Accepted Manuscript

A dual construction of the isotropic Landau-Lifshitz model

Iain Findlay

PII: \quad S0167-2789(18)30559-1
DOI: https://doi.org/10.1016/j.physd.2019.06.003
Reference: PHYSD 32137

To appear in: Physica D

Received date: 23 November 2018
Revised date: 25 March 2019
Accepted date: 2 June 2019

Please cite this article as: I. Findlay, A dual construction of the isotropic Landau-Lifshitz model, Physica D (2019), https://doi.org/10.1016/j.physd.2019.06.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

A Dual Construction of the Isotropic Landau-Lifshitz Model

Iain Findlay ${ }^{\text {a }}$

${ }^{a}$ School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom

Abstract

By interchanging the roles of the space and time coordinates, we descril \geqslant a dual onstruction of the isotropic Landau-Lifshitz model, providing equal-space Poisson brackets and dual \uparrow ' ${ }^{\circ}$ milt nians conserved with respect to space-evolution. This construction is built in the Lax/zero-curvat ،re formalism, where the duality between the space and time dependencies is evident.

Keywords: isotropic Landau-Lifshitz model, Lax pair, r-matrix, _ ${ }^{\text {ro-cur vature condition, dual integrable }}$ model, integrable boundary conditions

1. Introduction

The idea of considering $1+1$ dimensional integrable mode in terms of their "space-evolution", as governed by some equal-space Poisson brackets found by in ?rcr a1_ing the roles of the space and time coordinates was systematically introduced in [1], following the sugge on in [2] for the purposes of identifying integrable defects (that lie in the spatial axis) with Darbou - - \because ekı nd transformations. This concept was applied rigorously to the Lax/zero-curvature construction [3, 4] of the non-linear Schrödinger (NLS) model in [1], and then later proven for the general NLS hier a ryy i.., 5$]$.

In this paper, we apply this equal-space construc: \cap n to the isotropic Landau-Lifshitz model [6, 7], which is also known as the continuous classical Heiconberg magnet (HM) model:

$$
\begin{equation*}
\partial_{t} \vec{S}=\frac{\mathrm{i}}{c^{2}} \vec{S} \times\left(\partial_{x}^{2} \vec{S}\right) \tag{1.1}
\end{equation*}
$$

which depends on the vector $\left.\vec{S}={ }^{\prime} S_{z} S_{y}, z^{\prime}\right)^{T}$. These fields will also be written in the combinations $S_{ \pm}=S_{x} \pm \mathrm{i} S_{y}$, which satisfy the ${ }_{2}$ excı n_{j} je relations:

$$
\begin{equation*}
\left.\left\{S_{ \pm}(x), S_{z}(y)\right\}= \pm S_{ \pm \iota^{\prime} \cdot}-y\right), \quad\left\{S_{+}(x), S_{-}(y)\right\}=-2 S_{z} \delta(x-y) \tag{1.2}
\end{equation*}
$$

These Poisson brackets are four 1 through the r-matrix construction [8]. The HM model has the same underlying r-matrix as the $N^{*}{ }^{c}$ model, namely the Yangian r-matrix (2.2), so hence it arises as a natural next step in the developr ent of th.. dual approach.

Because this equal-s ace pict ie follows in parallel to the usual method for building conserved quantities and higher systems (see [y_{\rfloor}, we also introduce reflective time-like boundary conditions [10] to the HM model by following an equi alent rrocedure to the development of reflective space-like boundary conditions, [12, 13], which have been ap lied to he isotropic Landau-Lifshitz equation in [14].

The HM model is ' 'sn r^{\prime} recent practical interest as a simple model of 1 dimensional ferromagnetism (due to being the cc stinuu' limit of the classical analogue of the quantum XXX spin chain, see $[9,15,16]$ for details), $[17,1$ i 19 19 . T is paper therefore sheds new light on this model by approaching it from a time-like perspective, anan to the standard description in terms of time-evolution.

The pape ; laid out as follows: The remainder of Section 1 defines the basic terms that we will be using througho +. Then, in Section 2 we describe the standard (equal-time) construction of the hierarchy
of conserved quantities and their associated Lax pairs and integrable systems, applyir γ these to the HM model for later comparison. This section starts by constructing the Poisson bracke' ' between the fields in Subsection 2.1, before building the hierarchy of conserved quantities that guaran ee t_{1} integrability of the HM model. This is done for both closed (periodic) boundary conditions in s : section 2.2 and open (reflective) boundary conditions in Subsection 2.3. Subsection 2.3 recalls the re ults ff [14], except using notation that will be consistent with the sections that follow. Finally, we repeat \therefore se same steps for the dual (equal-space) construction of the HM model in Section 3, with the dual Poiss • stru jure constructed in Subsection 3.1, and the hierarchies of dual Hamiltonians (and the corresponr \ldots Lax , airs) for both closed and open boundary conditions are constructed in Subsections 3.2 and 3.4, ${ }^{\circ}$ spe on ${ }^{1} \mathrm{y}$.

1.1. Preliminaries

In terms of the fields $S_{ \pm}$and S_{z}, the equations of motion (1.1) becc ne:

$$
\begin{equation*}
\left.\partial_{t} S_{ \pm}= \pm \frac{1}{c^{2}}\left(S_{ \pm}\left(\partial_{x}^{2} S_{z}\right)-\left(\partial_{x}^{2} S_{ \pm}\right) S_{z}\right), \quad \partial_{t} S_{z}=\frac{1}{n_{\iota}}\left(c^{2} S_{+}\right) S_{-}-S_{+}\left(\partial_{x}^{2} S_{-}\right)\right) \tag{1.3}
\end{equation*}
$$

When referencing the three fields $S_{ \pm}$and S_{z}, we will use the subu wipt $v \in\{+,-, z\}$ to collectively refer to them as S_{σ}. We will also use $\dot{S}_{\sigma}=\partial_{t_{k}} S_{\sigma}$ to denote the derivative of S_{o} with respect to the appropriate time flow ${ }^{1} t_{k}$, and $S_{\sigma}^{\prime}=\partial_{x_{k}} S_{\sigma}$ for the derivative with respect to the ontey ually appropriate space flow. Where there is likely ambiguity however, we will explicitly use eithe ∂_{t}, or $\partial_{x_{k}}$.

It was shown in [7] that the system of equations (12) (1)nn as the compatibility condition of the auxiliary linear problem:

$$
\begin{equation*}
\Psi^{\prime} \equiv \partial_{x} \Psi=U \Psi, \quad \Psi \equiv \partial_{t} \Psi=V \Psi \tag{1.4}
\end{equation*}
$$

where Ψ is an arbitrary vector field, and the 2×2 matı \mp, U and V, depending on the fields S_{σ} as well as some free complex parameter λ, comprise the Lax \wedge ir $[3,4]$ of the system, given by:

$$
\begin{equation*}
U=\frac{1}{2 \lambda} S, \quad \quad \because=\frac{1}{2 \lambda^{2}} S-\frac{1}{2 c^{2} \lambda} S^{\prime} S \tag{1.5}
\end{equation*}
$$

where:

$$
\mathrm{\rho} \quad\left(\begin{array}{cc}
S_{z} & S_{-} \\
S_{+} & -S_{z}
\end{array}\right)
$$

Cross-differentiating the auxiliary linear p. hler gives rise to the following compatibility condition (called the zero-curvature condition) betweer the matıces of the Lax pair:

$$
\begin{equation*}
\Gamma=\dot{U}-V^{\prime}+[U, V] \tag{1.6}
\end{equation*}
$$

such that when the matrices U a. $\mathcal{f} V$ are inserted into this, and the resulting equations are split about powers of λ, the equations of motion, (3), are returned.

2. The Standard Pict' re

2.1. Poisson Brackets

Before we introdum the ω^{\cdots}. picture for (1.3) we first recap the method for constructing the hierarchy of integrable equations and th ir Hamiltonians. The core objects in this construction are the spatial component of the Lax pair, U, nd an s ssociated r-matrix that satisfies the classical Yang-Baxter equation [20]:

$$
\begin{equation*}
0=\left[r_{a b}(\lambda-\mu), r_{a c}(\lambda)\right]+\left[r_{a b}(\lambda-\mu), r_{b c}(\mu)\right]+\left[r_{a c}(\lambda), r_{b c}(\mu)\right], \tag{2.1}
\end{equation*}
$$

[^0]where $\lambda, \mu \in \mathbb{C}$ are some free parameters and the subscripts denote which vector spaces the matrices act on (e.g. $r_{a b}=r \otimes \mathbb{I}$ and $r_{b c}=\mathbb{I} \otimes r$, with $r: V \otimes V \rightarrow V \otimes V$, so that the whole equation cts on $V_{a} \otimes V_{b} \otimes V_{c}$, where the subscripts attached to the vector spaces are merely used to denote whicl indt. corresponds to them, e.g. $r_{a b}$ would act only on the first two). For the HM model, the relevant sol ${ }^{\cdots} \cdot{ }^{\circ}$ n is:
\[

r(\lambda)=\frac{1}{2 \lambda}\left($$
\begin{array}{llll}
1 & 0 & 0 & 0 \tag{2.2}\\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}
$$\right)
\]

This r-matrix is connected to the U-matrix and the equations of motinn for \therefore system (1.3) through the linear algebraic relation ${ }^{2}$ [8]:

$$
\begin{equation*}
\left\{U_{a}(x, \lambda), U_{b}(y, \mu)\right\}_{S}=\left[r_{a b}(\lambda-\mu), U_{a}(x, \lambda)+I_{z}(y,, 11 s x-y)\right. \tag{2.3}
\end{equation*}
$$

which provides an ultra-local Poisson bracket between the fields. 1 se ong he U-matrix (1.5) and r-matrix (2.2) into this relation returns the $\mathfrak{s l}_{2}$ exchange relations, (1.2). . \quad om ther Poisson brackets we can read off a Casimir element that restricts the vector \vec{S} to the surface of the spı» re of radius c, where we have labelled the Casimir c^{2} :

$$
\begin{equation*}
c^{2}=S_{z}^{2}+S_{+} S_{-}=S_{x}^{2} \quad S_{u}^{2}+\sim_{z}^{*} \tag{2.4}
\end{equation*}
$$

2.2. Periodic Boundary Conditions

In order to find conserved quantities that commute $\sqrt{ }$ it $\&$ respect to this Poisson bracket, we start by considering the (spatial) transport matrix, which is a $5 \cdots$-ora red exponential solution to the spatial component of the auxiliary linear problem (1.4) in place of Ψ :

$$
\begin{equation*}
T_{S}(x, y ; \lambda)=\frown \exp \int_{y}^{x} U(\xi) \mathrm{d} \xi \tag{2.5}
\end{equation*}
$$

For a periodic system on the interval $[-L, L]$, i. where $S_{\sigma}(L)=S_{\sigma}(-L)$, the full monodromy matrix is $T_{S}(\lambda)=T_{S}(L,-L ; \lambda)$. Due to the U-matı ${ }^{\text {^s sa s }}$ sfying the linear algebraic relation, (2.3), the monodromy matrix can be seen to satisfy a quadr tic olgetaic relation [21, 22]:

$$
\begin{equation*}
\left\{T_{S, a^{\prime}} \lambda\right), \ddots_{b}(\prime,\}_{S}=\left[r_{a b}(\lambda-\mu), T_{S, a}(\lambda) T_{S, b}(\mu)\right] . \tag{2.6}
\end{equation*}
$$

Consequently, if we define a ne $\mathcal{V} \mathrm{O}_{\llcorner } \cdot{ }^{\circ} \mathrm{ct}$, called the transfer matrix $\mathfrak{t}_{S}(\lambda)$, as the trace of the monodromy matrix:

$$
\begin{equation*}
\mathfrak{t}_{S}(\lambda)=\operatorname{tr}\left\{T_{S}(\lambda)\right\} \tag{2.7}
\end{equation*}
$$

then this can be shown $\dagger \supset \mathrm{Pu}$. on commute with itself for different values of the spectral parameter λ. Because of this, if we $€ \operatorname{par} 1 \mathfrak{t}_{S}$ as a formal power series in $\lambda, \mathfrak{t}_{S}=\sum_{k} \lambda^{k} \mathfrak{t}_{S}^{(k)}$, then these coefficients commute:

$$
\begin{equation*}
\left\{\mathfrak{t}_{S}^{(k)}, \mathfrak{t}_{S}^{(j)}\right\}_{S}=0 \tag{2.8}
\end{equation*}
$$

As such, the terms i this ex ansion $\mathfrak{t}_{S}^{(k)}$ can be seen as "Hamiltonians" governing the evolution of the system
 Liouville, as th $\mathfrak{t}_{S}^{(j)} \mathrm{w}^{\circ} \mathrm{h} j \neq k$ will provide the infinite tower of conserved quantities.

[^1]Unfortunately, the "Hamiltonians" generated in this manner will be non-local. To ircumvent this, we will consider the coefficients in the expansion of the logarithm of this, $\mathcal{G}_{S}(\lambda)=\ln \left(\mathfrak{t}_{S}(`)\right.$. The logarithm is chosen as it acts to remove the non-locality introduced by the exponential in (2.5) anc in tı diagonalisation below, (2.9).

The task is therefore to find the expansion of $\mathfrak{t}_{S}(\lambda)$ in some limit of λ. For + te Lax pair (1.5) the appropriate limit is $\lambda \rightarrow 0^{+}$. In order to avoid evaluating the path-ordered c nonewial, we consider a diagonalisation of the transport matrix [9]:

$$
\begin{equation*}
T_{S}(x, y ; \lambda)=\left(\mathbb{I}+W_{S}(x ; \lambda)\right) \mathrm{e}^{Z_{S}(x, y ; \lambda)}\left(\mathbb{I}+W_{S}(y ; \vdots)^{-}\right. \tag{2.9}
\end{equation*}
$$

where W_{S} and Z_{S} are wholly anti-diagonal and diagonal matrices, res ectivel. If we insert this diagonalisation into the spatial half of the auxiliary linear problem, the diagonc ' and ar i-diagonal components can be separated into two relations:

$$
\begin{align*}
0 & =W_{S}^{\prime}+\left[W_{S}, U_{D}\right]+W_{S} U_{A} W-J_{A} \\
Z_{S}^{\prime} & =U_{D}+U_{A} W_{S} \tag{2.10}
\end{align*}
$$

where U_{D} and U_{A} are the diagonal and anti-diagonal compon ts of the U-matrix, respectively. If we expand W_{S} and Z_{S} in powers of λ, with coefficients $W_{S}^{(k)}$ and $Z_{S}^{(k)}{ }_{\llcorner }{ }^{\wedge}$: :

$$
W_{S}(\lambda)=\sum_{k=0}^{\infty} \lambda^{k} W_{S}^{(k)}, \quad Z_{S}(\lambda)=\sum_{k=-1}^{\infty} \lambda^{k} Z_{S}^{(k)}
$$

we can split (2.10) into a series of recurrence relations (. Aking use of how U only depends on λ^{-1}):

$$
\begin{aligned}
& \left.0=\left[W_{S}^{(0)}, U_{D}\right]+W_{S}^{(0)} U_{A} W_{S}^{(0)}-U_{A}, \quad \quad 0={ }^{\prime} W_{S}^{(k)}\right)^{\prime}+\left[W_{S}^{(k+1)}, U_{D}\right]+\sum_{j=0}^{k+1} W_{S}^{(k+1-j)} U_{A} W_{S}^{(j)}, \\
& \left(Z_{S}^{(-1)}\right)^{\prime}=U_{D}+U_{1} W_{S}^{(0)}, \quad\left(Z_{S}^{(k)}\right)^{\prime}=U_{A} W_{S}^{(k+1)},
\end{aligned}
$$

which we can recursively solve to find e er hight coefficients in the series expansions of W_{S} and Z_{S}. The first few terms in the Z_{S}-series are:

$$
\begin{align*}
Z_{S}^{(-1)} & \cdot\left(\begin{array}{cc}
1 & 0 \\
r & -1
\end{array}\right) \\
Z_{S}^{(L)} & \frac{1}{-} \int_{-L}^{L} \frac{S_{+} S_{-}^{\prime}-S_{+}^{\prime} S_{-}}{c+S_{z}}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \mathrm{d} x \tag{2.11}\\
\zeta_{S}^{1)}= & \frac{-1}{4 c^{3}} \int_{-L}^{L}\left(S_{+}^{\prime} S_{-}^{\prime}+\left(S_{z}^{\prime}\right)^{2}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \mathrm{d} x
\end{align*}
$$

The reason for doins thi st t^{r} at if we insert the decomposition into the definition of the transfer matrix, (2.7), the explicit W depeı ' \quad n \lrcorner cancels out, leaving:

$$
\mathfrak{t}_{S}(\lambda)=\operatorname{tr}\left\{\mathrm{e}^{Z_{S}(\lambda)}\right\}=\mathrm{e}^{Z_{11, S}(\lambda)}+\mathrm{e}^{Z_{22, S}(\lambda)} .
$$

We are actuall ${ }^{\text {insteat }}{ }^{1}$ interested in the expansion of $\mathcal{G}_{S}=\ln \left(\mathfrak{t}_{S}\right)$, which is then:

$$
r(\lambda)=\ln \left(\mathrm{e}^{\lambda^{-1} Z_{11, S}^{(-1)}+Z_{11, S}^{(0)}+\lambda Z_{11, S}^{(1)}+\ldots}+\mathrm{e}^{\lambda^{-1} Z_{22, S}^{(-1)}+Z_{22, S}^{(0)}+\lambda Z_{22, S}^{(1)}+\ldots}\right) .
$$

As the leadin $r_{c} r_{i}$ der terms in each of the exponents are $c L \lambda^{-1}$ and $-c L \lambda^{-1}$, and we are considering the limit as $\lambda \rightarrow 0^{+}$, the rrst exponential will be of the form $\mathrm{e}^{c L \lambda^{-1}}$, so will dominate over the second exponential,
which will be of the form $\mathrm{e}^{-c L \lambda^{-1}}$, which decays exponentially in the limit $\lambda \rightarrow 0^{+}$. The expansion of $\mathcal{G}_{S}(\lambda)$ is therefore simply:

$$
\mathcal{G}_{S}(\lambda)=\lambda^{-1} Z_{11, S}^{(-1)}+Z_{11, S}^{(0)}+\lambda Z_{11, S}^{(1)}+\ldots
$$

The first three conserved quantities appearing in this expansion can then be read ${ }^{f}$.on the Z-series:

$$
\begin{align*}
\mathcal{G}_{S}^{(-1)} & =c L \\
\mathcal{G}_{S}^{(0)} & =\frac{1}{4 c} \int_{-L}^{L} \frac{S_{+} S_{-}^{\prime}-S_{+}^{\prime} S_{-}}{c+S_{z}} \mathrm{~d} x \tag{2.12}\\
\mathcal{G}_{S}^{(1)} & =\frac{-1}{4 c^{3}} \int_{-L}^{L}\left(S_{+}^{\prime} S_{-}^{\prime}+\left(S_{z}^{\prime}\right)^{2}\right) \mathrm{d} x
\end{align*}
$$

the second and third of which can be recognised as the total momentum and Ha iltonian for the HM model, respectively (up to a factor of $-2 c$) [9]:

$$
\begin{equation*}
P_{S}=-2 c \mathcal{G}_{S}^{(0)}, \quad H_{S}=-2 y_{S}^{(1)} \tag{2.13}
\end{equation*}
$$

Each of the conserved quantities $\mathcal{G}_{S}^{(k)}$ generated through the exp. nsion of \mathcal{G}_{S} can be seen to describe the evolution of the system along a distinct time flow t_{k}, so $t_{1}+{ }^{+}$the quations of motion for each of these systems would be given by:

$$
\begin{equation*}
\partial_{t_{k}} S_{\sigma}=\left\{\mathcal{G}_{S}^{(k)}\right. \tag{2.14}
\end{equation*}
$$

Consequently, each of these systems should have some ass iated Lax pair. As we use the U-matrix to generate the conserved quantities we will be looking $u^{\prime} \quad$ vonerator \mathbb{V} that produces the V-matrices $V^{(k)}$ associated to each time flow t_{k}. We do so by first equa iv g Hamilton's equation (as applied to U) and the zero-curvature condition:

$$
\begin{aligned}
\mathbb{V}_{b}^{\prime}(\lambda, \mu)-\left[U_{b}(\lambda), \mathbb{V}_{b}(\lambda, \mu)\right] & =\partial_{\bar{t}} \iota_{\imath}(\lambda)=\left\{\ln \left(\operatorname{tr}_{a}\left\{T_{S, a}(\mu)\right\}\right), U_{b}(\lambda)\right\}_{S} \\
& =\stackrel{\sim}{\sim}\left(\mu, \mathrm{cr}_{a}\left\{\left\{T_{S, a}(\mu), U_{b}(\lambda)\right\}_{S}\right\}\right.
\end{aligned}
$$

where the \bar{t} is used to denote some master time flow and the vector space subscripts are introduced to distinguish the space being traced over (${ }^{+}$ne $a, ~$ ctor space). Using the algebraic relations (2.3) and (2.6), we can extract from this the generator c the $V-1$ atrices associated to each time flow t_{k}, [20]:

$$
\begin{equation*}
\mathbb{V}_{b}(x ; \lambda, \mu)=\mathfrak{t}_{c}^{-}(\mu) \operatorname{tr}_{a}\left\{-S, a(L, x ; \mu) r_{a b}(\mu-\lambda) T_{S, a}(x,-L ; \mu)\right\}, \tag{2.15}
\end{equation*}
$$

such that the V-matrix associated to ${ }^{h} t_{k} \dagger^{\prime}$ me flow appears as the coefficient of μ^{k} in the series expansion of this about μ. Using the diagon disation the monodromy matrix, the limit $\mu \rightarrow 0^{+}$of the exponential of $Z_{S}(\mu)$, and the cyclic properties or he trace, this can be simplified to:

$$
\mathbb{V}_{b}(x ; \lambda, \mu)=\iota,\left\{r_{a b}(\mu-\lambda)\left(\mathbb{I}+W_{S, a}(x ; \mu)\right) e_{11, a}\left(\mathbb{I}+W_{S, a}(x ; \mu)\right)^{-1}\right\}
$$

where $e_{i j}$ is the 2×2 matrix ι. t. obeys $\left(e_{i j}\right)_{k l}=\delta_{i k} \delta_{j l}$. Finally, as the chosen r-matrix satisfies $r_{a b} M_{a}=$ $M_{b} r_{a b}$ for any 2×2 matr $\times M$, this can be simplified further to lie solely in the b vector space (so that we may drop the subscript 1:

$$
\begin{equation*}
\pi(x ; \lambda, \mu)=\frac{1}{\mu-\lambda}\left(\mathbb{I}+W_{S}(x ; \mu)\right) e_{11}\left(\mathbb{I}+W_{S}(x ; \mu)\right)^{-1} \tag{2.16}
\end{equation*}
$$

If we expand this abc ${ }^{+} n$, vers of μ in the limit as $\mu \rightarrow 0^{+}$, the first three terms are:

$$
\begin{align*}
\mathbb{V}^{(0)} & =\frac{-1}{4 \lambda} \mathbb{I}-\frac{1}{4 c \lambda} S \\
\mathbb{V}^{(1)} & =\frac{-1}{4 \lambda^{2}} \mathbb{I}-\frac{1}{4 c \lambda^{2}} S+\frac{1}{4 c^{3} \lambda} S^{\prime} S \tag{2.17}\\
\mathbb{V}^{(2)} & =\frac{-1}{4 \lambda^{3}} \mathbb{I}-\frac{1}{4 c \lambda^{3}} S+\frac{1}{4 c^{3} \lambda^{2}} S^{\prime} S-\frac{1}{4 c^{3} \lambda} S^{\prime \prime}-\frac{3}{8 c^{5} \lambda}\left(S^{\prime}\right)^{2} S
\end{align*}
$$

After removing the overall commuting constant factors and scaling by $-2 c$, the seco d of these can be identified as the V-matrix in the Lax pair (1.5):

$$
V=-2 c\left(\mathbb{V}^{(1)}+\frac{1}{4 \lambda^{2}} \mathbb{I}\right)
$$

It is the identification of U with $\mathbb{V}^{(0)}$ up to some constant factors, that susc ${ }^{\text {sts }}$ us. introduction of a dual picture for this model, with the roles of time and space switched. Beff we 1 h astigate this though, we briefly discuss how to adapt this construction to account for non-period: $\dot{\circ}$ bo n' nry conditions.

2.3. Open Boundary Conditions

 are associated to the $\pm L$ boundaries, and have a dependence on thr opectraı parameter and some additonal constants. In order for them to be used in generating conserved q ant ${ }^{+}$ses we require that they satisfy the classical analogue of the (non-dynamical) quantum reflection eqיation [13].

$$
\begin{equation*}
0=\left[r_{a b}(\lambda-\mu), K_{ \pm, a}(\lambda) K_{ \pm, b}(\mu)\right]+K_{ \pm, a}(\lambda) r_{a b}(\lambda+\mu) K_{+, b}(\mu)-{ }_{ \pm, b}(\mu) r_{a b}(\lambda+\mu) K_{ \pm, a}(\lambda) \tag{2.18}
\end{equation*}
$$

For the r-matrix (2.2), the most general choice of $K_{ \pm}-$matıı. (up w some rescaling and gauge transformations) is [23]:

$$
K_{ \pm}(\lambda)=\alpha_{ \pm} \mathbb{I}+\lambda\left(\begin{array}{cc}
& \beta_{ \pm} \tag{2.19}\\
\gamma_{ \pm} & \delta_{ \pm}
\end{array}\right)
$$

where $\alpha_{ \pm}, \beta_{ \pm}, \gamma_{ \pm}$, and $\delta_{ \pm}$are some constants that de ${ }_{i} r^{i}$, e the boundary conditions being considered ${ }^{3}$. If these are given a time dependence, then these $\mathrm{w}{ }^{1 \mathrm{~d}}$ be tynamical boundary conditions. For this paper, however, we consider only the non-dynamical case $w \cdot e_{1}$. hey have no time dependence (and when we move on to discuss time-like boundary conditions, v - chall $`$ ssume that the equivalent constants have no space dependence). These $K_{ \pm}$-matrices are introduced ${ }^{+}$o the transfer matrix \mathfrak{t}_{S} as [12, 13]:

$$
\begin{equation*}
\overline{\mathfrak{t}}_{S}(\lambda)=\operatorname{tr}\left\{K_{+}(\lambda) \quad(L,-L ; \lambda) K_{-}(\lambda) T_{S}^{-1}(L,-L ;-\lambda)\right\}, \tag{2.20}
\end{equation*}
$$

and from this definition it follows that:

$$
\left\{\mathfrak{n}^{\prime}(1), \overline{\mathfrak{t}}_{S}(\mu)\right\}_{S}=0 .
$$

Much as in the periodic case, ve $\mathrm{w}_{\perp}{ }^{\circ}$ er asider the generator $\overline{\mathcal{G}}_{S}(\lambda)=\ln \left(\overline{\mathfrak{t}}_{S}(\lambda)\right)$, as this will supply us with the known Hamiltonian. $\operatorname{Tr}{ }^{1}{ }^{1}$ iagonalise the T_{S}^{-1}, we use:

$$
T_{S}^{-1}(x, 1, \quad \text {) })=\left(\mathbb{I}+W_{S}(y ;-\lambda)\right) \mathrm{e}^{-Z_{S}(x, y ;-\lambda)}\left(\mathbb{I}+W_{S}(x ;-\lambda)\right)^{-1}
$$

in place of (2.9). Consequen. \quad as the highest order term in Z_{S} is λ^{-1}, the effect of the - sign outside of the Z_{S} and the change ir sign of i a λ will cancel out, so that the expansion of the exponential term in the limit $\lambda \rightarrow 0^{+}$is:

$$
\begin{equation*}
Z_{S}(x, y ;-\lambda) \rightarrow \mathrm{e}^{-Z_{11, S}(x, y ;-\lambda)} e_{11}+\mathcal{O}\left(\mathrm{e}^{-\lambda^{-1}}\right) \tag{2.21}
\end{equation*}
$$

Consequently, the e pansic of the generator $\overline{\mathcal{G}}_{S}$ is:

$$
\begin{gathered}
\left.\overline{\mathcal{G}}_{S}(\lambda)=\Lambda_{1+, \sim} \lambda\right)-Z_{11, S}(-\lambda)+\ln \left(\left[\left(\mathbb{I}+W_{S}(L ;-\lambda)\right)^{-1} K_{+}(\lambda)\left(\mathbb{I}+W_{S}(L ; \lambda)\right)\right]_{11}\right) \\
-\ln \left(\left[\left(\mathbb{I}+W_{S}(-L ; \lambda)\right)^{-1} K_{-}(\lambda)\left(\mathbb{I}+W_{S}(-L ;-\lambda)\right)\right]_{11}\right)
\end{gathered}
$$

[^2]where the $[. . .]_{i j}$ indicates that we are only considering the $i j$ th component of the matrix : nside the brackets. If we expand this expression, the order λ^{0} coefficient is constant while the order λ^{1} co ficient is:
\[

$$
\begin{align*}
\overline{\mathcal{G}}_{S}^{(1)}= & \frac{-1}{2 c^{3}} \int_{-L}^{L}\left(S_{+}^{\prime} S_{-}^{\prime}+\left(S_{z}^{\prime}\right)^{2}\right) \mathrm{d} x+\frac{1}{2 \alpha_{+} c}\left[2 \delta_{+} S_{z}+\beta_{+} S_{+}+\gamma_{+} S_{-}\right]_{x=+L} \tag{2.22}\\
& +\frac{1}{2 \alpha_{-} c}\left[2 \delta_{-} S_{z}+\beta_{-} S_{+}+\gamma_{-} S_{-}\right]_{x=-L}
\end{align*}
$$
\]

This can be recognised as $\mathcal{G}_{S}^{(1)}$ from (2.12), up to boundary contributions ard ar ow all factor. As $\mathcal{G}_{S}^{(0)}$ was associated to the total momentum of the system, and $\overline{\mathcal{G}}_{S}^{(0)}$ is trivial, we can 1. rr that the momentum is no longer conserved when boundary conditions are introduced.

By following an analogous derivation to that of (2.15), we can derı ~ the generator of the V-matrices corresponding to the conserved quantities generated by $\overline{\mathcal{G}}_{S}$. There re three cases to consider in this setting [24], corresponding to the V-matrices in the bulk (labelled $\overline{\mathbb{V}}_{\mathrm{B}}$), ar $\left.{ }^{1} \mathrm{t}^{1}\right\lrcorner V$ - natrices lying at each of the two boundaries (labelled $\overline{\mathbb{V}}_{ \pm}$for the $x= \pm L$ boundaries, respectivel ${ }_{j}$) The or erator of the bulk V-matrices is:

$$
\begin{align*}
\overline{\mathbb{V}}_{\mathrm{B}, b}(x ; \lambda, \mu)=\overline{\mathfrak{t}}_{S}^{-1}(\mu) \operatorname{tr}_{a} & \left\{K _ { + , a } (\mu) T _ { S , a } (L , x ; \mu) r _ { a b } \left(\mu-\lambda,{ }_{\Gamma^{C} a}(x,-\tau ; \mu) K_{-, a}(\mu) T_{S, a}^{-1}(-\mu)\right.\right. \\
+ & \left.K_{+, a}(\mu) T_{S, a}(\mu) K_{-, a}(\mu) T_{S, a}^{-1}(x,-r:-\mu) r_{a b}(\mu+\lambda) T_{S, a}^{-1}(L, x ;-\mu)\right\}, \tag{2.23}
\end{align*}
$$

while the generator of the V-matrices at the positive bounc. ${ }^{-} \mathrm{v}$ is:

$$
\begin{equation*}
\left.\overline{\mathbb{V}}_{+, b}(\lambda, \mu)=\overline{\mathfrak{t}}_{S}^{-1}(\mu) \operatorname{tr}_{a}\left\{K_{-, a}(\mu) T_{S, a}^{-1}(-\mu)\left(K_{+, a}(\mu) \sim \mu-\lambda\right)+r_{a b}(\mu+\lambda) K_{+, a}(\mu)\right) T_{S, a}(\mu)\right\} \tag{2.24}
\end{equation*}
$$

and the generator of the V-matrices at the negative bu ndary is:

$$
\begin{equation*}
\overline{\mathbb{V}}_{-, b}(\lambda, \mu)=\overline{\mathfrak{t}}_{S}^{-1}(\mu) \operatorname{tr}_{a}\left\{K_{+, a}(\mu) T_{S, a}(\mu)\left(r_{a b \backslash r}-\lambda ر K_{-, a}(\mu)+K_{-, a}(\mu) r_{a b}(\mu+\lambda)\right) T_{S, a}^{-1}(-\mu)\right\} \tag{2.25}
\end{equation*}
$$

If we expand these three generators ab μ_{0}, as $\mu \rightarrow 0^{+}$, the order μ^{0} contributions from each generator are trivial, corresponding to $\overline{\mathcal{G}}_{S}^{(0)}$ being r, mstant. At order μ^{1}, they are:

$$
\begin{align*}
\overline{\mathbb{V}}_{\mathrm{B}}^{(1)}(x ; \lambda) & =\frac{-1}{2 \lambda^{2}} \mathbb{I}--\frac{1}{c \lambda^{2}}{ }^{\varsigma}+\frac{1}{c^{3} \lambda} S^{\prime} S \\
\overline{\mathbb{V}}_{ \pm}^{(1)}(\lambda) & =\frac{-1}{2 \lambda^{2}} \mathbb{I}-\frac{1}{2 c \lambda^{2}}{ }^{2}-\frac{1}{4 \alpha_{ \pm} c \lambda}\left(\begin{array}{cc}
\beta_{ \pm} S_{+}-\gamma_{ \pm} S_{-} & 2\left(\delta_{ \pm} S_{-}-\beta_{ \pm} S_{z}\right) \\
2\left(\gamma_{ \pm} S_{z}-\delta_{ \pm} S_{+}\right) & \gamma_{ \pm} S_{-}-\beta_{ \pm} S_{+}
\end{array}\right) \tag{2.26}
\end{align*}
$$

In order to extract the bov , w. "y conditions from the open Hamiltonian, we simply calculate the equations of motion as usual (throug', the Poisson brackets and Hamilton's equation), except gathering all of the boundary terms that arise (elu. r from the integration of total derivatives in the bulk Hamiltonian, or from the Poisson bracket of $\mathrm{t} r$ £ fie'ds w.th the boundary Hamiltonians). We then impose the sewing conditions that the equations of x otir 1 av y from the boundary smoothly transition to those at the boundary, i.e. that $\lim _{x \rightarrow \pm L} \dot{S}_{\sigma}(x)=\dot{S}_{\sigma}\left(\sim^{\boldsymbol{r}}\right)$

Similarly, in or er to xtract the boundary conditions from the V-matrices, the condition that the equations of motion zgree at ihe boundary manifests as the condition that $\lim _{x \rightarrow \pm L} \overline{\mathbb{V}}_{\mathrm{B}, b}=\overline{\mathbb{V}}_{ \pm, b}$. Performing either of these limits y. ${ }^{1 \lambda}$, ine same constraint on the boundary constants and the S_{σ} at the boundary [14]:

$$
\begin{align*}
\alpha_{ \pm}\left[S_{+} S_{-}^{\prime}-S_{+}^{\prime} S_{-}\right]_{x= \pm L} & = \pm c^{2}\left[\beta_{ \pm} S_{+}-\gamma_{ \pm} S_{-}\right]_{x= \pm L} \\
\alpha_{ \pm}\left[S_{+} S_{z}^{\prime}-S_{+}^{\prime} S_{z}\right]_{x= \pm L} & = \pm c^{2}\left[\delta_{ \pm} S_{+}-\gamma_{ \pm} S_{z}\right]_{x= \pm L} \tag{2.27}\\
\alpha_{ \pm}\left[S_{-} S_{z}^{\prime}-S_{-}^{\prime} S_{z}\right]_{x= \pm L} & = \pm c^{2}\left[\delta_{ \pm} S_{-}-\beta_{ \pm} S_{z}\right]_{x= \pm L}
\end{align*}
$$

3. The Dual Model

By considering the equal prominence of the space and time coordinates in the Lagrs g_{10}. picture of a $1+1$ dimensional system, a dual Hamiltonian formulation of the non-linear Schrödinger model was constructed in [2], which had equal-space Poisson brackets (in place of the equal-time Poisson br cket) and dual integrals of motion that are conserved with respect to space-evolution rather than time-e, ${ }^{1}{ }_{11}+$ on. In this paper we focus on the Lax pair construction rather than the Lagrangian picture emphasin $\gamma^{\prime} \mathrm{in}_{\perp}{ }^{\circ}$ vious work.

In this Section, we build the dual construction of the isotropic Landau-Lifshitz 1. del in the language of Lax pairs. It follows mostly in parallel with Section 2, with the only divergr aces ${ }^{\text {² ing where we emphasise }}$ important differences between the two pictures, such as in the limiting pre ${ }^{\circ} \mathrm{d}$, e of the exponential in the case of open boundary conditions, and where we digress to give an examnls of $_$w this dual picture can be used to find integrable systems depending non-trivially on additional fi Ids.

The final subsection 3.4 considers the introduction of time-like b undary conditions. This idea was introduced in [10], where it was applied to the non-linear Schrödingan mo. ${ }^{\text {¹ }}$

3.1. Poisson Brackets

The first step in this dual construction is defining the equal-space 1 jisson brackets (3.5) through the use of the r-matrix and an analogue of the linear algebraic relatic. (2.3) However, as the hierarchy will now describe a series of commuting space flows, the S_{σ}^{\prime} in the $V-\ldots{ }^{-1}+$ rix (1.5) will all be derivatives with respect to a specific space-flow, namely the 0th order flow x_{0} (as will h — an later). Consequently, to prevent later confusion, we define these as some new fields, Σ_{σ}. When w look at the 0th order Hamiltonian or V-matrix (that is, those that provide the original equations of $\mathrm{m}^{\wedge+\text { inn (1.0) }) \text {, we will find as part of the space-evolution }}$ equations the identification $\Sigma_{\sigma}=\partial_{x_{0}} S_{\sigma}$. Otherwise, t_{1} 'se ν_{σ} will be treated as entirely independent fields, as can be seen in Subsection 3.3.

With these new fields, the V-matrix that we cosic r is.

$$
\begin{equation*}
V=\frac{-}{2 \lambda^{-}}-\frac{1}{2 c^{2} \lambda} \Sigma S \tag{3.1}
\end{equation*}
$$

with:

$$
\Sigma=\left(\begin{array}{cc}
\Sigma_{z} & \Sigma_{-} \\
\Sigma_{+} & -\Sigma_{z}
\end{array}\right)
$$

While the Poisson brackets were our \perp from the U - and r-matrices via (2.3), we assume that a similar equation exists for the V-matrices. na. ly $[1]$:

$$
\begin{equation*}
\left.\left\{V_{a}\left(t_{1}, \lambda\right), V_{\left(v_{-}\right.} u\right)\right\}_{T}=\left[r_{a b}(\lambda-\mu), V_{a}\left(t_{1}, \lambda\right)+V_{b}\left(t_{2}, \mu\right)\right] \delta\left(t_{1}-t_{2}\right) \tag{3.2}
\end{equation*}
$$

Inserting both the V-matrix the r-matrix into this expression, we find a collection of Poisson brackets between the various fields:

$$
\begin{align*}
& \left\{S_{ \pm}\left(t_{1}, S_{z}\left(t_{2}\right)\right\}_{T}=\left\{S_{+}\left(t_{1}\right), S_{-}\left(t_{2}\right)\right\}_{T}=0,\right. \\
& \left\{S_{-}\left(t_{1}\right) \Sigma_{z}\left(t_{2}\right)\right\}_{T}=\left\{S_{z}\left(t_{1}\right), \Sigma_{ \pm}\left(t_{2}\right)\right\}_{T}=S_{ \pm} S_{z} \delta\left(t_{1}-t_{2}\right), \\
& \left\{\sim_{\sim}^{\sim}(t), \Sigma_{z}\left(t_{2}\right)\right\}_{T}=-S_{+} S_{-} \delta\left(t_{1}-t_{2}\right), \\
& \left\{\text { ~ }\left(t_{1}\right), \Sigma_{ \pm}\left(t_{2}\right)\right\}_{T}=S_{ \pm}^{2} \delta\left(t_{1}-t_{2}\right) \text {, } \tag{3.3}\\
& \left\{S_{\perp}\left(t_{1}\right), \Sigma_{\mp}\left(t_{2}\right)\right\}_{T}=-\left(2 S_{z}^{2}+S_{+} S_{-}\right) \delta\left(t_{1}-t_{2}\right), \\
& \left\{\Sigma_{ \pm}\left(t_{1}\right), \Sigma_{z}\left(t_{2}\right)\right\}_{T}=\left(S_{ \pm} \Sigma_{z}-\Sigma_{ \pm} S_{z}\right) \delta\left(t_{1}-t_{2}\right), \\
& \left\{\Sigma_{+}\left(t_{1}\right), \Sigma_{-}\left(t_{2}\right)\right\}_{T}=\left(S_{+} \Sigma_{-}-\Sigma_{+} S_{-}\right) \delta\left(t_{1}-t_{2}\right) .
\end{align*}
$$

As well as $x_{1}-{ }^{+}$the Casimir element $c^{2}=S_{z}^{2}+S_{+} S_{-}$with the original model, these brackets have an additional cos ${ }^{\wedge}$ uting quantity:

$$
\begin{equation*}
\tilde{c}=2 S_{z} \Sigma_{z}+S_{+} \Sigma_{-}+S_{-} \Sigma_{+} \tag{3.4}
\end{equation*}
$$

where, in reference to when $\Sigma_{\sigma}=\partial_{x_{0}} S_{\sigma}$ in the HM model, we choose to set $\tilde{c}=0$. Consequently, when the HM model is considered and we can write the Σ_{σ} directly as the derivatives of t 。 S_{σ}, (3.4) becomes redundant as it is merely the derivative of the original Casimir, (2.4). At any othe: leve f the hierarchy however, we cannot directly relate the Σ_{σ} and the S_{σ}, so the two Casimirs are dist;

Introducing the fields Σ_{x}, Σ_{y}, and Σ_{z} in analogy to S_{x}, S_{y}, and S_{z}, these Poiss a br ckets can be written more compactly by using the indices $i, j \in\{x, y, z\}$:

$$
\begin{align*}
\left\{S_{i}\left(t_{1}\right), S_{j}\left(t_{2}\right)\right\}_{T} & =0 \\
\left\{S_{i}\left(t_{1}\right), \Sigma_{j}\left(t_{2}\right)\right\}_{T} & =\left(S_{i} S_{j}-c^{2} \delta_{i j}\right) \delta\left(t_{1}-t_{2}\right) \tag{3.5}\\
\left\{\Sigma_{i}\left(t_{1}\right), \Sigma_{j}\left(t_{2}\right)\right\}_{T} & =\left(S_{i} \Sigma_{j}-S_{j} \Sigma_{i}\right) \delta\left(t_{1}-t_{\rho}\right)
\end{align*}
$$

where the two Casimir elements are now:

$$
\begin{align*}
c^{2} & =S_{x}^{2}+S_{y}^{2}+S_{z}^{2} \\
0 & =S_{x} \Sigma_{x}+S_{y} \Sigma_{y}+S_{z} \Sigma_{z} \tag{3.6}
\end{align*}
$$

By defining the quantities:

$$
\begin{equation*}
\psi_{1}=S_{x}^{2}, \quad \phi_{1}=\frac{1}{2 c^{2}}\left(\frac{\Sigma_{z}}{S_{z}}-\frac{\Sigma_{x}}{S_{x}}\right), \quad \psi_{.}=\Sigma_{y}^{2} \quad \phi_{2}=\frac{1}{2 c^{2}}\left(\frac{\Sigma_{z}}{S_{z}}-\frac{\Sigma_{y}}{S_{y}}\right) \tag{3.7}
\end{equation*}
$$

the above Poisson brackets can be written as a canonica' nair (where we use the 2 Casimir elements to discount two of the fields):

$$
\begin{equation*}
\left\{\psi_{1}\left(t_{1}\right), \psi_{2}\left(t_{2}\right)\right\}_{T}=\left\{\phi_{1}\left(t_{1}\right), \phi_{2}\left(t_{2}\right)\right\}_{T}=0, \quad\left\{\psi_{i}\left(t_{1}\right), \phi_{j}\left(t_{2}\right)\right\}_{T}=\delta_{i j} \delta\left(t_{1}-t_{2}\right) \tag{3.8}
\end{equation*}
$$

3.2. Periodic Boundary Conditions

In both this section and the next (where nnen boundary conditions are considered), we consider a system that lies on the interval $[-\tau, \tau]$, for some $\tau>0$. The periodic boundary conditions in this setting are then $S_{\sigma}(\tau)=S_{\sigma}(-\tau)$ and $\Sigma_{\sigma}(\tau)=\Sigma_{\sigma}(-\tau)$.

The construction of the dual mo del f llows in parallel with Section 2.2. The first object constructed is therefore the equal-space monodromy atri,T_{T}, which is a solution to the temporal half of the auxiliary linear problem, (1.4), in place of Ψ. This _s diagonalised (by analogy to the standard picture discussed in Section 2) through the use of a diag al matrix Z_{T} and an anti-diagonal matrix W_{T} :

$$
\begin{align*}
T_{T}\left(1, t_{2} \lambda\right) & =\mathrm{P} \exp \int_{t_{2}}^{t_{1}} V(\xi) \mathrm{d} \xi \tag{3.9}\\
& =\left(\mathbb{I}+W_{T}\left(t_{1} ; \lambda\right)\right) \mathrm{e}^{Z_{T}\left(t_{1}, t_{2} ; \lambda\right)}\left(\mathbb{I}+W_{T}\left(t_{2} ; \lambda\right)\right)^{-1}
\end{align*}
$$

Because we have chosen $t_{1}++$ ee V-matrices satisfy a linear algebraic relation of the form (3.2), the full equal-space monodr my m ${ }^{-t r i x} T_{T}(\lambda)=T_{T}(\tau,-\tau ; \lambda)$ will satisfy a quadratic algebraic relation analogous to (2.6):

$$
\begin{equation*}
\left\{T_{T, a}(\lambda), T_{T, b}(\mu)\right\}_{T}=\left[r_{a b}(\lambda-\mu), T_{T, a}(\lambda) T_{T, b}(\mu)\right] . \tag{3.10}
\end{equation*}
$$

Taking the \backslash ace of he equal-space monodromy matrix we get the equal-space transfer matrix, \mathfrak{t}_{T} :

$$
\begin{align*}
\mathfrak{t}_{T}(\lambda) & =\operatorname{tr}\left\{T_{T}(\lambda)\right\} \\
& =\mathrm{e}^{Z_{11, T}(\lambda)}+\mathrm{e}^{Z_{22, T}(\lambda)} \tag{3.11}
\end{align*}
$$

which, by virtue of the equal-space monodromy matrix satisfying the quadratic relat ${ }^{\circ}$ on (3.10), Poisson commute for different spectral parameters:

$$
\left\{\mathfrak{t}_{T}(\lambda), \mathfrak{t}_{T}(\mu)\right\}_{T}=0
$$

Finally, as these two series Poisson commute, so will each pair of the coefficients ${ }^{(k)}$. Therefore, if we take the logarithm of these, $\mathcal{G}_{T}(\lambda)=\ln \left(\mathfrak{t}_{T}(\lambda)\right)$, we have that the coefficients in th. serıt 'xpansion of $\mathcal{G}_{T}(\lambda)$ Poisson commute with one another:

$$
\begin{equation*}
\left\{\mathcal{G}_{T}^{(k)}, \mathcal{G}_{T}^{(j)}\right\}_{T}=0 \tag{3.12}
\end{equation*}
$$

As in Section 2.2, in order to expand \mathcal{G}_{T}, we need to consider the lf wing oru r contribution in each of $Z_{11, T}$ and $Z_{22, T}$. Consequently, if we insert the diagonalisation of T_{T} is to the t mporal half of the auxiliary linear problem, (1.4), then we find relations for the W_{T} and Z_{T} :

$$
\begin{align*}
0 & =\dot{W}_{T}+\left[W_{T}, V_{D}\right]+W_{T} V_{A} W \\
\dot{Z}_{T} & =V_{D}+V_{A} W_{T}, \tag{3.13}
\end{align*}
$$

where now V_{D} and V_{A} are the diagonal and anti-diagonal c \vee mponen ; of the V-matrix, respectively. Expanding W_{T} and Z_{T} in powers of $\lambda \mathrm{as}^{4}$:

$$
W_{T}(\lambda)=\sum_{k=0}^{\infty} \lambda^{k} W_{T}^{(k)}, \quad \quad \angle_{T}(\lambda)=\sum_{k=-2}^{\infty} \lambda^{k} Z_{T}^{(k)}
$$

then we can recursively solve (3.13). Solving the first $\mathrm{ft} \cdot \mathrm{r}$ ders of these, we find the first three Z_{T}-matrices to be:

$$
\begin{array}{rlrl}
Z_{T}^{(-2)} & =c \tau\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), & Z_{T}^{(1)}=9 \\
Z_{T}^{(0)} & =\frac{1}{2 c} \int_{-\tau}^{\tau}\left[\dot{S}_{z} \mathbb{I}+\left(c-S_{z}\right)\left(\begin{array}{cc}
\frac{S_{-}}{S_{-}} & 0 \\
0 & -\frac{\dot{S}_{+}}{S_{+}}
\end{array}\right)-\frac{1}{2 c^{2}}\left(\Sigma_{+} \Sigma_{-}+\Sigma_{z}^{2}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right] \mathrm{d} t . \tag{3.14}
\end{array}
$$

Then, due to the form of the highest u. Jer \dagger rm, the $\mathrm{e}^{Z_{11, T}}$ dominate over the $\mathrm{e}^{Z_{22, T}}$ in (3.11), so that $\mathcal{G}_{T}=Z_{11, T}+\ldots$. I.e. the first three c nserved ${ }^{\text {r }}$ uantities generated this way will be:

$$
\begin{align*}
& \mathcal{G}_{T}^{(-2)}=c \tau \mathcal{G}_{T}^{(-1)}=0 \\
& \mathcal{G}_{T}^{(0)}=\frac{1}{2 c} \int_{-\tau}{ }^{r \tau}\left(\dot{S}_{z}+\left(c-S_{z}\right) \frac{\dot{S}_{-}}{S_{-}}-\frac{1}{2 c^{2}}\left(\Sigma_{+} \Sigma_{-}+\Sigma_{z}^{2}\right)\right) \mathrm{d} t \tag{3.15}
\end{align*}
$$

Focussing on the third of th. o. f we use the periodic boundary conditions to remove any total derivatives

$$
\begin{equation*}
\iota_{-}=\frac{1}{2} \int_{-L}^{L}\left(\frac{\dot{S}_{+} S_{-}-S_{+} \dot{S}_{-}}{c+S_{z}}+\frac{1}{c^{2}}\left(\Sigma_{+} \Sigma_{-}+\Sigma_{z}^{2}\right)\right) \mathrm{d} t \tag{3.16}
\end{equation*}
$$

This is the equal-spa ${ }^{\circ} \operatorname{Ha}^{2}$ iltonian for the HM model, i.e. the generator of the space-evolution along the space flow x_{0}, a can be seen by using H_{T} in Hamilton's equation to find the space-evolution equations:

$$
S_{\sigma}^{\prime}=\left\{H_{T}, S_{\sigma}\right\}_{T}, \quad \quad \Sigma_{\sigma}^{\prime}=\left\{H_{T}, \Sigma_{\sigma}\right\}_{T}
$$

[^3]Doing so, the space-evolution equations for S_{σ} simply give the identification $S_{\sigma}^{\prime}=\Sigma_{\sigma}$. which is similar to the sine-Gordon model (which has been studied in this description in [11]) and the du construction of the NLS model [1], while the space-evolution equations for Σ_{σ} give:

$$
\begin{align*}
\Sigma_{ \pm}^{\prime} & = \pm\left(S_{ \pm} \dot{S}_{z}-\dot{S}_{ \pm} S_{z}\right)-\frac{1}{c^{2}} S_{ \pm}\left(\Sigma_{+} \Sigma_{-}+\Sigma_{z}^{2}\right) \\
\Sigma_{z}^{\prime} & =\frac{1}{2}\left(\dot{S}_{+} S_{-}-S_{+} \dot{S}_{-}\right)-\frac{1}{c^{2}} S_{z}\left(\Sigma_{+} \Sigma_{-}+\Sigma_{z}^{2}\right) \tag{3.17}
\end{align*}
$$

which, after substituting in $S_{\sigma}^{\prime}=\Sigma_{\sigma}$ can be compactly written as:

$$
\begin{equation*}
\vec{S}^{\prime \prime}=\mathrm{i} \vec{S} \times \dot{\vec{S}}-\frac{1}{c^{2}} \vec{S}\left|\vec{S}^{\prime}\right|^{2} \tag{3.18}
\end{equation*}
$$

and are equivalent to the original equations of motion, (1.3), after repla $\operatorname{ing} S_{y} S_{y}$ with $S_{ \pm}=S_{x} \pm \mathrm{i} S_{y}$.
Using the equal space Poisson brackets and the tower of equal si ace' ons rved quantities, we can generate a whole hierarchy of space-evolution equations associated to distinc oyster is. Consequently, we will also be interested in generating Lax pairs for each of these systems. By for ving the derivation of (2.15) and (2.16), we can derive a generator \mathbb{U} for the tower of U-matrices tha' partner vith the underlying V-matrix, (3.1), which can be generally written as:

$$
\begin{equation*}
\mathbb{U}_{b}(t ; \lambda, \mu)=\mathfrak{t}_{T}^{-1}(\mu) \operatorname{tr}_{a}\left\{T_{T, a}(\tau, t ; \mu) r_{n h}(\mu-\downarrow) T_{T, a}(t,-\tau ; \mu)\right\}, \tag{3.19}
\end{equation*}
$$

or by using the known results and properties for the r-matr ${ }_{\llcorner }$as well as the diagonalisation of T_{T}, this can be reduced to an expression that lies only in one vect

$$
\begin{equation*}
\mathbb{U}(t ; \lambda, \mu)=\frac{1}{2(\mu-\lambda)}\left(\mathbb{I}-,{ }^{W} T_{T}(t, \cdot)\right) e_{11}\left(\mathbb{I}+W_{T}(t ; \mu)\right)^{-1} \tag{3.20}
\end{equation*}
$$

When we expand this generator about $\mu \rightarrow 0^{+} \therefore$ fir three terms are:

$$
\begin{align*}
& \mathbb{U}^{(0)}=\frac{-1}{4 \lambda} \mathbb{I}-\frac{1}{4 c^{\prime}} S, \\
& \mathbb{U}^{(1)}=\frac{-1}{4 \lambda^{2}} \mathbb{I}-\frac{1}{4 c^{2}} S+\frac{1}{4 c^{3} \lambda} \Sigma S, \tag{3.21}\\
& \mathbb{U}^{(2)}=\frac{-1}{4 \lambda^{3}} \mathbb{T}--\frac{1}{c \lambda^{3}} S+\frac{1}{4 c^{3} \lambda^{2}} \Sigma S+\frac{1}{4 c^{3} \lambda} \dot{S} S-\frac{1}{8 c^{5} \lambda} \Sigma^{2} S .
\end{align*}
$$

If we remove the constant factor fr $\lrcorner \mathrm{m}$ the Ω, t of these and multiply by a factor of $-2 c, \mathbb{U}^{(0)}$ can be identified with the spatial component of t^{\prime}.e - iginal Lax pair (1.5):

$$
U=-2 c\left(\mathbb{U}^{(0)}+\frac{1}{4 \lambda} \mathbb{I}\right)
$$

This guarantees that the quatı 's of motion for this model agree with the original equations, (1.3).

3.3. Higher Order Su^^॰ \quad ms

The identificatic a of th, Σ_{σ} with the derivatives of the S_{σ} appears as part of the equations of motion for the system at oi ${ }^{\text {ler }} 0$ ir the hierarchy (the isotropic Landau-Lifshitz model). If we instead consider a different system ...ese w.u not necessarily be the same. To see this, we consider the system at order μ^{2} in the hierarchy, hich h_{c} Lax pair $\left(U_{2}, V\right)$, where we define:

$$
\begin{align*}
U_{2} & =-2 c\left(\mathbb{U}^{(2)}+\frac{1}{4 \lambda^{3}} \mathbb{I}\right) \\
& =\frac{1}{2 \lambda^{3}} S-\frac{1}{2 c^{2} \lambda^{2}} \Sigma S-\frac{1}{2 c^{2} \lambda} \dot{S} S+\frac{1}{4 c^{4} \lambda} \Sigma^{2} S \tag{3.22}
\end{align*}
$$

Inserting this Lax pair into the zero-curvature condition, we find the space-evolution eq ations for this new system. The space-evolution of the three original fields, $S_{ \pm}$and S_{z}, are:

$$
\begin{align*}
S_{+}^{\prime} & =\frac{1}{c^{2}}\left(S_{+} \dot{\Sigma}_{z}-S_{z} \dot{\Sigma}_{+}\right)+\frac{1}{2 c^{4}}\left(\Sigma_{z}^{2}+\Sigma_{+} \Sigma_{-}\right) \Sigma_{+} \\
S_{-}^{\prime} & =\frac{1}{c^{2}}\left(S_{z} \dot{\Sigma}_{-}-S_{-} \dot{\Sigma}_{z}\right)+\frac{1}{2 c^{4}}\left(\Sigma_{z}^{2}+\Sigma_{+} \Sigma_{-}\right) \Sigma_{-} \tag{3.23}\\
S_{z}^{\prime} & =\frac{1}{2 c^{2}}\left(S_{-} \dot{\Sigma}_{+}-S_{+} \dot{\Sigma}_{-}\right)+\frac{1}{2 c^{4}}\left(\Sigma_{z}^{2}+\Sigma_{+} \Sigma_{-}\right) \Sigma
\end{align*}
$$

while the space-evolution of the three fields $\Sigma_{ \pm}$and Σ_{z} are:

$$
\begin{align*}
\Sigma_{+}^{\prime}= & \frac{1}{c^{2}}\left(\Sigma_{+} \dot{\Sigma}_{z}-\dot{\Sigma}_{+} \Sigma_{z}\right)+\ddot{S}_{+}+S_{+}\left(\frac{1}{c^{2}}\left(\left(\dot{S}_{z}\right)^{2}+\dot{S}_{+} \dot{S}_{-}\right)-\frac{1}{2 c^{6}}\left(\Sigma_{z}+\Sigma_{+}-\right)^{2}\right) \\
& \left.+\frac{1}{2 c^{4}}\left(\Sigma_{z}^{2}\left(\dot{S}_{+} S_{z}-S_{+} \dot{S}_{z}\right)+\Sigma_{+}^{2}\left(\dot{S}_{-} S_{z}-S_{-} \dot{S}_{z}\right)+\Sigma_{+} \Sigma^{\prime} \dot{S}_{+} \Sigma_{-} \dot{S}_{+}\right)\right) \\
\Sigma_{-}^{\prime}= & \left.\frac{1}{c^{2}}\left(\dot{\Sigma}_{-} \Sigma_{z}-\Sigma_{-} \dot{\Sigma}_{z}\right)+\ddot{S}_{-}+S_{-}\left(\frac{1}{c^{2}}\left(\left(\dot{S}_{z}\right)^{2}+\dot{S}_{+} \dot{S}_{-}\right)-\frac{c_{c}^{6}}{c^{\prime}} \Sigma_{z}^{2}+\Sigma_{+} \Sigma_{-}\right)^{2}\right) \tag{3.24}\\
& +\frac{1}{2 c^{4}}\left(\Sigma_{z}^{2}\left(S_{-} \dot{S}_{z}-\dot{S}_{-} S_{z}\right)+\Sigma_{-}^{2}\left(S_{+} \dot{S}_{z}-\dot{S}_{+} S_{z}\right)+\Sigma_{-} \Sigma_{z}\left(\dot{4}_{+} S_{-}-S_{+} \dot{S}_{-}\right)\right) \\
\Sigma_{z}^{\prime}= & \frac{1}{2 c^{2}}\left(\dot{\Sigma}_{+} \Sigma_{-}-\Sigma_{+} \dot{\Sigma}_{-}\right)+\ddot{S}_{z}+S_{z}\left(\frac{1}{c^{2}}\left(\left(\dot{S}_{z}\right)^{2}+\dot{S}_{+} S_{-},-\frac{1}{c^{6}}\left(\Sigma_{z}^{2}+\Sigma_{+} \Sigma_{-}\right)^{2}\right)\right. \\
& +\frac{1}{2 c^{4}}\left(\Sigma_{-} \Sigma_{z}\left(S_{+} \dot{S}_{z}-\dot{S}_{+} S_{z}\right)+\Sigma_{+} \Sigma_{z}\left(\dot{S}_{-} S_{z}-\dot{C}_{-}\right)+\frac{1}{2}\left(\Sigma_{z}^{2}-\Sigma_{+} \Sigma_{-}\right)\left(\dot{S}_{+} S_{-}-S_{+} \dot{S}_{-}\right)\right)
\end{align*}
$$

These can be written more compactly in terms of the oct $\operatorname{rss} \vec{J}=\left(S_{x}, S_{y}, S_{z}\right)^{T}$ and $\vec{\Sigma}=\left(\Sigma_{x}, \Sigma_{y}, \Sigma_{z}\right)^{T}$ as:

$$
\begin{align*}
& \vec{S}^{\prime}=\frac{\mathrm{i}}{c^{2}}(\vec{S} \times \dot{\vec{\Sigma}})+\frac{1}{2 c^{4}}|\vec{\Sigma}|^{2} \vec{\Sigma} \\
& \left.\vec{\Sigma}^{\prime}=\frac{\mathrm{i}}{c^{2}}(\vec{\Sigma} \times \dot{\vec{\Sigma}})-\frac{\mathrm{i}}{2 c^{4}}|\vec{\Sigma}|^{2}(\vec{S} \times \dot{\vec{S}})+{ }^{\top}+\left.\vec{S}\left|\frac{1}{c^{2}}\right| \dot{\vec{S}}\right|^{2}-\frac{1}{2 c^{6}}|\vec{\Sigma}|^{4}\right)+\frac{\mathrm{i}}{c^{4}} \vec{\Sigma}(\vec{\Sigma} \cdot(\vec{S} \times \dot{\vec{S}})) \tag{3.25}
\end{align*}
$$

When deriving the above Lax pair an resultin ${ }^{r}$ equations of motion we started from a V-matrix at order μ^{1} and found the corresponding U-metrix ${ }^{\llcorner }$or cer μ^{2}. We could instead, however, start by considering a U-matrix at order μ^{2} and use that tc find the corresponding V-matrix at order μ^{1}.

To find this order $\mu^{2} U$-matrix, : st ${ }^{\text {rt }}$ f $\mu \mathrm{m}$ the base system (i.e. the Lax pair consisting of the U - and V-matrices appearing at order μ^{0} see (.$^{1}{ }^{7}$ and (3.21)):

$$
\begin{equation*}
U=V=\frac{1}{2 \lambda} S \tag{3.26}
\end{equation*}
$$

The equations of motion for this system are simply $\dot{S}_{\sigma}=S_{\sigma}^{\prime}$. Then, the first three terms in the hierarchy of U-matrices constructed fr $\sim \mathrm{m}$ t. V-matrix are:

$$
\begin{align*}
\mathbb{U}^{(C)} & =\frac{-1}{4 \lambda} \mathbb{I}-\frac{1}{4 c \lambda} S \\
\mathbb{U}^{(1)} & =\frac{-1}{4 \lambda^{2}} \mathbb{I}-\frac{1}{4 c \lambda^{2}} S+\frac{1}{4 c^{3} \lambda} \dot{S} S \tag{3.27}\\
\left.\pi^{\prime} \cdot\right) & =\frac{-1}{4 \lambda^{3}} \mathbb{I}-\frac{1}{4 c \lambda^{3}} S+\frac{1}{4 c^{3} \lambda^{2}} \dot{S} S-\frac{1}{4 c^{3} \lambda} \ddot{S}-\frac{1}{8 c^{5} \lambda}(\dot{S})^{2} S,
\end{align*}
$$

which should k, compa ed with (2.17). Before we can construct the space-like (standard) hierarchy for the U-matrix found $\therefore \mathrm{m}^{\top}{ }^{(2)}$ we need to define the fields $P_{\sigma}=\partial_{t_{0}} S_{\sigma}$ and $\mathbb{P}_{\sigma}=\partial_{t_{0}}^{2} S_{\sigma}$ (in analogy to how we defined the $\because \backsim=\partial_{x_{0}} S_{\sigma}$), so that the U-matrix is:

$$
\begin{equation*}
U=\frac{1}{2 \lambda^{3}} S-\frac{1}{2 c^{2} \lambda^{2}} P S+\frac{1}{2 c^{2} \lambda} \mathbb{P}+\frac{3}{4 c^{4} \lambda} P^{2} S \tag{3.28}
\end{equation*}
$$

with:

$$
P=\left(\begin{array}{cc}
P_{z} & P_{-} \\
P_{+} & -P_{z}
\end{array}\right), \quad \mathbb{P}=\left(\begin{array}{cc}
\mathbb{P}_{z} & \mathbb{P}_{-} \\
\mathbb{P}_{+} & -\mathbb{P}_{z}
\end{array}\right)
$$

This is the U-matrix appearing at order μ^{2} that we consider in place of (3.22). Cr 1 su. 1cting the space-like hierarchy from this, the V-matrix appearing at order μ^{1} is (after removing the $c \cdot n s t ;$ at factor and scaling by $-2 c$):

$$
\begin{equation*}
V=\frac{1}{2 \lambda^{2}} S-\frac{1}{2 c^{2} \lambda} P S \tag{3.29}
\end{equation*}
$$

This Lax pair would appear to describe a system of equations differe - to (3.2b), due to containing a total of nine fields, S_{σ}, P_{σ}, and \mathbb{P}_{σ}. When these matrices are inserted into u. zero-curvature condition, however, one of these sets of fields is redundant and \mathbb{P} can be written i terms of S and P as:

$$
\mathbb{P}=S \dot{S}-\frac{1}{c^{2}} P^{2} S
$$

The combination of this identification and the remaining equations . mot; on can then be recognised as the equations (3.25). Consequently, traversing the early ($n<3$) par of tinwe dual hierarchies is commutative for this model. It remains to be seen if any higher order parts of the dual hierarchies commute, however, there is no a priori justification for the commutativity and an $九$ restic $九$ tion into this is left for future study.

3.4. Open Boundary Conditions

Finally, we consider the effect of introducing reff ... houndary conditions to the time-axis. This idea was introduced in [10], where it was applied to the NL. r.odel. Due to the r-matrix structure for the dual model, (3.2), being identical to the r-matrix strus re oi the original model, (2.3), we introduce boundary conditions in an identical manner. That is, we start hy hoosing a pair of matrices, $K_{ \pm}$, that satisfy (2.18). Specifically, we use the same K-matrices as in tho orig nal picture, (2.19):

$$
K_{ \pm}(\lambda)=\alpha_{ \pm} \mathbb{I}+\lambda\left(\begin{array}{cc}
\delta_{ \pm} & \beta_{ \pm} \\
\gamma_{ \pm} & -\delta_{ \pm}
\end{array}\right)
$$

where the constants $\alpha_{ \pm}, \beta_{ \pm}, \gamma_{ \pm}$, and $o_{ \pm}$'ould n general depend on the evolution parameter, x, but we choose them to be constant for simplic $\%$ y. We . roduce these K-matrices into the generator of the quantities conserved with respect to space as $\left\lceil^{\top} 2,1^{\top}, 10^{1}\right.$.

$$
\begin{equation*}
\left.\overline{\mathfrak{t}}_{T}(\lambda)=\operatorname{tr}\left\{K_{+1}\right) T_{T}(\tau,-\tau ; \lambda) K_{-}(\lambda) T_{T}^{-1}(\tau,-\tau ;-\lambda)\right\}, \tag{3.30}
\end{equation*}
$$

from which we can use the quadratic rt. .tion (3.10) and the defining relation for the K-matrices, (2.18), to derive the time-like equivale' i or (2.20), which tells us that the $\overline{\mathfrak{t}}_{T}$ Poisson commute for different spectral parameters. Again, we are ctı ally interested in the coefficients in the expansion of $\overline{\mathcal{G}}_{T}(\lambda)=\ln \left(\overline{\mathfrak{t}}_{T}(\lambda)\right)$, which will also Poisson cc nmul with one another:

$$
\begin{equation*}
\left\{\overline{\mathcal{G}}_{T}^{(k)}, \overline{\mathcal{G}}_{T}^{(j)}\right\}_{T}=0 . \tag{3.31}
\end{equation*}
$$

In order to evalı the the series expansion of $\overline{\mathcal{G}}_{T}(\lambda)$, as well as diagonalising T_{T} through (3.9), we need to also diagonalise T_{T}^{-}throug :

$$
T_{T}^{-1}\left(t_{1}, t_{2} ;-\lambda\right)=\left(\mathbb{I}+W_{T}\left(t_{2} ;-\lambda\right)\right) \mathrm{e}^{-Z_{T}\left(t_{1}, t_{2} ;-\lambda\right)}\left(\mathbb{I}+W_{T}\left(t_{1} ;-\lambda\right)\right)^{-1}
$$

An important pu ${ }^{+}+$re is that when we take the limit as $\lambda \rightarrow 0^{+}$of the exponentiated term, due to the $-\operatorname{sign}$ in $\mathrm{f}_{1} \cdot{ }^{\circ}{ }^{\text {the }} Z_{T}$ and the highest order term being $(-\lambda)^{2}=\lambda^{2}$, the expansion of the exponential as $\lambda \rightarrow 0^{+}$will ${ }^{\text {c }}$ ead be:

$$
\mathrm{e}^{-Z_{T}\left(t_{1}, t_{2} ;-\lambda\right)} \rightarrow \mathrm{e}^{-Z_{22, T}\left(t_{1}, t_{2} ;-\lambda\right)} e_{22}+\mathcal{O}\left(\mathrm{e}^{-\lambda^{-2}}\right)
$$

Consequently, when the diagonalisations are inserted into the generator $\overline{\mathcal{G}}_{T}$, we have (wh ore we suppress the parameters by defining $\hat{f}=f(-\lambda)$ and $\left.W_{ \pm, T}=W_{T}(\pm \tau)\right)$:

$$
\left.\overline{\mathcal{G}}_{T}(\lambda)=\ln \left(\mathrm{e}^{Z_{11, T}-\hat{Z}_{22, T}} \operatorname{tr}\left\{K_{+}\left(\mathbb{I}+W_{+, T}\right) e_{11}\left(\mathbb{I}+W_{-, T}\right)^{-1} K_{-}\left(\mathbb{I}+\hat{W}_{-, T}\right) e_{2} \hat{W}_{+, T}\right)^{-1}\right\}\right),
$$

which can be separated into the bulk contribution and the two boundary contributı s :

$$
\begin{equation*}
\overline{\mathcal{G}}_{T}(\lambda)=Z_{11, T}(\lambda)-Z_{22, T}(-\lambda)+\ln \left(\mathbb{W}_{+}(\lambda)\right)+\ln (\mathbb{W} \text { ‘ }) \text {), } \tag{3.32}
\end{equation*}
$$

where we define:

$$
\begin{align*}
& \mathbb{W}_{+}(\lambda)=\left[\left(\mathbb{I}+W_{T}(\tau ;-\lambda)\right)^{-1} K_{+}(\lambda)\left(\mathbb{I}+W_{T}(\tau ; \cdots)\right]_{2}\right. \\
& \mathbb{W}_{-}(\lambda)=\left[\left(\mathbb{I}+W_{T}(-\tau ; \lambda)\right)^{-1} K_{-}(\lambda)\left(\mathbb{I}+W_{T}(-\tau ;-\lambda)\right)_{\lrcorner 12}\right. \tag{3.33}
\end{align*}
$$

Due to the logarithmic dependence of $\overline{\mathcal{G}}_{T}$ on $\mathbb{W}_{ \pm}$, the lowest c cder \boldsymbol{u}_{1} 'ribution of the boundary terms to the generator $\overline{\mathcal{G}}_{T}$ will appear at order λ^{0}. Specifically, this lowes. urder iontribution will be:

$$
\begin{equation*}
\mathbb{W}_{ \pm}^{(1)}=\frac{1}{2 c}\left(\frac{ \pm 2 \alpha_{ \pm}}{c}\left(\frac{S_{ \pm} \Sigma_{z}}{S_{z}+c}-\Sigma_{ \pm}\right)-2 \delta_{ \pm} S_{-}-\beta_{ \pm} \frac{\kappa}{S} \frac{S_{ \pm}}{ \pm c}-\gamma_{ \pm} \frac{S_{-} S_{ \pm}}{S_{z} \mp c}\right), \tag{3.34}
\end{equation*}
$$

so that the first three terms in the expansion of $\overline{\mathcal{G}}_{T}$ are:

$$
\begin{align*}
\overline{\mathcal{G}}_{T}^{(-2)} & =2 c \tau, \\
\overline{\mathcal{G}}_{T}^{(-1)} & =0, \tag{3.35}\\
\overline{\mathcal{G}}_{T}^{(0)} & =\frac{1}{2 c} \int_{-\tau}^{\tau}\left(\frac{S_{+} \dot{S}_{-}-\dot{S}_{+} S_{-}}{c+S_{z}}-\frac{1}{c^{2}}\left(\Sigma_{+} \Sigma+\Sigma_{z}^{2}\right)\right) \mathrm{d} t+\ln \left(\mathbb{W}_{+}^{(1)}\right)+\ln \left(\mathbb{W}_{-}^{(1)}\right) .
\end{align*}
$$

$$
\begin{equation*}
\bar{H}_{T}=\int_{-\tau}^{\tau}\left(\frac{1}{2 c^{2}}\left(\Sigma_{+} \Sigma_{-}+\Sigma^{2 \backslash} \cdot \frac{\dot{S}_{+} S_{-}-S_{+} \dot{S}_{-}}{2\left(c+S_{z}\right)}\right) \mathrm{d} t-c \ln \left(\mathbb{W}_{+}^{(1)}\right)-c \ln \left(\mathbb{W}_{-}^{(1)}\right)\right. \tag{3.36}
\end{equation*}
$$

Away from the boundaries, the P jisson v . ckets of \bar{H}_{T} with each of the six fields returns the spaceevolution equations, (3.17). At the ' oun darie', however, when the space-evolution is derived the condition that the fields at the boundary still is isfy che usual space-evolution equations imposes extra conditions on the fields S_{σ} and Σ_{σ}, as well is the $\alpha_{ \pm}, \beta_{ \pm}, \gamma_{ \pm}$, and $\delta_{ \pm}$. The requirement that $\lim _{t \rightarrow \pm \tau} S_{\sigma}^{\prime}=S_{\sigma}^{\prime}(\pm \tau)$ restricts us to the case $\alpha_{ \pm}=0$ If m combine this with the requirement that $\lim _{t \rightarrow \pm \tau} \Sigma_{\sigma}^{\prime}=\Sigma_{\sigma}^{\prime}(\pm \tau)$, then we find the time-like boundar- nditions for the HM model:

$$
\begin{equation*}
\imath=\alpha_{ \pm}, \quad 0=\beta_{ \pm} S_{+}+\gamma_{ \pm} S_{-}+2 \delta_{ \pm} S_{z} \tag{3.37}
\end{equation*}
$$

We can also find a g.a ator or the U-matrices both in the bulk and at the boundaries. The generator for the bulk U-matrir wilt - [10]:

$$
\begin{align*}
\overline{\mathbb{U}}_{\mathrm{B}, b}(t ; \lambda, \mu)= & { }^{-1}(\mu) \mathrm{t} \cdot
\end{aligned} \begin{aligned}
a & \left\{K_{+, a}(\mu) T_{T, a}(\tau, t ; \mu) r_{a b}(\mu-\lambda) T_{T, a}(t,-\tau ; \mu) K_{-, a}(\mu) T_{T, a}^{-1}(-\mu)\right. \\
& \left.+K_{+, a}(\mu) T_{T, a}(\mu) K_{-, a}(\mu) T_{T, a}^{-1}(t,-\tau ;-\mu) r_{a b}(\mu+\lambda) T_{T, a}^{-1}(\tau, t ;-\mu)\right\} \tag{3.38}
\end{align*}
$$

and, being mindfuı or the different limit for the $T_{T}^{-1}(-\mu)$, this can be reduced to:

$$
\begin{equation*}
\overline{\mathbb{U}}_{\mathrm{B}}(t ; \lambda, \mu)=\mathbb{U}(t ; \lambda, \mu)+\frac{1}{2(\mu+\lambda)}\left(\mathbb{I}+W_{T}(t ;-\mu)\right) e_{22}\left(\mathbb{I}+W_{T}(t ;-\mu)\right)^{-1}, \tag{3.39}
\end{equation*}
$$

where $\mathbb{U}(t ; \lambda, \mu)$ is the generator of the U-matrices with periodic boundary conditions. U alike in the original case, where the second term differed from the first only by the sign of the μ, here it di ${ }^{r}$ ors both by the sign of the μ and in that the matrix e_{11} has become e_{22}. The lowest order term in the ex anslu. of this appears as the coefficient of μ^{0}, and is:

$$
\mathbb{U}_{\mathrm{B}}^{(0)}=\frac{-1}{2 c \lambda}\left(\begin{array}{cc}
S_{z} & S_{-} \tag{3.40}\\
S_{+} & -S_{z}
\end{array}\right)=2 \mathbb{U}^{(0)},
$$

where $\mathbb{U}^{(0)}$ is the U-matrix appearing at lowest order in the periodic case. The be ndary U-matrices are found by considering the generators:

$$
\begin{align*}
& \overline{\mathbb{U}}_{+, b}(\lambda, \mu)=\overline{\mathfrak{t}}_{T}^{-1}(\mu) \operatorname{tr}_{a}\left\{K_{-, a}(\mu) T_{T, a}^{-1}(-\mu)\left(K_{+, a}(\mu) r_{a b}(\mu-\lambda)+r_{a b}(\mu+\lambda)_{\perp}=_{a}(\mu)\right) T_{T, a}(\mu)\right\}, \tag{3.41}\\
& \left.\overline{\mathbb{U}}_{-, b}(\lambda, \mu)=\overline{\mathfrak{t}}_{T}^{-1}(\mu) \operatorname{tr}_{a}\left\{K_{+, a}(\mu) T_{T, a}(\mu)\left(r_{a b}(\mu-\lambda) K_{-, a}(\mu)+K_{-, a} \mu\right) r_{a b}(\mu+\lambda)\right) T_{T, a}^{-1}(-\mu)\right\},
\end{align*}
$$

which can be simplified to:

$$
\begin{align*}
\overline{\mathbb{U}}_{+, b}(\lambda, \mu)=\frac{1}{2 \mathbb{W}_{+}(\mu)} & \left(\frac{1}{\mu-\lambda}\left(\mathbb{I}+W_{T}(\tau ; \mu)\right) e_{12}\left(\Perp, W_{T \backslash \prime} ;-\mu\right)\right)^{-1} K_{+}(\mu) \\
& \left.+\frac{1}{\mu+\lambda} K_{+}(\mu)(\mathbb{I}+W\urcorner\left(\tau ; \mu,{ }^{\prime},-\frac{\mathbb{I}}{}+W_{T}(\tau ;-\mu)\right)^{-1}\right) \tag{3.42}
\end{align*}
$$

and:

$$
\begin{align*}
\overline{\mathbb{U}}_{-, b}(\lambda, \mu)=\frac{1}{2 \mathbb{W}_{-}(\mu)} & \left.\left(\frac{1}{\mu-\lambda} K_{-}(\mu)(\mathbb{I}\lrcorner W_{T}(-\tau,-\mu)\right) e_{21}\left(\mathbb{I}+W_{T}(-\tau ; \mu)\right)\right)^{-1} \tag{3.43}\\
& \left.+\frac{1}{\mu+\lambda}(\mathbb{I}+V \cdot(-\tau ;-\mu)) e_{21}\left(\mathbb{I}+W_{T}(-\tau ; \mu)\right)^{-1} K_{-}(\mu)\right)
\end{align*}
$$

 this is:

$$
\begin{align*}
\mathbb{U}_{+}^{(0)}= & \frac{1}{2 c\left(c+S_{z}\right) \mathbb{W}_{+}^{(1)}}\left[\frac{\alpha_{+}}{\lambda^{2}}\left(\begin{array}{cc}
S_{+}\left(c+\nu_{\sim}\right) & -\left(c+S_{z}\right)^{2} \\
S_{+}^{2} & -S_{+}\left(c+S_{z}\right)
\end{array}\right)\right. \tag{3.44}\\
& \left.-\frac{1}{2 \lambda}\left(\begin{array}{cc}
-\beta_{+} S_{+}^{2} & \gamma_{+}\left(c+S_{z}\right)^{2} \\
2 S_{+}\left(\delta_{-} S_{+}-1\right. & 2\left(c+S_{z}\right)\left(\delta_{+}\left(c+S_{z}\right)+\beta_{+} S_{+}\right) \\
\left.\beta_{+}\right) & \beta_{+}^{2}+\gamma_{+}\left(c+S_{z}\right)^{2}
\end{array}\right)\right]
\end{align*}
$$

while at the $t=-\tau$ boundary, the $\tau-$ ma , rix $;$:

$$
\begin{align*}
\mathbb{U}_{-}^{(0)}= & \frac{1}{2 c\left(c+S_{z}\right) \mathbb{\nabla} \gamma_{-}^{(1)}}\left\lceil\frac{\alpha_{-}}{12}\left(\begin{array}{cc}
\omega_{-}\left(c+S_{z}\right) & S_{-}^{2} \\
-\left(c+S_{z}\right)^{2} & -S_{-}\left(c+S_{z}\right)
\end{array}\right)\right. \tag{3.45}\\
& \left.-\frac{1}{2 \lambda}\left(\begin{array}{cc}
\beta_{-}\left(c+S_{z}\right)^{2}+\gamma_{-} S_{-}^{2} & -2 S_{-}\left(\delta_{-} S_{-}-\beta_{-}\left(c+S_{z}\right)\right) \\
\left.-2^{\prime}+S_{z}\right)\left(\delta_{-}\left(c+S_{z}\right)+\gamma_{-} S_{-}\right) & -\beta_{-}\left(c+S_{z}\right)^{2}-\gamma_{-} S_{-}^{2}
\end{array}\right)\right] .
\end{align*}
$$

Requiring that $\lim _{t \rightarrow \pm \tau} j_{\mathrm{B}}^{(0)}=\mathbb{U}^{(0)}$ gives rise to both the condition that $\alpha_{ \pm}=0$ (from the order λ^{-2} terms) and that $\beta_{ \pm} S_{+}+\gamma_{ \pm} S_{-}+{ }^{\wedge}{ }_{-} S_{z}=0$, which agrees with the boundary conditions found from the Hamiltonian approach, (3.37).

By comparing th time-1 ke boundary conditions, (3.37), with the space-like boundary conditions, (2.27), we can see that "ure is nu evident connection between the two. This asymmetry is rooted in the fundamentally different , epende ce of the fields on the space and time coordinates, as can be seen by comparing the forms of the eqi \quad tions of motion in (1.1) and (3.18).

4. Summary

The main result of this paper, derived in Section 3, is the dual construction of nc : sotropic LandauLifshitz model, where space-evolution equations, spatially conserved quantities, and equar pace Poisson brackets are obtained. This was done by following the usual procedure for deriv ing oisson brackets and conserved quantities for a system that is integrable via the existence of a Lax, air ind r-matrix, except with the roles of the space and time variables switched. A consequence of $\mathrm{t}^{\prime}:$: equ $^{1}{ }^{1}$-space construction is the existence of a hierarchy of dual integrable systems, each of which has an inı. ite tower of conserved quantities, (3.15), and a Lax pair representation, (3.21). Then, through the om in ation of the usual equaltime hierarchy and this dual equal-space hierarchy, an infinite "lattice" of : +eg tble models can be built (it is important to note here that this "lattice" is not commutative a priori alth $\cdot{ }^{\circ} \mathrm{h}$ it has been observed to commute for $n, m<3$).

By considering a higher order system in the dual hierarchy of the iso ropic Le adau-Lifshitz model, (3.25), we have connected the 3 -field HM model (with 1 Casimir element) with _n 6 -field model (which has 2 Casimir elements). As this system appears in the hierarchy of the $f \mathrm{AM}^{2}$ _ H el, it is likely to have a solitonic solution similar to that of the HM model, which would be disc . ${ }^{\text {. }}$. able through the use of the inverse scattering tools, or through a Darboux-Bäcklund/Dressing app. ach. re investigation of such a soliton could provide interesting insights into the dual construction, if not \ddots e original model itself, but we leave this for future consideration.

We have also studied the introduction of reflective boundarv ${ }^{\text {nditions to the time-axis in Section 3.4, }}$ in the vein of [10]. While seemingly unphysical, such \downarrow י nd dary conditions could have applications as a particular type of initial condition for the system, where the time coordinate is considered on the halfline, $[0, \infty)$, instead. Thus, the boundary conditions tisc . .und above would appear as a particular set of initial conditions that settle into (in the case of a soliton eflecting boundary) a 2 -soliton solution. Potential applications and consequences of this however are . $\downarrow \boldsymbol{f}_{\mathrm{fr}}^{\mathrm{I}}$. ter investigation.

Finally, we close by repeating that, due to the $\cdot \boldsymbol{\prime}-\operatorname{anc}^{\prime} V$-matrices sharing the same r-matrix, the space and time coordinates in this construction are fully intere angeable. This means that all of the results described here will still hold when the space and time nomrdinates are switched, so that switching the space derivatives and time derivatives in (3.25) describes t^{\prime}.e time pvolution of an integrable system:

$$
\begin{align*}
& \dot{\vec{S}}=\frac{\mathrm{i}}{c^{2}}\left(\vec{S} \times \vec{\Sigma}^{\prime}\right)+\frac{1}{2 c^{4}}|\vec{\Sigma}|^{2} \vec{\Sigma} \\
& \dot{\vec{\Sigma}}=\frac{\mathrm{i}}{c^{2}}\left(\vec{\Sigma} \times \vec{\Sigma}^{\prime}\right)-\left.\frac{\mathrm{i}}{2 c^{4}}|\vec{\Sigma}|^{-}\right|^{\vec{c}} \times \vec{S}^{\prime}+\vec{S}^{\prime \prime}+\vec{S}\left(\frac{1}{c^{2}}\left|\vec{S}^{\prime}\right|^{2}-\frac{1}{2 c^{6}}|\vec{\Sigma}|^{4}\right)+\frac{\mathrm{i}}{c^{4}} \vec{\Sigma}\left(\vec{\Sigma} \cdot\left(\vec{S} \times \vec{S}^{\prime}\right)\right), \tag{4.1}
\end{align*}
$$

and the results of Section 3.4 car be -iewed instead as a description of (space-like) open boundary conditions for the time-evolution equations:

$$
\begin{equation*}
\ddot{\vec{S}}=\mathrm{i}\left(\vec{S} \times \vec{S}^{\prime}\right)-\frac{1}{c^{2}} \vec{S}|\dot{\vec{S}}|^{2} . \tag{4.2}
\end{equation*}
$$

This dual constructi $n \mathrm{~h}$ s now been applied to the isotropic Landau-Lifshitz model, the non-linear Schrödinger model (ori ${ }_{\varepsilon}$ nal $^{\prime} y$ in calar [2] case and later extended to the vector [25] case) and its associated hierarchy (including, for exa $\cdot n$, the complex modified KdV equation) in [1], and the sine-Gordon model in [11]. All of these m dels ce τ be found as special limits of the anisotropic Landau-Lifshitz model [8] and its hierarchy. Consequ ntly, it ould be expected that the fully anisotropic Landau-Lifshitz model also admits a space-time duality $G^{-2 h}$: type, however, an investigation into this is left for future work.

Acknowledgemer.

The aut or .. ${ }^{-1 \text { d }}$ like to thank the EPSRC funding council for a PhD studentship, and his PhD supervisor Anastasia Do. 'r a for feedback and encouragement. He would also like to thank Calum Ross and Lukas Müller for proofreading and comments, as well as the reviewer for useful feedback.
［1］J．Avan，V．Caudrelier，A．Doikou，A．Kundu，＂Lagrangian and Hamiltonian str 1 ctu © © in an integrable hierarchy and space－time duality＂，Nucl．Phys．B902（2016），415－39 doi：10．1016／j．nuclphysb．2015．11．024
［2］V．Caudrelier，A．Kundu，＂A multisymplectic approach to defects in integ rble ussical field theory＂， J．High Energ．Phys． 02 （2015）88，doi：10．1007／JHEP02（2015）088
［3］P．D．Lax，＂Integrals of nonlinear equations of evolution and solitary r aves ，c．mm．Pure．Appl． Math． 21 （1968）467－90，doi：10．1002／cpa． 3160210503
［4］M．J．Ablowitz，D．J．Kaup，A．C．Newell，H．Segur，＂The Inverse J̌catteı g Transform－Fourier Analysis for Nonlinear Problems＂，Stud．Appl．Math． 53 （1974），2ヶ．－315，r ji：10．1002／sapm1974534249
［5］J．Avan，V．Caudrelier，＂On the origin of dual Lax pairs and＋heir ${ }^{n}$＇atrix structure＂，J．Geom．Phys． 120 （2017），106－28，doi：10．1016／j．geomphys．2017．05．010
［6］M．Lakshmanan，＂Continuum spin system as an exactly solva।．dynamical system＂，Phys．Lett．61A （1977）53－4，doi：10．1016／0375－9601（77）90262－6
［7］L．A．Takhtajan，＂Integration of the continuous Heisenbu＊spin chain through the inverse scattering method＂，Phys．Lett．64A（1977）235－7，doi：10．101f／n97E n i i（77）90727－7
［8］E．K．Sklyanin，＂On complete integrability of the Landau＇ifshitz equation＂．Preprint LOMI E－3－79， Leningrad 1979
 1987，doi：10．1007／978－3－540－69969－9
［10］A．Doikou，I．Findlay，S．Sklaveniti，＂Time－＂re bu ndary conditions in the NLS model＂，Nucl．Phys． B941（2019）361－75，doi：10．1016／j．nuclphysb．2U．．．02．022
［11］V．Caudrelier，＂Multisymplectic app oach © integrable defects in the sine－Gordon model＂，J．Phys． A48（2015）195203，doi：10．1088／17．${ }^{1}$－8113／8／19／195203
［12］E．K．Sklyanin，＂Boundary cond cion for integrable quantum systems＂，J．Phys．A21（1988），2375－89， doi：10．1088／0305－4470／21／10／С ऽ
［13］E．K．Sklyanin，＂Boundary｀nditions for integrable equations＂，Funct．Anal．Its．Appl． 21 （1987）， 164－6，doi：10．1007／BF0107，038
［14］A．Doikou，N．Karaiskor，＂G neralized Landau－Lifshitz models on the interval＂，Nucl．Phys．B853 （2011），436－60，doi：10．ı，¹6 J．nuclphysb．2011．08．001
［15］J．Avan，A．Doikou K．「etsos，＂Systematic classical continuum limits of integrable spin chains and emerging novel du．．${ }^{\circ}$ ir s＂，「 ucl．Phys．B840（2010），469－90，doi：10．1016／j．nuclphysb．2010．07．014
［16］E．Fradkin，Fif a Therries of Condensed Matter Physics，Frontiers in Physics 82，Addison－Wesley （1991），doi：10． $917 / \mathrm{CB}) 9781139015509$
［17］F．Demont：，j．Lombardo，M．Sommacal，C．van der Mee，F．Vargiu，＂Effective generation of closed－forı 1 solitor solutions of the continuous classical Heisenberg ferromagnet equation＂，Commun． Nonlinear ${ }_{i} \sim i$. N v ner．Simulat． 64 （2018）35－65，doi：10．1016／j．cnsns．2018．03．020
［18］S．M．M．hhse ı，J．R．Sani，J．Persson，et al．，＂Spin Torque－Generated Magnetic Droplet Solitons＂， Science ¿－9（2013）1295－8，doi：10．1126／science． 1230155
[19] J. W. Lau, J. M. Shaw, "Magnetic nanostructures for advanced technologies: fabrir ation, metrology and challenges", J. Phys. D: Appl. Phys. 44 (2011) 303001, doi:10.1088/0022-372* /44/30/303001
[20] M. A. Semenov-Tian-Shansky, "What is a classical r-matrix?", Funct. Anal. Annl. 17 (1.83), 259-72, doi:10.1007/BF01076717
[21] E. K. Sklyanin, L. A. Takhtajan, L. D. Faddeev, "Quantum inverse problem me 'nd. I", Theoret. and Math. Phys. 40:2 (1979), 688-706, doi:10.1007/BF01018718
 Leningrad Math. J., 1:1 (1990), 193-225
 Phys. A27 (1994), 6129-38, doi:10.1088/0305-4470/27/18/021
[24] J. Avan, A. Doikou, "Integrable boundary conditions and mor „tied ${ }^{\mathrm{r}}$ ax equations", Nucl. Phys. B800 (2008), 591-612, doi:10.1016/j.nuclphysb.2008.04.004
[25] R.-G. Zhou, P.-Y. Li, Y. Gao, "Equal-Time and Equal-Space - حisson Brackets of the N-Component Coupled NLS Equation", Commun. Theor. Phys. 67 (2^17) 347-! doi:10.1088/0253-6102/67/4/347

ACCEPTED MANUSCRIPT

- An equal-space Poisson structure for the isotropic Landau-Lifshitz model.
- A discussion on reflective boundary conditions along the time axis.
- The derivation of a novel six-field integrable model.

[^0]: ${ }^{1}$ These di ${ }^{-}$- time flows will arise from considering the tower of conserved quantities that define the system as integrable, and treating t sh . Luc quantities as the Hamiltonian for a distinct integrable system, describing the evolution of the fields along the assocle d time flow t_{k}. When we consider the dual picture, we will likewise have a hierarchy of dual Hamiltonians that govern the sp, e-evolution of the fields along a tower of space flows x_{k}.

[^1]: ${ }^{2}$ The sub: \quad : י \quad ised here and in what follows to denote that we are building this system out of the \underline{S} patial component of the Lax pair ' $I J$ ' This will be important later when we construct the dual model out of the Temporal component of the Lax pair (V), where,$~$ will use a T subscript.

[^2]: ${ }^{3}$ The reflectic equation satisfied by the K_{+-}and K_{-}-matrices actually differ by a minus sign in the spectral parameter, but we absorb this "actor into the β_{+}, γ_{+}, and δ_{+}to keep the forms of the matrices the same.

[^3]: ${ }^{4}$ Note that d_{c} to the underlying V-matrix having a dependence on λ^{-2} (as compared to the earlier construction where the underlying U-mati - depended only on λ^{-1}), the Z_{T} series needs to start at $k=-2$ instead of $k=-1$.

