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Networks of nonlinear resonators offer intriguing perspectives as quantum simulators for nonequili-
brium many-body phases of driven-dissipative systems. Here, we employ photon correlation measurements
to study the radiation fields emitted from a system of two superconducting resonators in a driven-
dissipative regime, coupled nonlinearly by a superconducting quantum interference device, with cross-Kerr
interactions dominating over on-site Kerr interactions. We apply a parametrically modulated magnetic flux
to control the linear photon hopping rate between the two resonators and its ratio with the cross-Kerr rate.
When increasing the hopping rate, we observe a crossover from an ordered to a delocalized state of
photons. The presented coupling scheme is intrinsically robust to frequency disorder and may therefore
prove useful for realizing larger-scale resonator arrays.
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Engineering optical nonlinearities that are appreciable
on the single photon level and lead to nonclassical light
fields has been a central objective for the study of light-
matter interaction in quantum optics [1–3]. While such
nonlinearities have first been realized in individual optical
cavities [4,5] and with Rydberg atoms [6,7], more recently
superconducting circuit quantum electrodynamics (QED)
[8] has proven to be a powerful platform for the study of
nonclassical light fields. Circuit QED systems facilitate
strong effective interactions between individual photons
[9,10], long coherence times [11], as well as precise control
of drive fields [12,13] within a large variety of possible
design implementations. Particularly, in situ tunable or
nonlinear couplers have been explored more recently for
superconducting elements [14–21].
Well-controllable engineered quantum systems offer

interesting perspectives to study interacting many-body
systems with photons [22–24]. Interacting photons are
typically explored in a nonequilibrium regime, in which
continuous driving compensates for excitation loss and
yields stationary states of light fields [25].
Nonequilibrium coupled resonator systems have been

investigated experimentally, both in a semiclassical and in a
quantum regime. Macroscopic self-trapping of exciton
polaritons has been observed in a dimer of coupled
Bragg stack microcavities [26], vacuum squeezing was
demonstrated in a dimer of superconducting resonators
[27], the unconventional photon blockade has been
observed in the microwave and the optical domain
[28,29], and signatures of bistability have been found in
a chain of superconducting resonators [30]. Moreover, a
transition from a classical to a quantum regime has been

observed in the decay dynamics of a resonator dimer [31],
chiral currents of one or two photons have been generated
in a three qubit ring [32], and spectral signatures of many-
body localization [33] as well as a Mott insulator of
photons [34] have been observed in a qubit chain.
In this Letter, we explore the interaction between indi-

vidual photons in a driven-dissipative system of two non-
linearly coupled superconducting resonators [see Fig. 1(a)].
The nonlinear coupler mediates a cross-Kerr interaction V,
on-site Kerr interactions Ua and Ub, and an effective linear
hopping interaction with in situ tunable rate Jac. Our experi-
ment provides a realization of a steady state quantum system,
in which cross-Kerr interactions exceed local Kerr inter-
actions, meaning that the force between particles grows as
they are separated and only starts to decay once the separation

exceeds the lattice constant. We measure the on-site gð2Þaa ≔
gð2Þaa ðτ ¼ 0Þ and cross correlations at zero time delay gð2Þab ≔
gð2Þab ðτ ¼ 0Þ between the emitted field from both resonators.
In the limit of small Jac=V, a photon trapped in one resonator
blocks the excitation of the neighboring resonator and vice
versa, leading to a spontaneous self-ordering of microwave
photons [35,36]. Such an intersite photon blockade regime
has been predicted for resonator arrays with nonlinear
couplers [37,38]. When increasing Jac=V, however, a delo-
calization of photons and a simultaneous occupation of
both resonators becomes favorable, leading to a change in
the photon statistics.
For this experiment we utilize an on-chip superconducting

circuit consisting of two lumped element resonators with
characteristic impedanceZ ¼ 80 Ω [seeFigs. 1(b),1(c)]. The
aforementioned nonlinear coupling circuit, interconnecting
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the two resonators, consists of a capacitively shunted super-
conducting quantum interference device (SQUID) with
capacitance CJ ¼ 95 fF and Josephson energy Emax

J =h ¼
80 GHz, with the Planck constant h. We use a super-
conducting coil and an on-chip flux drive line (port 5) to
ensure full dc and ac control of the magnetic flux threading
the SQUID loop. Each resonator is weakly coupled to an
input port (3 and 4), through which we drive the system,
and to an output port (1 and 2) into which approximately
50% of the intracavity field is emitted and measured using a
linear detection chain. The total decay rates are measured to
be ðκa; κbÞ=2π ¼ ð2.8; 2.4Þ MHz.
First, we characterize the sample by measuring the trans-

mitted amplitude jS21j as a function of external magnetic
fluxΦdc. At each flux bias point we observe two resonances
corresponding to the two eigenmodes of the system, see
Fig. 2(a). The flux dependence of the measured eigenfre-
quencies is well explained by a linear circuit impedance
model comprising a tunable effective Josephson energy,
which allows us to determine the aforementioned circuit
parameters. Fromanormalmodemodelwe extract the tuning
range of the corresponding linear hopping rate Jdc=2π ¼
−0.8…0.8 GHz [Fig. 2(b)]. The tunability ofJdc results from
an interplay between the capacitive and the flux-dependent
inductive coupling between the two resonators. As these
carry opposite signs, we are able to cancel both contributions

achieving approximately zero net static linear coupling
Jdc ≈ 0 at a dc flux bias point of Φdc ≈ −0.37Φ0,
where Φ0 ¼ h=2e is the magnetic flux quantum. At this
bias point the two measured resonances ðωa;ωbÞ=2π ¼
ð6.802; 7.164Þ GHz are separated by the bare detuning
Δ=2π ≡ ðωb − ωaÞ=2π ¼ 362 MHzandcorrespond closely
to the local modes of the system [Figs. 2(c),2(d)]. As a result,
the radiation of each mode (a, b) is collected in its respective
output line at port (1, 2). Notably, the finite detuning Δ
between the bare cavity modes suppresses undesired non-
linear interactions, which would otherwise give rise to pair
hopping and correlated hopping and disrupt the scope of the
experiment (see Supplemental Material [39]).
In order to recover a well-controllable linear hopping rate

despite the finite cavity detuning, we implement a para-
metric coupling scheme [14,19,43]. Here, we apply an
ac modulated flux drive to the SQUID with a variable
amplitude Φac and a modulation frequency ωac, which
equals the resonator detuning ωac ¼ Δ. For Φac ¼ 0 we
recover the uncoupled resonator modes when probing the
transmission spectra jS13j and jS24j [see Fig. 3(a)]. However,
as we increase Φac, we observe a simultaneous frequency
splitting of both modes, which scales linearly with Φac,
and which we interpret as the result of a parametrically
induced photon hopping with rate Jac=2π ¼ 0…40 MHz
(see Supplemental Material [39]).
In an appropriate doubly rotating frame, where each

mode rotates at its resonance frequency, our system is well
described by an effective Hamiltonian

(a)

(c) (d)

(b)

FIG. 2. (a) Measured transmission amplitude jS21j vs magnetic
flux Φdc and fit of the resonance frequencies to a linear circuit
impedance model (thin orange line). The working point Jdc ¼ 0
is indicated by a dashed orange line. (b) Linear hopping rate Jdc
vs Φdc, calculated using a normal mode model based on the
circuit parameters extracted from (a). (c),(d) Reflection coeffi-
cient measurements of bare cavity modes at Φdc ≈ −0.37Φ0

(Jdc ≈ 0) with fit to a Lorentzian (solid filling).

(a)

(c)

(b)

FIG. 1. (a) Sketch of an optical analogue of the setup,
consisting of two resonator modes a and b with Kerr non-
linearities Ua and Ub, coupled via a cross-Kerr interaction V and
a tunable linear hopping rate Jac. (b) Equivalent circuit diagram
and (c) false-colored micrograph of the sample, featuring two
lumped-element LC resonators a, b (blue, red), coupled via a
nonlinear coupling element composed of a capacitor and a
SQUID (inset). The resonators are accessed via two symmetric
sets of weakly coupled input lines (yellow, ports 3 and 4) and
output lines (green, ports 1 and 2). A flux modulation tone is
applied via a dedicated T-shaped flux line (purple, port 5).
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1

ℏ
HΔ ¼ δaa†aþ δbb†bþ Jacða†bþ b†aÞ

þ 1

2
Uaa†2a2 þ

1

2
Ubb†2b2 þ Va†ab†b

þ Ωaða† þ aÞ þ Ωbðb† þ bÞ;
with the drive detuning δi ¼ ωdrive;i − ωi (i ∈ fa; bg) and
the drive ratesΩi. The on-site and the cross-Kerr interaction
rates at zero coupling bias are ðUa;Ub; VÞ=2π ¼
−ð3.1� 0.3; 2.7� 0.2; 7.0� 0.3Þ MHz, which have
been extracted from a spectroscopic measurement (see
Supplemental Material [39]). In the absence of a para-
metric modulation the eigenstates of this Hamiltonian
correspond to the photon number states jnanbi in the local
basis [compare Fig. 3(b)]. The second order transitions are
redshifted by the corresponding Kerr rates. For finite Jac the
eigenstates hybridize in both the one- and two-photon
manifold.
We focus on a parameter regime in which jVj and Jac,

as well as κi andΩi, are comparable in magnitude, featuring
a competition between nonlinear interaction and linear
hopping, as well as between drive and dissipation. In our
system we additionally have jUij ≈ κi. BothΩa ¼ Ωb ¼ Ω,

setting the average number of excitations in the system,
and Jac, setting the rate at which the resonators exchange
excitations, are utilized as tunable control parameters,
while V, Ui, and κi are constant. In the experiment we
keep the drive frequencies, and thus δi ¼ 0, fixed. We
eliminate influences of the phase of Jac on the measured
results by averaging over multiple randomized phase
configurations.
We characterize the quantum states of the uniformly and

continuously driven two-resonator system by measuring
the second order cross gð2Þab and on-site correlation gð2Þaa of
the emitted radiation as a function of Jac and Ω [see
Figs. 4(a),4(c)]. To this aim, we linearly amplify and
digitize the radiation fields at both output ports in order
to obtain the second order photon correlations [27,44,45].
To enhance the signal-to-noise ratio, we use a quantum-
limited Josephson parametric amplifier [27] operated in a
phase-sensitive mode (see Supplemental Material [39] for
details about the detection process). The measured gð2Þ
correlations are compared with the results of a numerical
master equation simulation [46] [see Figs. 4(b),4(d)].
As confirmed by this simulation, the average resonator
occupations remain at or below the single photon level for
all the data presented in Fig. 4.

(a)

(b) (c)

FIG. 3. (a) Measured transmission amplitude jS13j (jS24j)
through resonator a (b) for varying flux modulation amplitude
Φac applied to port 5. Linear fits to the resonance frequencies of
the Jac-hybridized modes are shown as black dashed lines.
(b) Energy level diagram for vanishing (gray box) and finite
linear hopping rate Jac via parametric modulation at the frequency
difference Δ ¼ ωb − ωa. (c) Energy levels of resonator b in the
first (purple) and second (orange) excitation manifold vs Jac.

(a) (b)

(c)

(e) (f)

(d)

FIG. 4. (a),(c) Measured cross (on-site) second order photon

correlator gð2Þab (gð2Þaa ) as a function of the linear hopping rate Jac
and the drive rate Ω; the black dotted (dashed) line indicates the
linearly interpolated contour for gð2Þ ¼ 0.7 (gð2Þ ¼ 1.3). (b),(d)
Corresponding results from numerical simulations. (e) gð2Þ vs Jac,
cut for Ω=2π ¼ 0.76 MHz (see white dashed line; measured data
are shown with markers, numerical simulations with dashed
lines). (f) gð2Þ vs Ω, cut for Jac=2π ¼ 0 MHz (see white dash-
dotted line).
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In the regime of small Jac and low Ω we measure the
radiation to be antibunched, see Fig. 4. In this limit, the
cross-Kerr interaction effectively shifts the transition
frequency of one cavity when a photon is present in the
other and thus detunes the (j01i; j10i ↭ j11i) transition
from the drive tones. This inhibits simultaneous occupation
of both cavities, leading to a dynamic self-ordered photon
state manifested as antibunching in the photon cross
statistics. We thus observe the finite lattice size version
of the spontaneous breaking of the symmetry between the
two cases of only even or only odd lattice sites being
occupied [37,47]. Equivalently, the on-site Kerr interaction
prevents each mode from being doubly excited, leading to
antibunched on-site correlations.
Increasing the hopping rate Jac results in a hybridization

of the modes in both the one- and two-excitation manifold;
see Fig. 3(c) for a level diagram as a function of Jac. When
Jac becomes comparable to the Kerr rate jUij, the tran-
sitions to the single photon manifold become detuned from
the drive frequency, while the two-photon transition to the
symmetric j02þ 20þ 11i branch becomes resonant with
the drive. This leads to a more efficient drive into the
second excitation manifold compared to the originally
dominant single photon states and to an admixture of
simultaneous cavity occupations (j11i, j20i, and j02i). This
causes a crossover from antibunched to bunched statistics

in both themeasured gð2Þab and gð2Þaa , see Fig. 4(e). Interestingly,

we find a regime in which the on-site correlation gð2Þaa is

already close to unity, while the cross-correlation gð2Þab is still
antibunched. We attribute this effect to jVj being larger than
jUij. Whereas the observed anticorrelated gð2Þ functions are
expected to persist for larger lattices, the bunching at large
linear coupling is a finite size effect as no spectrally dense
single excitation band forms for two resonators.
Studying the dependence on the drive rateΩ, we find that

gð2Þaa approaches unity when Ω exceeds jUij [Fig. 4(f)],
which we explain by the breakdown of the photon block-
ade. This effect is found to be largely independent of Jac.
We observe a similar behavior for the cross-correlations.

In this case, however, the measured gð2Þab approaches one-
half in the limit of large drive rate Ω, which is in good
agreement with the result obtained from the numerical
simulations.
In conclusion, we have realized a coupled cavity system,

featuring a tunable ratio between linear hopping and cross-
Kerr interaction rate and observed the crossover from
photon ordering to delocalization. Inspired by the proposals
by Jin et al. [37,38], we interpret the measured cross
correlations as an order parameter in a (Jac, Ω)-dependent
phase diagram of the system. The observed crossover
closely resembles the onset of a driven-dissipative photon
ordering phase transition, from a fully ordered crystalline
phase dominated by spontaneous symmetry breaking
towards a uniform delocalized steady-state phase [48,49].

As such, we demonstrated the feasibility to measure and
control nonequilibrium quantum many-body phenomena
using interacting photons in engineered quantum systems
[50]. Such strongly correlated photonic systems may prove
particularly useful as a tool for analog quantum simulation
[51–54], where the active control of extended quantum
gases may be used to emulate other less accessible quantum
systems, with the prospect of complementing theoretical
and numerical studies in gaining insights on exotic quan-
tum phenomena [55–59].
We expect the demonstrated coupling mechanism to be

well extendable towards larger resonator arrays. Resilience
to disorder in electrical parameters [60] and suppression of
potential crosstalk can be achieved by frequency staggering
of neighboring cavities along with the adjustability of
the parametric modulation frequencies. Additionally, the
employed lumped element structures excel in this scenario
thanks to a compact footprint and high design versatility.
The presented system and variations thereof could be used

to explore regimes in which intersite interactions exceed
on-site interactions [61,62]. Additionally, the controllability
of the phase of the hopping rate could be employed to create
artificial gauge fields in plaquette systems and to study
nonreciprocal dynamics with photons [32]. Furthermore, the
variability of flux modulation frequencies could enable
the controllable activation of additional interaction terms
such as a parametric coupling between neighboring reso-
nators [63] or pair hopping [64], e.g., for the study of
supersolid phases [65,66].
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Gabelli, and J. Estève, Observation of the Unconventional
Photon Blockade in the Microwave Domain, Phys. Rev.
Lett. 121, 043602 (2018).

[29] H. J. Snijders, J. A. Frey, J. Norman, H. Flayac, V. Savona,
A. C. Gossard, J. E. Bowers, M. P. van Exter, D.
Bouwmeester, andW. Löffler, Observation of the Unconven-
tional Photon Blockade, Phys. Rev. Lett. 121, 043601
(2018).

[30] M. Fitzpatrick, N. M. Sundaresan, A. C. Y. Li, J. Koch, and
A. A. Houck, Observation of a Dissipative Phase Transition
in a One-Dimensional Circuit QED Lattice, Phys. Rev. X 7,
011016 (2017).

[31] J. Raftery, D. Sadri, S. Schmidt, H. E. Türeci, and A. A.
Houck, Observation of a Dissipation-Induced Classical to
Quantum Transition, Phys. Rev. X 4, 031043 (2014).

[32] P. Roushan et al., Chiral ground-state currents of interacting
photons in a synthetic magnetic field, Nat. Phys. 13, 146
(2017).

[33] P. Roushan et al., Spectroscopic signatures of localization
with interacting photons in superconducting qubits, Science
358, 1175 (2017).

[34] R. Ma, B. Saxberg, C. Owens, N. Leung, Y. Lu, J. Simon,
and D. I. Schuster, A dissipatively stabilized Mott insulator
of photons, Nature (London) 566, 51 (2019).

[35] D. E. Chang, V. Gritsev, G. Morigi, V. Vuletić, M. D. Lukin,
and E. A. Demler, Crystallization of strongly interacting
photons in a nonlinear optical fibre, Nat. Phys. 4, 884
(2008).

[36] M. J. Hartmann, Polariton Crystallization in Driven
Arrays of Lossy Nonlinear Resonators, Phys. Rev. Lett.
104, 113601 (2010).

PHYSICAL REVIEW LETTERS 122, 183601 (2019)

183601-5

https://doi.org/10.1103/PhysRevLett.76.1800
https://doi.org/10.1103/PhysRevLett.76.1800
https://doi.org/10.1038/nature11361
https://doi.org/10.1038/nature02851
https://doi.org/10.1038/nature06126
https://doi.org/10.1038/nature06126
https://doi.org/10.1103/PhysRevLett.106.243601
https://doi.org/10.1103/PhysRevLett.106.243601
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevLett.103.110501
https://doi.org/10.1038/s41467-017-00045-1
https://doi.org/10.1103/PhysRevB.73.064512
https://doi.org/10.1103/PhysRevB.73.064512
https://doi.org/10.1063/1.4882646
https://doi.org/10.1103/PhysRevLett.113.220502
https://doi.org/10.1103/PhysRevLett.113.220502
https://doi.org/10.1103/PhysRevB.91.014515
https://doi.org/10.1103/PhysRevB.91.014515
https://doi.org/10.1103/PhysRevApplied.6.064007
https://doi.org/10.1103/PhysRevApplied.6.064007
https://doi.org/10.1103/PhysRevLett.119.150502
https://doi.org/10.1038/s41534-018-0088-9
https://doi.org/10.1103/PhysRevLett.120.227702
https://doi.org/10.1103/PhysRevLett.120.227702
https://doi.org/10.1088/2040-8978/18/10/104005
https://doi.org/10.1088/0034-4885/80/1/016401
https://doi.org/10.1088/0034-4885/80/1/016401
https://doi.org/10.1038/nphys462
https://doi.org/10.1038/nphys2609
https://doi.org/10.1103/PhysRevLett.113.110502
https://doi.org/10.1103/PhysRevLett.113.110502
https://doi.org/10.1103/PhysRevLett.121.043602
https://doi.org/10.1103/PhysRevLett.121.043602
https://doi.org/10.1103/PhysRevLett.121.043601
https://doi.org/10.1103/PhysRevLett.121.043601
https://doi.org/10.1103/PhysRevX.7.011016
https://doi.org/10.1103/PhysRevX.7.011016
https://doi.org/10.1103/PhysRevX.4.031043
https://doi.org/10.1038/nphys3930
https://doi.org/10.1038/nphys3930
https://doi.org/10.1126/science.aao1401
https://doi.org/10.1126/science.aao1401
https://doi.org/10.1038/s41586-019-0897-9
https://doi.org/10.1038/nphys1074
https://doi.org/10.1038/nphys1074
https://doi.org/10.1103/PhysRevLett.104.113601
https://doi.org/10.1103/PhysRevLett.104.113601


[37] J. Jin, D. Rossini, R. Fazio, M. Leib, and M. J. Hartmann,
Photon Solid Phases in Driven Arrays of Nonlinearly
Coupled Cavities, Phys. Rev. Lett. 110, 163605 (2013).

[38] J. Jin, D. Rossini, M. Leib, M. J. Hartmann, and R. Fazio,
Steady-state phase diagram of a driven QED-cavity array
with cross-Kerr nonlinearities, Phys. Rev. A 90, 023827
(2014).

[39] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.122.183601 for infor-
mation about the parametric modulation, the detection
process, and the measurement of the Kerr rates, which
includes Refs. [40–42].

[40] A. Kamal, A. Marblestone, and M. Devoret, Signal-to-pump
back action and self-oscillation in double-pump Josephson
parametric amplifier, Phys. Rev. B 79, 184301 (2009).

[41] C. Lang, C. Eichler, L. Steffen, J. M. Fink, M. J. Woolley, A.
Blais, and A. Wallraff, Correlations, indistinguishability and
entanglement in Hong–Ou–Mandel experiments at micro-
wave frequencies, Nat. Phys. 9, 345 (2013).

[42] C. Eichler, D. Bozyigit, and A. Wallraff, Characterizing
quantum microwave radiation and its entanglement with
superconducting qubits using linear detectors, Phys. Rev. A
86, 032106 (2012).

[43] L. Tian, M. S. Allman, and R.W. Simmonds, Parametric
coupling between macroscopic quantum resonators, New J.
Phys. 10, 115001 (2008).

[44] D. Bozyigit, C. Lang, L. Steffen, J. M. Fink, C. Eichler, M.
Baur, R. Bianchetti, P. J. Leek, S. Filipp, M. P. da Silva,
A. Blais, and A. Wallraff, Antibunching of microwave-
frequency photons observed in correlation measurements
using linear detectors, Nat. Phys. 7, 154 (2011).

[45] C. Eichler, J. Mlynek, J. Butscher, P. Kurpiers, K.
Hammerer, T. J. Osborne, and A. Wallraff, Exploring
Interacting Quantum Many-Body Systems by Experimen-
tally Creating Continuous Matrix Product States in Super-
conducting Circuits, Phys. Rev. X 5, 041044 (2015).

[46] J. Johansson, P. Nation, and F. Nori, QuTiP: An open-source
Python framework for the dynamics of open quantum
systems, Comput. Phys. Commun. 183, 1760 (2012).

[47] P. Fendley, K. Sengupta, and S. Sachdev, Competing
density-wave orders in a one-dimensional hard-boson
model, Phys. Rev. B 69, 075106 (2004).

[48] O. T. Brown and M. J. Hartmann, Localization to delocal-
ization crossover in a driven nonlinear cavity array, New J.
Phys. 20, 055004 (2018).

[49] T. Fink, A. Schade, S. Höfling, C. Schneider, and A.
İmamoğlu, Signatures of a dissipative phase transition in
photon correlation measurements, Nat. Phys. 14, 365
(2018).

[50] I. Carusotto and C. Ciuti, Quantum fluids of light, Rev.
Mod. Phys. 85, 299 (2013).

[51] I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simu-
lation, Rev. Mod. Phys. 86, 153 (2014).

[52] S. Schmidt and J. Koch, Circuit QED lattices: Towards
quantum simulation with superconducting circuits, Ann.
Phys. (Amsterdam) 525, 395 (2013).

[53] A. A. Houck, H. E. Türeci, and J. Koch, On-chip quantum
simulation with superconducting circuits, Nat. Phys. 8, 292
(2012).

[54] C. Gross and I. Bloch, Quantum simulations with ultracold
atoms in optical lattices, Science 357, 995 (2017).

[55] T. Prosen and I. Pižorn, Quantum Phase Transition in a Far-
from-Equilibrium Steady State of an XY Spin Chain, Phys.
Rev. Lett. 101, 105701 (2008).

[56] M. Leib and M. J. Hartmann, Synchronized Switching in a
Josephson Junction Crystal, Phys. Rev. Lett. 112, 223603
(2014).
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