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A Dual Construction of the Isotropic Landau-Lifshitz Model

Iain Findlaya

aSchool of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom

Abstract

By interchanging the roles of the space and time coordinates, we describe a dual construction of the isotropic
Landau-Lifshitz model, providing equal-space Poisson brackets and dual Hamiltonians conserved with respect
to space-evolution. This construction is built in the Lax/zero-curvature formalism, where the duality between
the space and time dependencies is evident.

Keywords: isotropic Landau-Lifshitz model, Lax pair, r-matrix, zero-curvature condition, dual integrable
model, integrable boundary conditions

1. Introduction

The idea of considering 1+1 dimensional integrable models in terms of their “space-evolution”, as gov-
erned by some equal-space Poisson brackets found by interchanging the roles of the space and time coordinates
was systematically introduced in [1], following the suggestion in [2] for the purposes of identifying integrable
defects (that lie in the spatial axis) with Darboux-Bäcklund transformations. This concept was applied
rigorously to the Lax/zero-curvature construction [3, 4] of the non-linear Schrödinger (NLS) model in [1],
and then later proven for the general NLS hierarchy in [5].

In this paper, we apply this equal-space construction to the isotropic Landau-Lifshitz model [6, 7], which
is also known as the continuous classical Heisenberg magnet (HM) model:

∂t~S =
i

c2
~S × (∂2

x
~S), (1.1)

which depends on the vector ~S = (Sx, Sy, Sz)
T . These fields will also be written in the combinations

S± = Sx ± iSy, which satisfy the sl2 exchange relations:

{S±(x), Sz(y)} = ±S± δ(x− y), {S+(x), S−(y)} = −2Sz δ(x− y). (1.2)

These Poisson brackets are found through the r-matrix construction [8]. The HM model has the same
underlying r-matrix as the NLS model, namely the Yangian r-matrix (2.2), so hence it arises as a natural
next step in the development of this dual approach.

Because this equal-space picture follows in parallel to the usual method for building conserved quantities
and higher systems (see [9]), we also introduce reflective time-like boundary conditions [10] to the HM model
by following an equivalent procedure to the development of reflective space-like boundary conditions, [12, 13],
which have been applied to the isotropic Landau-Lifshitz equation in [14].

The HM model is also of recent practical interest as a simple model of 1 dimensional ferromagnetism (due
to being the continuum limit of the classical analogue of the quantum XXX spin chain, see [9, 15, 16] for
details), [17, 18, 19]. This paper therefore sheds new light on this model by approaching it from a time-like
perspective, analogous to the standard description in terms of time-evolution.

The paper is laid out as follows: The remainder of Section 1 defines the basic terms that we will be
using throughout. Then, in Section 2 we describe the standard (equal-time) construction of the hierarchy
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of conserved quantities and their associated Lax pairs and integrable systems, applying these to the HM
model for later comparison. This section starts by constructing the Poisson brackets between the fields
in Subsection 2.1, before building the hierarchy of conserved quantities that guarantee the integrability of
the HM model. This is done for both closed (periodic) boundary conditions in Subsection 2.2 and open
(reflective) boundary conditions in Subsection 2.3. Subsection 2.3 recalls the results of [14], except using
notation that will be consistent with the sections that follow. Finally, we repeat these same steps for the
dual (equal-space) construction of the HM model in Section 3, with the dual Poisson structure constructed in
Subsection 3.1, and the hierarchies of dual Hamiltonians (and the corresponding Lax pairs) for both closed
and open boundary conditions are constructed in Subsections 3.2 and 3.4, respectively.

1.1. Preliminaries

In terms of the fields S± and Sz, the equations of motion (1.1) become:

∂tS± = ± 1

c2
(
S±(∂2

xSz)− (∂2
xS±)Sz

)
, ∂tSz =

1

2c2
(
(∂2
xS+)S− − S+(∂2

xS−)
)
. (1.3)

When referencing the three fields S± and Sz, we will use the subscript σ ∈ {+,−, z} to collectively refer to
them as Sσ. We will also use Ṡσ = ∂tkSσ to denote the derivative of Sσ with respect to the appropriate time
flow1 tk, and S′σ = ∂xk

Sσ for the derivative with respect to the contextually appropriate space flow. Where
there is likely ambiguity however, we will explicitly use either ∂tk or ∂xk

.
It was shown in [7] that the system of equations (1.3) appear as the compatibility condition of the

auxiliary linear problem:
Ψ′ ≡ ∂xΨ = UΨ, Ψ̇ ≡ ∂tΨ = VΨ, (1.4)

where Ψ is an arbitrary vector field, and the 2×2 matrices U and V , depending on the fields Sσ as well as
some free complex parameter λ, comprise the Lax pair [3, 4] of the system, given by:

U =
1

2λ
S, V =

1

2λ2
S − 1

2c2λ
S′S, (1.5)

where:

S =

(
Sz S−
S+ −Sz

)
.

Cross-differentiating the auxiliary linear problem gives rise to the following compatibility condition (called
the zero-curvature condition) between the matrices of the Lax pair:

0 = U̇ − V ′ + [U, V ], (1.6)

such that when the matrices U and V are inserted into this, and the resulting equations are split about
powers of λ, the equations of motion, (1.3), are returned.

2. The Standard Picture

2.1. Poisson Brackets

Before we introduce the dual picture for (1.3) we first recap the method for constructing the hierarchy of
integrable equations and their Hamiltonians. The core objects in this construction are the spatial component
of the Lax pair, U , and an associated r-matrix that satisfies the classical Yang-Baxter equation [20]:

0 = [rab(λ− µ), rac(λ)] + [rab(λ− µ), rbc(µ)] + [rac(λ), rbc(µ)], (2.1)

1These distinct time flows will arise from considering the tower of conserved quantities that define the system as integrable,
and treating each of the quantities as the Hamiltonian for a distinct integrable system, describing the evolution of the fields
along the associated time flow tk. When we consider the dual picture, we will likewise have a hierarchy of dual Hamiltonians
that govern the space-evolution of the fields along a tower of space flows xk.
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where λ, µ ∈ C are some free parameters and the subscripts denote which vector spaces the matrices act on
(e.g. rab = r ⊗ I and rbc = I⊗ r, with r : V ⊗ V → V ⊗ V , so that the whole equation acts on Va ⊗ Vb ⊗ Vc,
where the subscripts attached to the vector spaces are merely used to denote which index corresponds to
them, e.g. rab would act only on the first two). For the HM model, the relevant solution is:

r(λ) =
1

2λ




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 . (2.2)

This r-matrix is connected to the U -matrix and the equations of motion for the system (1.3) through the
linear algebraic relation2 [8]:

{Ua(x, λ), Ub(y, µ)}S = [rab(λ− µ), Ua(x, λ) + Ub(y, µ)] δ(x− y), (2.3)

which provides an ultra-local Poisson bracket between the fields. Inserting the U -matrix (1.5) and r-matrix
(2.2) into this relation returns the sl2 exchange relations, (1.2). From these Poisson brackets we can read off

a Casimir element that restricts the vector ~S to the surface of the sphere of radius c, where we have labelled
the Casimir c2:

c2 = S2
z + S+S− = S2

x + S2
y + S2

z . (2.4)

2.2. Periodic Boundary Conditions

In order to find conserved quantities that commute with respect to this Poisson bracket, we start by con-
sidering the (spatial) transport matrix, which is a path-ordered exponential solution to the spatial component
of the auxiliary linear problem (1.4) in place of Ψ:

TS(x, y;λ) = P exp

∫ x

y

U(ξ)dξ. (2.5)

For a periodic system on the interval [−L,L], i.e. where Sσ(L) = Sσ(−L), the full monodromy matrix is
TS(λ) = TS(L,−L;λ). Due to the U -matrices satisfying the linear algebraic relation, (2.3), the monodromy
matrix can be seen to satisfy a quadratic algebraic relation [21, 22]:

{TS,a(λ), TS,b(µ)}S = [rab(λ− µ), TS,a(λ)TS,b(µ)]. (2.6)

Consequently, if we define a new object, called the transfer matrix tS(λ), as the trace of the monodromy
matrix:

tS(λ) = tr {TS(λ)} , (2.7)

then this can be shown to Poisson commute with itself for different values of the spectral parameter λ.

Because of this, if we expand tS as a formal power series in λ, tS =
∑
k λ

kt
(k)
S , then these coefficients

commute:
{t(k)
S , t

(j)
S }S = 0. (2.8)

As such, the terms in this expansion t
(k)
S can be seen as “Hamiltonians” governing the evolution of the system

along distinct time flows tk. Further to this, the evolution along each time flow tk will be integrable à la

Liouville, as the t
(j)
S with j 6= k will provide the infinite tower of conserved quantities.

2The subscript S is used here and in what follows to denote that we are building this system out of the Spatial component
of the Lax pair (U). This will be important later when we construct the dual model out of the Temporal component of the Lax
pair (V ), where we will use a T subscript.
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Unfortunately, the “Hamiltonians” generated in this manner will be non-local. To circumvent this, we
will consider the coefficients in the expansion of the logarithm of this, GS(λ) = ln (tS(λ)). The logarithm is
chosen as it acts to remove the non-locality introduced by the exponential in (2.5) and in the diagonalisation
below, (2.9).

The task is therefore to find the expansion of tS(λ) in some limit of λ. For the Lax pair (1.5) the
appropriate limit is λ → 0+. In order to avoid evaluating the path-ordered exponential, we consider a
diagonalisation of the transport matrix [9]:

TS(x, y;λ) =
(
I +WS(x;λ)

)
eZS(x,y;λ)

(
I +WS(y;λ)

)−1
, (2.9)

where WS and ZS are wholly anti-diagonal and diagonal matrices, respectively. If we insert this diagonali-
sation into the spatial half of the auxiliary linear problem, the diagonal and anti-diagonal components can
be separated into two relations:

0 = W ′S + [WS , UD] +WSUAWS − UA,
Z ′S = UD + UAWS ,

(2.10)

where UD and UA are the diagonal and anti-diagonal components of the U -matrix, respectively. If we expand

WS and ZS in powers of λ, with coefficients W
(k)
S and Z

(k)
S [9]:

WS(λ) =
∞∑

k=0

λkW
(k)
S , ZS(λ) =

∞∑

k=−1

λkZ
(k)
S ,

we can split (2.10) into a series of recurrence relations (making use of how U only depends on λ−1):

0 = [W
(0)
S , UD] +W

(0)
S UAW

(0)
S − UA, 0 = (W

(k)
S )′ + [W

(k+1)
S , UD] +

k+1∑

j=0

W
(k+1−j)
S UAW

(j)
S ,

(Z
(−1)
S )′ = UD + UAW

(0)
S , (Z

(k)
S )′ = UAW

(k+1)
S ,

which we can recursively solve to find ever higher coefficients in the series expansions of WS and ZS . The
first few terms in the ZS-series are:

Z
(−1)
S = cL

(
1 0
0 −1

)
,

Z
(0)
S =

1

4c

∫ L

−L

S+S
′
− − S′+S−
c+ Sz

(
1 0
0 −1

)
dx,

Z
(1)
S =

−1

4c3

∫ L

−L

(
S′+S

′
− + (S′z)

2
)(1 0

0 −1

)
dx.

(2.11)

The reason for doing this is that if we insert the decomposition into the definition of the transfer matrix,
(2.7), the explicit W dependence cancels out, leaving:

tS(λ) = tr
{

eZS(λ)
}

= eZ11,S(λ) + eZ22,S(λ).

We are actually instead interested in the expansion of GS = ln (tS), which is then:

GS(λ) = ln
(

eλ
−1Z

(−1)
11,S +Z

(0)
11,S+λZ

(1)
11,S+... + eλ

−1Z
(−1)
22,S +Z

(0)
22,S+λZ

(1)
22,S+...

)
.

As the leading order terms in each of the exponents are cLλ−1 and −cLλ−1, and we are considering the limit
as λ → 0+, the first exponential will be of the form ecLλ

−1

, so will dominate over the second exponential,
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which will be of the form e−cLλ
−1

, which decays exponentially in the limit λ→ 0+. The expansion of GS(λ)
is therefore simply:

GS(λ) = λ−1Z
(−1)
11,S + Z

(0)
11,S + λZ

(1)
11,S + ....

The first three conserved quantities appearing in this expansion can then be read from the Z-series:

G(−1)
S = cL,

G(0)
S =

1

4c

∫ L

−L

S+S
′
− − S′+S−
c+ Sz

dx,

G(1)
S =

−1

4c3

∫ L

−L

(
S′+S

′
− + (S′z)

2
)
dx,

(2.12)

the second and third of which can be recognised as the total momentum and Hamiltonian for the HM model,
respectively (up to a factor of −2c) [9]:

PS = −2cG(0)
S , HS = −2cG(1)

S . (2.13)

Each of the conserved quantities G(k)
S generated through the expansion of GS can be seen to describe

the evolution of the system along a distinct time flow tk, so that the equations of motion for each of these
systems would be given by:

∂tkSσ = {G(k)
S , Sσ}S . (2.14)

Consequently, each of these systems should have some associated Lax pair. As we use the U -matrix to
generate the conserved quantities we will be looking for a generator V that produces the V -matrices V (k)

associated to each time flow tk. We do so by first equating Hamilton’s equation (as applied to U) and the
zero-curvature condition:

V′b(λ, µ)− [Ub(λ),Vb(λ, µ)] = ∂t̄Ub(λ) = {ln (tra {TS,a(µ)}) , Ub(λ)}S
= t−1

S (µ)tra {{TS,a(µ), Ub(λ)}S}
where the t̄ is used to denote some master time flow and the vector space subscripts are introduced to
distinguish the space being traced over (the a vector space). Using the algebraic relations (2.3) and (2.6),
we can extract from this the generator of the V -matrices associated to each time flow tk, [20]:

Vb(x;λ, µ) = t−1
S (µ) tra {TS,a(L, x;µ)rab(µ− λ)TS,a(x,−L;µ)} , (2.15)

such that the V -matrix associated to the tk time flow appears as the coefficient of µk in the series expansion
of this about µ. Using the diagonalisation of the monodromy matrix, the limit µ→ 0+ of the exponential of
ZS(µ), and the cyclic properties of the trace, this can be simplified to:

Vb(x;λ, µ) = tra

{
rab(µ− λ)

(
I +WS,a(x;µ)

)
e11,a

(
I +WS,a(x;µ)

)−1
}
,

where eij is the 2×2 matrix that obeys (eij)kl = δikδjl. Finally, as the chosen r-matrix satisfies rabMa =
Mbrab for any 2×2 matrix M , this can be simplified further to lie solely in the b vector space (so that we
may drop the subscripts):

V(x;λ, µ) =
1

µ− λ
(
I +WS(x;µ)

)
e11

(
I +WS(x;µ)

)−1
. (2.16)

If we expand this about powers of µ in the limit as µ→ 0+, the first three terms are:

V(0) =
−1

4λ
I− 1

4cλ
S,

V(1) =
−1

4λ2
I− 1

4cλ2
S +

1

4c3λ
S′S,

V(2) =
−1

4λ3
I− 1

4cλ3
S +

1

4c3λ2
S′S − 1

4c3λ
S′′ − 3

8c5λ
(S′)2S.

(2.17)
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After removing the overall commuting constant factors and scaling by −2c, the second of these can be
identified as the V -matrix in the Lax pair (1.5):

V = −2c(V(1) +
1

4λ2
I).

It is the identification of U with V(0) up to some constant factors, that suggests the introduction of a
dual picture for this model, with the roles of time and space switched. Before we investigate this though,
we briefly discuss how to adapt this construction to account for non-periodic boundary conditions.

2.3. Open Boundary Conditions

In order to study systems with open boundary conditions, we need to introduce some K±-matrices that
are associated to the ±L boundaries, and have a dependence on the spectral parameter and some additonal
constants. In order for them to be used in generating conserved quantities, we require that they satisfy the
classical analogue of the (non-dynamical) quantum reflection equation [13]:

0 = [rab(λ− µ),K±,a(λ)K±,b(µ)] +K±,a(λ)rab(λ+ µ)K±,b(µ)−K±,b(µ)rab(λ+ µ)K±,a(λ). (2.18)

For the r-matrix (2.2), the most general choice of K±-matrix (up to some rescaling and gauge transforma-
tions) is [23]:

K±(λ) = α±I + λ

(
δ± β±
γ± −δ±

)
, (2.19)

where α±, β±, γ±, and δ± are some constants that describe the boundary conditions being considered3. If
these are given a time dependence, then these would be dynamical boundary conditions. For this paper,
however, we consider only the non-dynamical case where they have no time dependence (and when we move
on to discuss time-like boundary conditions, we shall assume that the equivalent constants have no space
dependence). These K±-matrices are introduced into the transfer matrix tS as [12, 13]:

t̄S(λ) = tr
{
K+(λ)TS(L,−L;λ)K−(λ)T−1

S (L,−L;−λ)
}
, (2.20)

and from this definition it follows that:
{̄tS(λ), t̄S(µ)}S = 0.

Much as in the periodic case, we will consider the generator ḠS(λ) = ln (̄tS(λ)), as this will supply us
with the known Hamiltonian. To diagonalise the T−1

S , we use:

T−1
S (x, y;−λ) =

(
I +WS(y;−λ)

)
e−ZS(x,y;−λ)

(
I +WS(x;−λ)

)−1
,

in place of (2.9). Consequently, as the highest order term in ZS is λ−1, the effect of the − sign outside of
the ZS and the change in sign of the λ will cancel out, so that the expansion of the exponential term in the
limit λ→ 0+ is:

e−ZS(x,y;−λ) → e−Z11,S(x,y;−λ)e11 +O(e−λ
−1

). (2.21)

Consequently, the expansion of the generator ḠS is:

ḠS(λ) = Z11,S(λ)− Z11,S(−λ) + ln
([(

I +WS(L;−λ)
)−1

K+(λ)
(
I +WS(L;λ)

)]
11

)

+ ln
([(

I +WS(−L;λ)
)−1

K−(λ)
(
I +WS(−L;−λ)

)]
11

)
,

3The reflection equation satisfied by the K+- and K−-matrices actually differ by a minus sign in the spectral parameter,
but we absorb this factor into the β+, γ+, and δ+ to keep the forms of the matrices the same.
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where the [...]ij indicates that we are only considering the ijth component of the matrix inside the brackets.
If we expand this expression, the order λ0 coefficient is constant while the order λ1 coefficient is:

Ḡ(1)
S =

−1

2c3

∫ L

−L

(
S′+S

′
− + (S′z)

2
)

dx+
1

2α+c

[
2δ+Sz + β+S+ + γ+S−

]
x=+L

+
1

2α−c

[
2δ−Sz + β−S+ + γ−S−

]
x=−L.

(2.22)

This can be recognised as G(1)
S from (2.12), up to boundary contributions and an overall factor. As G(0)

S was

associated to the total momentum of the system, and Ḡ(0)
S is trivial, we can infer that the momentum is no

longer conserved when boundary conditions are introduced.

By following an analogous derivation to that of (2.15), we can derive the generator of the V -matrices
corresponding to the conserved quantities generated by ḠS . There are three cases to consider in this setting
[24], corresponding to the V -matrices in the bulk (labelled V̄B), and the V -matrices lying at each of the two
boundaries (labelled V̄± for the x = ±L boundaries, respectively). The generator of the bulk V -matrices is:

V̄B,b(x;λ, µ) = t̄−1
S (µ)tra

{
K+,a(µ)TS,a(L, x;µ)rab(µ− λ)TS,a(x,−L;µ)K−,a(µ)T−1

S,a(−µ)

+ K+,a(µ)TS,a(µ)K−,a(µ)T−1
S,a(x,−L;−µ)rab(µ+ λ)T−1

S,a(L, x;−µ)
}
,

(2.23)

while the generator of the V -matrices at the positive boundary is:

V̄+,b(λ, µ) = t̄−1
S (µ)tra

{
K−,a(µ)T−1

S,a(−µ)
(
K+,a(µ)rab(µ− λ) + rab(µ+ λ)K+,a(µ)

)
TS,a(µ)

}
, (2.24)

and the generator of the V -matrices at the negative boundary is:

V̄−,b(λ, µ) = t̄−1
S (µ)tra

{
K+,a(µ)TS,a(µ)

(
rab(µ− λ)K−,a(µ) +K−,a(µ)rab(µ+ λ)

)
T−1
S,a(−µ)

}
. (2.25)

If we expand these three generators about µ as µ→ 0+, the order µ0 contributions from each generator

are trivial, corresponding to Ḡ(0)
S being constant. At order µ1, they are:

V̄(1)
B (x;λ) =

−1

2λ2
I− 1

2cλ2
S +

1

2c3λ
S′S,

V̄(1)
± (λ) =

−1

2λ2
I− 1

2cλ2
S ± 1

4α±cλ

(
β±S+ − γ±S− 2(δ±S− − β±Sz)

2(γ±Sz − δ±S+) γ±S− − β±S+

)
.

(2.26)

In order to extract the boundary conditions from the open Hamiltonian, we simply calculate the equations
of motion as usual (through the Poisson brackets and Hamilton’s equation), except gathering all of the
boundary terms that arise (either from the integration of total derivatives in the bulk Hamiltonian, or from
the Poisson bracket of the fields with the boundary Hamiltonians). We then impose the sewing conditions
that the equations of motion away from the boundary smoothly transition to those at the boundary, i.e.
that limx→±L Ṡσ(x) = Ṡσ(±L).

Similarly, in order to extract the boundary conditions from the V -matrices, the condition that the
equations of motion agree at the boundary manifests as the condition that limx→±L V̄B,b = V̄±,b. Performing
either of these limits yields the same constraint on the boundary constants and the Sσ at the boundary [14]:

α±
[
S+S

′
− − S′+S−

]
x=±L = ±c2

[
β±S+ − γ±S−

]
x=±L,

α±
[
S+S

′
z − S′+Sz

]
x=±L = ±c2

[
δ±S+ − γ±Sz

]
x=±L,

α±
[
S−S

′
z − S′−Sz

]
x=±L = ±c2

[
δ±S− − β±Sz

]
x=±L.

(2.27)
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3. The Dual Model

By considering the equal prominence of the space and time coordinates in the Lagrangian picture of a 1+1
dimensional system, a dual Hamiltonian formulation of the non-linear Schrödinger model was constructed in
[2], which had equal-space Poisson brackets (in place of the equal-time Poisson brackets) and dual integrals
of motion that are conserved with respect to space-evolution rather than time-evolution. In this paper we
focus on the Lax pair construction rather than the Lagrangian picture emphasised in previous work.

In this Section, we build the dual construction of the isotropic Landau-Lifshitz model in the language of
Lax pairs. It follows mostly in parallel with Section 2, with the only divergences being where we emphasise
important differences between the two pictures, such as in the limiting procedure of the exponential in the
case of open boundary conditions, and where we digress to give an example of how this dual picture can be
used to find integrable systems depending non-trivially on additional fields.

The final subsection 3.4 considers the introduction of time-like boundary conditions. This idea was
introduced in [10], where it was applied to the non-linear Schrödinger model.

3.1. Poisson Brackets

The first step in this dual construction is defining the equal-space Poisson brackets (3.5) through the use
of the r-matrix and an analogue of the linear algebraic relation (2.3). However, as the hierarchy will now
describe a series of commuting space flows, the S′σ in the V -matrix (1.5) will all be derivatives with respect
to a specific space-flow, namely the 0th order flow x0 (as will be seen later). Consequently, to prevent later
confusion, we define these as some new fields, Σσ. When we look at the 0th order Hamiltonian or V -matrix
(that is, those that provide the original equations of motion (1.3)), we will find as part of the space-evolution
equations the identification Σσ = ∂x0

Sσ. Otherwise, these Σσ will be treated as entirely independent fields,
as can be seen in Subsection 3.3.

With these new fields, the V -matrix that we consider is:

V =
1

2λ2
S − 1

2c2λ
ΣS, (3.1)

with:

Σ =

(
Σz Σ−
Σ+ −Σz

)
.

While the Poisson brackets were found from the U - and r-matrices via (2.3), we assume that a similar
equation exists for the V -matrices, namely [1]:

{Va(t1, λ), Vb(t2, µ)}T = [rab(λ− µ), Va(t1, λ) + Vb(t2, µ)] δ(t1 − t2). (3.2)

Inserting both the V -matrix and the r-matrix into this expression, we find a collection of Poisson brackets
between the various fields:

{S±(t1), Sz(t2)}T = {S+(t1), S−(t2)}T = 0,

{S±(t1),Σz(t2)}T = {Sz(t1),Σ±(t2)}T = S±Sz δ(t1 − t2),

{Sz(t1),Σz(t2)}T = −S+S− δ(t1 − t2),

{S±(t1),Σ±(t2)}T = S2
± δ(t1 − t2),

{S±(t1),Σ∓(t2)}T = −(2S2
z + S+S−) δ(t1 − t2),

{Σ±(t1),Σz(t2)}T = (S±Σz − Σ±Sz) δ(t1 − t2),

{Σ+(t1),Σ−(t2)}T = (S+Σ− − Σ+S−) δ(t1 − t2).

(3.3)

As well as sharing the Casimir element c2 = S2
z + S+S− with the original model, these brackets have an

additional commuting quantity:
c̃ = 2SzΣz + S+Σ− + S−Σ+, (3.4)
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where, in reference to when Σσ = ∂x0Sσ in the HM model, we choose to set c̃ = 0. Consequently, when
the HM model is considered and we can write the Σσ directly as the derivatives of the Sσ, (3.4) becomes
redundant as it is merely the derivative of the original Casimir, (2.4). At any other level of the hierarchy
however, we cannot directly relate the Σσ and the Sσ, so the two Casimirs are distinct.

Introducing the fields Σx, Σy, and Σz in analogy to Sx, Sy, and Sz, these Poisson brackets can be written
more compactly by using the indices i, j ∈ {x, y, z}:

{Si(t1), Sj(t2)}T = 0,

{Si(t1),Σj(t2)}T = (SiSj − c2δij) δ(t1 − t2),

{Σi(t1),Σj(t2)}T = (SiΣj − SjΣi) δ(t1 − t2),

(3.5)

where the two Casimir elements are now:

c2 = S2
x + S2

y + S2
z ,

0 = SxΣx + SyΣy + SzΣz.
(3.6)

By defining the quantities:

ψ1 = S2
x, φ1 =

1

2c2

(
Σz
Sz
− Σx
Sx

)
, ψ2 = S2

y , φ2 =
1

2c2

(
Σz
Sz
− Σy
Sy

)
, (3.7)

the above Poisson brackets can be written as a canonical pair (where we use the 2 Casimir elements to
discount two of the fields):

{ψ1(t1), ψ2(t2)}T = {φ1(t1), φ2(t2)}T = 0, {ψi(t1), φj(t2)}T = δijδ(t1 − t2). (3.8)

3.2. Periodic Boundary Conditions

In both this section and the next (where open boundary conditions are considered), we consider a system
that lies on the interval [−τ, τ ], for some τ > 0. The periodic boundary conditions in this setting are then
Sσ(τ) = Sσ(−τ) and Σσ(τ) = Σσ(−τ).

The construction of the dual model follows in parallel with Section 2.2. The first object constructed is
therefore the equal-space monodromy matrix, TT , which is a solution to the temporal half of the auxiliary
linear problem, (1.4), in place of Ψ. This is diagonalised (by analogy to the standard picture discussed in
Section 2) through the use of a diagonal matrix ZT and an anti-diagonal matrix WT :

TT (t1, t2;λ) = P exp

∫ t1

t2

V (ξ)dξ

=
(
I +WT (t1;λ)

)
eZT (t1,t2;λ)

(
I +WT (t2;λ)

)−1
.

(3.9)

Because we have chosen that the V -matrices satisfy a linear algebraic relation of the form (3.2), the full
equal-space monodromy matrix TT (λ) = TT (τ,−τ ;λ) will satisfy a quadratic algebraic relation analogous to
(2.6):

{TT,a(λ), TT,b(µ)}T = [rab(λ− µ), TT,a(λ)TT,b(µ)]. (3.10)

Taking the trace of the equal-space monodromy matrix we get the equal-space transfer matrix, tT :

tT (λ) = tr {TT (λ)}
= eZ11,T (λ) + eZ22,T (λ),

(3.11)
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which, by virtue of the equal-space monodromy matrix satisfying the quadratic relation (3.10), Poisson
commute for different spectral parameters:

{tT (λ), tT (µ)}T = 0.

Finally, as these two series Poisson commute, so will each pair of the coefficients t
(k)
T . Therefore, if we take

the logarithm of these, GT (λ) = ln (tT (λ)), we have that the coefficients in the series expansion of GT (λ)
Poisson commute with one another:

{G(k)
T ,G(j)

T }T = 0. (3.12)

As in Section 2.2, in order to expand GT , we need to consider the leading order contribution in each of
Z11,T and Z22,T . Consequently, if we insert the diagonalisation of TT into the temporal half of the auxiliary
linear problem, (1.4), then we find relations for the WT and ZT :

0 = ẆT + [WT , VD] +WTVAWT − VA,
ŻT = VD + VAWT ,

(3.13)

where now VD and VA are the diagonal and anti-diagonal components of the V -matrix, respectively. Ex-
panding WT and ZT in powers of λ as4:

WT (λ) =
∞∑

k=0

λkW
(k)
T , ZT (λ) =

∞∑

k=−2

λkZ
(k)
T ,

then we can recursively solve (3.13). Solving the first few orders of these, we find the first three ZT -matrices
to be:

Z
(−2)
T = cτ

(
1 0
0 −1

)
, Z

(−1)
T = 0,

Z
(0)
T =

1

2c

∫ τ

−τ


ṠzI + (c− Sz)



Ṡ−
S−

0

0 − Ṡ+

S+


− 1

2c2
(Σ+Σ− + Σ2

z)

(
1 0
0 −1

)
dt.

(3.14)

Then, due to the form of the highest order term, the eZ11,T dominate over the eZ22,T in (3.11), so that
GT = Z11,T + .... I.e. the first three conserved quantities generated this way will be:

G(−2)
T = cτ, G(−1)

T = 0,

G(0)
T =

1

2c

∫ τ

−τ

(
Ṡz + (c− Sz)

Ṡ−
S−
− 1

2c2
(Σ+Σ− + Σ2

z)

)
dt.

(3.15)

Focussing on the third of these, if we use the periodic boundary conditions to remove any total derivatives

and multiply by a factor of −2c, G(0)
T reduces to:

HT =
1

2

∫ L

−L

(
Ṡ+S− − S+Ṡ−

c+ Sz
+

1

c2
(Σ+Σ− + Σ2

z)

)
dt. (3.16)

This is the equal-space Hamiltonian for the HM model, i.e. the generator of the space-evolution along the
space flow x0, as can be seen by using HT in Hamilton’s equation to find the space-evolution equations:

S′σ = {HT , Sσ}T , Σ′σ = {HT ,Σσ}T .

4Note that due to the underlying V -matrix having a dependence on λ−2 (as compared to the earlier construction where the
underlying U -matrix depended only on λ−1), the ZT series needs to start at k = −2 instead of k = −1.
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Doing so, the space-evolution equations for Sσ simply give the identification S′σ = Σσ, which is similar to
the sine-Gordon model (which has been studied in this description in [11]) and the dual construction of the
NLS model [1], while the space-evolution equations for Σσ give:

Σ′± = ±(S±Ṡz − Ṡ±Sz)−
1

c2
S±(Σ+Σ− + Σ2

z),

Σ′z =
1

2
(Ṡ+S− − S+Ṡ−)− 1

c2
Sz(Σ+Σ− + Σ2

z),

(3.17)

which, after substituting in S′σ = Σσ can be compactly written as:

~S′′ = i~S × ~̇S − 1

c2
~S|~S′|2, (3.18)

and are equivalent to the original equations of motion, (1.3), after replacing Sx, Sy with S± = Sx ± iSy.

Using the equal space Poisson brackets and the tower of equal space conserved quantities, we can generate
a whole hierarchy of space-evolution equations associated to distinct systems. Consequently, we will also be
interested in generating Lax pairs for each of these systems. By following the derivation of (2.15) and (2.16),
we can derive a generator U for the tower of U -matrices that partner with the underlying V -matrix, (3.1),
which can be generally written as:

Ub(t;λ, µ) = t−1
T (µ)tra {TT,a(τ, t;µ)rab(µ− λ)TT,a(t,−τ ;µ)} , (3.19)

or by using the known results and properties for the r-matrix, as well as the diagonalisation of TT , this can
be reduced to an expression that lies only in one vector space:

U(t;λ, µ) =
1

2(µ− λ)

(
I +WT (t;µ)

)
e11

(
I +WT (t;µ)

)−1
. (3.20)

When we expand this generator about µ→ 0+, the first three terms are:

U(0) =
−1

4λ
I− 1

4cλ
S,

U(1) =
−1

4λ2
I− 1

4cλ2
S +

1

4c3λ
ΣS,

U(2) =
−1

4λ3
I− 1

4cλ3
S +

1

4c3λ2
ΣS +

1

4c3λ
ṠS − 1

8c5λ
Σ2S.

(3.21)

If we remove the constant factor from the first of these and multiply by a factor of −2c, U(0) can be identified
with the spatial component of the original Lax pair (1.5):

U = −2c(U(0) +
1

4λ
I).

This guarantees that the equations of motion for this model agree with the original equations, (1.3).

3.3. Higher Order Systems

The identification of the Σσ with the derivatives of the Sσ appears as part of the equations of motion
for the system at order 0 in the hierarchy (the isotropic Landau-Lifshitz model). If we instead consider a
different system, these will not necessarily be the same. To see this, we consider the system at order µ2 in
the hierarchy, which has Lax pair (U2, V ), where we define:

U2 = −2c(U(2) +
1

4λ3
I)

=
1

2λ3
S − 1

2c2λ2
ΣS − 1

2c2λ
ṠS +

1

4c4λ
Σ2S. (3.22)
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Inserting this Lax pair into the zero-curvature condition, we find the space-evolution equations for this new
system. The space-evolution of the three original fields, S± and Sz, are:

S′+ =
1

c2
(S+Σ̇z − SzΣ̇+) +

1

2c4
(Σ2

z + Σ+Σ−)Σ+,

S′− =
1

c2
(SzΣ̇− − S−Σ̇z) +

1

2c4
(Σ2

z + Σ+Σ−)Σ−,

S′z =
1

2c2
(S−Σ̇+ − S+Σ̇−) +

1

2c4
(Σ2

z + Σ+Σ−)Σz,

(3.23)

while the space-evolution of the three fields Σ± and Σz are:

Σ′+ =
1

c2
(Σ+Σ̇z − Σ̇+Σz) + S̈+ + S+

( 1

c2
(
(Ṡz)

2 + Ṡ+Ṡ−
)
− 1

2c6
(
Σ2
z + Σ+Σ−

)2)

+
1

2c4
(
Σ2
z(Ṡ+Sz − S+Ṡz) + Σ2

+(Ṡ−Sz − S−Ṡz) + Σ+Σz(Ṡ+S− − S+Ṡ−)
)
,

Σ′− =
1

c2
(Σ̇−Σz − Σ−Σ̇z) + S̈− + S−

( 1

c2
(
(Ṡz)

2 + Ṡ+Ṡ−
)
− 1

2c6
(
Σ2
z + Σ+Σ−

)2)

+
1

2c4
(
Σ2
z(S−Ṡz − Ṡ−Sz) + Σ2

−(S+Ṡz − Ṡ+Sz) + Σ−Σz(Ṡ+S− − S+Ṡ−)
)
,

(3.24)

Σ′z =
1

2c2
(Σ̇+Σ− − Σ+Σ̇−) + S̈z + Sz

( 1

c2
(
(Ṡz)

2 + Ṡ+Ṡ−
)
− 1

2c6
(
Σ2
z + Σ+Σ−

)2)

+
1

2c4
(
Σ−Σz(S+Ṡz − Ṡ+Sz) + Σ+Σz(Ṡ−Sz − S−Ṡz) +

1

2
(Σ2

z − Σ+Σ−)(Ṡ+S− − S+Ṡ−)
)
.

These can be written more compactly in terms of the vectors ~S = (Sx, Sy, Sz)
T and ~Σ = (Σx,Σy,Σz)

T as:

~S′ =
i

c2
(~S × ~̇Σ) +

1

2c4
|~Σ|2~Σ,

~Σ′ =
i

c2
(~Σ× ~̇Σ)− i

2c4
|~Σ|2(~S × ~̇S) + ~̈S + ~S

( 1

c2
| ~̇S|2 − 1

2c6
|~Σ|4

)
+

i

c4
~Σ
(
~Σ · (~S × ~̇S)

)
.

(3.25)

When deriving the above Lax pair and resulting equations of motion we started from a V -matrix at order
µ1 and found the corresponding U -matrix at order µ2. We could instead, however, start by considering a
U -matrix at order µ2 and use that to find the corresponding V -matrix at order µ1.

To find this order µ2 U -matrix, we start from the base system (i.e. the Lax pair consisting of the U - and
V -matrices appearing at order µ0, see (2.17) and (3.21)):

U = V =
1

2λ
S. (3.26)

The equations of motion for this system are simply Ṡσ = S′σ. Then, the first three terms in the hierarchy of
U -matrices constructed from the V -matrix are:

U(0) =
−1

4λ
I− 1

4cλ
S,

U(1) =
−1

4λ2
I− 1

4cλ2
S +

1

4c3λ
ṠS,

U(2) =
−1

4λ3
I− 1

4cλ3
S +

1

4c3λ2
ṠS − 1

4c3λ
S̈ − 1

8c5λ
(Ṡ)2S,

(3.27)

which should be compared with (2.17). Before we can construct the space-like (standard) hierarchy for the
U -matrix found from U(2) we need to define the fields Pσ = ∂t0Sσ and Pσ = ∂2

t0Sσ (in analogy to how we
defined the field Σσ = ∂x0

Sσ), so that the U -matrix is:

U =
1

2λ3
S − 1

2c2λ2
PS +

1

2c2λ
P +

3

4c4λ
P 2S, (3.28)
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with:

P =

(
Pz P−
P+ −Pz

)
, P =

(
Pz P−
P+ −Pz

)
.

This is the U -matrix appearing at order µ2 that we consider in place of (3.22). Constructing the space-like
hierarchy from this, the V -matrix appearing at order µ1 is (after removing the constant factor and scaling
by −2c):

V =
1

2λ2
S − 1

2c2λ
PS. (3.29)

This Lax pair would appear to describe a system of equations different to (3.25), due to containing a
total of nine fields, Sσ, Pσ, and Pσ. When these matrices are inserted into the zero-curvature condition,
however, one of these sets of fields is redundant and P can be written in terms of S and P as:

P = SṠ − 1

c2
P 2S.

The combination of this identification and the remaining equations of motion can then be recognised as the
equations (3.25). Consequently, traversing the early (n < 3) part of these dual hierarchies is commutative
for this model. It remains to be seen if any higher order parts of the dual hierarchies commute, however,
there is no a priori justification for the commutativity and an investigation into this is left for future study.

3.4. Open Boundary Conditions

Finally, we consider the effect of introducing reflective boundary conditions to the time-axis. This idea
was introduced in [10], where it was applied to the NLS model. Due to the r-matrix structure for the dual
model, (3.2), being identical to the r-matrix structure of the original model, (2.3), we introduce boundary
conditions in an identical manner. That is, we start by choosing a pair of matrices, K±, that satisfy (2.18).
Specifically, we use the same K-matrices as in the original picture, (2.19):

K±(λ) = α±I + λ

(
δ± β±
γ± −δ±

)
,

where the constants α±, β±, γ±, and δ± could in general depend on the evolution parameter, x, but we
choose them to be constant for simplicity. We introduce these K-matrices into the generator of the quantities
conserved with respect to space as [12, 13, 10]:

t̄T (λ) = tr
{
K+(λ)TT (τ,−τ ;λ)K−(λ)T−1

T (τ,−τ ;−λ)
}
, (3.30)

from which we can use the quadratic relation (3.10) and the defining relation for the K-matrices, (2.18), to
derive the time-like equivalent of (2.20), which tells us that the t̄T Poisson commute for different spectral
parameters. Again, we are actually interested in the coefficients in the expansion of ḠT (λ) = ln (̄tT (λ)),
which will also Poisson commute with one another:

{Ḡ(k)
T , Ḡ(j)

T }T = 0. (3.31)

In order to evaluate the series expansion of ḠT (λ), as well as diagonalising TT through (3.9), we need to
also diagonalise T−1

T through:

T−1
T (t1, t2;−λ) =

(
I +WT (t2;−λ)

)
e−ZT (t1,t2;−λ)

(
I +WT (t1;−λ)

)−1
.

An important point here is that when we take the limit as λ → 0+ of the exponentiated term, due to the
− sign in front of the ZT and the highest order term being (−λ)2 = λ2, the expansion of the exponential as
λ→ 0+ will instead be:

e−ZT (t1,t2;−λ) → e−Z22,T (t1,t2;−λ)e22 +O(e−λ
−2

).
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Consequently, when the diagonalisations are inserted into the generator ḠT , we have (where we suppress the

parameters by defining f̂ = f(−λ) and W±,T = WT (±τ)):

ḠT (λ) = ln
(

eZ11,T−Ẑ22,T tr
{
K+

(
I +W+,T

)
e11

(
I +W−,T

)−1
K−
(
I + Ŵ−,T

)
e22

(
I + Ŵ+,T

)−1
})

,

which can be separated into the bulk contribution and the two boundary contributions:

ḠT (λ) = Z11,T (λ)− Z22,T (−λ) + ln (W+(λ)) + ln (W−(λ)) , (3.32)

where we define:
W+(λ) =

[(
I +WT (τ ;−λ)

)−1
K+(λ)

(
I +WT (τ ;λ)

)]
21
,

W−(λ) =
[(
I +WT (−τ ;λ)

)−1
K−(λ)

(
I +WT (−τ ;−λ)

)]
12
.

(3.33)

Due to the logarithmic dependence of ḠT on W±, the lowest order contribution of the boundary terms
to the generator ḠT will appear at order λ0. Specifically, this lowest order contribution will be:

W(1)
± =

1

2c

(±2α±
c

( S±Σz
Sz + c

− Σ±
)
− 2δ±S± − β±

S+S±
Sz ± c

− γ±
S−S±
Sz ∓ c

)
, (3.34)

so that the first three terms in the expansion of ḠT are:

Ḡ(−2)
T = 2cτ, Ḡ(−1)

T = 0,

Ḡ(0)
T =

1

2c

∫ τ

−τ

(
S+Ṡ− − Ṡ+S−

c+ Sz
− 1

c2
(Σ+Σ− + Σ2

z)

)
dt+ ln

(
W(1)

+

)
+ ln

(
W(1)
−
)
.

(3.35)

Multiplying Ḡ(0)
T by the factor −c gives the Hamiltonian with open boundary conditions:

H̄T =

∫ τ

−τ

(
1

2c2
(Σ+Σ− + Σ2

z) +
Ṡ+S− − S+Ṡ−

2(c+ Sz)

)
dt− cln

(
W(1)

+

)
− cln

(
W(1)
−
)
. (3.36)

Away from the boundaries, the Poisson brackets of H̄T with each of the six fields returns the space-
evolution equations, (3.17). At the boundaries, however, when the space-evolution is derived the condition
that the fields at the boundary still satisfy the usual space-evolution equations imposes extra conditions
on the fields Sσ and Σσ, as well as the α±, β±, γ±, and δ±. The requirement that limt→±τ S′σ = S′σ(±τ)
restricts us to the case α± = 0. If we combine this with the requirement that limt→±τ Σ′σ = Σ′σ(±τ), then
we find the time-like boundary conditions for the HM model:

0 = α±, 0 = β±S+ + γ±S− + 2δ±Sz. (3.37)

We can also find a generator for the U -matrices both in the bulk and at the boundaries. The generator
for the bulk U -matrices will be [10]:

ŪB,b(t;λ, µ) = t̄−1
T (µ)tra

{
K+,a(µ)TT,a(τ, t;µ)rab(µ− λ)TT,a(t,−τ ;µ)K−,a(µ)T−1

T,a(−µ)

+ K+,a(µ)TT,a(µ)K−,a(µ)T−1
T,a(t,−τ ;−µ)rab(µ+ λ)T−1

T,a(τ, t;−µ)
}
,

(3.38)

and, being mindful of the different limit for the T−1
T (−µ), this can be reduced to:

ŪB(t;λ, µ) = U(t;λ, µ) +
1

2(µ+ λ)

(
I +WT (t;−µ)

)
e22

(
I +WT (t;−µ)

)−1
, (3.39)
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where U(t;λ, µ) is the generator of the U -matrices with periodic boundary conditions. Unlike in the original
case, where the second term differed from the first only by the sign of the µ, here it differs both by the sign
of the µ and in that the matrix e11 has become e22. The lowest order term in the expansion of this appears
as the coefficient of µ0, and is:

U(0)
B =

−1

2cλ

(
Sz S−
S+ −Sz

)
= 2U(0), (3.40)

where U(0) is the U -matrix appearing at lowest order in the periodic case. The boundary U -matrices are
found by considering the generators:

Ū+,b(λ, µ) = t̄−1
T (µ)tra

{
K−,a(µ)T−1

T,a(−µ)
(
K+,a(µ)rab(µ− λ) + rab(µ+ λ)K+,a(µ)

)
TT,a(µ)

}
,

Ū−,b(λ, µ) = t̄−1
T (µ)tra

{
K+,a(µ)TT,a(µ)

(
rab(µ− λ)K−,a(µ) +K−,a(µ)rab(µ+ λ)

)
T−1
T,a(−µ)

}
,

(3.41)

which can be simplified to:

Ū+,b(λ, µ) =
1

2W+(µ)

(
1

µ− λ
(
I +WT (τ ;µ)

)
e12

(
I +WT (τ ;−µ)

)−1
K+(µ)

+
1

µ+ λ
K+(µ)

(
I +WT (τ ;µ)

)
e12

(
I +WT (τ ;−µ)

)−1
)
,

(3.42)

and:

Ū−,b(λ, µ) =
1

2W−(µ)

(
1

µ− λK−(µ)
(
I +WT (−τ ;−µ)

)
e21

(
I +WT (−τ ;µ))

)−1

+
1

µ+ λ

(
I +WT (−τ ;−µ)

)
e21

(
I +WT (−τ ;µ)

)−1
K−(µ)

)
.

(3.43)

The first non-trivial term in the expansion of each of these appears at order µ0. For the t = +τ boundary,
this is:

U(0)
+ =

1

2c(c+ Sz)W(1)
+

[
α+

λ2

(
S+(c+ Sz) −(c+ Sz)

2

S2
+ −S+(c+ Sz)

)

− 1

2λ

(
−β+S

2
+ − γ+(c+ Sz)

2 2(c+ Sz)
(
δ+(c+ Sz) + β+S+

)

2S+

(
δ+S+ − γ+(c+ Sz)

)
β+S

2
+ + γ+(c+ Sz)

2

)]
,

(3.44)

while at the t = −τ boundary, the U -matrix is:

U(0)
− =

1

2c(c+ Sz)W(1)
−

[
α−
λ2

(
S−(c+ Sz) S2

−
−(c+ Sz)

2 −S−(c+ Sz)

)

− 1

2λ

(
β−(c+ Sz)

2 + γ−S2
− −2S−

(
δ−S− − β−(c+ Sz)

)

−2(c+ Sz)
(
δ−(c+ Sz) + γ−S−

)
−β−(c+ Sz)

2 − γ−S2
−

)]
.

(3.45)

Requiring that limt→±τ U(0)
B = U(0)

± gives rise to both the condition that α± = 0 (from the order λ−2 terms)
and that β±S+ +γ±S−+2δ±Sz = 0, which agrees with the boundary conditions found from the Hamiltonian
approach, (3.37).

By comparing the time-like boundary conditions, (3.37), with the space-like boundary conditions, (2.27),
we can see that there is no evident connection between the two. This asymmetry is rooted in the fundamen-
tally different dependence of the fields on the space and time coordinates, as can be seen by comparing the
forms of the equations of motion in (1.1) and (3.18).
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4. Summary

The main result of this paper, derived in Section 3, is the dual construction of the isotropic Landau-
Lifshitz model, where space-evolution equations, spatially conserved quantities, and equal-space Poisson
brackets are obtained. This was done by following the usual procedure for deriving Poisson brackets and
conserved quantities for a system that is integrable via the existence of a Lax pair and r-matrix, except
with the roles of the space and time variables switched. A consequence of this equal-space construction
is the existence of a hierarchy of dual integrable systems, each of which has an infinite tower of conserved
quantities, (3.15), and a Lax pair representation, (3.21). Then, through the combination of the usual equal-
time hierarchy and this dual equal-space hierarchy, an infinite “lattice” of integrable models can be built (it
is important to note here that this “lattice” is not commutative a priori, although it has been observed to
commute for n,m < 3).

By considering a higher order system in the dual hierarchy of the isotropic Landau-Lifshitz model, (3.25),
we have connected the 3-field HM model (with 1 Casimir element) with a novel 6-field model (which has 2
Casimir elements). As this system appears in the hierarchy of the HM model, it is likely to have a solitonic
solution similar to that of the HM model, which would be discoverable through the use of the inverse
scattering tools, or through a Darboux-Bäcklund/Dressing approach. The investigation of such a soliton
could provide interesting insights into the dual construction, if not the original model itself, but we leave
this for future consideration.

We have also studied the introduction of reflective boundary conditions to the time-axis in Section 3.4,
in the vein of [10]. While seemingly unphysical, such boundary conditions could have applications as a
particular type of initial condition for the system, where the time coordinate is considered on the half-
line, [0,∞), instead. Thus, the boundary conditions discussed above would appear as a particular set of
initial conditions that settle into (in the case of a soliton reflecting boundary) a 2-soliton solution. Potential
applications and consequences of this however are left for later investigation.

Finally, we close by repeating that, due to the U - and V -matrices sharing the same r-matrix, the space and
time coordinates in this construction are fully interchangeable. This means that all of the results described
here will still hold when the space and time coordinates are switched, so that switching the space derivatives
and time derivatives in (3.25) describes the time-evolution of an integrable system:

~̇S =
i

c2
(~S × ~Σ′) +

1

2c4
|~Σ|2~Σ,

~̇Σ =
i

c2
(~Σ× ~Σ′)− i

2c4
|~Σ|2(~S × ~S′) + ~S′′ + ~S

( 1

c2
|~S′|2 − 1

2c6
|~Σ|4

)
+

i

c4
~Σ
(
~Σ · (~S × ~S′)

)
,

(4.1)

and the results of Section 3.4 can be viewed instead as a description of (space-like) open boundary conditions
for the time-evolution equations:

~̈S = i(~S × ~S′)− 1

c2
~S| ~̇S|2. (4.2)

This dual construction has now been applied to the isotropic Landau-Lifshitz model, the non-linear
Schrödinger model (originally in scalar [2] case and later extended to the vector [25] case) and its associated
hierarchy (including, for example, the complex modified KdV equation) in [1], and the sine-Gordon model in
[11]. All of these models can be found as special limits of the anisotropic Landau-Lifshitz model [8] and its
hierarchy. Consequently, it would be expected that the fully anisotropic Landau-Lifshitz model also admits
a space-time duality of this type, however, an investigation into this is left for future work.
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