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Abstract A generic procedure is formulated for the

determination of the moment capacity of composite beams

having a complex cross-section. The key feature is the use

of Fourier series to convert the piecewise functions of the

cross-sectional stress distribution into a single-rule func-

tion. This eliminates the need for several capacity expres-

sions to cover different stress stages, since the procedure

permits the use of the general moment capacity expression.

It also eliminates any iteration process when determining

the location of the neutral axis since equilibrium of the

cross-section can be satisfied explicitly. Numerical exam-

ples are given to demonstrate the validation and the

applications of the formulation.

Keywords Moment capacity � Stress distribution �
Fourier’s series � Composite beam � Cold-formed steel

Introduction

Since a composite beam is primarily a flexural member, the

most important design requirement is usually the provision

of adequate moment capacity. This is calculated as the

internal moment produced by the flexural stresses during the

bending of the beam. The degree of difficulty in determining

the moment capacity increases as the beam becomes more

complex; this can be due to the geometry, the material

properties or a combination of the two. Furthermore, the

difficulty is magnified by the various possible stress states of

a composite beam’s cross-section as indicated in Fig. 1.

These stress states are associated with different premature

modes of failure. In the design of a composite beam, some of

the possible premature forms of failure are listed below:

1. Local buckling

• Local buckling occurs due to the bending com-

pressive stress. Early occurrence of the phe-

nomenon limits the stress development in the

cross-section (Wright 1993, 1995; Uy and Bradford

1994, 1995a, 1996).

2. Crushing of concrete

• In contemporary composite beams, i.e., profiled

composite beams (Oehlers et al. 1994; Uy and

Bradford 1995b) PCFC beams (Mohd Yassin and

Nethercot 2007), there is a trend to provide

concrete elements throughout the depth of the

beam. Such a configuration introduces the possi-

bility for the concrete to crush prior to the full

yielding of the steel section, thus leaving the latter

in an elastoplastic condition.

3. Fracture and debonding of shear connection

• Although fracture of shear connection and debond-

ing is unlikely to occur, allowance for such

considerations may be necessary (Teng et al.

2001; Oehlers et al. 1994).

4. Fracture of strengthening elements

• For certain forms of reinforcement an allowance

for the fracture of the strengthening elements, i.e.,
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FRP, GFRP may be necessary (Oehlers et al.

1994).

All the complexities mentioned above make the deter-

mination of the moment capacity of a complex composite

beam a task best handled by a computer program. In

developing a generic computer program, it is better to use

general mathematical expressions able to cover a wide

range of possibilities with minimal end-user intervention.

In the determination of the moment capacity of a beam, the

use of general expressions requires that the stress distri-

bution can be expressed as a single-rule function—this is

the focus of this paper.

Review of existing method of analyses

Previous studies of composite beams can be grouped into

two classes: cross-sectional analysis and global analysis.

Whilst the former concern only the critical cross-sections

along the beam span, the latter treats the beam as a whole.

Consequently, cross-sectional analysis is simpler to con-

duct. Despite the differences, all the existing methods

employ iterative approaches when determining the location

of the neutral axis, resulting in the need for iterative pro-

cesses when calculating the moment capacity of the com-

posite beam. The general steps may be stated as:

• Step 1: divide the cross-section into strips (or fibers)

• Step 2: assume a location for the NA

• Step 3: calculate the compressive and the tensile

resultants and obtain the residual between these

resultants

• Step 4: assess whether the residual is less than the

specified tolerance, if so the analysis can proceed to the

next stage, else, repeat the steps again until conver-

gence is obtained

Cross-sectional analysis

Lodygowski and Szumigala (1992) divided an encased

steel beam into strips, where the stress resultants were

computed and balanced throughout the cross-section. The

procedure for determination of the location of the plastic

neutral axis was the same as that listed above, but the

convergence algorithm was not detailed in the paper.

Similar to Lodygowski and Szumigala, Uy and Bradford

(1995b) subdivided a profiled composite beam into hori-

zontal ‘slices’. However, they provided a more detailed

description for the iteration and the convergence processes.

The location of the NA is increased by a fraction of the

beam’s depth until the total of the resultants changes sign,

marking the attainment of the larger compressive resultants

as compared to the tensile resultants. Then, the method of

bisections is used to converge on the value of the location

of the NA for which the total of resultants approaches zero

to a given accuracy. Oehlers et al. (1994) described a

procedure for the determination of the flexural capacities of

RC beams stiffened with plates or FRP that is conceptually

applicable to any beam. The procedure is based on the

known value of failure strains and, for this type of beam,

the failure strains can either be concrete crushing strain,

debonding strain of the stiffening materials or the plate

fracture strain. Mohd Yassin and Nethercot (2007) pro-

posed a procedure to determine the cross-sectional prop-

erties of composite beams having complex cross-sections.

The key feature is the use of functions to describe the shape

of the cross-section. The motivation came from the

development of a new type of composite beam, termed a

Fig. 1 Possible stress states
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pre-cast cold-formed composite beam or PCFC beam. In

the procedure, the iterative process for the determination of

the location of the NA is expressed systematically to suit

computer programming. But this procedure is still discrete

in nature. Furthermore, as compared to the aforementioned

works, this procedure is not appropriate for all stress stages

since it is based on the rectangular stress block assumption.

However, the procedure provides general computer pro-

gramming guidelines to cater for general cross-sections

while the aforementioned works are best suited to rectan-

gular cross-sections.

Global analysis

Global analysis of composite beams deals with the

derivation and the solution of the differential equations

governing the behavior of the composite beams. It was first

carried out by Newmark et al. (1951) and closed-form

solutions are available for simplified elastic considerations

(Robinson and Naraine 1998; Roberts and Haji-Kazemi

1989; Taljsten 1997; Smith and Teng 2001). Allowance for

differences in the curvature posed difficulty even for the

elastic case. In solving such a problem, Adekola (1968)

employed the finite difference method (FDM) when solv-

ing the coupled differential equations in terms of the nor-

mal and the interface shear stresses. For nonlinear

problems, finite element methods (FEM) would be the best

way to proceed. Displacement-based, force-based and

mixed formulations of finite element methods have been

derived and updated covering linear and nonlinear prob-

lems (Ayoub and Filippou 2000; Dall’Asta and Zona

2002). A comparative study in terms of adequacy and rigor

between FEM, direct stiffness method and FDM in ana-

lyzing composite beam problems has recently been carried

out by Ranzi et al. (2006).

Despite the rigorous nature of FEM, there is a need to

balance accuracy and practicality. The work by Sousa and

Muniz (2007) is an example of this kind. The idea is that

whilst the overall analysis employs FEM, it is simplified at

cross-sectional level by the consistent stress approach. In

other words, continuum mechanics and strength of mate-

rials approaches are employed at global and cross-sectional

levels, respectively. But, since the stress–strain curve was

represented by a piecewise cubic expression, the work still

discretized the cross-section according to the stress state.

Due to the piecewise nature, it was necessary to determine,

for each material, the regions over which each individual

polynomial expression is valid. This again led to an itera-

tive process. Nevertheless, its extension to accommodate

the finite element formulation makes this superior to the

rest of the cross-sectional analyses described in ‘‘Cross-

sectional analysis’’.

Summary of review

Based on the foregoing review of the existing approaches

to cross-sectional and global analyses, it is clear that the

extent of difficulty in the calculation procedures depends

on;

1. Number of materials in the cross-section

2. Complexity of the shape of the cross-section

3. Complexity of the material stress–strain relationship

4. Number of possible premature failure modes.

Also, it can be concluded that the existing iterative

approaches are best for rectangular (or regular) shapes and a

bilinear stress–strain curve. Therefore, a non-iterative pro-

cedure able to cater for irregular cross-sections and non-

linear flexural stress distributions is very much needed. This

is achieved herein with the use of Fourier series, (termed

hereafter as FS) to represent the piecewise functions of the

known stress distribution as a single-rule function.

Fourier series (FS)

It is well known that FS are able to approximate a set of

piecewise functions as a single-rule function; the accuracy

depends on the number of terms and satisfaction of

Dirichlet’s theorem. Since the stress distribution over the

cross-section is a set of piecewise functions, then FS should

be suitable for the present application.

For ease of understanding, some relevant derivations of

Fourier series are provided. Firstly, FS will be derived to

represent the stress–strain curve of the material as a single-

rule function. This is followed by the derivation of an FS

flexural stress distribution for a single material member.

Finally, an FS flexural distribution for a composite beam

member is given.

Stress–strain FS formulation

The best way to describe the FS formulation to represent

the stress–strain curve of a material as a single-rule func-

tion is by direct demonstration. Herein, the formulation for

a bilinear steel material model with hardening is

demonstrated.

Figure 2 shows the hardening model that is usually

assumed for high-strength steel. The model comprises two

linear functions. For high-strength steel, since the yield

point is not obvious, the yielding strain ey is usually taken

as 0.2% corresponding to the proof stress. The hardening

part of the model is defined by the reduced modulus, cEs

where c is a reduction factor. The piecewise functions of

the model can be given as:
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r ¼

f1 ¼ cEe þ ry if ey � e
f2 ¼ Ee if 0� e� ey
f3 ¼ f2 if � ey � e� 0

f4 ¼ cEe � ry if e� � ey;

8
>><

>>:

ð1Þ

where ry is the intersection of f1 at the stress axis.

Based on Eq. (1), the Fourier coefficient of the nth term,

an, can be obtained as:

an ¼
2

eL

Z

ey

f1 sin
npe
eL

� �

deþ
Zey

0

f2 sin
npe
eL

� �

de

2

6
4

þ
Z0

�ey

f3 sin
npe
eL

� �

deþ
Z�ey

f4 sin
npe
eL

� �

de

3

7
5: ð2Þ

Once an is determined, the FS for the stress–strain curve

can be given as:

rFS ¼
Xn

1

bn sin
npe
eL

� �

: ð3Þ

Figure 3 shows the FS representation of a typical stress–

strain curve with hardening for various numbers of terms.

For concrete, the compressive and the tension behavior

can be modeled together. The preceding procedure applies

to such a modeling. A typical stress–strain curve for con-

crete based on Carreira and Chu (1985) for the compressive

part is shown in Fig. 4.

FS formulation for cross-sectional flexural stress

distribution

Preceding discussion demonstrates the FS representation of

the material stress–strain curve. Since the main interest is

determination of the moment capacity of beams, the pro-

cedure needs to be extended at cross-sectional level. A

general stress distribution acting on a beam cross-section is

shown in Fig. 5. The piecewise function of the distribution

is given as:

rðyÞ ¼

�
�
fi if depþ yi � y� depþ yi�1

�
�

8
>>>><

>>>>:

; ð4Þ

where i = 1…j, and j is the total number of functions. The

integration limits yi measured from the NA are given as:

yi ¼
ei
eL

yL; ð5Þ

where eL and yL are the limiting strain (or the known strain)

and its location, respectively; the latter is measured from

the NA. All the terms in Eq. (5) are direction sensitive,

with those above dep taken as positive and vice versa. With

these definitions in place, the Fourier coefficients bn can be

given in terms of dep as:

bn ¼
2

L
� � � þ

Zdepþyi

depþyi�1

fi sin
npy
L

� �
dyþ � � �

2

6
4

3

7
5; ð6Þ

where L is the FS range or period and n is the nth term of

the series. L is the span which extends beyond the depth of

the cross-section, D as shown in Fig. 6.

However, the value of L cannot be determined a priori

exactly because it depends on the location of the NA and

thus the value of, dep. But, as long as it exceeds suffi-

ciently the cross-section, it is valid except for very low

values of eL/yL that correspond to a very low premature

elastic stress state, which usually are not of interest. In

other words, a very large L would not affect the solution;

it only makes the solution more general as far as low

value of eL/yL is concerned. If L is set equal to the depth

of the beam, the formulation is valid for first yield and

beyond, i.e., elastoplastic and hardening, but invalid prior

to that. It must be noted that functions fi in Eq. (6) must

be derived from the origin shown in Fig. 6. Having

determined bn, the FS stress distribution, rFS, can thus be

obtained in terms of dep as:

rFS ¼
Xn

1

bn sin
npy
D

� �
: ð7Þ

Moment capacity formulation for single member

The general expression for moment capacity of a beam can

be given as:

M ¼
Z

A

rðyÞydA: ð8Þ

Despite the availability of the general expression of

Eq. (8), current practice uses several capacity expressions

to cover different stress stages due to the piecewise nature

Fig. 2 Steel material model with hardening
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of the stress state, i.e., elastic, elastoplastic, plastic. By

having a single-rule function represented by the FS, gen-

erality of Eq. (8) holds regardless of the stress state. This is

the major advantage of the present approach. Inserting

Eq. (7) into Eq. (8) will finally give the general moment

expression, as follows:

M ¼
Z

A

Xn

1

bn sin
npy
D

� �
 !

ydA: ð9Þ

Determination of dep (explicit approach) The unsolved

rFS of Eq. (7) contains dep as the unknown variable and,

when integrated throughout the area, gives the distribution

of the stress resultant, RFS as:

RFS ¼
Z

A

Xn

1

bn sin
npy
D

� �
dA ¼ RFSðdepÞ: ð10Þ

To note, Eq. (10) expresses RFS in terms of the

unknown, dep hence RFSðdepÞ. By setting Eq. (10) to zero,

which ensures the satisfaction of the longitudinal equilib-

rium, dep can be solved. The solution of Eq. (10) is best

conducted with the aid of commercial programming soft-

ware, i.e., Matlab (1992) or Maple (2005), using the default

command ‘solve’.

Fig. 3 Representation of

typical stress–strain hardening

curve by various numbers of FS

terms

Fig. 4 FS representation of typical concrete material model
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Determination of dep (graphical approach) As an alter-

native, a graphical approach can be used to determine the

location of dep. This is possible because the unsolved RFS

is given in terms of dep. Varying the value of dep

throughout the depth of the beam varies the value of RFS;

the correct value of dep is obtained when RFS intercepts the

abscissa. This approach is preferred over the explicit

approach as it is much quicker for the commercial software

to plot the graph than to solve Eq. (10) explicitly. In

Maple, this can be done using the ‘plot’ command. This

approach will be demonstrated in Example 1. Since the

preference for the graphical approach over the explicit

approach is due to the limitation of current micro-processor

capabilities, it should not be seen as resort to an iterative

process. With suitable enhancement of computer technol-

ogy, such a preference is likely to be reversed in the very

near future.

Moment capacity for composite member

The preceding formulation is limited to a cross-section

composed of a single material. For composite beams, the

flexural stress distribution in each material, i.e., steel,

concrete, must be represented by FS. At present, the for-

mulation is derived for composite beams with full shear

connection. The FS coefficient bn,m of material m can be

given in terms of dep as:

bn;m ¼ 2

L
� � � þ

Zdepþyi;m

depþyi�1;m

fi;m sin
npy
L

� �
dyþ � � �

2

6
4

3

7
5; ð11Þ

where subscript m is assigned according to the type of

material, i.e., steel, concrete. Having determined bn,m, the

FS stress distribution, rFS;m can be obtained in terms of dep

as:

rFS;m ¼
Xn

1

bn;m sin
npy
L

� �
ð12Þ

The moment capacity of the beam is thus obtained as:

M ¼
X

m¼1

Z

Am

Xn

1

bn;m sin
npy
L

� �
 !

ydAm þ
X

Rbarhb;

ð13Þ

where Rbar and hb are the rebar resultants and their loca-

tions measured from the origin of the FS.

Determination of dep The unsolved rFS;m of Eq. (12)

contains dep as the unknown and, when integrated

throughout the area, gives the distribution of the stress

resultant, RFS as:

RFS ¼
X

m¼1

Z

Am

Xn

1

bn;m sin
npy
L

� �
dAm þ RFS;bar: ð14Þ

Fig. 5 Piecewise distribution of the strain and the stress

Fig. 6 FS range (or period), L of the cross-section
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By setting Eq. (14) to zero, which ensures longitudinal

equilibrium, dep can then be solved. The RFS,bar term is

included to incorporate the effect of the rebar when

determining the location of the NA. It is a distribution

represented by FS, explained as follows.

Consider a beam cross-section as shown in Fig. 7 having

unsymmetrically placed rebar, i.e., R1[R2. The variation

of the total resultant of the rebar as dep varies is shown

where positive resultants are taken as compressive. This

variation can be expressed as a piecewise function as

follows:

Rbar ¼
�R1 � R2 if h2 � dep� L

�R1 þ R2 if h1 � dep� h2
R1 þ R2 if 0� dep� h1:

8
<

:
ð15Þ

Having established the piecewise functions, the FS

distribution of the rebar resultant can be derived as previ-

ously described. For various rebar levels, all that is needed

is the extension of the above piecewise functions to cover

all ranges. To note, for symmetrical arrangements, i.e.,

R1 = R2, the rebars do not affect the location of the NA

since they balance each other in the longitudinal equilib-

rium determination. The quantitative treatment of Rbar is

demonstrated in Example 2. Similar to the preceding pro-

cedure, the dep can be obtained either explicitly or

graphically.

Worked examples

Worked examples are presented to both validate and

demonstrate the application of the formulation.

Example 1: validation of the formulation

This example is intended to validate the formulation by

comparing the results with those obtained from the exact

method and the simplified stress block method. In the exact

method, the result is obtained by direct integration of the

piecewise flexural stress distribution of the beam. Consider

the complex beam cross-section shown in Fig. 8. The

elastic-perfectly-plastic (EPP) steel material curve is

assumed. Since the beam is symmetrical about the minor

axis, only half the beam is considered. This analysis

incorporates the Mohd Yassin and Nethercot (2007)

approach. Such incorporation makes the present formula-

tion not only general in terms of stress states but also in

terms of composite beam cross-sectional configurations.

The material properties of the beam are given in Table 1.

For ease of presentation, the function matrix, FE, the

activeness matrix, ACTIVE and the local and the global

height vectors, YN and ZN, as required by the approach are

given directly herein. For detailed formulations, interested

readers are referred to Mohd Yassin and Nethercot (2007).

FE ¼ 0 0 1000� 375y

0 0 0:075yþ 10

� �

; ACTIVE

¼ 1 0 0

1 0 0

� �

; YN ¼ 200

200

� �

; ZN ¼ 0

200

� �

:

To note, FE must be derived by taking the bottom of the

concrete as the origin. Once these matrices are determined,

the resultant throughout the depth of the beam, RFS, is thus

given as:

Fig. 7 Piecewise functions of

the rebar

Fig. 8 A complex beam’s cross-section

Int J Adv Struct Eng (2017) 9:37–49 43

123



RFS ¼ ACTIVE½1; 1�
Z ZN½1;1�þYN½1;1�

ZN½1;1�
ðFE[1; 3� � FE[1; 2�ÞFSdy

 !

þ ACTIVE½2; 1�
Z ZN½2;1�þYN½2;1�

ZN½2;1�
ðFE[2; 3� � FE[2; 2�ÞFSdy

 !

:

The beam is analyzed for its plastic moment capacity

condition; therefore, e0 ¼ 0:1 is specified. The value of dep

is obtained graphically by plotting RFS throughout the

depth of the beam, as shown in Fig. 9 for various numbers

of FS terms N, i.e., 50, 100, 150, 200 and 250. Numerical

results are given in Table 2.

It can be seen that the FS values approach the ‘exact’

values as N increases. The close agreement between the

‘exact’ and the rectangular stress block method values

justifies the assumption of the full yielding of the steel

section. For the moment capacities, calculations are made

for four different values of dep, where for each value,

various N values are specified. Figure 10a shows the plot of

the moment capacities versus number of terms, N whilst

Fig. 10b shows the plot of the moment capacities versus

various values of the dep. Comparison between the two

plots provides very important observations. It can be seen

that:

1. except for N = 10, the gradients of the curves in

Fig. 10a are much more gentle than those in Fig. 10b

2. the band of the curves in Fig. 10a is narrower than that

in Fig. 10b.

Based on these observations, it can be concluded that the

calculation of the moment capacities is more sensitive to

the number of terms, N in the calculations of the capacity

itself as compared to the variations of the dep. In other

words, while it may be necessary to use a large value for

N for the moment integration, fewer terms may be suffi-

cient for the determination of dep. For example, using

dep = 124.5564 mm, obtained from N = 50, moment

capacity of 5.3941 9 108 Nmm is calculated, for N = 250.

This is just 2% different from using N = 250 for both dep

and the capacity calculation, i.e., 5.4186 9 108 N mm.

This is very useful since the expression for the location of

the NA [Eqs. (10), (14)] contains two variables, y and dep

whilst the expression for moment [Eqs. (9), (13)] contains

only variable y. For a given N, greater computer resources

are required to solve the former as compared to the latter.

Therefore, this conclusion gives some sort of balance in

terms of the demand on computer resources.

Example 2: performance of the composite beams

This example is intended to demonstrate the generality and

the application of the formulation where several equivalent

composite cross-sections are analyzed in terms of their

Fig. 9 Graphical determination of dep (unit in mm)

Table 1 Material properties of

beam for Example 1
Yield stress, ry = 280 N/mm2 Modulus of elasticity, E = 2E5 N/mm2

Maximum compressive strain, eL = 0.0022 Yield strain, e2 ¼ �e3 = 0.0014

Beam depth, D = 400 mm FS period, L = 500 mm
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123



moment capacities, as shown in Fig. 11. These beams are

equivalent in terms of the amount of steel and the overall

depth. Material properties of the beams are given in

Table 3. The moment capacity is based on the limiting

strain of 0.0035, representing the attainment of the concrete

crushing. Herein, elastic–perfectly plastic (EPP) models

are used for both the steel and the concrete. All beams have

symmetrical rebar arrangements about the major axis

(moment contributed by the rebar is 2.61 9 107 N mm),

except for the conventional composite beam. The FS rep-

resentation of the rebar resultants for the conventional

composite beam is shown in Fig. 12. This is the quantita-

tive distribution of Fig. 7.

The results of the analysis are given in Table 4. Of the

newer forms of beam, Gohnert’s beam has the highest

moment capacity. The main reason for this is due to the

very low placement near the bottom of the beam; the whole

steel section has fully yielded in tension. The partial

yielding of the steel sections has been captured graphically

in Fig. 13. As can be seen, the profiled composite beam has

the greatest unyielded portion of steel as shown in Fig. 13a,

resulting in the lowest moment capacity. Based on Table 4,

the unyielded portion of the profiled composite beam

amounted to a depth of 107.32 mm. The PCFC beam,

although it has a moderate moment capacity, contains

23.5% less concrete as compared to the other beams and

thus is the lightest. For this particular configuration, the

elastic neutral axis depth of the PCFC is calculated as

24.88 mm. But, if the location of the steel section in the

PCFC is lowered, greater moment capacity can be expec-

ted. The partial yielding of the contemporary beams

highlights the acceptance of concrete crushing as one type

of premature failure. As compared to the conventional

composite arrangement, which has been shown in Fig. 13b

to have full yielding of the steel section, the possibility of

partial yielding of the steel due to the concrete crushing for

the contemporary beam is based on the fact that the con-

crete and the steel are placed at the same levels, leading to

deeper location of the NA. Since they are assumed to have

the same strain profile, such a configuration produces rel-

atively larger strains at the concrete extreme fiber as

compared to a shallower concrete arrangement, i.e.,

Fig. 10 Sensitivity to the number of FS terms, N

Table 2 Numerical results for Example 1

N dep (mm) Moment (1 9 108 N mm)

Present Piecewise Stress

block

dep = 127.0864 dep = 124.5564 dep = 124.0149 dep = 123.8984 Piecewise Stress

block

10 127.0864 123.700 123.6826 5.0044 5.1054 5.1268 5.1314 5.4440 5.4441

50 124.5564 5.2422 5.3367 5.3570 5.3614

100 124.1612 5.2785 5.3726 5.3928 5.3971

150 124.0149 5.2905 5.3845 5.4047 5.4090

200 123.9423 5.2965 5.3905 5.4107 5.4150

250 123.8984 5.3001 5.3941 5.4143 5.4186
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concrete slab in the conventional beam. However, despite

the full yielding of the steel section in the conventional

composite beam, its moment capacity is relatively low.

Further investigation has revealed that this low capacity is

due to the partial crushing of the concrete. Figure 14 shows

the state of stress in the concrete element for all beams.

Except for Fig. 14b, which is the stress distribution based

on the rigid-plastic model, the other distributions are based

on the EPP model. As can be seen, due to the use of the

EPP model a large elastic region (as compared to the

crushing region) exists in the conventional composite

beam, whilst for other beams, a substantial crushing region

Fig. 11 Equivalent composite beams in terms of amount of steel and total depth (dimensions in mm)

Fig. 12 FS representation of the distribution of the rebar resultants

(units in N and mm)

Table 3 Material properties for

Example 2
Properties Concrete Steel sheeting Reinforcement bar

Modulus of elasticity E (N/mm2) 33,100 205,000 200,000

Cylinder compressive strength, 0.85 fc (N/mm2) 36.89 – –

Yield strength, py or 0.87 fy (N/mm2) – 552 378.45
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can be seen. Such a difference is inferred as being due to

the higher location of the NA in the conventional com-

posite beam, which causes the EPP formulation to yield

such a distribution. Rerunning the analysis for the con-

ventional composite beam, but this time using the Rigid-

plastic model (Fig. 14b), a much higher capacity is

obtained (2.9828 9 108 N mm). This demonstrates the

sensitivity to material models in the analysis.

Fig. 13 Yielding of the steel sections (units in N and mm)

Table 4 Performance of the

beams
Beam dep (mm) Elastic depth of steel (mm) Moment (1 9 108 Nmm)

Profiled 519.011 107.32 1.8822

Conventional 563.766 0 1.8422

PCFC 497.716 24.88 1.8938

Gohnert and Komakec (2005) 497.271 0 2.409
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Fig. 14 Partial crushing of concrete (units in N and mm)
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Conclusions

A non-iterative procedure for the determination of the

moment capacity has been formulated for composite

beams. Such a formulation is possible because Fourier

series have been utilized to represent the piecewise distri-

butions of the flexural stress as a single-rule function. This

allows direct integration of the stress distribution

throughout the depth of the beam and, hence, the direct

determination of the location of the neutral axis (without

the need for iteration). Also, it makes the general moment

capacity expression applicable to all stress states. Numer-

ical examples were given which validated the formulation

and demonstrated its application. It was shown that, when

incorporated into the procedure previously proposed by the

authors, the formulation is general for any composite cross-

section. It was also shown that the formulation is able to

provide detailed information on the stress development

within the beam cross-section, i.e., state of yielding and

crushing, which are very valuable in better informing the

design of the structure.
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