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Quantum random numbers generators (QRNGs) rely on quantum systems to produce sequences of random
numbers with an overall lower level of predictability than classical algorithmic systems. Over the past two
decades, phase randomizations of coherent sources from quantum spontaneous emission effects have gained a
lot of interest due to their operational simplicity, cost-contained components, and ability to generate random
numbers at high rates. However, many QRNGs require optimal calibration and alignment to ensure efficient and
effective random-number generation. This work demonstrates a detailed analysis of a heterodyne measurement
based QRNG, which implements phase randomization from two independent laser sources. The analysis also
quantifies the effects of setup misalignments using the Kullback-Leibler divergence as a benchmark to assess the
limiting conditions of secure random-number generation.
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I. INTRODUCTION

A requirement for randomness is present in many modern
technologies, e.g., digital security, numerical simulations, and
electronic gambling [1,2]. The random numbers used in these
applications must be uniformly distributed and truly indepen-
dent from each other [3], otherwise the security of these digital
systems could be compromised [4,5]. Classical algorithmic
random-number generators are commonly used to produce
random numbers, given the relative simplicity and low cost
with which they can be implemented, and their comparatively
fast data generation rates [6,7]. However, such generators only
produce numbers which appear random when analyzed using
a system with limited computational power and resources.

On the contrary, quantum random-number generators
(QRNGs) have a level of randomness which relies on the
intrinsic probabilistic nature of quantum measurements dic-
tated by quantum mechanics [8]. There is broad range of
phenomena which can be exploited for QRNGs, for example,
single-photon detection [9–14], amplified spontaneous emis-
sion noise [15,16], vacuum fluctuations [17–22], and photon
number distributions [23–26]. Commercial devices, which
utilize QRNGs, already exist [27], however, the generation
rates are in the low Mb s−1 range. For applications in, for
example, quantum key distribution [28–30] or quantum digital
signatures [31,32], which consume random numbers in the
Gb s−1 regime, higher QRNG rates are required. QRNGs that
employ quantum phase noise from spontaneous emission of
a laser source offer advantages in terms of generation rate,
operational simplicity, and the potential to be implemented
using low cost components.

In this paper, we present a practical implementation of an
optical QRNG using the phase noise between two independent
laser sources operated in continuous wave (cw) mode at
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telecommunication wavelength (1550 nm) to provide compat-
ibility with off-the-shelf commercial components. The system
makes use of heterodyne detection of coherent states and
we experimentally demonstrate a high secure postprocessed
offline generation rate of 110 Gb s−1 and a real-time extraction
rate of 15 Mb s−1. We also quantify the degree of interference
by an external eavesdropper in the generation process, which
inevitably lowers both the security and bit rate of the random
numbers.

II. METHODS

A. Heterodyne measurement

Heterodyne systems retrieve phase and frequency modu-
lations by downmixing two different optical oscillators, i.e., a
local oscillator (LO) and a signal (SG) [33]. The LO is used as
a reference source to which the SG is compared and the result-
ing output signal is measured by a detector which exhibits a
linear electrical response to linear changes in incident optical
energy [34]. Quantum mechanically, the light produced by a
laser source can be described in terms of coherent states [35],
however, it is possible to reduce the analysis to a semiclassical
electromagnetic fields system while still retaining the same
amount of information [36]. Under this framework, when the
electric fields associated with the LO (ELO) and SG (ESG)
interfere, the resulting superposition field ED reaching the
detector becomes

ED(t ) = ELO cos (ωLO t + φLO) + ESG cos (ωSG t + φSG),

(1)

where ωLO and ωSG are the optical frequencies of the LO
and the SG respectively, and φLO and φSG are the optical
phases mainly arising from spontaneous emission of the
laser sources. Our system comprises polarization maintaining
optical fibers allowing us to assume that the polarization
modes of the two fields are the same and are both linear.
The superposition of the electrical fields is a linear operation
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FIG. 1. Experimental setup of the heterodyne quantum
random-number generator (QRNG). Two independent DFB lasers
(λ ≈ 1550 nm), operated in continuous-wave mode and controlled
by a driving current and TEC unit, interfere at a 50:50 beam
splitter (BS). The random interference output is registered by a
fast InGaAs/InP APD which is monitored by a 12-bit resolution
ADC connected to a computer for postprocessing and randomness
extraction.

where the resulting interference depends on the relative phase
difference between the fields themselves [33]. The detectors
output ID can be shown to follow the dependence:

ID ∝
√

ILO

√
ISG cos (�ω t + �φ), (2)

where �ω and �φ define the differences between the an-
gular frequencies and optical phases of the LO and the SG
respectively while ILO and ISG are the electrical intensities
of the LO and the SG respectively. As long as the phases of
both the LO and SG are dominated by spontaneous emission,
�φ is uniformly distributed in the range [0, 2π ]. In our
experiment we show the probability distribution arising from
the heterodyne detection of two coherent states interference
and how it is affected by adjusting �ω, related to the central
wavelength mismatch between the two laser sources, and ILO

and ISG.

B. Experimental method

The experimental heterodyne system is shown in Fig. 1.
Both the LO and the SG are tunable narrow band dis-
tributed feedback (DFB) lasers with 1-GHz linewidth close to
1550-nm peak wavelength. A thermoelectric cooler (TEC)
unit allows wavelength tuning of both lasers, which directly
affects �ω. The TEC unit had a temperature stability of
±0.01 ◦C corresponding to a measured ∼1.51-pm shift in
central wavelength. Both the LO and the SG emit light in
a continuous wave (cw) mode and can be treated as two
independent sources producing two laser beams of random
relative phase (�φ). Working with cw emission eliminates
the requirement for precise matching of the interferomet-
ric optical path lengths, which other QRNGs operating via
phase noise require [37,38]. The intensities of both lasers are
finely tunable via two motorized variable optical attenuators
(MVOAs) with 0.1-dB resolution. Both lasers include an
internal monitoring photodiode which serves to limit the opti-
cal power fluctuations at the sources to ∼3 × 10−8% of the
operational output power, thereby limiting degradation of
the interferometric visibility caused by power fluctuations.
The operational optical powers of both sources matched at

the BS using motorized attenuators (PLO = 1.26 mW and
PSG = 1.28 mW) have been chosen to maximize the con-
tribution of spontaneous emission over stimulated emission
for optimal randomness extraction (see Appendix B for the
detailed analysis). The optical power levels showed a 1.5%
mismatch, however, no visibility degradation was detected
due to the higher contribution of the detector’s noise to the
overall signal. Moreover, the chosen optical power levels
broaden the spectral linewidths ∼0.0211 nm of both sources
allowing higher sampling rate (∼10 GHz) while retaining
uniformity and independence in �φ [39]. The outputs of
the LO and the SG are interfered at a 50:50 beam splitter
which is in turn connected to a balanced receiver [InGaAs/InP
avalanche photodiode (APD); 25-GHz bandwidth, 18.5-ps
rise time], the electrical output of which is read by a fast high-
resolution digital oscilloscope [20-GHz bandwidth, 12-bit
resolution analog-to-digital converter (ADC)] which served to
convert the analog signal from the APD into a digital signal
for postprocessing and randomness extraction. All optical
components are fiber coupled using single mode panda-eye
polarization-maintaining fiber [40] to limit interference visi-
bility degradation. The interferometer was kept in mechanical
isolation and in a temperature controlled environment with a
± 0.15 ◦C stability. Carefully matching the optical power of
both the LO and the SG using the individual MVOAs and
driving current, as well as their wavelengths via temperature
tuning with the TEC unit, granted optimal randomness gen-
eration. Wavelength matching not only plays a major role in
achieving high quality interference and therefore randomness
generation but also defines the beat frequency �ω of the
heterodyne measurement, i.e., the smaller the �ω, the less
correlation is present in the extraction process for a given
sampling rate. The beat frequency �ω is related to the wave-
lengths λLO and λSG of the LO and SG respectively as �ω =
( c

n )2π | 1
λSG

− 1
λLO

| where c is the speed of light in vacuum
and n is the refractive index of the medium through which
LO and SG propagate. The system’s receiver was balanced
by digitally selecting a frequency extraction window, i.e.,
10 GHz centered at 7.6 GHz, where the detector’s electrical
response was uniform in order to reduce classical noise in-
troduced by device imperfections. The digital signal produced
by the fast oscilloscope was then postprocessed using custom
analysis routines written in MATLAB [41], which computed
and assessed the security and performance of the system.
Standard NIST 800-22 [42] and DIEHARDER [43] testing
suites were then used to provide a preliminary assessment of
the randomness of the generated numbers. Further tests must
be conducted on the output of the QRNG to verify that it
is not unduly correlated with the environment and these are
considered in subsequent sections for our QRNG.

III. EXPERIMENTAL RESULTS

A. Probability distribution and information entropy

Figure 2 shows the probability distributions for a single
coherent state, i.e., when LO and SG are active without inter-
fering [Figs. 2(a) and 2(b)], the electric noise of the detector
[Fig. 2(c)], and two coherent states interference, i.e., when
both LO and SG laser sources are active [Fig. 2(d)]. The prob-
ability distribution of the two coherent states’ interference
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FIG. 2. Probability distributions of (a) local oscillator (LO),
(b) signal (SG), (c) electrical background from the APD detector, and
(d) quantum interference when the LO and SG are indistinguishable.

follows an arcsine distribution as the randomized phase dif-
ference �φ between the laser sources is uniformly distributed
in the range �φ ∈ [0, 2π ]. Such a distribution is easily dis-
cernible from the others shown in Figs. 2(a)–2(c) as they
follow a Gaussian profile as predicted by the central limit
theorem [44]. Probability distribution analysis provides a first
assessment on the underlying physical process of a QRNG,
however, it is also important to quantify the amount of
nonredundant information that can be extracted from the pool
of data samples. In information theory, the family of Rényi
entropies are the mathematical tools that allow quantifying
the degree of information associated with a random variable
[45,46]. The two most commonly used entropies are the Shan-
non entropy and min-entropy [47–49]. To study the amount
of entropy found in the system we implement a threshold
level extraction mechanism, i.e., a value stored by the ADC is
converted into either a binary 1 or 0 if it is higher (lower) than
a specific voltage value, binary probability distributions are
then computed and used to estimate both entropies. Figure 3
shows both Shannon and min-entropy as a function of the
threshold level as well as the associated binary distributions.
The threshold is selected to ensure that the output sequence of
random binary digits is balanced to have equal numbers of 1’s
and 0’s when considered over a sequence of prestored 106 bit
string. In our case, both entropies were maximized at 0.967
bit−1 for a threshold level of 49.95% showing great agreement
with the expected theoretical value of 50% for a balanced
system. As soon as the threshold moves from that optimal
position, an asymmetry in the probabilities arises and the
amount of nonredundant extractable information diminishes
reaching a minimum level at both extremes (see Fig. 3). Our
entropy estimation and binary probability distribution analysis
do not take into account limiting factors, e.g., detector’s
discretization effects and side information correlations, as the
required extra analysis goes beyond the scope of this work.

B. Security analysis

Despite having maximized entropy and showing ideal arc-
sine probability distribution, the system might be correlated

FIG. 3. Shannon entropy (dashed purple line), min-entropy
(solid green line), and binary probability distributions, i.e., P0

(dashed blue line) and P1 (solid orange line) as a function of the
extraction threshold level. In our case, the achievable maximum
entropy is 0.967 bit−1 at a threshold level of 49.95%. Error bars
of experimental values are less than 5% and covered by the plot
symbols.

with the environment or an eavesdropper or malicious party
could control part of the device. Our QRNG depends on the
interference of two independent coherent states, and of all the
parameters that influence the visibility of the interferometer,
e.g., polarization, temperature, mechanical stress, etc., affect
the output of the system; Eq. (2) shows that the intensity
registered by the detector is proportional to the product of
the square root of the LO and SG intensities and that it is
also affected by the wavelength difference, �ω, between the
LO and SG. However, in randomness generation the aim is to
calibrate the LO and the SG to be highly indistinguishable and
to maximize the uncertainty in the measurements, therefore
there is a limit to how distinguishable the two signals can
be which is not incorporated in the theoretical formulation.
The absolute beat frequency �ω can be expressed as the sum
of two independent terms, i.e., �ω = �ωI + �ωT. �ωI is
the induced beat frequency from experimental limitations in
wavelength matching due to the finite temperature resolution
of the TEC unit when optimal quantum interference is mea-
sured, in our case �ωI ≈ 188 MHz. �ωT is the measured
beat frequency when the temperature of the LO and SG are
actively changed via the TEC unit. Figure 4 shows the time
evolution of the probability distribution as �ω increases while
Fig. 5 shows the time evolution of the probability distribution
as the difference of the optical powers of the LO and the
SG, i.e., �I = |ILO − ISG|, increases. The optimal �I value
is set to 500 nW, the smallest possible intensity variation due
to the stabilization feedback control of the DFB lasers, while
the maximum value of 2.5 mW is achieved by increasing
the operational power up to ∼2.5 mW. As can be seen
from Fig. 4, the distribution transitions from an arcsine to
a Gaussian as �ω increases. As the separation between the
two wavelengths increases, the beat frequency �ω increases
until the time-averaging sampling of the detector dominates
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FIG. 4. Evolution of the probability distribution for different
values of �ω. When LO and SG are indistinguishable, the quantum
interference takes place and the arcsine is retrieved (a). As the wave-
length’s difference �ω increases, the full width at half maximum
of the arcsine distribution reduces, drawing the two sideband peaks
together [see (b) and (c)], until the distribution transforms into a
Gaussian distribution (d). All distributions have been acquired with
optimal intensity matching, �I ≈ 500 nW.

the signals envelope, flattening the electrical response. In
addition, when the two angular frequencies ωLO and ωSG are
spectrally separated by more than 4 GHz, the two coherent
states no longer downmix and can be considered to be in two
distinguishable separate spectral modes, thereby precluding
interference at the BS. Due to the intrinsic electrical noise

FIG. 5. Evolution of the probability distribution for different
values of �I . When the intensities of both LO and SG are identical,
the quantum interference takes place and the arcsine is retrieved (a).
As the intensities difference �I increases, the full width at half max-
imum of the arcsine distribution reduces, drawing the two sideband
peaks together [see (b) and (c)], until the distribution transforms into
a Gaussian distribution (d). All distributions have been acquired with
optimal wavelength matching, �ω = 206.67 MHz.

of the detector, the final distribution broadens and assumes
the characteristic Gaussian shape. All �ω values are defined
relative to the condition of optimal quantum interference
[Fig. 4(a)] which is set to �ω = 206.67 MHz as reference.
Similarly, in Fig. 5, as �I increases, the distribution follows
the same evolution since the difference between the mean
photon numbers |α|2 and |β|2, associated with the coherent
state |α〉 of the LO and |β〉 of the SG, becomes big enough
to suppress the contribution of the interference letting the
convolution of the individual lasers emerge. Notably, the dis-
tribution loses its characteristic arcsine shape only for high �I
values, i.e., ∼2.5 mW, corresponding to a divergence of more
than three orders of magnitude from the optimal case �I ≈
500 nW. Wavelength mismatch, on the other hand, shows the
appearance of a Gaussian distribution [Fig. 4(d)] when �ω

diverges from the optimal case �ω = 206.67 MHz by just
20 times, showing that the system is more robust against
intensity fluctuations in the LO and the SG than wavelength
misalignments.

This analysis shows that, when the system is not optimally
calibrated, the randomness generated by the interference of
the two lasers is highly suppressed. Therefore, the user has
the ability to monitor the generation process and detect if the
system is being controlled or manipulated by an eavesdropper,
or there are malfunctions during the operational lifetime.

C. Randomness distillation and testing

The probability distribution that arises from the interfer-
ence of two independent laser sources is described by an
arcsine function (see Sec. III A), which inevitably affects
the generated random numbers, i.e., they are not uniformly
distributed. Therefore, it is imperative to process further the
raw samples to reduce correlations and side information.
Privacy amplification, in the framework of universal hashing
functions, is able to distill high quality random numbers from
biased random sequences at the expense of a lower bit rate
[50]. In our experiment, we made use of the Toeplitz matrix
hashing technique (see Appendix D) providing information
theoretic security [51]. The Toeplitz matrix construction con-
siders the data size, min-entropy estimation, and security level
[52]. The hashing extraction allows us to produce secure ran-
dom numbers with a generation rate of 110 Gb s−1 making use
of a 4096 × 3960 Toeplitz matrix. A prestored set of random
numbers have been tested using the widely implemented NIST
SP 800-22 and DIEHARDER suites to provide a preliminary
assessment of the generated randomness. The complete results
of the randomness tests have been included in Appendix A.
When our QRNG system is not optimally calibrated, or an
eavesdropper is actively interfering, the generation process is
affected and the resulting distribution changes from an arcsine
to a Gaussian function (see Sec. III B) which sequentially
introduces more correlations in the random numbers. Refer-
encing Tables I and II from Appendix A, when the system
is optimally aligned, i.e., �ω = 206.67 MHz, the generated
numbers pass all tests, however, as �ω increases, we see
an increasing number of tests failing. These results clearly
confirm the requirement for calibration and monitoring of
the optical setup to limit the amount of correlations that are
introduced by the detector. In addition to the statistical tests,
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TABLE I. NIST SP 800-22 tests results. A test is successful if the p-value satisfies the condition p-value � α, where α is the chosen level
of significance.

NIST SP 800-22
�ω = 206.67 MHz �ω = 616.87 MHz �ω = 4205.72 MHz

TEST p-value Result p-value Result p-value Result

Frequency 0.964295 PASSED 0.888137 PASSED 0.001084 FAILED
Block frequency 0.046169 PASSED 0.195163 PASSED 0.006990 FAILED
Cumulative sums 0.422034 PASSED 0.689019 PASSED 0.007422 FAILED
Runs 0.155209 PASSED 0.619772 PASSED 0.007880 FAILED
Longest run 0.739918 PASSED 0.378138 PASSED 0.009936 FAILED
Rank 0.378138 PASSED 0.002869 FAILED 0.004573 FAILED
FFT 0.723129 PASSED 0.002126 FAILED 0.002126 FAILED
Nonoverlapping template 0.060239 PASSED 0.000142 FAILED 0.002316 FAILED
Overlapping template 0.551026 PASSED 0.008774 FAILED 0.001346 FAILED
Universal 0.500934 PASSED 0.264458 PASSED 0.006990 FAILED
Approximate entropy 0.287306 PASSED 0.378138 PASSED 0.007422 FAILED
Random excursions 0.340461 PASSED 0.004784 FAILED 0.169178 PASSED
Random excursions variant 0.146359 PASSED 0.003699 FAILED 0.132858 PASSED
Serial 0.311542 PASSED 0.204076 PASSED 0.000316 FAILED
Linear complexity 0.186566 PASSED 0.001125 FAILED 0.000247 FAILED

we evaluated the autocorrelation coefficient K of prestored
128-Mb strings for different �ω values at a fixed sampling
rate of 10 GHz whose results are reported in Appendix C.

The computed K-values corroborate our previous analysis and
results where high randomness was only achievable when the
two laser sources were indistinguishable while also proving

TABLE II. DIEHARDER tests results. A test is successful if the p-value satisfies 0.01 � p-value � 0.99.

DIEHARDER
�ω = 206.67 MHz �ω = 616.87 MHz �ω = 4205.72 MHz

TEST p-value Result p-value Result p-value Result

diehard birthdays 0.120192 PASSED 0.365844 PASSED 0.903437 PASSED
diehard operm5 0.193108 PASSED 0.124769 PASSED 0.993316 PASSED
diehard rank 32x32 0.849925 PASSED 0.036587 PASSED 0.000000 FAILED
diehard rank 6x8 0.034400 PASSED 0.000000 FAILED 0.130760 PASSED
diehard bitstream 0.984981 PASSED 0.000000 FAILED 0.000000 FAILED
diehard opso 0.451348 PASSED 0.982457 PASSED 0.018327 PASSED
diehard oqso 0.469156 PASSED 0.289625 PASSED 0.000000 FAILED
diehard DNA 0.526109 PASSED 0.000000 FAILED 0.000000 FAILED
diehard count 1s str 0.468670 PASSED 0.496325 PASSED 0.000000 FAILED
diehard count 1s byte 0.584186 PASSED 0.886326 PASSED 0.000000 FAILED
diehard parking lot 0.166806 PASSED 0.000000 FAILED 0.000000 FAILED
diehard 2dsphere 0.818299 PASSED 0.000000 FAILED 0.335782 PASSED
diehard 3dsphere 0.616278 PASSED 0.069852 PASSED 0.155917 PASSED
diehard squeeze 0.744275 PASSED 0.328914 PASSED 0.000000 FAILED
diehard sums 0.036712 PASSED 0.000000 FAILED 0.000000 FAILED
diehard runs 0.577855 PASSED 0.000000 FAILED 0.833271 PASSED
diehard runs 0.104087 PASSED 0.000000 FAILED 0.139655 PASSED
diehard craps 0.991617 PASSED 0.713058 PASSED 0.000000 FAILED
diehard craps 0.370901 PASSED 0.000000 FAILED 0.000000 FAILED
marsaglia tsang gcd 0.324908 PASSED 0.000000 FAILED 0.000000 FAILED
marsaglia tsang gcd 0.142665 PASSED 0.169742 PASSED 0.000000 FAILED
sts monobit 0.623604 PASSED 0.000000 FAILED 0.000000 FAILED
sts runs 0.395052 PASSED 0.699814 PASSED 0.000000 FAILED
sts serial 0.156429 PASSED 0.000000 FAILED 0.000000 FAILED
RGB bitdist 0.716622 PASSED 0.000000 FAILED 0.000000 FAILED
RGB minimum distance 0.181222 PASSED 0.294631 PASSED 0.000000 FAILED
RGB permutations 0.804803 PASSED 0.000000 FAILED 0.838064 PASSED
RGB lagged sum 0.050637 PASSED 0.000000 FAILED 0.000000 FAILED
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FIG. 6. Kullback-Leibler divergence as a function of the beat
frequency �ω when comparing the experimental probability distri-
butions to an ideal arcsine distribution (gray dashed line and upwards
triangles) and a pure Gaussian distribution (purple dashed line and
downwards triangles). Dashed lines refer to theoretical predictions
of a perfect system while solid lines refer to a theoretical prediction
with the experimental parameters.

that a digital sampling rate of 10 GHz does not introduce high
degrees of correlation in the generated bit strings. Further to
random testing, it is possible to monitor the transition from
quantum interference to the convolution of the two lasers by
computing the Kullback-Leibler divergence (KLD) [51,53,54]
(see Appendix E) on the emerging probability distributions.
Figure 6 shows the KLD expressed in nat, the natural unit
of information, as a function of the beat frequency �ω

when comparing the experimental probability distributions
to both an ideal arcsine distribution (gray dashed line and
upwards triangles) and a pure Gaussian distribution (purple
dashed line and downwards triangles). As the LO and the
SG becomes “more distinguishable,” i.e., �ω increases, the
KLD monotonically increases from its minimum value when
the divergence from a perfect arcsine distribution broadens
while it decreases to a minimum when the divergence from
a perfect Gaussian distribution reduces. The dashed lines
in Fig. 6 represent the theoretical KLDs when comparing
the experimental probability distributions to an ideal arcsine
distribution (gray) and to a Gaussian distribution (purple).
The data points represent the KLD computed comparing
the experimental probability distributions to the experimental
arcsine distribution [Fig. 4(a)] (gray upwards triangles) and
the experimental Gaussian distribution [Fig. 4(d)] (purple
downwards triangles). The former are shifted towards higher
�ω values due to experimental limitations when matching
the wavelengths of the two laser sources which provides op-
timal quantum interference at an absolute �ω = 206.67 MHz
rather than the theoretical �ω = 0. The intersection point
between the two experimental KLDs (�ω = 582.37 MHz)
defines the transition limit where the QRNG loses enough
randomness to introduce high correlations in the generated

numbers making the statistical random tests fail. Furthermore,
the KLD analysis highlights the limiting conditions for in-
distinguishability between two laser sources of a heterodyne
detection QRNG. The KLD also provides additional security
when performing Toeplitz hashing on the raw data by provid-
ing further constraints on the generated bits.

IV. DISCUSSION

QRNGs based on phase randomization sampling between
two independent lasers clearly show the ability to produce
random numbers at Gb s−1 rates due to fast response detec-
tors, reduced amount of optical components, and off-the-shelf
devices easy to implement. They also provide the means to
monitor the generation process and infer possible interference
by an external party simply by reconstructing the probability
distribution of the generated numbers. However, such gener-
ators lack the ability to produce numbers in real time due to
the lack of distribution uniformity. Postprocessing and ran-
domness distillation need to be performed thus reducing the
overall generation rate. Here we presented a detailed analysis
on how it is possible to violate the conditions for randomness
generation by tampering with the system.

V. CONCLUSIONS

We presented an optical QRNG based on sampling phase
randomization between two independent cw laser sources.
We showed the power behind heterodyne detection and how
it relates to our experiment. We analyzed how randomness
generation is affected when the system is working under
suboptimal conditions and an eavesdropper tampers with the
experimental setup. Postprocessing and privacy amplifica-
tion was required to remove biases in the generated random
numbers as well as compensate for the lack of uniformity.
The overall secure generation rate could be improved with
faster acquisition equipment. Such QRNG could be imple-
mented in standard QKD systems by simply replacing the
SG with a fraction of the optical power from the system’s
source and spending its random numbers to seed the QKD
protocol directly. Future work would see the implementation
of a more rigorous entropy analysis involving the effects of
discretization introduced by the detector [17,19,22] as well as
the contribution of side information [55,56].

All data created during this research are openly available
from the Heriot-Watt University data archive [57].
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APPENDIX A: NIST SP 800-22 AND DIEHARDER TESTS

Tables I and II report the p-values, i.e., degree of accep-
tance or rejection of randomness hypothesis on the generated
numbers, of all tests included in the NIST SP 800-22 and
DIEHARDER suites distributed in the allowed range [0,1],
as well as the resulting acceptance or rejection condition for
different �ω values. The level of significance α for all NIST
SP 800-22 tests has been set to 0.01 which allows us to
assert if a string of random values is truly random with a
99% confidence. All NIST SP 800-22 tests were performed on
128-bit strings of 106 bits long and all DIEHARDER tests on
128 million 32-bit numbers for statistical significance relative
to a real time extraction rate of 15 Mb s−1. The tests presented
were performed on the raw extracted numbers, before ap-
plying any randomness distillation. The real-time generation
rate was limited to only tens of Mb−1 due to limited USB
connection speed between the computer and oscilloscope
used to digitize the detector’s signal. The nominal offline
generation rate of 110 Gb s−1 is determined by multiplying
the min-entropy value, the 12-bit resolution of the ADC unit,
and Toeplitz hashing reduction to the 10-GHz sampling rate
and assumes no speed limitations during the acquisition and
postprocessing of the generated random numbers.

APPENDIX B: MAXIMIZATION OF QUANTUM
PHASE FLUCTUATIONS

Optical heterodyne detection makes use of two indepen-
dent sources, i.e., a local oscillator (LO) and a signal (SG), to
retrieve phase and frequency information of the downmixed
signals. In a semiclassical interpretation, the interference out-
put monitored by a detector can be described as follows:

ID ∝ cos (�ω t + �φ), (B1)

where �ω and �φ are the differences between the angular
frequencies and optical phases of the LO and SG respectively.
When the two sources (LO and SG) do not share any a
priori information, �φ is uniformly distributed in the range
[0, 2π ]. A laser source produces highly coherent photons
which share a common phase whose value is dictated by
the random fluctuations of the quantum process of sponta-
neous emission [58]. Heterodyne based QRNGs harness these
quantum fluctuations as a source of randomness. However,
semiconductor lasers have shown the ability to reduce such
contributions when operated at high optical power levels [59].
Therefore, it is important to calibrate the system in order
to minimize the predictable classical phase noise due to a
system’s imperfections and maximize the quantum contribu-
tion of spontaneous emission. The calibration procedure we
used [60] conveniently allows us to separate the overall phase
fluctuation �φ as the sum of two individual components:

〈�φ 2〉 = Q

P
+ C, (B2)

where Q and C are the quantum and classical phase fluctu-
ations respectively and 〈·〉 denotes the statistical averaging
function. The quantum contribution is inversely proportional
to the optical power of the laser sources while the classical
noise is laser independent and collects all imperfections of the
system. As a first approximation, we consider such variables

FIG. 7. Variance of intensity output 〈I 2
D 〉 as a function of the

operational optical power. Solid red line corresponds to theoretical fit
using Eq. (B3) while filled blue dots correspond to the experimental
values. Error bars of experimental values are less than 2.5% and
covered by the plot symbols.

as time-independent due to implementation of polarization-
maintaining panda-eye fibers, internal power stabilization
mechanisms for both laser sources and interferometric sta-
bility. Consequently, the variance of the intensity output ID

becomes 〈
I 2
D

〉 = C
′
P2 + Q

′
P + B, (B3)

where Q
′
, C

′
are the normalized quantum and classical con-

tributions respectively which incorporate the gain factor of
the detector and B is a constant term due to the detector’s
background level. Information theoretic randomness requires
maximization of the quantum contribution (Q

′
P) over the

classical one (C
′
P2 + B), therefore it is possible to evaluate

the optimal operational power level Popt which produces the
highest quantum signal-to-noise ratio (QSNR) δ:

δ = Q
′
P

C ′P2 + B
. (B4)

The coefficients Q
′
, C

′
, and B were extracted interpolating

Eq. (B3) for different optical power levels P. Figure 7 shows
the experimental values of the measured variance 〈I 2

D 〉 for
different optical power values P together with the interpolat-
ing curve from Eq. (B3). The plot displays the experimental
data of only one laser source as the other source presents a
similar trend. Table III reports the values for the extrapolated
coefficients for both sources. Making use of Eq. (B3) and
the interpolated values of Table III, it is possible to define an
optimal power level Popt for both sources which maximizes
the QSNR δ (see Table IV). The internal feedback control
system of the two lasers sources allows us to reduce power
fluctuations to ∼3 × 10−8 % of the chosen optical power
also providing an extinction factor of (∼ − 10 dB) over the
optimal working condition and (∼ − 6 dB) over the electrical
background noise of the detector in the frequency domain.
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TABLE III. Coefficients of Eq. (B3) extrapolated from the theoretical fit for both the LO and SG.

Local oscillator (LO) Signal (SG)

C
′

Q
′

B C
′

Q
′

B

(mV2/mW2) (mV2/mW) (mV2) (mV2/mW2) (mV2/mW) (mV2)

0.246 ± 0.033 17.8 ± 0.4 0.39 ± 0.62 0.253 ± 0.042 17.2 ± 0.8 0.42 ± 0.39

APPENDIX C: AUTOCORRELATION ESTIMATION

Random numbers are commonly checked by testing suites,
e.g., NIST SP 800-22 and DIEHARDER, in order to assess the
degree of randomness they hold, however, it is also important
to quantify the degree of correlation that might be introduced
by an incorrect sampling mechanism during the acquisition
process. The autocorrelation coefficient K allows us to per-
form such assessment. K is defined as follows [39]:

K = E [(xi − μ)(xi+m − μ)]

σ 2
, (C1)

where E is the expected value function, m is the bit shift, μ

and σ are the mean and standard deviation of the bit string,
and xi is the ith bit value of a bit string X . Figure 8 shows
the computed coefficient K for different values of �ω and
bit shifts. As can be seen, the autocorrelation coefficient K
is the lowest for the smallest �ω experimentally achievable,
i.e., �ω = 206.67 MHz, and it increases to higher values as
�ω increases.

APPENDIX D: UNIVERSAL HASHING AND
TOEPLITZ MATRIX

Any practical QRNG requires a postprocessing phase after
obtaining raw data in order to remove almost completely the
classical noise introduced by correlation with the environment
[50]. The first step in doing so is to determine the amount
of randomness generated by the system and the information
entropy is the mathematical tool which gives this value. Of all
information entropies, the min-entropy H∞ is the one widely
used for QRNGs as it provides a lower bound on the secure
extractable information [47,48].

Definition D.1: The min-entropy H∞ of a random variable
X with probability distribution X on a uniformly distributed
set {0, 1}l is defined as

H∞(X ) = − log2

[
max

X∈{0,1}l
Prob(X = x)

]
. (D1)

TABLE IV. Optimal operational power levels and corresponding
QSNRs for both the LO and SG. When δ is maximized the quan-
tum contribution of spontaneous emission dominates over both the
classical optical noise and intrinsic background level of the detector.

Local oscillator (LO) Signal (SG)

Popt δ (Popt ) Popt δ (Popt )
(mW) (mW)

1.26 28.73 1.28 26.38

Once the min-entropy is computed, its value can be used to
create a randomness extractor.

Definition D.2: An E (k, ε, l, p, s) extractor is a function

E : {0, 1}l × {0, 1}p → {0, 1}s, (D2)

with H∞ � z for a probability distribution X on a uniformly
distributed set {0, 1}l such that the probability distribution
E (X, {0, 1}p) is ε-close to the uniform distribution {0, 1}s.

The extractor depends on the security parameter ε which
defines the statistical distance between two probability distri-
butions. The smaller this parameter is, the closer the extracted
numbers are to being uniformly distributed on {0, 1}.

Now that the extractor is defined, it is possible to perform
Toeplitz hashing extraction on the raw random numbers by
constructing a Toeplitz random matrix and applying the con-
cepts introduced by the Leftover Hash Lemma [3,52,61]. A
Toeplitz matrix is defined as follows:

Definition D.3: A Toeplitz n × n matrix T is a matrix in
which each descending diagonals are constant:

Ti, j = Ti+1, j+1 = ti− j . (D3)

Using Eq. (D3), it is possible to define the procedure of
Toeplitz hashing as follows [52]:

(1) Given a raw extracted data sample of size l , a min-
entropy H∞ = z, and security parameter ε, the length of the

FIG. 8. Absolute value of the autocorrelation coefficient K as a
function of the bit shift relative to extracted bit strings for different
�ω values. All values were computed from prestored raw 128-
Mb strings at a fixed sampling rate of 10 GHz before randomness
distillation.
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Toeplitz extractor s is

s = �l − z + 2 log2 ε
, (D4)

where �·
 is the floor function.
(2) Construct a n × s Toeplitz matrix using a 2n − s − 1

random-bit seed.
(3) Multiply the Toeplitz matrix by the raw data and extract

unbiased random data of length s.

APPENDIX E: KULLBACK-LEIBLER DIVERGENCE

Entropy estimation on probability density functions asso-
ciated with random variables provides a quantitative method
to assessing the amount of randomness in a system. However,
it fails to give information about the nature of the probability
density functions, i.e., it cannot distinguish between two dif-
ferent probability distributions which hold the same amount
of randomness. The Kullback-Leibler divergence (KLD), also
called relative entropy, helps to measure the probability dis-
tance of two separate density functions [51,53,54].

Definition E.1: The Kullback-Leibler divergence KLD is a
function

DKL : P × Q → R, (E1)

where P and Q are probability distributions. DKL is thus
defined as

DKL(P||Q) =
∫ ∞

−∞
p(x)ln

(
p(x)

q(x)

)
dx, (E2)

where p and q are the probability densities associated with P
and Q.

Following definition (E1), the KLD satisfies the following
properties:

(1) It satisfies the Gibbs inequality [62],

DKL(P||Q) � 0.

(2) It is defined only for absolutely continuous probability
density functions,

q(x) = 0 → p(x) = 0.

(3) It is additive for independent probability distributions,

DKL(P||Q) = DKL(P1||Q1) + · · · + DKL(Pn||Qn).

The KLD thus measures the mutual information, i.e., mu-
tual dependence of distributions, of two probability density
functions. However, it is important to stress that, despite the
KLD showing remarkable similarities with other information
divergences, it is not a true metric, i.e., it does not satisfy the
triangle inequality and it is not symmetric [63].

The analysis so far has been applied to a classical system
where the probability density functions represent classical
outcomes from a deterministic system, however, the KLD can
be generalized to a quantum system by replacing the classical
distributions P and Q with the corresponding density matrices
P and Q which are defined on an Hilbert space H [64]:

DKL(P||Q) = Tr[P lnP − lnQ)]. (E3)

In a quantum framework, KLD is also implemented to mea-
sure the separability of a quantum state as an estimation of the
degree of entanglement [65].
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