) . _ _ 2
4)3 4c)\3s+ 4e3)02 59 403)\S 805)\(3) 5,

which should t » compa ed with (2.17). Before we can construct the space-like (standard) hierarchy for the
U-matrix found . ~m @) we need to define the fields P, = Ot Ss and P, = 8?030 (in analogy to how we
defined the ..2"' Y = 0,,5,), so that the U-matrix is:

1 1 1 3

U=_— —P
2)\3S 202\2 S+ 2\ +4c4)\

P28, (3.28)
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with:
_ (P P (P, P_
p=(m f2) (e B
This is the U-matrix appearing at order p? that we consider in place of (3.22). Cc isu. 1cting the space-like
hierarchy from this, the V-matrix appearing at order u! is (after removing the ¢ msts at factor and scaling
by —2¢):
1 1
V=—-on5S——
272 2¢2\
This Lax pair would appear to describe a system of equations differe: - to (3.2b), due to containing a
total of nine fields, S,, P,, and P,. When these matrices are inserted into .. » zero-curvature condition,
however, one of these sets of fields is redundant and P can be written i . terms of S and P as:

PS. (3.29)

P=5S— %PQS.
C

The combination of this identification and the remaining equations _. mot’ n can then be recognised as the
equations (3.25). Consequently, traversing the early (n < 3) par. ~f tliese dual hierarchies is commutative
for this model. It remains to be seen if any higher order parts of the dual hierarchies commute, however,
there is no a priori justification for the commutativity and an .. vestic ition into this is left for future study.

3.4. Open Boundary Conditions

Finally, we consider the effect of introducing refle .” ~ houndary conditions to the time-axis. This idea
was introduced in [10], where it was applied to the NL" r.odel. Due to the r-matrix structure for the dual
model, (3.2), being identical to the r-matrix struc -re o1 ‘he original model, (2.3), we introduce boundary
conditions in an identical manner. That is, we start hy hoosing a pair of matrices, Ky, that satisfy (2.18).
Specifically, we use the same K-matrices as in ‘™~ origmal picture, (2.19):

o+ P+
Ki( N =agsl+ X
:t( Q4 + (’Yj: 5j:> B

where the constants a4, B+, v+, and o+ ~ould n general depend on the evolution parameter, x, but we
choose them to be constant for simplic’vy. We .. roduce these K-matrices into the generator of the quantities
conserved with respect to space as [72, 17, 10!

tr(\) = o {K4 )Tr(r, —ms VK- (N Tp ' (1, -7 =M}, (3.30)

from which we can use the quadratic re..tion (3.10) and the defining relation for the K-matrices, (2.18), to
derive the time-like equivale’ ¢ o1 (2.20), which tells us that the tr Poisson commute for different spectral
parameters. Again, we are ~cti ally interested in the coefficients in the expansion of Gr(A\) = In (tp())),
which will also Poisson cc amuwe ~vith one another:

(B =(i

(G 69y, =o. (3.31)

In order to evalv ate the series expansion of Gr (), as well as diagonalising T through (3.9), we need to
also diagonalise T’ throug :

Ty (t1, a5 —X) = (L4 W (ta; —A)) e 27082 (14 Wi (8, —A)) .

An important po. ** ¥ _re is that when we take the limit as A — 07 of the exponentiated term, due to the
— sign in f. w. - “*he Zp and the highest order term being (—\)? = A2, the expansion of the exponential as
A — 07 will 1.« ead be:

e~ Zr(titai=X) _y e*Z22,T(t17t2§*)\)622 + O(e*Afz).

13



Consequently, when the diagonalisations are inserted into the generator G, we have (wh>re we suppress the
parameters by defining f = f(—\) and Wy p = Wy (£7)):

Gr(\) =In (e#rr =B LK (T+ W r)en (14 Wog) T K_(T+ W_r)es o - W) }),
which can be separated into the bulk contribution and the two boundary contribut.. s:
Gr(\) = Zi1.r(N) = Zoa. v (=) + In (Wi (V) +In (W M), (3.32)

where we define: .

W, (\) = {(H—FWT(T; —A) KL () (T4 W (7 ‘})}21,
_ (3.33)
W_() = [T+ Wr(=m:0) K- )T+ Wr (- m5-3) .
Due to the logarithmic dependence of G on W, the lowest ¢ cder _u. ‘ribution of the boundary terms

to the generator G will appear at order A°. Specifically, this lowes. urder :ontribution will be:

1) 1 (204 7 S+3, > o Sy S_S4
_ 1z CxL ) - 26,8 — BT OE 4 0= 34
We 20( c (Sz+c i) -5 ﬁiS, +c ’YiSZ:Fc ’ (3.34)

so that the first three terms in the expansion of Gr are:

_§1—2) _ 207_) g%—l) _ 07
-0 _ 1 " M 1 2 1) &) (3.35)
T 26/7< s (52 +52) dt+ln(W+)+1n(W7),

Multiplying Q;O) by the factor —c gives the He .'*~nia~ with open boundary conditions:

7. [ (L 2 S48 58 (1) M
HTf/ (2CQ(E+Z+E, ere) e (W+ ) —cn (W, ) (3.36)

-7

Away from the boundaries, the P isson .. ckets of Hy with each of the six fields returns the space-
evolution equations, (3.17). At the ' oun .arie-, however, when the space-evolution is derived the condition
that the fields at the boundary still . isfy che usual space-evolution equations imposes extra conditions
on the fields S, and ¥,, as well s the ay, S4+, v+, and d+. The requirement that lim; 4, S, = S/ (£7)
restricts us to the case ax = 0 If w. ~ombine this with the requirement that lim; 1, X/ = ¥/ (£7), then
we find the time-like boundar* -~onditions for the HM model:

2=y, 0=B:Ss + 725 +26.8.. (3.37)

We can also find a g "= ator cor the U-matrices both in the bulk and at the boundaries. The generator
for the bulk U-matric  will . - |[10]:

Upp(t; A p) = =)t a {K+,a(u)TT,a(T7 t; ) rap(p — N Tra(t, =75 ) K- o (1) Ty (— 1)

(3.38)
+ Ky a()Tra(0) K- o(0) Ty o (8, =75 —p)ran(p + N T o (7, 8; —u)} :
and, being mindfui u1 the different limit for the 7> '(—pu), this can be reduced to:
_ 1 _
Us(t; A, p) =U(t; A, 1) + m(ﬁ + Wr(t; —p)) eaz (T+ Wr(t; —p)) g (3.39)

14



where U(t; A, 1) is the generator of the U-matrices with periodic boundary conditions. Uailike in the original
case, where the second term differed from the first only by the sign of the u, here it di” ~rs both by the sign
of the p and in that the matrix e;; has become ez5. The lowest order term in the ex; ansio. of this appears

as the coefficient of p¥, and is:
o) -1 Sz S_ - (0)
U = — (S+ 5. ) =20, (3.40)

where U(® is the U-matrix appearing at lowest order in the periodic case. The be *ndary U-matrices are
found by considering the generators:

O (A1) = G () tra { K o) T (=) (Kot aG)ran(ie = X) + 7an (0 M a(1) ) Tra(i) }

_ _ (3.41)
U_p (A, ) = &1 ()tra {K+,G(M)TT,a(u) (m(u —NE_o(p) + K- wrap(p + A))Tii(—u)} ;
which can be simplified to:
Upphp) = (1<H+WT(T~M>>elg(u Wi ) K ()
T 2W () = ’ N ' (3.42)
b K (T4 WiV (4 Wt —) ).
" O p(h) = st — (1K (1) (L4 Wi (=7, ) eas (I+ W (—r; 1))
R O A | 7 (3.43)

+ ﬁ(ﬂ +V (=1 -w))ear (I+ WT(_T;N))_IK(M)> :

The first non-trivial term in the expansion of «+ ~h of hese appears at order u°. For the t = +7 boundary,

this is:
uo _ 1 [a+ (S+le+-0) —(c+5z)2>
T e+ S)WP LA ST =Si(e+S) (5.4
1 —BLST v e+ 52)2 2(c+ S:) (04 (c+ S.) + BSt)
2A \254 (6. 34—, (. +5.)) B+52 + 74+ (c+S.)? ’
while at the ¢ = —7 boundary, the { -me rix * .
v _ I Jao (o (c+8.) s2 )
T 2e(e+ S)w 2 (—(HSZ)2 —S_(c+5.) (5.45)
1y B(c+5.)2+7-52 —25_(0_5- — B_(c+S.))
N 20+ S)(0(c+S)+7-52)  —B(c+8.)?—~_52 '

Requiring that lim;_, 4, 'J'](go )y A U@ gives rise to both the condition that a = 0 (from the order A=2 terms)
and that 4S5 +v+S_+.5, -0, which agrees with the boundary conditions found from the Hamiltonian
approach, (3.37).

By comparing th time-! ke boundary conditions, (3.37), with the space-like boundary conditions, (2.27),
we can see that ’..cre is uo evident connection between the two. This asymmetry is rooted in the fundamen-
tally different « epende. -e of the fields on the space and time coordinates, as can be seen by comparing the
forms of the equ ~tions ,f motion in (1.1) and (3.18).
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4. Summary

The main result of this paper, derived in Section 3, is the dual construction of nc ‘sotropic Landau-
Lifshitz model, where space-evolution equations, spatially conserved quantities, and equasr. pace Poisson
brackets are obtained. This was done by following the usual procedure for deriv'ag . 'oisson brackets and
conserved quantities for a system that is integrable via the existence of a Lax | ~ir ind r-matrix, except
with the roles of the space and time variables switched. A consequence of t! s equ '-space construction
is the existence of a hierarchy of dual integrable systems, each of which has an in.. ‘te tower of conserved
quantities, (3.15), and a Lax pair representation, (3.21). Then, through the ~om, i»ation of the usual equal-
time hierarchy and this dual equal-space hierarchy, an infinite “lattice” of i *egr able models can be built (it
is important to note here that this “lattice” is not commutative a priori althc “=h it has been observed to
commute for n,m < 3).

By considering a higher order system in the dual hierarchy of the iso ropic L¢ adau-Lifshitz model, (3.25),
we have connected the 3-field HM model (with 1 Casimir element) with . =~ ¢l 6-field model (which has 2
Casimir elements). As this system appears in the hierarchy of the AM » el it is likely to have a solitonic
solution similar to that of the HM model, which would be disc. - .able through the use of the inverse
scattering tools, or through a Darboux-Bécklund/Dressing app. ~ch. Tae investigation of such a soliton
could provide interesting insights into the dual construction, if not e original model itself, but we leave
this for future consideration.

We have also studied the introduction of reflective boundarv ~nditions to the time-axis in Section 3.4,
in the vein of [10]. While seemingly unphysical, such . ~mndary conditions could have applications as a
particular type of initial condition for the system, where th. time coordinate is considered on the half-
line, [0,00), instead. Thus, the boundary conditions disc ...d above would appear as a particular set of
initial conditions that settle into (in the case of a soliton oflecting boundary) a 2-soliton solution. Potential
applications and consequences of this however are . . “or . .ter investigation.

Finally, we close by repeating that, due to the ' /- «..' /-matrices sharing the same r-matrix, the space and
time coordinates in this construction are fully interc. angeable. This means that all of the results described
here will still hold when the space and time ~~ordinates are switched, so that switching the space derivatives
and time derivatives in (3.25) describes t’.e time =volution of an integrable system:

BN i - = 1 =52
S=(SxEN)+— 2%

02( )+264| Iy, @)
L’_i S Sl i - ., anr U g 1 o712 1 SIE] Y ad U )
S= SExE) - If T« § 4§ +S<?2|S‘ —@|z|)+;42(z.(5xs)),

and the results of Section 3.4 car be “iewed instead as a description of (space-like) open boundary conditions
for the time-evolution equations:

=

S o 1 = =
S=i(S x5~ C—QS\SF. (4.2)

This dual constructi- n hs now been applied to the isotropic Landau-Lifshitz model, the non-linear
Schrédinger model (orig mal’y in calar [2] case and later extended to the vector [25] case) and its associated
hierarchy (including, for exa v, the complex modified KdV equation) in [1], and the sine-Gordon model in
[11]. All of these m dels cc 1 be found as special limits of the anisotropic Landau-Lifshitz model [8] and its
hierarchy. Consequc 1tly, it - ould be expected that the fully anisotropic Landau-Lifshitz model also admits
a space-time duality . 7, type, however, an investigation into this is left for future work.
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